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The pion electromagnetic form factor and two-pion production in electron-positron collisions are
simultaneously fitted by a vector dominance model evolving to perturbative QCD at large momentum
transfer. This model was previously successful in simultaneously fitting the nucleon electromagnetic form
factors (spacelike region) and the electromagnetic production of nucleon-antinucleon pairs (timelike
region). For this pion case dispersion relations are used to produce the analytic connection of the spacelike
and timelike regions. The fit to all the data is good, especially for the newer sets of timelike data. The
description of high-q2 data, in the timelike region, requires one more meson with ρ quantum numbers than
listed in the 2014 Particle Data Group review.
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I. THE PION FORM FACTOR

The pion form factor (FF) Fπðq2Þ is a function of the
squared four-momentum q2 transferred by the virtual
photon, which parametrizes the coupling associated with
the photon-pion-pion vertex, γπþπþ, see Fig. 1, assuming
pions are particles with a nonpointlike spatial charge
distribution.

A. Definition

The Feynman amplitude of the diagram in Fig. 1, in the
spacelike direction, i.e., for the scattering process, is

Mscatt: ¼
1

q2
eūðk2Þγμuðk1Þhπþðp2ÞjJμπð0Þjπþðp1Þi;

where e and u are the electric charge and the spinor of the
electron, and JμπðxÞ is the pion electromagnetic current
operator. The four-momenta are those shown in parentheses
in Fig. 1. The contraction hπþðp2ÞjJμπð0Þjπþðp1Þi, which
describes the pion-photon vertex, can be written as the most
general Lorentz four vector, defined in terms of only pion
four-momenta, that fulfils Lorentz, parity, time reversal
and gauge invariance, i.e.,

hπþðp2ÞjJμπð0Þjπþðp1Þi ¼ eðp1 þ p2ÞμFπðq2Þ: ð1Þ

Besides the constrained four-vector part, there is a Lorentz
scalar degree of freedom: the pion FF Fπðq2Þ. It is a
function depending on the only nonconstant scalar, that

can be obtained from the pion four-momenta p1 and p2,
i.e., q2, where q ¼ p2 − p1 is the photon four-momentum.
In the case of scattering, q is a spacelike four vector; in
fact, in the pion rest frame, where p1 ¼ ðMπ; 0Þ and
p2 ¼ ðE2; ~p2Þ,

q2 ¼ ðp2 − p1Þ2 ¼ 2MπðMπ − E2Þ ≤ 0:

The Feynman amplitude for the annihilation process
eþe− → πþπ−, in Born approximation, i.e., the diagram
of Fig. 1 in the timelike direction, is

Mannihi: ¼
1

q2
ev̄ðk2Þγμuðk1Þhπþðp2Þπ−ðp1ÞjJμπð0Þj0i;

where, as a consequence of crossing symmetry, the pion
current operator, JμπðxÞ, is the same as in the scattering
amplitude. It follows that the Lorentz four vector which
describes the γπþπ− vertex, i.e.,

hπþðp2Þπ−ðp1ÞjJμπð0Þj0i ¼ eðp2 − p1ÞμFπðq2Þ; ð2Þ

is written in terms of the same FF, even though it is
evaluated in a different kinematic domain, the timelike
region. Indeed, in the case of annihilation, the photon
four-momentum is a timelike vector. This can be seen, for
instance, in the πþπ− center of mass frame; here the pion
four-momenta are p1;2 ¼ ðE;�~pÞ, then

q2 ¼ ðp1 þ p2Þ2 ¼ ð2E; 0Þ2 ¼ 4E2 ≥ 4M2
π > 0:*simone.pacetti@pg.infn.it
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II. THE EXTENDED VECTOR MESON
DOMINANCE MODEL FOR THE FIT

Vector mesons are coupled to photons and absorb much
of the strength of their transition to two and three pions, a
particular result of vector meson dominance (VMD) [1] in
the resonance region up to several GeV. Modified to evolve
to perturbative QCD (pQCD) at high momentum transfers
the extended VMD (extVMD) successfully fitted the
analytically connected nucleon timelike and spacelike
FFs [2]. We now apply the extVMD to the combined
timelike and spacelike pion FFs. The expressions that
follow are sketched in Fig. 2 by the detail in the octagon
of Fig. 1 showing, at low q2, the photon transforming to a
vector meson (red rectangle), which then decays into pions
(left diagram); the γ − πþπ− direct coupling (right diagram)
at high q2, that reproduces the pQCD asymptotic behavior
[3]. Assuming as dominant, below the asymptotic region,
the single-hadron intermediate states, the pion FF can be
written as a series of vector meson propagators. It is
interesting to notice that such a procedure provides a good
description of the pion FF, not only in the timelike region
where it reproduces the bumps of the vector meson
resonances, but also in the spacelike region where the
sum of the propagator tails gives a monopolelike behavior.
Because of the need to use nonperturbative QCD to
compute the parameters of the resonances, the usual

procedure consists in determining their values by fitting
the experimental data with expressions for the decay FF
where masses, widths and coupling constants of the
resonances are treated as free parameters. The values
obtained by exploiting this procedure are certainly depen-
dent on the theoretical model used to define the fit formula
that parametrizes the decay FF. Indeed, even though the
VMD model provides the general guidelines for writing a
FF expression as a sum of vector meson propagators, the
explicit form of the propagators as functions of q2 is not
unique. We adopt an expression for the pion FF, based on
the VMD model, which contains a sum of vector meson
propagators that are relativistic and obey the threshold mass
conditions. The analyticity of propagators has been rigor-
ously imposed so that resonances emerge as pairs of
complex conjugate poles, lying on unphysical Riemann
surfaces. This analytic structure provides an expression for
the pion FF that is valid in all kinematic regions. There is no
need of any further analytic continuation procedure, and
hence it is able to describe, at the same time, both spacelike
and timelike data. Following the same line of reasoning
developed in Ref. [2] in the case of nucleon-antinucleon
final states, the pion FF has been parametrized with a sum
of analytic Breit-Wigner formulas,

BWVðsÞ ¼
�
M2

V − s −
ðs0 − sÞ3=2

ð1 − s0=M2
VÞ3=2

ΓV

s

�−1

¼
�
M2

V − s − i
ðs − s0Þ3=2

ð1 − s0=M2
VÞ3=2

ΓV

s

�−1
; ð3Þ

where MV and ΓV are the mass and width of the vector
meson resonance; s0 ¼ ð2MπÞ2 is the two-pion threshold,
and a factor which accounts for coupling between the
virtual photon and the vector meson, together with photon-
meson and photon-quark-pion FFs. Apart from the well-
known ω − ρ mixing effect [4], in the pion case only
isovector resonances need to be considered. The fit function
is described in detail in the next section, where, for
economy of notation, we set q2 ¼ s. At large values of
jsj pQCD becomes valid and takes over from the resonant
behavior, because the resonances (propagators times pho-
ton-meson FFs) decay as s−2 and the pQCD terms as s−1 up
to logarithmic terms. The pQCD normalization is fitted
both to the theoretical value at large jsj and so that the pion
FF corresponds to unit charge at s ¼ 0.

A. The fit function

Because the mass of theω is so close to the mass of the ρ,
its small two-pion decay branch interferes importantly with
the two-pion decay of the ρ. The fit function is the sum of
four ρ-type resonances, R ¼ fρ; ρ0; ρ00; ρ000g, a ρ − ω inter-
ference term (the VMD contribution) and a pQCD term
which dominates at high momentum transfer. The complete
expression, in terms of the analytic propagators gBWVðsÞ

FIG. 2. Diagrams representing the contributions to the pion FF
from VMD at low q2; the photon converts to a vector meson V,
shown as a red rectangle, that decays into the πþπ− final state
(left) and pQCD at high q2 (right).

FIG. 1. Feynman diagram of the one-photon exchange anni-
hilation and scattering processes eþe− → πþπ− and eþπþ →
eþπþ. The octagon represents the nonpointlike pion vertex
described by the FF.
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and the interference term gBWρωðsÞ, where the gBWðsÞ
functions denote the removal of unphysical poles either
by their explicit subtraction or through the use of dispersion
relations (DRs), is

FπðsÞ ¼
�X

V∈R
M2

VCV
gBWVðsÞ þM2

ωCω
gBWρωðsÞ

�
F1ðsÞ

þ
�
1 −

X
V∈R

M2
VCV

gBWVð0Þ þM2
ωCω

gBWρωð0Þ
�

× FDðsÞ; ð4Þ

where

F1ðsÞ ¼ Λ2
1

Λ2
1
−~s

FDðsÞ ¼ Λ2
D

Λ2
D−~s

; ~s ¼ s
ln ½ðΛ2

D − sÞ=Λ2
QCD�

ln ðΛ2
D=Λ

2
QCDÞ

are the following: the photon-meson FF, F1ðsÞ, that
describes the coupling between the vector meson V and
the photon, and the quark-pion FF, FDðsÞ, for the direct
coupling of the virtual photon to the valence quarks of the
pions, so that it gives the expected pQCD asymptotic
behavior; finally Λ1 and ΛD are free parameters that control
cutoffs for the general high energy behavior and ~s is the
QCD-corrected squared momentum. The introduction of
the QCD correction, i.e., the substitution s → ~s in the
photon-meson and quark-pion FFs, entails the doubling
in a pair of complex conjugates and relocation of the poles
that move from the positive real axis (timelike region)
to the upper and lower complex plane [ImðsÞ > 0 and
ImðsÞ < 0], and also the formation of the branch cut (Λ2

D,
∞). It can be shown that these features are not on the
physical Riemann sheet, but on a second sheet not affecting
unitarity. This is consistent with Figs. 3 and 4 where the
modulus and phase of the FF is in agreement with unitarity.
Note that, given the asymptotic behavior of the BWVðsÞ,
the term proportional to FDðsÞ dominates those propor-
tional to F1ðsÞ for large s while at s ¼ 0 the sum is 1,
consistent with unit charge. Perturbative QCD predicts not
only the power law, but also the normalization for the
spacelike asymptotic behavior of the pion FF [5], as

Fasy
π ð−sÞ ¼ 16πf2π

−s
αsð−sÞ

¼ 16πf2π
−s

4π

β0 lnð−s=Λ2
QCDÞ

; ð5Þ

where fπ ¼ 0.093 GeV is the pion decay constant and β0 is
the first coefficient of the QCD β-function. In our para-
metrization, Eq. (4), the spacelike asymptotic behavior is
driven by the term proportional to the FF FD, and it is

FπðsÞ ¼
�
1 −

X
V∈R

M2
VCV

gBWVð0Þ −M2
ωCω

gBWρωð0Þ
�

×
Λ2
D lnðΛ2

D=Λ
2
QCDÞ

−s lnð−s=Λ2
QCDÞ

ð1þOð1=~sÞÞ; −s → ∞:

In order to reproduce the expected behavior of Eq. (5) it
should be

�
1 −

X
V∈R

M2
VCV

gBWVð0Þ−M2
ωCω

gBWρωð0Þ
�

× Λ2
D ln

�
Λ2
D

Λ2
QCD

�
¼ ð8πfπÞ2

β0
: ð6Þ

The analytic propagator of a ρ-type vector meson V, with
mass MV and total width ΓV , is obtained as the analytic
continuation of that function having over the real axis,
from the two-pion threshold s0 ¼ ð2MπÞ2 up to infinity, the
imaginary part of the Breit-Wigner formula of Eq. (3), i.e.,
the propagator of a vector meson V, decaying predomi-
nantly into πþπ−. It follows that
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-2 0 2 4 6

FIG. 3. Modulus squared of the pion FF in the first case (black
dotted band in the upper panel); second case (solid red band in the
upper panel); third case (black dotted band in the lower panel);
and fourth case (solid red band in the lower panel).
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gBWVðtÞ ¼
1

π

Z
∞

s0

ImðBWVðsÞÞ
s − t

ds

¼ 1

π

Z
∞

s0

sðs − s0Þ3=2 ΓVM3
V

ðM2
V−s0Þ3=2

s2ðM2
V − sÞ2 þ ðs − s0Þ3 Γ2

VM
6
V

ðM2
V−s0Þ3

ds
s − t

:

ð7Þ

In particular, for spacelike four-momenta squared, i.e.,
t ¼ −Q2 ¼ q2 < 0, gBWVðtÞ is real and given by the
previous expression; for timelike momenta, above the
threshold s0, we have

ReðgBWVðtÞÞ ¼
1

π
Pr

Z
∞

s0

ImðBWVðsÞÞ
s − t

ds: ð8Þ

In summary, assuming analyticity, the function gBWVðtÞ can
be obtained at any complex value of t from the knowledge
of the imaginary part ImðBWVðsÞÞ in s ∈ ðs0;∞Þ. In
particular, below the threshold s0, and hence in the space-
like region, where gBWVðsÞ is real, we use the DR for the
imaginary part given in Eq. (7), while, in the timelike
region above such a threshold s0, where the imaginary part
is known, the real part can be computed by means of the
DR of Eq. (8). The interference term form gBWρωðsÞ is as
given by Eqs. (10) and (12) of Ref. [4], substituting the
Breit-Wigner propagators used here (which include the
decay thresholds) for the propagators of Ref. [4] (which
lack the threshold effects); so gBWρωðsÞ is obtained starting
from the imaginary part over the real axis of

BWρωðsÞ ¼
BWωðsÞ

1=BWωðsÞ − 1=BWρðsÞ

¼ s2½sðM2
ω − sÞ − iðs − s1Þ32γω�−1

sðM2
ω −M2

ρÞ − iðs − s1Þ32γω þ iðs − s0Þ32γρ
;

where s1 ¼ ð2Mπ þMπ0Þ2 is the three-pion threshold and

γρ;ω ¼ Γρ;ω

ð1 − s0;1=M2
ρ;ωÞ−3

2

:

As a consequence of the two different thresholds s0 and s1
with s0 < s1, the imaginary part of BWρωðsÞ, for real values
of s, has the threefold expression

ImðBWρωðsÞÞ ¼

8>>>>>>>>><
>>>>>>>>>:

0 s ≤ s0

−s2½ðs−s0Þ
3
2γρ�

½sðM2
ω−sÞ−ðs1−sÞ

3
2γω�f½sðM2

ω−M2
ρÞ−ðs1−sÞ

3
2γω�

2þðs−s0Þ3γ2ρg
s0 < s ≤ s1

s3½ð2M2
ω−M2

ρ−sÞðs−s1Þ
3
2γω−ðM2

ω−sÞðs−s0Þ
3
2γρ�

½s2ðM2
ω−sÞ2þðs−s1Þ3γ2ω�fs2ðM2

ω−M2
ρÞ2þ½ðs−s1Þ

3
2γω−ðs−s0Þ

3
2γρ�

2g
s > s1
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FIG. 4. Phase of the pion FF in the first case (black dotted
band in the upper panel); second case (solid red band in the
upper panel); third case (black dotted band in the lower panel);
and fourth case (solid red band in the lower panel). The data are
from Ref. [6].
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that used in the DRs of Eqs. (7) and (8) gives the analytic
form gBWρωðsÞ.
As already shown in Ref. [2], the procedure based on

DRs is equivalent to the subtraction of the poles in the first
Riemann surface of the s-plane inclusive of the real
axis.The result is

gBWVðsÞ ¼ BWVðsÞ −
Xn
k¼1

Rk

s − zk
; ð9Þ

where zk is an isolated pole of BWVðsÞ with residue Rk,
and k ¼ 1; 2;…; n. For all the ρ-like resonances n ¼ 1,
with zk being real, while n ¼ 3 in the case of BWρωðsÞ,
with one real and two complex conjugate poles. This
method was computationally faster than the DR approach
for the nucleon FFs, but suffers from iteration instability
for these pion form factor computations because of the
complex pole arising from the interference term.

III. DATA AND FIT

Nine sets of data have been fitted: three in the spacelike
region, NA7 [7], JLab Fπ [8] and JLab Fπ − 2 [9], called
spacelike data (SLD); and six in the timelike region,
dividing in two sets, the newer timelike data (NTLD),
BESIII [10], KLOE [11], and BABAR [12], and the older

timelike data (OTLD), KLOE11 [13], CMD2 [14] and SND
[15]. We considered four minimizations, characterized by
the following four χ2 definitions.

(I) In the first case, besides SLD, only NTLD are
included, hence

χ2I ¼ χ2SLD þ χ2NTLD:

(II) In the second case, the QCD asymptotic normali-
zation given in Eq. (6) is also included so that

χ2II ¼ χ2SLD þ χ2NTLD þ χ2asy:

(III) In the third case all data sets are considered,

χ2III ¼ χ2SLD þ χ2NTLD þ χ2OTLD:

(IV) Finally, in the fourth case all constraints are ex-
ploited, i.e., from the nine data sets and the QCD
asymptotic normalization, it follows that

χ2IV ¼ χ2SLD þ χ2NTLD þ χ2OTLD þ χ2asy:

The QCD asymptotic normalization is imposed by forcing
the identity of Eq. (6), i.e., the corresponding χ2 contri-
bution is

TABLE I. Best values of the parameters for the four cases.

Res. V Coupling CV Mass MV (GeV) Width Γ (GeV)

First case ρ 1.12857� 0.015372 0.76707� 0.000151 0.14341� 0.000238
ρ0 −0.14495� 0.021715 1.42747� 0.011676 0.49004� 0.030441
ρ00 1.62860� 0.684816 1.95707� 0.038996 0.64126� 0.064810
ρ000 −1.48660� 0.683160 1.97026� 0.036138 0.58271� 0.059911
ω −0.00127� 0.000038 0.78188� 0.000087 0.00853� 0.000289

Second case ρ 1.19386� 0.022419 0.76666� 0.000275 0.14411� 0.001002
ρ0 −0.97501� 0.643024 1.41805� 0.069136 0.72703� 0.118410
ρ00 1.00428� 0.406554 1.70634� 0.096516 0.62324� 0.138054
ρ000 −0.41639� 0.245832 1.82252� 0.029358 0.37232� 0.069302
ω −0.00131� 0.000065 0.78175� 0.000097 0.00852� 0.000382

Third case ρ 1.13333� 0.012415 0.76749� 0.000118 0.14331� 0.000193
ρ0 −0.15435� 0.023197 1.42663� 0.012881 0.48664� 0.034902
ρ00 2.37279� 0.015230 1.95367� 0.030773 0.66799� 0.071953
ρ000 −2.22259� 0.014919 1.96044� 0.030075 0.64036� 0.064185
ω −0.00119� 0.000029 0.78236� 0.000051 0.00884� 0.000196

Fourth case ρ 1.15175� 0.009206 0.76723� 0.000102 0.14381� 0.000276
ρ0 −0.12737� 0.024033 1.35069� 0.014471 0.36836� 0.029187
ρ00 1.90396� 1.084587 1.76835� 0.035101 0.59905� 0.069355
ρ000 −2.22959� 1.091049 1.85782� 0.059599 0.81596� 0.119093
ω −0.00119� 0.000029 0.78226� 0.000053 0.00888� 0.000196

Λ1 (GeV) ΛD (GeV) ΛQCD (GeV)

First case 3.65172� 0.570656 0.49189� 0.001261 0.23234� 0.041110
Second case 3.87409� 0.499565 1.43751� 0.007660 0.60817� 0.164807
Third case 3.77599� 0.460628 0.50190� 0.000358 0.23510� 0.037071
Fourth case 2.82497� 0.310998 2.01293� 0.004129 1.50127� 0.080801
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χ2asy ¼ λ

��
1 −

X
V∈R

M2
VCV

gBWVð0Þ −M2
ωCω

gBWρωð0Þ
�

× Λ2
D ln

�
Λ2
D

Λ2
QCD

�
−
ð8πfπÞ2

β0

�
2

;

where λ is a weighting factor, whose value is settled in order
to have the condition almost exactly fulfilled.1 The best
(minimum χ2) values of parameters are reported in Table I,
while Figs. 3 and 4 show, in the four cases, the modulus
squared, i.e., the fit function, and the phase of the pion FF,
respectively. The errors of the parameters and that of the fit
function, represented by a band, have been determined by
means of the following Monte Carlo procedure. The
minimization has been repeated on 100 different sets of
data, obtained by Gaussian fluctuations of the original data
points. The corresponding 100 sets of parameters and fit
functions are treated with the usual statistical technique,
i.e., by taking the mean as the best value and the standard
deviation as the error. The error bands for the modulus
squared and the phase of the pion FF are determined by
taking as lower and upper limits, at each q2, the mean value
minus and plus the standard deviation of the obtained 100
functions.
Figures 5 and 6 show, in the case “IV,” chosen as an

example, the residues of the fit in the spacelike and timelike
regions, respectively. These points are obtained from the
data and fit function, as

�
q2i ;

�
F2
X ;i

jFπðq2i Þj
−
�
� δF2

X ;i

jFπðq2i Þj
�
;

where F2
X ;i � δF2

X ;i is the value of the modulus squared of
the pion FF measured by the experiment X at q2 ¼ q2i . The
normalized χ2’s are

χ2I
n:d:f:

¼ 583.76
508 − 18

¼ 1.19;
χ2II

n:d:f:
¼ 613.20

509 − 18
¼ 1.25;

χ2III
n:d:f:

¼ 1134.73
657 − 18

¼ 1.78;
χ2IV
n:d:f:

¼ 1157.39
658 − 18

¼ 1.81:

ð10Þ

Those of the first row are minimized considering, in the
timelike region, only NTLD, i.e., data from BESIII [10],
KLOE [11] and BABAR [12], while those of the second
row account for all the available timelike data, OTLD and
NTLD. Moreover, the χ2’s of the second column embody
the additional constraint from the QCD asymptotic nor-
malization and are only very slightly larger than the χ2 in
the first column. The increase of the χ2 with the inclusion of
OTLD is clearly a consequence of the incompatibility of the
data themselves. Indeed, as shown in Fig. 7, the q2 regions
of the various data sets overlap each other. The resonance
region, [0.3 GeV2, 0.8 GeV2], is redundantly covered by

-0.5

-0.25

0

0.25

0.5

10 -2 10-1 1

FIG. 5. Residues for the three sets of spacelike data. Circles,
squares, and triangles represent data from NA7 [7], JLab Fπ [8]
and JLab Fπ − 2 [9], respectively.

FIG. 6. Residues for the six sets of timelike data. From the top
to the bottom, the data are from BESIII [10], KLOE [11], BABAR
[12], KLOE11 [13], CMD2 [14] and SND [15]. Even though
BABAR data extend to q2 ¼ 8.7 GeV2, q2 ¼ 2 GeV2 has been
chosen as a maximum to display in order to have a better
visualization of the other sets.

1This can be done by studying the behavior of χ2ðλÞ, as λ
increases, and selecting the value from which the contribution
χ2asyðλÞ becomes negligible with respects to the others, i.e., the
total χ2 loses its dependence on λ itself. It follows that

λ ¼ min
λ0>0

�
dχ2

dλ0
ðλ0Þ ¼ 0

�
:

EARLE L. LOMON and SIMONE PACETTI PHYSICAL REVIEW D 94, 056002 (2016)

056002-6



all six experiments; moreover, the BABAR collaboration
[12], by exploiting the initial state radiation technique,
provided the largest data set, with 337 points, spanning
from q2 ¼ 0.093 GeV2 up to 8.7025 GeV2. The incom-
patibility of these data sets can also be inferred by the
behavior of the residues shown in Fig. 6. While the BABAR
data are well described, being the residues accumulated
around 0, the OTLD, CMD2 and SND show a systematic
trend, being below the BABAR points for q2 < M2

ρ and

above for q2 > M2
ρ. Data from KLOE and KLOE11 have

a similar but less important trend. BESIII points for
q2 < 0.4 GeV2 are below the BABAR data while they
agree quite well for q2 > 0.4 GeV2. In light of that, the
NTLD alone give a complete and consistent piece of
information on the pion FF, by covering the widest range
of q2 and having the highest density of maximally
compatible points. In other words, the inclusion of
OTLD does not bring any additional information. The fit
parameters, shown in Table I, require one more meson with
ρ quantum numbers than listed in the 2014 Particle Data
Group (PDG) review Ref. [16]. The masses and widths of
the ρ, ρ0 and ω are consistent with the PDG values of its
ρð770Þ, ρð1450Þ and ωð782Þ. But this fit to the data
requires two more ρ-type mesons with masses more than
the single remaining PDG ρð1700Þ. Table II lists these
unphysical (not representing resonances and hence reported
without errors) poles that interfere with the required
analyticity (on the real q2 axis and the upper half-plane).
They are all on the real axis except for the one associated
with the ω meson weak two-pion decay interference with
the nearly degenerate ρ meson. It is the subtraction of this
complex pole which makes it difficult to obtain the required
accuracy and stability of the pion FF. The direct use of the
DRs, computationally more intensive, provided the desired
accuracy. The normalized χ2 obtained in the pole sub-
traction approach is about 20% larger than the DR result

10-1 1 10

2016

2013

2012

2011

2007

2006

FIG. 7. The horizontal extensions of the rectangles represent
the timelike q2 regions explored by the six experiments, specified
in the left-down corner, that have been considered, in gray and
light-gray NTLD and OTLD, respectively. Their areas and
heights are proportional to the number of data points and to
the densities, number of points per units of q2, respectively.

TABLE II. Unphysical poles and residues for the four cases.

First case Second case

Res. Pole Residue Pole Residue

V zk (GeV2) Rk zk (GeV2) Rk

ρ 0.0058897987 0.0090872405 0.0059267431 0.0091552158
ρ0 0.0050891442 0.0022622228 0.0076538088 0.0030986082
ρ00 0.0035225774 0.0008522886 0.0069331581 0.0024278822
ρ000 0.0033726775 0.0008136838 0.0022977194 0.0006719589
ω 0.0010704555 0.0000523207 0.0010704555 0.0000523207

0.0765873508 1.3846657739 0.0763609470 1.4437012895
�0.0509252125i ∓ −3.8029266457i �0.0525442433i ∓ 3.7304275488i

Third case Fourth case

Res. Pole Residue Pole Residue

V zk (GeV2) Rk zk (GeV2) Rk

ρ 0.0058786923 0.0090620453 0.0059016448 0.0091008894
ρ0 0.0050547284 0.0022499798 0.0043393008 0.0021961844
ρ00 0.0037470511 0.0009115637 0.0040433824 0.0012031590
ρ000 0.0035743547 0.0008661953 0.0048472976 0.0012976260
ω 0.0000003534 0.0000000263 0.0010704555 0.0000523207

0.0761476046 1.4079383031 0.0763609470 1.4245146244
�0.0510601015i ∓ 3.7986824623i �0.0525442433i ∓ 3.7705018998i
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quote above. The resultant model curve does not differ to
the naked eye.

A. Summary

Statistically satisfactory fits to both the spacelike elec-
tron-pion scattering (pion FF) and timelike electron-
positron two-pion production data are obtained by the
extension of VMD to evolve to pQCD behavior at
asymptotic momentum transfer. A total of nine sets of
data has been used [7–15], three in the spacelike [7–9] and
six in the timelike region [10–15]. Two combinations have
been studied by considering, in the timelike region, only the
new data [10–12] (published since 2012) in one case, and
all the available timelike data in the other case, by always
taking account of all spacelike measurements. Moreover,
for each of these combinations of data sets, two further
subcases have been considered, by constraining or not
constraining the asymptotic behavior of the pion FF to the
pQCD normalization prediction of Eq. (5). The minima of
the four normalized χ2’s, given in Eq. (10), tell us that the
requirement of the pQCD asymptotic normalization does
not affect significantly the goodness of the fit; the inclusion
of the OTLD produces, instead, a sizable increasing (45%
and 50%) of the χ2. However, as can be inferred by the
overlapping of the q2 intervals covered by the different
timelike data sets (Fig. 7), the large χ2 values are due to the
incompatibilities of the different data sets, mainly between
OTLD and NTLD. Hence we concluded that NTLD, by
themselves, contain the cleanest information on the pion
FF, having maximum density (number of data points per
unit of q2), q2-coverage and compatibility. In general the
timelike data have strong resonance features to the highest
experimental energies resulting in the pQCD contribution
being only a background normalizing the zero momentum
transfer result to unit charge, although it dominates at
momentum transfers well beyond the experimental range.
For the following discussion we refer to the fourth case.
Three of the five resonance structures, the ω, ρ, and ρ0
needed to fit the two-pion production data (and simulta-
neously the electron-pion FF data), correspond closely to
the PDG vector mesons listed as ωð782Þ, ρð770Þ, and
ρð1450Þ. The mass of the ρ0 is about 3 standard deviations
(SD) less than the PDG central values, while the width is in
agreement. The width of the ω is less than 1 SD from the
PDG value. However the mass of the ω and the width of the
ρ are approximately 3 SD out and the ρ mass nearly 30 SD
out. These quantities are very sensitive to the details of the
interference mechanism for the two-pion decay modes and
the small two-pion branching ratio of the ω decay. The
PDG lists just one more isospin ¼ 1 vector meson the
ρð1700Þ. The new high-q2 BABAR data require a more
complex structure with the ρ00 and the ρ000, whose close
masses and opposite sign couplings roughly mimic a dipole
behavior, replacing the lower mass ρð1700Þ. The strengths
and modest widths of these vector meson resonances

suggest that VMD may be of importance to still higher
energies and momentum transfers before pQCD dominates.
The knowledge of the complex structure of the pion FF
enables one to also make predictions concerning its phase.
Indeed, the phase δπðq2Þ of Fπðq2Þ is defined, for timelike
q2 > s0 [δπðq2Þ ¼ 0 for q2 < s0, since the pion FF is real in
this q2 region], through the identity

Fπðq2Þ ¼ jFπðq2Þjeiδπðq2Þ:

Moreover, by invoking the Watson’s theorem [17], exper-
imental values of such a phase can be extracted from ππ
scattering phase shift data in the elastic range.
Figure 4 shows a comparison between our prediction of

the pion FF phase in the four cases and set ππ phase shift
data [6] (solid black points). These data have been not
considered for the fitting procedure. The quite good
agreement for q2 < M2

ρ ≃ 0.6 GeV2 demonstrates that
our parametrization, dominated in this region by the ρ
propagator, well reproduces the physical analyticity of the
pion FF.
The kink in the model curve at q2 ≃ 0.6 GeV2 is a

result of the ρ − ω interference, lying about halfway
between the masses of the two mesons and in fact about
one width below the M2

ω. Unfortunately, being only a few
% effect, it is too tiny to be seen in the data. In the first
and third case, black dotted bands in the upper and lower
panel of Fig. 4, around q2 ¼ 0.25 GeV2, the phase has a
few-degree step which is due to the opening, at q2 ¼ Λ2

D,
of the ~s branch cut in the unphysical Riemann sheet. The
fact that such a branch cut, which is present also in the
second and fourth case at higher q2 values, does not spoil
analyticity, as already discussed in Sec. II A, is proven by
the smoothness of the modulus of the Fπðq2Þ at the
same q2.
The worsening of the agreement between model and

data at q2 values higher than 0.6 GeV2 is a consequence of
substantial inelastic contributions to the pion FF, which
have no effect in the ππ scattering and hence, as expected,
the identity between the phase of the pion FF and the phase
shift of ππ elastic scattering in P-wave is not valid for
those q2’s.
The pion FF has been extensively investigated, theoreti-

cally and experimentally, recently and in the past, because it
represents a powerful playground for phenomenological
models, as well as for descriptions based on first principles.
Our study complements a wide literature on the subject
[18], by providing a model able to describe the world
pion FF data with a rigorously analytic VMD-based
parametrization.
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