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The perturbative effective potential suffers infrared (IR) divergences in gauges with massless Goldstones
in their minima (like the Landau or Fermi gauges), but the problem can be fixed by a suitable resummation
of the Goldstone propagators. When the potential minimum is generated radiatively, gauge independence
of the potential at the minimum also requires resummation, and we demonstrate that the resummation that
solves the IR problem also cures the gauge-dependence issue, showing this explicitly in the Abelian Higgs
model in the Fermi gauge. In the process, we find an IR divergence (in the first derivative of the potential)
specific to the Fermi gauge and not appreciated in the recent literature. We show that physical observables
can still be computed in this gauge, and we further show how to get rid of this divergence by a field
redefinition. All these results generalize to the Standard Model case.
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I. INTRODUCTION

With the discovery of the Standard Model Higgs during
the first LHC run [1], it quickly became clear that the
precisely measured Higgs [2] and top [3] masses point to
the possibility of a (very long-lived) metastable electro-
weak (EW) vacuum [4–9]. This fact has triggered a
renewed interest in studies (and implications) of the
possible metastability of the Standard Model EW vacuum
(see, e.g., [10–12]).
The main tool for the study of this metastability is the

perturbative effective potential [13], widely used for studies
of spontaneous symmetry breaking. While the effective
potential is an enormously useful tool in such studies, it
(or the effective action from which it is derived) is not a
physical observable and is subject to gauge dependence
[13]. This is a well-known issue that has been studied
extensively in the literature (see [14] for an incomplete list)
and is of no serious concern: as long as one is calculating a
physical observable (for example, the lifetime of the EW
vacuum or other tunneling transitions; see e.g. [12,15–20]),
the final answer should be gauge independent.1 However,
this is not always straightforward to achieve in a concrete
calculation: usually one must resort to truncations of the

perturbative expansion and this can jeopardize the gauge
independence of the final result.
A well-known example of this kind of problem occurs

in the Coleman-Weinberg model of radiative symmetry
breaking [21] (as we review in subsection II C) or in the
Standard Model (SM), as the instability that appears in the
potential at high field values is generated radiatively. In
order to have the gauge dependence of the potential under
control in such cases, one must resort to resummations of
series of corrections to the potential of arbitrarily high
order, as nicely demonstrated in [19]. This type of
resummation is reminiscent of the resummation of the
Goldstone propagator needed to solve the infrared (IR)
problem of the effective potential due to Goldstone
contributions [22,23] in those gauges that feature massless
Goldstone bosons at the potential minima. One of the
main results of this paper is that the resummation required
to fix the IR problem automatically takes care of the
resummation needed to control the gauge-dependence
issues (subsection II C).
To check explicitly the gauge independence of the

observables derived from the effective action one must
resort to families of gauges. The most common gauge
choices are the Rξ and Fermi gauges, both of which contain
a gauge-fixing parameter (or parameters, that we will
generically call ξ) that can be used to keep track of the
gauge dependence. In this paper we follow a large fraction
of recent literature and use the Fermi gauge for this
purpose. In order to keep the analysis transparent, we
work in the Abelian Higgs model (Sec. II A). The results
we obtain can be extended to the SM in a straightforward
way (Sec. V).
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1In fact, this requirement can be useful to check one is not
missing some relevant effect.
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In our analysis, we find that the Fermi gauge is afflicted
by an IR divergence2 which is absent in the Rξ or
Landau gauges (and can be traced back to the mixing of
the Goldstone bosons with the gauge bosons). More
specifically, the first derivative of the effective potential
is logarithmically divergent for vanishing Goldstone mass
(as happens in the broken minimum). Naively, this is a
severe problem, since the minimum of the potential
determines the vacuum of the system and is found by
solving ∂V=∂h ¼ 0. Furthermore, we show that this
divergence persists even if the Goldstone propagator is
resummed (Sec. II B). However, we also show that observ-
ables like the Higgs mass are IR finite (Sec. III A),
and likewise the Nielsen identity still holds (Sec. III B).
We take this good behavior as an indication that the Fermi
gauge is not sick and we then present a way to obtain an
explicitly IR-finite effective potential by a suitable rescal-
ing of the Higgs field (Sec. IV). We draw some general
conclusions in Sec. VI and leave some more technical
details to a few Appendixes.

II. IR PROBLEMS AND GAUGE DEPENDENCE

Before discussing the gauge dependence of the effective
potential we address the infrared problems associated with
the presence of massless Goldstone modes at the potential
minima. This problem was recognized in [27,28], which
identified IR divergent contributions to the effective poten-
tial from loops involving Goldstone bosons. The solution
to this problem, in the Landau gauge, is simply to resum
the Goldstone contributions by the appropriate shift of
the Goldstone two-point function as was first proposed in
[22,23] (see [29–31] for later developments and applica-
tions). This simple resummation makes the Landau-gauge
potential and its first derivative IR finite. As an added
bonus, it turns out (see subsection II C) that this resumma-
tion not only fixes the IR problems of the effective potential
but it also resolves the issues with residual gauge depend-
ence in those potentials that feature extremal points
generated radiatively.
In what follows we want to apply this resummation

prescription to the effective potential in the Fermi gauge,
starting with the Abelian Higgs model and generalizing
later on to the SM case. As we show explicitly below, the
resummed potential is IR finite as desired. However, the
first derivative, unlike what happened in the Landau gauge,
is still IR divergent. We also provide a solution to this
problem in Sec. IV.

A. Abelian Higgs model in the Fermi gauge

For simplicity, let us start the discussion of infrared
problems in the Abelian Higgs model. The Lagrangian, in
the Fermi gauge, reads

L¼−
1

4
FμνFμν−

1

2ξ
ð∂μBμÞ2þjDμϕj2þm2ϕ†ϕ−λðϕ†ϕÞ2;

ð1Þ

where the covariant derivative for the charged “Higgs” field

ϕ ¼ ðhþ iχÞ=
ffiffiffi
2

p
; ð2Þ

is Dμ ¼ ∂μ − igBμ. Without loss of generality we take the
charge of ϕ under theUð1Þ gauge symmetry to be unity and
Fμν is the corresponding field strength. The Lagrangian in
Eq. (1) includes the gauge-fixing term, which corresponds
to the so-called Fermi (or Lorentz) gauge, and depends
on a free parameter, ξ. The limit ξ → 0 corresponds to the
Landau gauge.
The one-loop effective potential for this Abelian Higgs

model was first derived long ago by Dolan and Jackiw,
in their classic paper [32]. Its explicit expression requires
knowing the masses in a generic field background h, in
which one has3

G≡m2
χ ¼ −m2 þ λh2;

H ≡m2
h ¼ −m2 þ 3λh2;

B≡m2
B ¼ g2h2: ð3Þ

Using dimensional regularization, with d ¼ 4 − 2ϵ, the
one-loop potential is then

V1 ¼ i
Z

ddk
ð2πÞd

�X
fermions
ghosts

log det iG−1 −
1

2

X
bosons

log det iG−1
�
;

ð4Þ

where iG−1 denote the inverse of the propagators. For the
Abelian Higgs model in the Fermi gauge in d dimensions,
one has contributions from transverse gauge bosons, Higgs
and mixed Goldstone-longitudinal gauge bosons, giving

logdet iG−1
T ¼ðd−1Þ logð−k2þBÞ;

logdet iG−1
h ¼ logð−k2þHÞ;

logdet iG−1
L ¼ log½−k2ðk4−k2GþξBGÞ�

¼ logð−k2þGþÞþ logð−k2þG−Þþ logð−k2Þ;
ð5Þ

2Apparently this has escaped the attention of recent literature
but was already known; see e.g. [24]. In the context of the Nielsen
identity, the IR troubles with the Fermi gauge were remarked
even earlier [25,26].

3To simplify later expressions, here and in the following
sections we use capital letters, as defined above, to denote
field-dependent squared masses.
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with

G� ¼ 1

2
ðG�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 − 4ξBG

p
Þ; ð6Þ

while the ghost-contribution is independent of the field
value, h. Performing the momentum integrals, the final
form of the renormalized effective potential, in MS scheme,
is

V1 ¼
κ

4

�
3B2

�
LB −

5

6

�
þH2

�
LH −

3

2

�

þG2þ

�
LGþ −

3

2

�
þG2

−

�
LG−

−
3

2

��
; ð7Þ

where κ ≡ 1=ð16π2Þ, LX ≡ logðX=μ2Þ and μ is the MS
renormalization scale. This agrees with the expression
given in [33], translated to the Abelian case. The
Landau-gauge limit corresponds to ξ → 0, which gives
Gþ → G and G− → 0.
In analytical expansions below we will consider only the

case ξ > 0, which is usually better behaved than ξ < 0 [33].
Eq. (6) shows that, for ξ > 0, G� become imaginary in
some field range even when G > 0. However, the corre-
sponding imaginary parts cancel each other out and the
potential itself stays real.4

When one approaches the potential vacuum, h → v (with
v2 ¼ m2=λ at tree-level), the Goldstone mass goes to zero,
G → 0, and generically this induces IR divergences in the
effective potential. In the Landau gauge, the potential V
first develops IR divergences at three-loop order [27]. The
trouble comes from potential terms that are schematically
of the form δV ∼ X2 logG, where X is some mass-squared
that is nonzero at the minimum of the potential. On the
other hand, the first derivative V 0 of the potential is IR
divergent already at two-loop order, from terms in the
potential of the form δV ∼ XG logG. Finally, the second
derivative V 00 is IR divergent already at one loop, from a
term δV ∼ G2 logG.
This infrared behavior is worse in the Fermi gauge

than in the Landau gauge. The troublesome terms have
the same origin but replacing G by G� and the terms
δV ∼G2

� logG� cause V 0 to diverge already at one loop,
due to the fact that G0

� diverges and G0
�G� goes to a

nonzero constant for G → 0. To see this most clearly,
notice that for h → v one has G� → �i

ffiffiffiffiffiffiffiffiffi
ξGB

p
, so that

G2
� logG� ∼ XG logG. More precisely, the source of the

trouble is the term

δV1 ¼ −
κ

4
ξGB log

�
ξGB
μ4

�
: ð8Þ

In the following subsection, we apply to this Fermi gauge
case the resummation proposed in [22,23] to cure such IR
problems.
Let us close this subsection with a brief discussion of the

gauge dependence of the potential in Eq. (7). In spite of the
explicit ξ-dependence of the potential through its depend-
ence on G�, it is well known that the value of the potential
at its extremal points is guaranteed to be gauge invariant by
the Nielsen identity [25,26,34]. At one-loop order, this is
obviously the case of the potential in Eq. (7): the only
dependence on ξ of the potential appears in the G� terms
and at the minimum G → 0 one has G� → 0, so that the ξ
dependence disappears.

B. IR-Resummation

The IR divergences in the effective potential are due to
massless Goldstones, G → 0, and come from diagrams
with Goldstone bosons that carry small momentum,
k2 ∼G. The worst divergences originate from those
diagrams that have the largest possible number of
Goldstone propagators with the same small momentum,
and this number grows with higher-loop order. As shown in
detail in Refs. [22,23] for the SM in the Landau gauge,
these Goldstone divergences are spurious and can be
resummed in a simple way by reorganizing the perturbative
expansion.5 This is done by including the effect of
self-energy diagrams on the Goldstone propagators, with
G → Ḡ≡Gþ Πg, where Πg is a well-defined radiative
contribution to the Goldstone squared-mass that can be
calculated perturbatively to the order needed. As explained
in [23], Πg includes only contributions from heavy fields
(that is, fields whose mass does not vanish when G → 0)
and hard Goldstones (with momentum k2 ≫ G).
The effect of resummation in the Goldstone contribution

to the one-loop potential in the Landau gauge is therefore
the replacement6

δGV ¼ κ

4
G2ðLG − 3=2Þ → δGV̄ ¼ κ

4
Ḡ2ðLḠ − 3=2Þ: ð9Þ

Expanding the latter expression perturbatively (in powers
of κ) indeed reproduces the IR-divergent terms of the
unresummed potential. In the unresummed perturbative
expansion, the IR divergences occur at the field value for
which G → 0: the location of the tree-level minimum. In
the resummed potential, instead, possible IR divergences

4This is most clearly seen in the unintegrated expression
involving G−1

L in Eq. (5). After the Wick rotation to Euclidean
momentum k2 → −k2E, one has log½−k2ðk4 − k2Gþ ξBGÞ� →
log½k2Eðk4E þ k2EGþ ξBGÞ� and the argument of the logarithm is
positive for ξ > 0 (and G > 0).

5A similar problem (and solution) appears in 3d (finite
temperature) field theory studies of the EW phase transition [35].

6For our purposes in this paper, the one-loop resummed result
(9) will be enough, but the resummation procedure can be
extended to higher orders, see [23] for details.
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would occur at Ḡ → 0, which corresponds to the minimum
of the radiatively corrected potential. However, for the
resummed potential, V̄ and V̄ 0 are IR finite and only the
second derivative V̄ 00 diverges for Ḡ → 0. However, this
divergence is harmless and in fact required to get right the
physical Higgs mass, as we discuss below.
The generic resummation of IR divergences just

reviewed can also be applied to the Fermi gauge. The
small complications associated with gauge boson-
Goldstone mixed propagators can be circumvented in a
simple way: add and subtract to the Lagrangian a term7

−Πgχ
2=2, where Πg is the (zero-momentum) two-point

function for the Goldstone field χ obtained as discussed
above. The explicit expression for Πg in the Abelian model
at one loop is

Πg ¼ 3κ

�
g2B

�
LB −

1

3

�
þ λHðLH − 1Þ

�
; ð10Þ

which can be directly obtained from the contribution of B
and H to the one-loop potential in Eq. (7), remembering
that the Goldstone mass is given by ð∂V=∂hÞ=h. The added
term is treated as shifting the Goldstone mass that appears
in propagators, with G → Ḡ≡Gþ Πg, while the sub-
tracted term is treated as a counterterm. After this shift, the
two field-dependent masses corresponding to the mixed
Goldstone-gauge boson sector are given by

Ḡ� ≡ 1

2
ðḠ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ḡ2 − 4ξḠB

p
Þ; ð11Þ

to be compared with Eq. (6). The expression for the one-
loop effective potential of Eq. (7) with this resummation
implemented is obtained from the unresummed one simply
by the replacement G� → Ḡ�.
Does this resummation achieve the desired cure of the IR

divergence problems of the effective potential also in the
Fermi gauge? While it is clear that the resummed potential
is finite in the Ḡ → 0 limit, its first derivative (which is the
crucial quantity to determine the location of the potential
minimum) is not finite even after resummation. The
unresummed term that causes the IR divergence in V 0 is
of the form δV ∼ XG logG as discussed at the end of the
previous section and resummation simply changes this to
δV̄ ∼ XḠ log Ḡ, which still gives a divergent V̄ 0. Note that
the divergence in V̄ 0 is ξ dependent and goes away for
ξ ¼ 0. This divergence, which can be formally translated
into a divergence in the one-loop vacuum expectation value
(VEV), had been pointed out before (see, e.g., [24]) but
seems to have gone unnoticed in more recent literature.
Before discussing the solution to the previous problem
(deferred to subsection IV below), it is instructive to

compare the resummation performed above with the
resummation discussed in Ref. [19] to solve a different
issue.

C. IR resummation eliminates residual gauge
dependence

Suppose we are interested in the gauge dependence of
the effective potential close to the electroweak vacuum. The
perturbative counting is the conventional loop counting,
with g2 ∼ λ. The naive expectation is that, using this
counting, a consistent expansion of the effective action
will fulfill the Nielsen identity [25] and hence provide
gauge-independent observables. As we have described
above, potentially this requires resummation of certain
classes of diagrams [18,22,23], most notably two-particle-
reducible diagrams of light particles in those gauges (like
the Landau or Fermi gauge) in which the Goldstone boson
is massless at the minimum.
Things are different if the electroweak vacuum is

generated radiatively. The best known example is the
Coleman-Weinberg model [21], which is nothing but the
Abelian Higgs model with a massless scalar h [that is,
m2 ¼ 0 in the Lagrangian of Eq. (1)]. Famously, the interest
of the model lies in the possibility of radiatively breaking
the Uð1Þ gauge symmetry (a paradigmatic example of
dimensional transmutation). For studies of the gauge
dependence of the effective potential, the difficulty with
this model was recognized already in Refs. [25,34]: the
minimum appears through the balance between the tree-
level quartic coupling λ and the one-loop radiative correc-
tions, of order ℏg4, so that for power counting one should
use λ ∼ ℏg4. This jeopardizes the usual fixed-order loop
expansion of the effective potential: one-loop terms of
order ℏλg2 are of the same order as two-loop terms of order
ℏ2g6 or three-loop terms of order ℏ3g10=λ, and this should
be taken into account when showing the gauge independ-
ence of the value of the potential at its minimum, that would
have a residual gauge dependence if calculated at a fixed
order in perturbation theory. It was also clear [36] that a
resummation that reorganizes the perturbative expansion
would get rid of this problem and this has been shown
explicitly to two-loop order in Ref. [19].
A similar situation arises in the SM effective potential at

very high values of the Higgs field, when an instability is
generated by radiative corrections. Previous work in the
Fermi gauge has studied the gauge dependence of the
potential at such high field values [19,33], at which one
can neglect the explicit mass term in the Lagrangian
(that is of electroweak scale size) and use the counting
λ≃ ℏg4 ≃ ℏy4t . This simplifies the analysis of the effective
action, since the one-loop corrections to the effective
potential from the Goldstone bosons scale as λ2 and hence
are of the same order as three-loop contributions from the
gauge sector ∼g8. Thus, in a two-loop analysis up to order

7A more sophisticated procedure is described in subsec-
tion IIIBl; see, in particular, footnote 13.
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g6 ∼ λ3=2 some of the IR issues do not enter yet. But even in
this simplified case, the same subtleties discussed for the
Coleman-Weinberg model concerning gauge dependence
remain, as emphasized in [19].
We now show that the resummation required to cure the

IR problems of the potential discussed in the previous
subsection automatically takes care of this gauge issue.
To ease the comparison, note that the notation of [19]
for the Coleman-Weinberg model in the Fermi gauge,
differs from ours: h is called ϕ, g is e, and our λ is
replaced by λ=6. The resummation shift in the Goldstone
mass, G ¼ λh2 → Ḡ ¼ Gþ Πg, corresponds to the shift
λ → λ̄ðhÞ≡ λ − λ̂ðhÞ, where

λ̂ðhÞ≡ 36κg4ð1 − 3LBÞ; ð12Þ
with κ ¼ ℏ=ð16π2Þ and LB ¼ logðg2h2=μ2Þ. We have used
here the results of the previous section setting m2 ¼ 0 and
neglecting λ2 corrections in Eq. (10), which are of higher
order as λ ∼ ℏg4.
The expression for the resummed two-loop potential is

quite simple:

V̄2ðhÞ ¼
1

4
λh4 þ 3κ

4
g4h4

�
LB −

5

6

�

−
κ

4
ξg2λ̄ðhÞh4

�
log

ξg2λ̄ðhÞh4
μ4

− 3

�

þ κ2g6h4
�
5

2
L2
B −

31

3
LB þ 71

6

�
: ð13Þ

Some comments are in order: (1) This expression packages
in a compact way the result for the two-loop potential given
in [19], Eqs. (6.16–17). (2) The resummation performed to
deal with IR divergences generates directly all the two-loop
terms necessary to check gauge independence, without
residual gauge dependence left. (3) The gauge independ-
ence of the potential value at the minimum is straightfor-
ward to see as the result of the minimum corresponding
(at one-loop order) to λ̄ðvÞ ¼ 0.
The resummed expression given in Eq. (13) also sheds

some light on the IR problem in V 0 discussed in the
previous subsection as specific to the Fermi gauge.
Indeed there is a (ξ-dependent) logarithmic divergence in
dV=dh ∼ κξg2ðdλ̄=dhÞ log λ̄ for λ̄ → 0. Moreover, notice
that dλ̄=dh ¼ −dλ̂=dh ∼ κg4, so that the IR divergence is a
two-loop effect of order κg6, and no other terms of that
order in the potential (13) could cancel out such divergence.
Nevertheless, this obstruction looks strange, given

the fact that the first derivative of the potential V, to
whatever precision it is calculated, and the Goldstone
mass calculated to the same precision, are related8 as

G ¼ ðdV=dhÞ=h. In a consistent calculation there seems
to be no room for a zero in G causing a divergence in
dV=dh. In view of this, we could consider Eq. (13) as the
correct expression for the two-loop resummed potential
but with λ̄ to be specified in a self-consistent way. Then
we could use the relation Ḡ ¼ λ̄ðhÞh2 ¼ ð∂V̄2=∂hÞ=h to
define λ̄. At two loops, with the approximations used,
one gets

λ̄ðhÞ¼λþκg4ð3LB−1Þþ2κξλg2ð1−LBÞ

þκ2g6
�
2

3
½40−ð47−15LBÞLB�þξ½1þð5−6LBÞLB�

�

−κξg2
�
λþ1

2
κg4ð1þ6LBÞ

�
logðξλ̄=g2Þ: ð14Þ

However, this definition of λ̄ðhÞ is problematic for λ̄ → 0
as the prefactor of the last logarithm does not go to zero
in that limit. Another way of stating the problem is this:
fix the values of λ, g and ξ at some given μ. Using
Eq. (14) as the definition of the function λ̄ðhÞ, we see
that, when λ̄ gets close to zero, log λ̄ blows up and
destroys perturbativity.
The ultimate root of this IR divergence is the pole of

order p4 in the mixed propagator of Goldstone bosons and
longitudinal gauge bosons, which shows up clearly in their
contribution to the effective potential; see Eq. (5).9

Moreover, this problem persists even if no perturbative
expansion is used (as we show in Appendix A using the
Ward identity). This mixed propagator is a specific feature
of the Fermi gauge which explains why such IR divergence
is absent in the Landau gauge (ξ → 0) or in the background
Rξ gauges.
Naively, one might be tempted to conclude that there is

no acceptable description of symmetry breaking within
perturbation theory in the Fermi gauge (unless ξ ¼ 0,
which is the Landau gauge). Nevertheless, as physical
quantities cannot depend on the gauge parameter ξ, one
could expect that the ξ-dependent IR divergence will cancel
out when calculating observables. In the following section,
we show that this expectation is fulfilled for the physical
Higgs mass.

III. PHYSICAL RESULTS IN THE FERMI GAUGE

In this section, we show how physical information can be
extracted in the Fermi gauge even though the effective
potential has no well-defined minimum at one-loop order.
First we discuss the mass of the Higgs boson and then how
to make sense of the Nielsen identity in spite of the IR
divergences that afflict the Fermi gauge.

8As the effective potential in a generic background is a
function of jϕj2 ¼ ðh2 þ χ2Þ=2.

9A similar p4 pole appears in supersymmetric QED (in the
propagator of the lowest component of the vector superfield),
leading to IR divergences. For a recent discussion, see [37].
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A. The physical Higgs mass

We show now how the physical Higgs mass is free of IR
divergences even when one calculates it in the Fermi gauge.
We go back here to the general Abelian Higgs model, with
nonzerom2. The physical Higgs mass is defined as the pole
of the Higgs propagator. Calculated at one-loop order, it is

M2
h ¼ V 00

0ðvÞ þ ΣðM2
hÞj0

¼ −m2 þ 3λv20 þ 6λv0δvþ ΣðM2
hÞj0: ð15Þ

Here, field derivatives are represented by primes; the
one-loop VEV is v ¼ v0 þ δv with v0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
m2=λ

p
the

tree-level vacuum expectation value [calculated with
the tree-level potential V0ðhÞ] and δv the one-loop correc-
tion to it, given by

δv ¼ −
1

2λv20

∂V1

∂h
				
0

: ð16Þ

Finally, Σðp2Þ is the one-loop 1PI two-point function of the
Higgs, with external momentum p. With j0 we indicate that
the limit h → v0 is taken, which is appropriate at one-loop
order. All the parameters entering Eq. (15) are already the
renormalized ones.
The explicit result in the Fermi gauge, using dimensional

regularization, LX ≡ logðX=μ2Þ, and taking the limit
h → v0 everywhere except in the logarithmically divergent
terms, yields (see Appendix B for details)

6λv0δvj0 ¼ 3κv20

�
6λ2ð1 − LHÞ þ g4ð1 − 3LBÞ

−
1

2
λg2ξ

�
2 − log

�
ξGB
μ4

���				
0

; ð17Þ

and

ΣðM2
hÞj0 ¼ κv20

�
3g4ð1þ LBÞ þ λg2

×

�
2þ 3ξ − 2LB −

3

2
ξ log

�
ξGB
μ4

��

þ 6λ2ðπ
ffiffiffi
3

p
− 7þ 4LHÞ

− 2ðλ2 − 2λg2 þ 3g4ÞBR
0 ðB;B;HÞ

�				
0

; ð18Þ

where we have left unevaluated the (renormalized) one-
loop integral,

BR
0 ðm2

1; m
2
2; p

2Þ

¼ −
Z

1

0

dx log

�
m2

1ð1 − xÞ þm2
2x − xð1 − xÞp2 − iε
μ2

�
;

ð19Þ
and we leave explicit the terms that cause a divergence in
the G → 0 limit. In the sum that gives M2

h, the terms

involving ξ in (17) and (18) cancel, as expected for a
physical quantity [38]. Furthermore, one can check that the
result above for M2

h agrees with the SM result calculated
in the Landau gauge10[4,39] and Feynman gauge [40],
appropriately reduced to the Abelian Higgs model.
Note that the terms that diverge logarithmically for

h → v0 (i.e., for G → 0), that is, the IR divergence from
the shift in the Higgs VEV (17) and from the self-energy
(18), cancel in the sum, and one has

−3
V1

0

v0
þ ΣðM2

hÞ ⇒ IR finite: ð20Þ

Therefore, even though the Higgs VEV (not an observable)
diverges, observable physical quantities as the Higgs mass
are finite.11 We also note that the imaginary part of the pole
of the Higgs propagator (15), that is related to the Higgs
width, is gauge independent. Specifically, after the can-
cellation of the terms involving ξ in (17) and (18), the only
contribution to the imaginary part arises from the last term
in (18) that involves the one-loop integral (19). This term is
independent of ξ, and has a nonzero imaginary part for
H > 4B (that is, mH > 2mB), corresponding to the decay
of the Higgs into a pair of gauge bosons.
We close this subsection with am illustrative comparison

of the IR divergences in the 1PI two-point function Σðp2Þ
between the Landau and Fermi gauges. In the Landau
gauge, the IR divergent terms at one-loop are

κ−1ΣIRðp2Þ ¼ 0; ðfor p2 ≠ 0Þ
κ−1ΣIRð0Þ ¼ 2λ2v2LG: ð21Þ

This divergent structure is correlated with the fact that, in this
gauge, V 0 is IR finite and V 00 IR divergent, as V1

00 ¼ Σð0Þ.
In the Fermi gauge, instead, we have

κ−1ΣIRðp2Þ¼ξBLG

2v2

�
1

p2
ðH−p2Þ2

�
1þξB

p2

�
−5Hþ2p2

�
;

ðfor p2≠0Þ

κ−1ΣIRð0Þ¼−λ2v2ξ
B
G
−
3π

4
λ2v2

ffiffiffiffiffiffi
ξB
G

r
þ
�
λ2v2−

5

2
λξB

�
LG:

ð22Þ

10Starting from Eqs. (2.12)–(2.13) of [4], one gets
M2

h ¼ 2λv20 þ 4λv0δvðξ¼0Þ þ δ1M2
h, where δvðξ¼0Þ is the shift

of the minimum in the Landau gauge. Taking into account the
different conventions used, and translating to the Abelian
case (yt → 0; g → 0; g02 → g2=4, M2

Z → B, and ignoring terms
involving MW) there is agreement.

11This cancellation is reminiscent of a similar cancellation
that takes place in the computation of the Higgs mass as
M2

h ¼ V 00 þ ΣðM2
hÞ − Σð0Þ where V is now the full potential

and the Σ terms take into account that the mass is defined on-shell
and not at p2 ¼ 0. At one loop, V1

00 has a logarithmic IR
divergence that is precisely canceled by Σ1ðM2

hÞ − Σ1ð0Þ, as is
obvious from the fact that V1

00 is nothing but Σ1ð0Þ.

J. R. ESPINOSA, M. GARNY, and T. KONSTANDIN PHYSICAL REVIEW D 94, 055026 (2016)

055026-6



We see that Σ is IR divergent even on-shell, and this is
correlated (in order to get an IR finite Higgs mass as
discussed above) with the IR divergence in V 0 present in
this gauge, see Eq. (20). We also see that the ξ → 0 limit of
ΣIRð0Þ differs from the Landau gauge result showing
explicitly that the limits ξ → 0 and p2 → 0 do not
commute.

B. Nielsen identity

The Nielsen identity [25,26,34] plays a central role for
the gauge (in)dependence of the potential. In this sub-
section, we examine how the IR divergence in V 0 affects
this identity, which reads

ξ
∂V
∂ξ þ C

∂V
∂h ¼ 0; ð23Þ

where the function C is the constant background limit of a
function CðxÞ (which enters the Nielsen identity for the
effective action) that in the Fermi gauge reads

CðxÞ ¼ ig
2

Z
d4yhcðxÞχðxÞc̄ðyÞ∂μBμðyÞi; ð24Þ

with c, c̄ the ghost fields. The (renormalized) one-loop
result reads

C1 ¼
κξB

2vðGþ −G−Þ
½GþðLGþ − 1Þ −G−ðLG−

− 1Þ�: ð25Þ

Taking the limit h → v (or G → 0), we find

C1 → −
1

2
κξg2v

�
1 −

1

2
log

�
ξGB
μ4

��
; ð26Þ

which is logarithmically IR divergent for G → 0.12

However, evaluating the Nielsen identity perturbatively,
at one loop one gets (with primes denoting field
derivatives):

ξ
∂V1

∂ξ þ C1V 0
0 ¼ 0; ð27Þ

and the one-loop product C1V0
0 ∝ C1G goes to zero for

G → 0. This means that the value of V at the minimum, or
more precisely V1jv, is gauge independent, as it should be.
The fact that the (one-loop) Nielsen identity (valid for

arbitrary field values) is IR finite implies that all the
identities derived from it by taking field derivatives are
also IR finite even if individual terms diverge. For example,
taking one field derivative of the Nielsen identity gives

ξ
∂V 0

∂ξ þ CV 00 þ C0V 0 ¼ 0; ð28Þ

When evaluated close to the potential minimum, h ¼ v, the
first term essentially determines the gauge dependence of
the location of that minimum. One can then check that the
IR divergences in the first two terms cancel each other.
Naively, one may think that the last term vanishes at v.
However, this is not the case because C0 ∝ 1=G such that
the product C0V 0

0 does not vanish in the minimum.
A similar discussion applies to the Nielsen identity for

the kinetic term ZðhÞð∂μhÞ2=2 in the effective action
(derived in Appendix C for the Fermi gauge at one loop).
As in the Landau gauge, ZðhÞ is IR divergent close to the
broken phase minimum. The enhanced IR sensitivity of Z
can be attributed to the gradient expansion around homo-
geneous field configurations as well as the vanishing
Goldstone boson mass in the broken minimum, that occurs
both in the Landau and Fermi gauges. Nevertheless, the IR
sensitivity of the coefficients appearing in the Nielsen
identity for Z matches precisely those that are present in
ξ∂Z=∂ξ, and the Nielsen identity holds at one loop for all
field values. In addition, as discussed above, all IR
divergences cancel for physical observables.
We conclude that the Nielsen identity is fulfilled order

by order in the perturbative expansion and that, for the
effective potential, IR effects explicitly cancel. Finally, it
can be shown that the identity will also hold after including
resummation effects in a consistent way. For instance, the
one-loop resummed potential fulfills the identity as the
replacement G → Ḡ ¼ Gþ Πg (or G� → Ḡ�), with a
ξ-independent Πg, does not interfere with the structure
of the identity if one uses, to be consistent, that V 0 ¼ hḠ. In
fact, there is a systematic way to consistently maintain the
Nielsen identity order by order even when including IR
resummation in the following way: Add to the Lagrangian
−Πgϕ

†ϕþ Πgϕ
†ϕ ¼ 0, and absorb the first term into a

shift of the quadratic term −m2 → −m2 þ Πg that enters in
the Goldstone and Higgs mass. On the other hand, the
second term is treated perturbatively as a one-loop counter-
term, i.e., OðℏÞ. This procedure implements the replace-
ment G → Ḡ in the one-loop expressions and, in addition,
also the Higgs mass gets shifted. This ensures that the
potential at order ℏ0 fulfills V 0 ¼ hḠ, and therefore the
Nielsen identity is precisely fulfilled.13 On the other hand,
since ϕ†ϕ ¼ ðh2 þ χ2Þ=2 this also introduces a shift in the
Higgs mass parameter H → H þ Πg that appears in the
Higgs propagator in loop diagrams. However, this shift is

12This was noticed already in [25] and was later taken as
reason to avoid the use of the Fermi gauge, e.g., in [26].

13Note that for this to be true it is not sufficient to add and
subtract only a mass term for the Goldstone boson
−ðΠg − ΠgÞχ2=2. The reason is that this operator is not gauge
invariant, and therefore jeopardizes the Nielsen identity once the
first term is resummed while the second is treated as a one-loop
counterterm. Using instead the operator ϕ†ϕ solves this problem.
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perturbatively small (since the Higgs mass does not vanish
close to the broken phase minimum) and therefore it is
canceled by the corresponding counterterm contributions
up to terms of higher order in perturbation theory.

IV. SOLUTIONS TO THE IR PROBLEM
IN THE FERMI GAUGE

Although, as we have seen, IR divergences should not
affect observables, it can be convenient to get rid of the IR
divergences also in intermediate results. In particular, it is
more satisfactory to have an effective potential whose first
derivative is IR finite and does not suffer from a formally
infinite shift in the location of its minimum.14 With such
goal in mind, an obvious solution to try is to absorb the
infinite shift in a field redefinition.
Notice that it would be ill advised to keep the Higgs

VEV finite by suitable renormalization conditions on the
masses and/or couplings. The observables are invariant
under gauge changes for fixed bare couplings while the
Higgs VEV is not. From this point of view, if the bare
couplings are fixed in the Landau gauge, the IR issue in the
Higgs VEV seems a necessity in the Fermi gauges with
ξ ≠ 0. In contrast, the wave function renormalization and
field redefinitions in general are unobservable.

A. Field redefinition

Let us see then what field redefinition would be needed
to make V 0 IR finite. Consider a field redefinition of the
form

h → hþ ℏFðhÞ; ð29Þ

where we have included an explicit factor ℏ to indicate that
the shift is of one-loop order. Such field redefinitions
modify the form of the Lagrangian without affecting the
physics (more precisely, without modifying S-matrix ele-
ments [41]). The change induced by the shift in Eq. ([41])
on the potential is

V¼V0þℏV1þOðℏ2Þ→V¼V0þV0
0ℏFþℏV1þOðℏ2Þ;

ð30Þ

with primes denoting field derivatives, as usual. There is
some freedom in choosing the function FðhÞ so that it
cancels out the IR divergence in V1

0, because the cancel-
lation should occur at a single point in field space. The
IR divergence comes from the potential term δV1 ¼
−ðκ=4ÞξGB logðξGB=μ4Þ and we have the choice of
removing this, or just the part that goes like logðG=μ2Þ
or the full Goldstone contribution, etc. We do not commit at

this point with such choices and write generically the term
to be removed as δV1 ¼ −ðκ=4ÞξGB logðG=XÞ with X, a
quantity of dimension mass squared, to be chosen later on.
Simple inspection of the first derivative of the shifted
potential in Eq. (30) shows that FðhÞ evaluated at h ¼ v
should satisfy

FðvÞ ¼ κ

4
ξg2v log

G
X

				
v
: ð31Þ

Once we get an IR finite V1
0, it can no longer cancel the

IR divergence of ΣðM2
hÞ as needed to get M2

h finite, see
Eq. (20) and the discussion at the end of subsection III A.
However, this causes no problem as we should also
consider the impact of the field shift ([41]) on the kinetic
term for h,

1

2
ð∂μhÞ2 →

1

2
ð∂μhÞ2 þ ℏF0ð∂μhÞ2; ð32Þ

that modifies the Higgs pole mass equation (15) as

ð1þ 2F0ÞM2
h ¼ ½V0 þ FV 0

0�00ðvÞ þ ΣðM2
hÞj0: ð33Þ

In this equation we have treated the F-shift terms in (30)
and (32) as modifying the tree-level Lagrangian (even
though they are shifts of order ℏ). The one-loop radiative
corrections calculated with this shifted Lagrangian are the
same as before so that ΣðM2

hÞj0 above is the same as in (15),
and the one-loop VEV v is the minimum of the full one-
loop potential (30). Explicitly,

v ¼ v0 þ δFvþ δv; ð34Þ

with

v20 ¼
m2

λ
; δFv ¼ −F; δv ¼ −

V 0
1

V 00
0

; ð35Þ

so that δv is the same as in (15) but now δFvþ δv is IR
finite by construction. More explicitly, expanding v in
Eq. (33) and keeping terms up to OðℏÞ we get

ð1þ 2F0ÞM2
h ¼ V 00

0ðv0Þ þ ðδFvþ δvÞV 000
0 þ 2F0V 00

0

þ FV 000
0 þ ΣðM2

hÞj0: ð36Þ

The F0 terms cancel out and we end up with

M2
h ¼ 2λv20 þ 3λv0ðδFvþ δvÞ þ ½3λv0F þ ΣðM2

hÞj0�:
ð37Þ

We see explicitly that M2
h is exactly the same as the one in

(15) as 3λv0ðδFvþ FÞ ¼ 0. Moreover, the IR divergence
of ΣðM2

hÞj0 is precisely canceled by the 3λv0F term.
Therefore, we see explicitly that the physical Higgs mass,

14The shift of the VEV is not actually infinite. What happens is
that the potential develops a cusp at λ̄ ¼ 0, which is therefore a
bad starting point for the perturbative expansion.
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an observable, is not affected by our field redefinition, as
expected.
A simple and convenient choice of FðhÞ that satisfies the

condition (31) corresponds to the field redefinition,

h → hþ κ

4
ξg2h log

ξGB
μ4

; ð38Þ

corresponding to the choice X ¼ μ4=ðξBÞ. This field
redefinition, being μ-dependent, modifies the wave-
function renormalization of the field, encoded in the
anomalous dimension γ ≡ d log h=d log μ. One gets that
the one-loop γ is shifted as

γ1 ¼ κg2ð3 − ξÞ → γ1 ¼ κg2ð3 − ξÞ þ κξg2 ¼ 3κg2; ð39Þ
and the ξ dependence drops (which can be useful to reduce
the gauge dependence of the potential). However, as we
have already mentioned, one is not forced to this choice of
X, and if one takes instead a μ-independent X (say X ¼ B),
the one-loop anomalous dimension of h will not change.
The potential expressed in terms of the shifted field [after

h → hþ ðκ=4Þξg2h logðG=XÞ] reads, at one loop:

V ¼ −
1

2
m2h2 þ λ

4
h4

þ κ

4

�
3B2

�
log

B
μ2

−
5

6

�
þH2

�
log

H
μ2

−
3

2

��

þ κ

8
G

�
G

�
log

ξGB
μ4

− 3

�
− 2ξB

�
log

ξXB
μ4

− 3

�

þ ðGþ − G−Þ log
Gþ
G−

�
: ð40Þ

One can explicitly check that V 0 is now finite for G → 0
and the one-loop shift of the VEV is IR finite. The field
redefinition we have performed is reminiscent of the field
redefinition proposed in [42] to obtain a ξ-independent
potential (which in practice is equivalent to going to the
Landau gauge) or in [12] to make the field canonical and
reduce the ξ dependence of the potential. Our aim here is
different: we just want to remove the IR problem but leave
the ξ dependence as we want to study the gauge (in)
dependence of different quantities. Still, one could argue
that our field redefinitions either fix the gauge (if all ξ
dependence is gone) or amount to using a different gauge
fixing (in some sense intermediate between the Fermi and
Landau gauges).
Let us consider next the IR structure of the Nielsen

identity after the field redefinition in (38). At one loop,
the identity takes the form in Eq. (27). As the field
shift sends V1 → V1 þ FV 0

0 we immediately deduce that
C1 → C1 − ξ∂F=∂ξ,

C1 → C1 −
κ

4
ξg2h

�
log

G
X
þ 1

�
; ð41Þ

so that the Nielsen identity is respected. From the IR limit
in Eq. (26) we see that the newC1 above is instead IR finite.
Thus, the same field redefinition that removes the IR
divergence from the first derivative of the effective potential
also removes the IR divergence in the Nielsen coefficient.
In addition, when taking a derivative of the shifted Nielsen
identity with respect to the shifted field, the contribution
C0V0

0 actually vanishes for h → v0, in accordance with
naive expectations.

B. IR regulator

Above we have shown how to use a field redefinition
to get a potential with a well-behaved (i.e., IR finite)
first derivative. Instead, we could simply regulate the IR
divergences, checking at the end of the calculations that
physical quantities are independent of the IR regulator.
A simple way of doing this is to use the Fukuda-Kugo
gauge [34],

Lgf ¼ −
1

2ξ
ð∂μBμ þ μIRχÞ2; ð42Þ

that leads to the masses

G� ¼ 1

2
½Gþ 2μIRmB �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 − 4ðξB − μIRmBÞG

q
�; ð43Þ

which tend to μIRmB when G → 0. Therefore, in this gauge
μIR acts as an IR regulator of the divergences that afflict
the Fermi gauge (recovered at μIR → 0). Note also that in
this case the ghosts contribute to the effective potential.

V. THE STANDARD MODEL
IN THE FERMI GAUGE

It is a straightforward exercise to extend the results for
the Abelian Higgs model, discussed in the previous sections,
to the non-Abelian case and in particular to the SM. The
(electroweak) gauge-fixing terms in the Lagrangian, in the
Fermi gauge, are

Lgf ¼ −
1

2ξB
ð∂μBμÞ2 −

1

2ξW
ð∂μWa

μÞ2; ð44Þ

where Bμ is now the Uð1ÞY gauge boson and Wa
μ are the

SUð2ÞL ones. The Higgs doublet, with hypercharge
Y ¼ 1=2, is written as

H ¼
� χþ

1ffiffi
2

p ðhþ iχÞ
�
: ð45Þ

The potential is a function of the neutral field h and the χ; χ�
fields are the three Goldstones.
The renormalized MS effective potential, calculated up

to one-loop order, has the form
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V ¼ −
1

2
m2h2 þ 1

4
λh4 þ κ

4

X
α

NαM4
αðhÞ

�
log

M2
αðhÞ
μ2

− Cα

�
; ð46Þ

where α runs over all particle species, withNα counting the corresponding degrees of freedom (taken negative for fermions)
and tree-level mass-squaredM2

αðhÞ in the h background. The Cα are constants (equal to 3=2 for scalars and fermions, and to
5=6 for the gauge bosons). The particle species and masses relevant for the potential are

Top quark∶ Nt ¼ −12; T ≡M2
t ¼

1

2
y2t h2;

W�∶ NW ¼ 6; W ≡M2
W ¼ 1

4
g2h2;

Z0∶ NZ ¼ 3; Z≡M2
Z ¼ 1

4
ðg2 þ g02Þh2;

Higgs∶ Nh ¼ 1; H ≡M2
h ¼ −m2 þ 3λh2;

ChargedGoldstones∶ NA� ¼ 2; GA� ≡M2
A� ¼ 1

2
ðG�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 − 4ξWGW

q
Þ;

Neutral Goldstones∶ NB� ¼ 1; GB� ≡M2
B� ¼ 1

2
½G�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 − 4ðξWW þ ξBBÞG

q
�; ð47Þ

where we have used the auxiliary squared masses

B≡ 1

4
g02h2 ¼ Z −W; G≡ −m2 þ λh2: ð48Þ

As in the Abelian case, the minimum of the tree-
level potential corresponds to G ¼ 0. The above
expression for the effective potential is well known; see,
e.g., [19,33].
The IR properties of the potential in the limit G → 0 are

similar to those discussed in the Abelian model. There are
IR divergences at higher orders in the perturbative expan-
sion of the potential that can be resummed as in the Landau
gauge [22,23], by the shift G → Gþ Πg, where now, at
one-loop order,

Πg ¼ κ½3λHðLH − 1Þ − 6y2t TðLT − 1Þ þ 3

2
g2WðLW − 1=3Þ

þ 3

4
ðg2 þ g02ÞZðLZ − 1=3Þ�; ð49Þ

where LX ¼ logðX=μ2Þ. This resummation also solves
the issue of residual gauge dependence at high field
values in the region of instability [19], as discussed in
subsection II C.
As in the Abelian case, however, this resummation still

leaves a potential that suffers from an IR divergence in its
first derivative. More concretely, the one-loop effective
potential, expanded at small G contains the terms

δV ¼ −
κ

4
G

�
2ξWW log

�
ξWGW
μ4

�

þ ðξWW þ ξBBÞ log
�
ξWGW þ ξBGB

μ4

��
; ð50Þ

which are responsible for producing an IR divergence
in V 0. There are no qualitative differences between this
case and the Abelian one, so that again observable
quantities like pole masses (for the Higgs boson and also
for gauge bosons and fermions) are IR finite; IR diver-
gences cancel out in the Nielsen identity; and the same
kind of solutions discussed in Sec. IV can be applied to get
rid of this complication and obtain an IR finite potential.
In particular, the field redefinition that would achieve this
is now

h → hþ κ

16
hð3ξWg2 þ ξBg02Þ log

�
G
X

�
; ð51Þ

where X is left unspecified and can be chosen at will. For
instance, the choice

logX ¼ 2ð3ξWW þ ξBBÞ log μ2 ð52Þ

modifies the one-loop anomalous dimension of the field
and removes from it the ξW;Z dependence, in the same way
that this could be done in the Abelian model. If, instead, X
does not depend explicitly on μ, the anomalous dimension
is not modified.
The explicit expression of the one-loop potential after

shifting the field as in Eq. (51) is
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V ¼ −
1

2
m2 þ 1

4
λh4 þ κ

4
½−12T2ðLT − 3=2Þ þ 6W2ðLW − 5=6Þ þ 3Z2ðLZ − 5=6Þ þH2ðLH − 3=2Þ�

þ κ

8
G

�
2G

�
log

ξWGW
μ4

− 3

�
þ G

�
log

GðξWW þ ξBBÞ
μ4

− 3

�

− 4ξWW

�
log

ξWXW
μ4

− 3

�
− 2ðξWW þ ξBBÞ

�
log

XðξWW þ ξBBÞ
μ4

− 3

�

þ 2ðGAþ −GA−
Þ logGAþ

GA−

þ ðGBþ − GB−
Þ logGBþ

GB−

�
: ð53Þ

Concerning the gauge dependence of the potential, it is
similarly described by Nielsen identities of the form (23),
one for each ξ parameter (with a different C function each)
and the results discussed for the Abelian model carry over
in a straightforward manner to the SM.

VI. CONCLUSIONS

In some common gauges, like the Landau or Fermi
gauge, Goldstone bosons are massless in the potential
minimum in the broken phase and this causes IR diver-
gences in the calculation of the perturbative effective
potential. As demonstrated recently, these divergences
are spurious and can be eliminated by a simple resumma-
tion of Goldstone self-energy diagrams that otherwise lead
to the breakdown of perturbation theory [18,22,23].
On the other hand, when one is dealing with a potential

whose minimum is generated radiatively (and this includes
not only the well-known Coleman-Weinberg model but
also the SM potential at high field values) the value of the
potential at that minimum (a gauge-independent quantity in
principle) has a residual gauge dependence that also needs
resummation of a tower of diagrams involving Goldstone
bosons. In this paper, we have shown that the resummation of
IR divergences mentioned previously automatically takes
care of the residual gauge dependence in radiative minima.
We have shown this explicitly in the case of the Abelian

Higgs model in the Fermi gauge, and in doing this we
encountered a different IR problem: the first derivative of
the potential (and therefore formally also the location of the
minimum in a perturbative expansion) is IR divergent. This
divergence can be traced back to a pole of order p4 in the
mixed propagator of the Goldstone bosons and longitudinal
gauge bosons. As we showed, this pole is not an artifact of
perturbation theory but a property of the full propagator.
This mixed propagator is a specific feature of the Fermi
gauge and so this IR divergence is not present in the Landau
gauge (ξ → 0) nor in the background Rξ gauges.
Although naively this seems to be a serious pathology of

the Fermi gauge, interestingly the IR divergence does not
propagate to physical observables. We showed explicitly
that all IR divergences cancel in the physical Higgs boson
mass relation as well as in the Nielsen identity, which
indicates that one can extract physical information from the

effective potential in the Fermi gauge. Still, working with
an effective potential with a spurious cusp seems odd. Our
proposal to solve this issue (besides using an IR regulator to
be removed at the end of the calculations) is to remove the
IR divergence of the potential by an appropriate rescaling
of the Higgs field, as described in Sec. IV. Several options
for this rescaling are possible (with different advantages
depending on the objective one has) and using any of them
it is possible to have a well-behaved (IR finite) effective
potential in the Fermi gauge. It could be argued that our
field redefinitions either fix the gauge (if all ξ dependence
of the potential is removed by the redefinition) or amount to
changing to a different gauge-fixing (some kind of inter-
polation between the Fermi and Landau gauges). In the
latter case, we get the best of both worlds: we inherit the
good IR properties of the Landau gauge, and we still have a
free ξ parameter to check gauge independence explicitly.
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APPENDIX A: NONPERTURBATIVE
PERSISTENCE OF THE IR PROBLEM

In this appendix, we show that the IR problem
of the Fermi gauge identified in the text persists
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nonperturbatively. In particular, we show that the full
Goldstone propagator goes as 1=k4 in the broken phase.
The proof is based on the Ward-Takahashi identities, which
we review first.

1. BRS and Ward-Takahashi identities

We shortly review the Ward-Takahashi identities in the
Abelian Higgs model in the Fermi gauge. As usual, it is
convenient to introduce an auxiliary field B such that the
gauge-fixing term reads

LGF ¼ FBþ ξ

2
B2; ðA1Þ

with F ¼ ∂μBμ corresponding to the Fermi gauge. Solving
for the equation of motion for B gives B ¼ −F=ξ, and
replacing this in the gauge-fixing terms gives the usual
expression.
The Lagrangian term involving Faddeev-Popov ghosts

reads

LFP ¼ −c̄
�
δF
δBμ

∂μ þ
δF
δϕ

ðigϕÞ þ δF
δϕ� ð−igϕ�Þ

�
c ¼ −c̄□c:

ðA2Þ

Under the BRS transformation the fields transform as

ϕi → ϕi þ θδBRSϕi; ðA3Þ

with a Grassmann parameter θ and where ϕi labels all fields
(gauge, Higgs/Goldstone, auxiliary, ghost) with

δBRSAμ ¼ ∂μc; δBRSϕ ¼ −igϕc;

δBRSc ¼ 0; δBRSc̄ ¼ B; δBRSB ¼ 0: ðA4Þ

It is convenient to split the Higgs field in components as
ϕ ¼ ðvþ hþ iχÞ= ffiffiffi

2
p

. Their BRS transformation is then

δBRSh ¼ gχc; δBRSχ ¼ −gðvþ hÞc: ðA5Þ

The generating functional in the presence of sources J and
K reads

eiW½J;K� ≡ h0jTei
R

ddxðJiðxÞϕiðxÞþKiðxÞδBRSϕiðxÞj0i; ðA6Þ

where K sources the BRS transformation. The expectation
value of the fields can then be written as

ϕiðxÞ ¼
δW

δJiðxÞ
; ðA7Þ

and the effective action is obtained via a Legendre
transformation [we use the short-hand notation Jiϕi ¼R
ddxJiðxÞϕiðxÞ]

Γ½ϕ; K� ¼ W½J½ϕ; K�; K� − Ji½ϕ; K�ϕi; ðA8Þ

Under the BRS transformations the energy functional W
behaves as

W½J; K� → W½J; K þ λJ� ⇒ δBRSW ¼ Ji
δW
δKi

; ðA9Þ

where we used that the BRS transformation is nilpotent,
namely δBRSðδBRSϕiÞ ¼ 0. At the same time, since the
BRS transformation can be absorbed into the integration
measure, one finds δBRSW ¼ 0. Using

δW
δK

				
J¼const

¼ δΓ
δK

				
ϕ¼const

; Ji ¼ −
δΓ
δϕi

; ðA10Þ

one obtains

0 ¼ δΓ
δϕi

δΓ
δKi

¼ δΓ
δBμ

δΓ
δKμ þ

δΓ
δh

δΓ
δKh þ

δΓ
δχ

δΓ
δKχ þ

δΓ
δc̄

δΓ
δKc̄ :

ðA11Þ

In the last expression we used already that the BRS
transformation of c and B vanishes, so that the effective
action is independent of the corresponding sources KB

and Kc.

2. Ward identities for the gauge boson propagator

Let us next derive the Ward identities for the gauge
boson propagator. In the following we assume that v is the
full vacuum expectation value, i.e., that hhi ¼ v is a
solution of the equations of motion for vanishing external
source. Furthermore, the symmetry χ → −χ, Bμ → −Bμ

guarantees that hχi ¼ hBμi ¼ 0 is a solution of the equa-
tions of motion. This is equivalent to the condition that
the Fermi gauge is a “good gauge” in the sense of
Fukuda-Kugo [34]. Finally, the symmetry c→−c; c̄→−c̄
guarantees that the vanishing ghost expectation value is
always a solution to the equations of motion; i.e., it
corresponds to a configuration with vanishing external
sources.
The full inverse propagator for the gauge field, the

Goldstone boson, and their mixing is given by

G−1ðx; yÞ ¼ −i

 δ2Γ
δBνδBμ

δ2Γ
δBνδχ

δ2Γ
δχδBμ

δ2Γ
δχδχ

!
; ðA12Þ

where Γ is the effective action. One can obtain a WT
identity for this propagator by taking derivatives of (A11)
with respect to Bν and χ. In addition, we take a derivative
with respect to the ghost field c, and then set all expectation
values to zero except for the Higgs, which is assumed to be
in the broken minimum. As discussed above, since the
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Fermi gauge is a “good gauge,” this corresponds to a
solution of the equations of motion; i.e., all sources vanish.
The symmetry χ → −χ, Bμ → −Bμ implies that second
derivatives involving one Higgs and one Goldstone or
gauge field, vanish. Furthermore, all first derivatives of Γ
with respect to any field vanish due to the on-shell
stationarity of the effective action. Finally, using that
δΓ=δKi ¼ δW=δKi ¼ hδBRSϕii, and using the BRS trans-
formations as well as ghost number conservation, it follows
that most contributions are zero for vanishing (ghost)
background field, except terms involving δ2Γ=ðδKiδcÞ
for i ¼ h; χ; Bμ and terms involving δ2Γ=ðδcδc̄Þ. Writing
the result in matrix form, one obtains

G−1

 
δ2Γ

δKμδc

δ2Γ
δKχδc

!
þ ð−iÞ δ2Γ

δcδc̄

 δB
δBν

δB
δχ

!
¼ 0: ðA13Þ

Here we have used already that δΓ=δKc̄ ¼ hδBRSc̄i ¼
hB̂i ¼ B, where we have denoted the field operator by a
hat here and assumed in the last equality that the auxiliary
field is linear in the fundamental fields, i.e., that the gauge-
fixing function F is a linear function of the field variables.
Specifying to the Fermi gauge where B ¼ −F=ξ ¼

−∂μBμ=ξ and the ghost is a free field [such that its inverse
propagator is simply δ2Γ=ðδcδc̄Þ ¼ δ2S=ðδcδc̄Þ ¼ k2], one
obtains in Fourier space:

G−1ðkÞ
 

δ2Γ
δKμδc

δ2Γ
δKχδc

!
− k2

�
kν=ξ

0

�
¼ 0: ðA14Þ

One has δ2Γ=½δKμðyÞδcðzÞ� ¼ δ½hδBRSBμðyÞi�=δcðzÞ ¼
δ½∂μcðyÞ�=δcðzÞ ¼ ∂μδðy − zÞ. Since the ghost is a
free field one also gets δ2Γ=½δKχðyÞδcðzÞ� ¼ δ½hð−gðvþ
ĥðyÞÞĉðyÞi�=δcðzÞ ¼ δ½hð−gðv þ ĥðyÞÞihĉðyÞi�=δcðzÞ ¼
−gvδðy − zÞ. In the last step we used hhi ¼ 0, i.e., the
assumption that one expands around the position of the
broken minimum. In Fourier space, this gives

G−1ðkÞ
�
ikμ

gv

�
þ k2

�
kν=ξ

0

�
¼ 0: ðA15Þ

It is easy to check that the WT identity is fulfilled at tree
level, where

G−1
0 ðkÞ¼−i

�−gμνk2þkμkν−kμkν=ξþg2v2gμν −ikνgv

ikμgv k2−m2
χ

�
;

ðA16Þ

and m2
χ ¼ 0 in the broken phase.

To see how the k4 pole arises in general, we can
decompose the propagator into transverse and longitudinal
parts (using the short-hand notation k̂μ ≡ kμ=

ffiffiffiffiffi
k2

p ≡ kμ=k)

as

GðkÞ ¼
�
gμν − k̂μk̂ν 0

0 0

�
GTðkÞ

þ
�
−ik̂μ 0

0 1

�
GLðkÞ

�
ik̂ν 0

0 1

�
; ðA17Þ

where GTðkÞ is a function but GLðkÞ still has a 2 × 2 matrix
structure and both are Lorentz scalars. The above WT
identity then takes the form

G−1
L ðkÞ

�
k

gv

�
− i

k3

ξ

�
1

0

�
¼ 0: ðA18Þ

Using the fact that the Goldstone mass vanishes in the
broken phase, the longitudinal propagator must have the
form

G−1
L ðkÞ ¼ i

ξ
k2
�
1 0

0 0

�
− iAðkÞ

�
g2v2 −kgv
−kgv k2

�
;

ðA19Þ

with some function AðkÞ that has no poles at k2 ¼ 0. This
form means that GL has a pole that goes (at least) like 1=k4,
as detGL ¼ ξ=½k4AðkÞ�.
Another way of understanding Eq. (A19) is in terms of

operators. The WT equation states that the operator jDμϕj2
that induces the second contribution in (A19) is radiatively
corrected while the gauge-breaking term is not. The
running of the parameter ξ, hence, stems from wave-
function renormalization of the gauge fields. We explicitly
confirmed this at the one-loop level.

APPENDIX B: HIGGS SELF-ENERGY AND
CORRECTION TO THE KINETIC TERM

In this appendix, we present the full self-energy Σ of the
physical Higgs at one loop in the Abelian Higgs model. We
separate Σ in different pieces as

Σ ¼ ΣLL þ 2ΣLT þ ΣTT þ ΣHH þ ΣL þ ΣT þ ΣH; ðB1Þ

where the indices denote the type of fields propagating in
the loop (one index for loops with a quartic vertex and
two indices for loops with cubic vertices). Here, L labels
the mixed longitudinal and Goldstone fields, T the
transverse part of the gauge field, and H the physical
Higgs. We find [with the squared masses H, G and B as
defined in (3)]
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ΣHHðp2Þ ¼ iμ4−d18λ2h2
Z

ddk
ð2πÞd

1

ðk2− −HÞðk2þ −HÞ ;

ΣTTðp2Þ ¼ iμ4−d
2B2

h2

Z
ddk
ð2πÞd

1

ðk2− − BÞðk2þ − BÞ
�
d − 2þ ðk2þ þ k2− − p2Þ2

4k2−k2þ

�
;

ΣLTðp2Þ ¼ iμ4−d
B
2h2

Z
ddk
ð2πÞd

p2ðp2 − 4k2−Þðk4þ þ BGξÞ
k2−k2þðk2− − BÞðk4þ −Gk2þ þ BGξÞ ;

ΣLLðp2Þ ¼ iμ4−d
Z

ddk
ð2πÞd

1

ðk4− − Gk2− þ BGξÞðk4þ − Gk2þ þ BGξÞ
X5
i;j¼1

Eijk2i−4− k2j−4þ ; ðB2Þ

where the Eij entering ΣLLðp2Þ is given by the matrix

E≡

0
BBBBBB@

B2G2p4ξ2 −2B2G2p2ξ2 BGξðp4 þ BGξÞ −2BGp2ξ BGξ

−2B2G2p2ξ2 B2ð2G2 þ Δ4Þξ2 −BξðΔ4 þ BGξÞ 2BΔ2ξ −Bξ
BGξðp4 þ BGξÞ −BξðΔ4 þ BGξÞ 4λ2h4 0 0

−2BGp2ξ 2BΔ2ξ 0 0 0

BGξ −Bξ 0 0 0

1
CCCCCCA
; ðB3Þ

with Δ2 ≡ p2 − 2λh2, k2� ≡ ðk� p=2Þ2, and

ΣH ¼ 3iλμ4−d
Z

ddk
ð2πÞd

1

k2 −H
;

ΣT ¼ i
ðd − 1ÞB

h2
μ4−d

Z
ddk
ð2πÞd

1

k2 − B
;

ΣL ¼ iμ4−d
Z

ddk
ð2πÞd

k2ðλh2 þ ξBÞ − ξBðλh2 þ GÞ
h2ðk4 −Gk2 þ BGξÞ : ðB4Þ

All loop integrals can be reduced to the elementary one-
loop functions,

AðXÞ≡ −iμ4−d16π2
Z

ddk
ð2πÞd

1

k2 − X

¼ m2½Δϵ þ 1 − logðX=μ2Þ�; ðB5Þ

BðX1; X2; p2Þ

≡−iμ4−d16π2
Z

ddk
ð2πÞd

1

ðk2− −X1 − iεÞ
1

ðk2þ −X2 − iεÞ

¼ Δϵ −
Z

1

0

dx log

�
X1ð1− xÞ þX2x− xð1− xÞp2 − iε

μ2

�
;

ðB6Þ
with Δϵ ≡ 2=ð4 − dÞ − γE þ log 4π. After factorizing,

NðkÞ≡ k4 −Gk2 þ BGξ ¼ ðk2 −G2
−Þðk2 −G2þÞ; ðB7Þ

with G� as defined in (6), the reduction can be done in
several ways. For example, in ΣTT one can write the
numerator of the last term as

ðk2þ þ k2− − p2Þ2 ¼ 2k2þk2− þ p4 þ k2þðk2þ − BÞ
þ k2−ðk2− − BÞ þ ðB − 2p2Þðk2þ þ k2−Þ;

ðB8Þ

and then split the integral into contributions from each
summand. Similarly, in ΣLT , one can add and subtract
Gk2þ in the right-most bracket of the numerator, and in
ΣL one can write k2 ¼ ½ðk2 −G−Þ þ ðk2 − GþÞ�=2þ G=2.
One then finds

ΣHHðp2Þ ¼ −18κλ2h2BðH;H; p2Þ;

ΣTTðp2Þ ¼ −
2κB2

v2

�
BðT; T; p2Þðd − 3=2Þ

þ ðB − 2p2Þ
2

B2;1ð0; B; B; p2Þ

þ 1

2
Bð0; B; 0Þ þ p4

4
B2;2ð0; B; 0; B; p2Þ

�
;

ΣLTðp2Þ ¼ −κ
p2B
2h2

½p2B2;1ð0; B; 0; p2Þ − 4Bð0; B; p2Þ
þGp2B2;2ð0; B; Gþ; G−; p2Þ
− 4GB2;1ðGþ; G−; B; p2Þ�; ðB9Þ

and
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ΣH ¼ −3κλHAðHÞ;

ΣT ¼ −κ
B2

h2
ðd − 1ÞAðBÞ;

ΣL ¼ −κ
ðGλh2 − ξBG − 2ξBλh2Þ

2h2
BðGþ; G−; 0Þ −

κ

2h2
½AðGþÞ þ AðGþÞ�; ðB10Þ

where κ ¼ 1=ð16π2Þ and

B2;1ðX1; X2; X3; p2Þ≡ −iμ4−d16π2
Z

ddk
ð2πÞd

1

ðk2− − X1 − iεÞ
1

ðk2− − X2 − iεÞ
1

ðk2þ − X3 − iεÞ
¼ 1

X1 − X2

½BðX1; X3; p2Þ − BðX2; X3; p2Þ�: ðB11Þ

Similarly, B2;2 contains two propagators involving k2− and k2þ, respectively, and is

B2;2ðX1; X2; X3; X4; p2Þ ¼ BðX1; X3; p2Þ − BðX1; X4; p2Þ − BðX2; X3; p2Þ þ BðX2; X4; p2Þ
ðX1 − X2ÞðX3 − X4Þ

: ðB12Þ

The piece ΣLL can be reduced by first rewriting the powers of k2� for i ¼ 4, 5 or j ¼ 4, 5 as

k4� ¼ Nðk�Þ þGk2� − BGξ;

k6� ¼ ðk2� þGÞNðk�Þ þ GðG − BξÞk2� − BG2ξ: ðB13Þ

Then one obtains integrals that can be reduced as above, for example,

−iμ4−d16π2
Z

ddk
ð2πÞd

k2−
NðkþÞNðk−Þ

¼ 1

2
½B2;1ðGþ; G−; Gþ; p2Þ þ B2;1ðGþ; G−; G−; p2Þ

þ GB2;2ðGþ; G−; Gþ; G−; p2Þ�; ðB14Þ

where we rewrote k2− in the numerator as done for ΣL. Another useful relation is

Z
ddk
ð2πÞd

k2−
NðkþÞ

¼
Z

ddk
ð2πÞd

k2 þ p2

NðkÞ : ðB15Þ

The full result for ΣLL is straightforward but too lengthy to report. A useful check is that Σðp2 ¼ 0Þ ¼ V 00
1 . To get the

self-energy at finite p2 in the limit G → 0, we used the expansion

Z
1

0

dx log½að1 − xÞ þ bx − xð1 − xÞc� ¼ −2þ 1

2
logðabÞ þ a − b

2c
log

�
a
b

�
þ S
2c

log

�
c − a − bþ S
c − a − b − S

�

¼ −2þ logð−cÞ þ 1

c
½aðlog a − 1Þ þ bðlog b − 1Þ − ðaþ bÞ logð−cÞ�

−
1

2c2
fa2 þ b2 þ 2ab½logðabÞ − 2 logð−cÞ�g þO

�
1

c3
log c

�
; ðB16Þ

for small a, b, where S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc − a − bÞ2 − 4ab

p
.

From the self-energies, one can get the corrections to the kinetic term in the effective action

ZðhÞ ¼ 1 −
dΣðp2Þ
dp2

				
p2¼0

: ðB17Þ
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We find

Z ¼ 1þ ZLL þ 2ZLT þ ZTT þ ZHH; ðB18Þ

with the explicit results (for the Abelian Higgs model),

ZLL ¼ κ
ξB
h2

Δϵ þ
κ

3π2h2

�
G − 3ξB

�
GþðLGþ þ 1Þ − G−ðLG−

þ 1Þ
ΔG�

�
þ m2

ΔG4
�

�
ð2ΔG2

� þm2GÞðG − 6ξBÞðG − ξBÞ

þ 6ξ2B2GðΔG2
� þ 2m2ξBÞ ðLGþ − LG−

Þ
ΔG�

��
; ðB19Þ

2ZLT ¼ −
3κB
h2

Δϵ þ
3κB
2h2Bξ

�
2ðBþ ξGÞ

�
LB −

5

6

�
−G

�
LGþ þ LG−

−
5

3

�
−G2ð1 − 2ξÞ

�
LGþ − LG−

ΔG�

��
; ðB20Þ

and

ZTT ¼ 5κB
2h2

; ZHH ¼ 3κλ2h2

H
; ðB21Þ

where LG� ≡ logðG�=μ2Þ, LB ≡ logðB=μ2Þ, Bξ ≡ Bþ Gðξ − 1Þ and ΔG� ≡ Gþ −G−. For large field values one can
approximate G ¼ −m2 þ λh2 → λh2 and neglect the second and third line in (B19) which are proportional to the quadratic
mass parameter m2. In that limit, ZHH → λκ.
For completeness, we also present the off-shell Higgs self-energy for h → v

Σðp2Þjh→v ¼
κv2

2

�
2½−26λ2 þ 5λg2ξþ g2ð3 − ξÞP2 − 9g4� 1

ϵ
þ 2P4

þ ½logðp2=μ2Þ þ iπ�ð4λ2 − P4Þ þ ξg2ðP2 − 5λÞ log ðξGB=μ4Þ

þ λ2
�
−20þ 12LH þ 36

Z
1

0

dx log ½ðH − xð1 − xÞp2Þ=μ2�
�

þ 6g4ð1þ LBÞ þ 2g2P2ð1 − ξ − LBÞ þ 10λg2ξ

þ ðP4 − 4P2g2 þ 12g4Þ
Z

1

0

dx log ½ðB − xð1 − xÞp2Þ=μ2�

− ξg2
ðP2 − 2λÞ2

P2

��
1 −

g2ξ
P2

�
½log ðξGB=p4Þ − 2iπ� − 2

��
; ðB22Þ

where P2 ≡ p2=v2.

APPENDIX C: NIELSEN IDENTITY FOR THE KINETIC TERM

The Nielsen identity for the kinetic term δLK ¼ ZðhÞð∂μhÞ2=2 reads [15,18]

ξ
∂Z
∂ξ ¼ −C

∂Z
∂h − 2Z

∂C
∂h þD

∂V
∂h þ ~D

∂2V
∂h2 ; ðC1Þ

with coefficients given by a gradient expansion of (24),

C → CþDð∂μhÞ2 − ∂μð ~D∂μhÞ þOð∂4Þ: ðC2Þ

Note that Ref. [15] did not include the total derivative term above, which is relevant as it is required to describe the full ξ
dependence of the function Z.
At one loop, the contribution at zeroth order in gradients is given by the one-loop expressions of C, D, and ~D. The C1

function is given in Eq. (25), and D1; ~D1 are
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~D1 ¼ −
κGξ
3

�
2g2

G2
þ 2ðξB −GÞB

ΔG4
�

ðλ − 4g2ξÞ − 3Bξ½g2G2 þ 2λBð2ξB −GÞ� logðGþ=G−Þ
ΔG5

�

�
;

D1 ¼
κξG

6g2hB2
ξ

�
9g4 log

�
Gξ
B

�
þ 2Bξ

ΔG6
�
½−λ2B2Bξð3G2 − 4GBξþ 28B2ξ2Þ

þ g4G2½3G3ð−4þ ξÞ þ 212B3ξ2 þG2Bð21þ 80ξ − 8ξ2Þ − 4GB2ξð38þ 17ξþ 19ξ2Þ�
− 8g2λξB2BξðG − BξÞðG − 24BξÞ�

− 3
logðGþ=G−Þ

ΔG7
�

�
g4
�
3G
2

ð2ξ − 1ÞΔG4
�½3ΔG2

� − G2ð−1þ 2ξÞ2�

þ B2
ξ

4G
½−ΔG6

� þ G2ΔG4
�ð13þ 48ξÞ þ 17G4ΔG2

� − 5G6�
�

− 4ξλB2B2
ξ ½2λBðG2 − 3GBξþ 6B2ξ2Þ þ g2GðG2 − 16GBξþ 8B2ξ2Þ�

��
; ðC3Þ

where Bξ ≡ Bþ Gðξ − 1Þ and ΔG� ≡Gþ − G−. The small-G expansion of these functions reads

~D1 ¼ −
κπλghξ1=2

8G3=2 −
κðλþ 3g2ξÞ

6G
−

κλπ

64ðBGξÞ1=2 þOðG0Þ;

D1 ¼
3κπλ2gh2ξ1=2

16G5=2 þ κλhðλþ 3g2ξÞ
3G2

þ κπλð9λþ 16g2ξÞ
128gξ1=2G3=2 þOðG−1Þ: ðC4Þ

With these expressions, one can check explicitly that the Nielsen identity for Z is fulfilled perturbatively at one loop.

APPENDIX D: KINETIC TERM FOR THE SM IN THE FERMI GAUGE

In the Standard Model, the kinetic term is readily obtained from the corresponding expressions in the Abelian Higgs
model, given in Appendix B. We find

Z ¼ 1þ ZLL þ 2ZLþL− þ 2ZLT þ 4ZLþT− þ ZTT þ 2ZTþT− þ ZHH þ Ztt; ðD1Þ

with

ZHH ¼ ZUð1Þ
HH ; ZTT ¼ ZUð1Þ

TT jB→Z;

ZTþT− ¼ ZUð1Þ
TT jB→W; ZLT ¼ ZUð1Þ

LT jB→Z;ξ→ξeff
;

ZLþT− ¼ ZUð1Þ
LT jB→W;ξ→ξW

; ZLL ¼ ZUð1Þ
LL jB→Z;ξ→ξeff

;

ZLþL− ¼ ZUð1Þ
LL jB→W;ξ→ξW

; Ztt ¼
6κT
h2

Δϵ −
6κT
h2

½1=4þ logðT=μ2Þ�;

where W ¼ g2h2=4, Z ¼ ðg2 þ g02Þh2=4, B ¼ Z −W, T ¼ y2t h2=2 and ξeff ≡ ðξBBþ ξWWÞ=ðBþWÞ ¼ ξBs2W þ ξWc2W .
The divergent part is given by (note that the TT and hh parts are UV finite)

Zdiv ¼ κ

h2
ðξeffZ þ 2ξWW − 3Z − 6W þ 6TÞΔϵ

¼ κ

4
ðξBg02 þ 3ξWg2 − 3g02 − 9g2 þ 12y2t ÞΔϵ: ðD2Þ

This is consistent with Eq. (2.47) of [33]. In particular, the field renormalization Zh cancels the divergences in Z.
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