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In this article, we consider the standard model extended by a number of (light) right-handed neutrinos,
and assume the presence of some heavy physics that cannot be directly produced, but can be probed by its
low-energy effective interactions. Within this scenario, we obtain all the gauge-invariant dimension-7
effective operators, and determine whether each of the operators can be generated at tree level by the heavy
physics, or whether it is necessarily loop generated. We then use the tree-generated operators, including
those containing right-handed neutrinos, to put limits on the scale of new physics Λ using low-energy
measurements. We also study the production of same-sign dileptons at the Large Hadron Collider and
determine the constraints on the heavy physics that can be derived from existing data, as well as the reach in
probing Λ expected from future runs of this collider.
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I. INTRODUCTION

The standard model (SM) is generally believed to be the
low-energy limit of a more fundamental theory; however,
the presence of new physics (NP) has eluded almost all
experiments to date, the notable exceptions being the
observation of neutrino masses [1] and the very strong
evidence that dark matter [2] is composed of particle(s) not
present in the SM. Because of this paucity of experimental
guidance on even the most basic properties of NP, it is
reasonable to study the effects of hypothesized heavy
particles using a model-independent approach based on
an effective theory. Using this approach, one can derive
reliable bounds (or estimates) of some of the most
important parameters of physics beyond the SM (such as
its scale) and map such constraints onto specific models of
NP. The procedure for constructing an effective Lagrangian
is well known [3–5], and though some important details
depend on whether the NP is assumed to be strongly [5] or
weakly [6] coupled, in either case the formalism provides
an efficient and consistent parametrization of all heavy-
physics effects at scales below that of the NP.
The recent observation of the Higgs boson with a mass

below the electroweak scale strongly suggests that the
electroweak sector of the SM is weakly coupled. This also
supports the assumption that any NP underlying the SM is
also weakly coupled and, since the SM Lagrangian is
renormalizable [7], decoupling [8]. We will adopt these
assumptions in this paper, but they are certainly not
inescapable: the observed Higgs particle may not be exactly
the particle predicted by the SM (e.g. the scalar sector

might contain other fields) [9], and it is possible to
construct models of strongly coupled new physics that
are consistent with a weakly coupled SM [10].
The action for the effective theory, Seff , results from

integrating out all heavy modes in the full theory. By
construction, Seff will contain only SM fields, and by
consistency will respect all the SM local symmetries [11]; it
will also depend on the parameters of the NP and, in
particular, on the typical heavy-physics scale Λ. Expanding
in powers of Λ, we can write Seff as the integral of a local
effective Lagrangian; the decoupling assumption guaran-
tees that terms with positive powers of Λ are absorbed in
renormalization of the low-energy theory (in this case, the
SM), so that all observable NP effects are suppressed by
inverse powers of Λ. Thus, we can write

Leff ¼ LSM þ
X
i;n≥5

cðnÞi

Λn−4 O
ðnÞ
i ; ð1Þ

where the OðnÞ
i are gauge-invariant local operators with

mass dimension n constructed using SM fields and their

derivatives, and the cðnÞi are unknown coefficients.1 It is
important to note that, though it is not indicated in the
above expressions, different operators may be generated by
NP of different scales (in the above notation, Λ can depend
on the index i), but we will not indicate this explicitly so as
not to clutter the expressions. Although the effective
Lagrangian in Eq. (1) formally contains an infinite number
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1If the NP Lagrangian were known, these coefficients could be
calculated; absent this, we take them as unknown quantities
parametrizing the physics beyond the SM, and which can be
experimentally measured or constrained.
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of coefficients, only operators of sufficiently small dimen-
sion, corresponding to a finite number of terms, can generate
effects large enough to be measured within experimental
accuracy.Hence, the effectiveLagrangian approach does not
suffer from lack of predictability, and is useful when the
nature of the NP is not known very well, as in the present
situation in particle physics.
There are publications providing complete lists of oper-

ators of dimensions n ¼ 5, 6, 7 [12–15] and partial lists of
operators with 8 ≤ n ≤ 11 [16]; using these results, very
many studies have been published (see, e.g. Refs. [17,18])
that obtain limits on Λ using a variety of processes.
As mentioned above, one type of new physics that has

been confirmed is the existence of neutrino masses, yet the
mechanism responsible for them is not determined. One
popular possibility is that these masses are of the Majorana
type [19], assumed to be generated by lepton-number-
violating NP2 without requiring additional light degrees of
freedom. An alternative possibility is for the lepton sector
to mimic the quark sector as far as mass generation is
concerned; in this case, it is assumed that there are three
right-handed light neutrinos νR that pair up with their left-
handed counterparts and generate Dirac masses in the usual
manner.
Both cases can be studied simultaneously by including

the νR in the set of SM fields that are used to construct the
effective Lagrangian; we will denote this model by νSM.
We emphasize that these right-handed neutrinos are
assumed to be light—the effects of heavy right-handed
neutrinos are included through the appropriate effective
operators.
The list of effective operators for the νSMextension of the

SM are available for dimensions 5 and 6 [20,21]. Despite
the increased suppression by powers of Λ, dimension-7
operators remain relevant because of their contributions to
interesting processes, such as neutrinoless double-beta
decay [22], so that a complete list of dimension-7 operators
for the νSM will be useful in this context. The goal of this
publication is to provide such a list and to analyze some of
the observables sensitive to the corresponding types of NP.
When the physics underlying the SM is weakly coupled,

it is useful to note that, in addition to the suppression in
powers of Λ, the effective operator coefficients will be
further reduced when the corresponding operator is not
generated at tree level. It is an interesting property of
renormalizable NP models that there are effective operators
that are never generated at tree level [23]; we will call these
loop-generated (LG) operators. The remaining operators
may or may not be generated at tree level, depending on
the details of the NP; we refer to these as potentially

tree-generated (PTG) operators. This separation is of
interest because the effects of LG operators are almost
always too small to be of interest, being smaller than the
one-loop SM corrections; exceptions do occur in cases
where there is no SM contribution at tree level (e.g. in
Higgs production via gluon fusion or the two-photon and
Z-photon decay modes [24]). Because of this, processes to
which PTG operators contribute are generally the ones
most sensitive to the effects of heavy physics [23].
In practical applications of the effective theory approach,

it is useful to note that the effects of some operators cannot
be distinguished using only low-energy observables [6],
and that this allows dropping some of the terms in Eq. (1).
Specifically, if two operators O;O0 are such that the linear
combination Oþ rO0 is zero on shell, and they appear in
the effective Lagrangian in the combination cOþ c0O0,
then all observables will depend on c and c0 only through
the combination c0 − rc. In this sense, the effects of O and
O0 cannot be distinguished, and either of them can be
eliminated from Leff . (For details, see Refs. [6,14]; this
result is often referred to as the “equivalence theorem” [6].)
Once redundant operators are eliminated through this
procedure, the remaining ones constitute an irreducible
basis. In choosing a basis, it is usually more useful to select
the ones with the largest number of PTG operators (for a
full discussion, see Ref. [25]).

II. νSM DIMENSION-SEVEN OPERATORS

In this section, we provide a complete list of dimension-7
effective operators within the νSM. This list was obtained
in a straightforward though tedious way, beginning from a
general combination of fields and ensuring Lorentz and
gauge invariance; the equations of motion were then used to
eliminate redundant operators by applying the equivalence
theorem [6,25]. For each of the operators listed, we will
also indicate whether they are LG or PTG (as noted above,
this is a relevant classification for the case where the
underlying physics is weakly coupled, decoupling and
renormalizable); in Appendix A, we present the arguments
we used to obtain this classification.
In the expressions below, ϕ denotes the SM scalar

isodoublet; l a left-handed lepton isodoublet; q a left-
handed quark doublet; e and ν right-handed charged and
neutral leptons, respectively (we drop the subindex R to
simplify the notation); and u and d right-handed up- and
down-type quarks, respectively; we will for the most part
suppress generation indices. We use D for the covariant
derivatives and denote the SUð3Þc; SUð2ÞL and Uð1ÞY
gauge fields by G, W and B, respectively. We will also
use the shorthand

N ¼ ϕ†ϵl; E ¼ ϕ†l; ð2Þ
motivated by the fact that in the unitary gauge N ¼
ðv= ffiffiffi

2
p ÞνL þ � � �, and E ¼ ðv= ffiffiffi

2
p ÞeL þ � � �; we also use

2Specifically, at low energies, the heavy physics is assumed to
generate the dimension-5 Weinberg operator ðϕ†lÞ2 [12] that
produces the desired mass matrix upon spontaneous symmetry
breaking.

SUBHADITYA BHATTACHARYA and JOSÉ WUDKA PHYSICAL REVIEW D 94, 055022 (2016)

055022-2



ϵ ¼ −iτ2 ¼
�

0 1

−1 0

�
; ð3Þ

where τ2 is the usual Pauli matrix and v ∼ 246 GeV, the
vacuum expectation value of the SM scalar doublet.
It is straightforward to show that in the νSM there are no

dimension-7 operators without fermions; the operators
containing two and four fermions are listed below.

A. Operators with two fermions

These operators are of the form3

ψTCΓψ 0φrDs; rþ s ¼ 4; r; s ≥ 0; ð4Þ

where φ denotes ϕ or ~ϕ ¼ ϵϕ�; ψ a is fermion in the νSM,

ψ ∈ fq; u; d;l; e; ν; qc; uc; dc;lc; ec; νcg; ð5Þ

C is the Dirac charge conjugation matrix; the charge con-
jugate fields are defined as ψc¼Cψ̄T ; and Γ¼f1;γμ;σμνg,
where σμν ¼ i

2
½γμ; γν�. All these operators conserve baryon

number but violate lepton number by two units: jΔLj ¼ 2;
ΔB ¼ 0. (For an interesting discussion on operators with
jΔðB − LÞj ¼ 2, neutrino masses and grand unification,
see Ref. [26].)
(1) r ¼ 4, s ¼ 0. Two PTG operators:

ðNcNÞjϕj2; νcνjϕj4: ð6Þ

(2) r ¼ 3, s ¼ 1. Four PTG operators:

ðecγμNÞð ~ϕ†D
↔

μϕÞ; ðνcγμNÞðiϕ†D
↔

μϕÞ;
ðνcγμEÞð ~ϕ†D

↔

μϕÞ; ðνcγμNÞð∂μjϕj2Þ; ð7Þ

where ϕ†D
↔

μϕ ¼ ϕ†Dμϕ − ðDμϕÞ†ϕ.
(3) r ¼ s ¼ 2. Nine PTG operators:

ðlcDμlÞð ~ϕ†DμϕÞ; NcðDμ
~ϕ†DμlÞ;

ðlcDϕÞðlϵDϕÞ; ½Ncσμνð ~ϕ†WμνlÞ�;
ðνcDμeÞð ~ϕ†DμϕÞ; ðνcνÞjDϕj2;
ðνcσμνeÞð ~ϕ†WμνϕÞ; ðN̄cσμνNÞBμν;

jϕj2ðνcσμννÞBμν; ð8Þ

where Wμν ¼ τIWI
μν.

(4) r ¼ 1, s ¼ 3. Eight LG operators:

ð∂μνcÞγνNBμν; νcγμð ~ϕ†DνlÞBμν;

ð∂μνcÞγνð ~ϕ†WμνlÞ; νcγμð ~ϕ†WμνDνlÞ;
ð∂μνcÞγμN ~Bμν; νcγμð ~ϕ†DνlÞ ~Bμν;

ð∂μνcÞγμð ~ϕ†WμνlÞ; νcγμð ~ϕ† ~WμνDνlÞ; ð9Þ
where ~Xμν ¼ 1

2
ϵμνρσXρσ denote the dual tensors.

(5) r ¼ 0, s ¼ 4. Six LG operators:

νcν × fðGA
μνÞ2; ðWI

μνÞ2; ðBμνÞ2; ð ~GA
μνGA

μνÞ;
ð ~WI

μνWI
μνÞ; ð ~BμνBμνÞg: ð10Þ

B. Operators with four fermions

These operators are of the form ψ4D (operators with four
fermions and one covariant derivative) or ψ4φ (operators
with four fermions and one scalar); they all violate jB − Lj
by two units with jΔBj ¼ 0, 1.
(1) ψ4D: 21 LG operators. Using Fierz rearrangements,

these can be cast in either of two forms:

ðL1σ
μνL2ÞðL3γνDμ

↔
RÞ; ðL1σ

μνL2ÞDμðL3γνRÞ;
ð11Þ

where L and R denote left- and right-handed fermion
fields, respectively. The allowed field combinations
are listed in Table I.

TABLE I. Field combinations that can contribute to the
operators [Eq. (11)] containing four fermions, one derivative
and no scalar fields.

L1 L2 L3 R ΔL ΔB

1 dc dc dc e 1 −1
2 dc l l u 2 0
3 dc l dc qc 1 −1
4 q dc l ν 2 0
5 q l dc ν 2 0
6 dc l q ν 2 0
7 l ec l ν 2 0
8 q uc νc lc −2 0
9 q νc uc lc −2 0
10 uc νc q lc −2 0
11 uc νc ec d −2 0
12 uc ec νc d −2 0
13 νc ec uc d −2 0
14 uc dc dc ν 1 −1
15 q νc q d −1 1
16 q νc νc qc −2 0
17 uc νc νc u −2 0
18 dc νc νc d −2 0
19 l νc νc lc −2 0
20 νc ec νc e −2 0
21 νc νc νc ν −2 0

3Field-strength tensors correspond to ½D;D� commutators
contained in terms with s ¼ 2 in Eq. (4).
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(2) ψ4ϕ: 33 PTG operators. Using Fierz transforma-
tions, one can readily see that these take one of the
following two forms:

ðLT
1CL2ÞðLT

3CL4Þφ; ðLT
1CL2ÞðRT

1CR2Þφ; ð12Þ

where φ ¼ ϕ;ϕc. The allowed field combinations
are listed in Table II.

The list of operators provided here does not include
family labels to avoid notational clutter. In certain cases,
however, the operators vanish when some of the fields are
in the same family. For example, it is easy to see that
lcCl ¼ 0 when both lepton isodoublets are in the same
family, so any operators with this factor will not have
family-diagonal contributions and should in principle be
written as lc

i Clj, where i; j ¼ 1; 2; 3ði ≠ jÞ denote family
indices. The contraction of the SUð3Þ color indices is
unambiguous in the above operators, since it can take only
two forms: either fQc

rQ0
sgδrs or fQc

rQ0
s
cQ00

u
cgϵrsu, with

Q;Q0; Q00 denoting generic quark fields and r, s, u color
indices.

III. PTG OPERATORS THAT DO NOT CONTAIN
RIGHT-HANDED NEUTRINO FIELDS

We will consider separately operators that contain right-
handed neutrinos in Sec. V below; here we will discuss the
leading effects of dimension-7 operators containing only
SM fields and which can be generated at tree level. There
are 20 such operators:

O1 ¼ ðlcϵDμϕÞðlϵDμϕÞ; O2 ¼ ðecγμNÞðϕϵDμϕÞ;
O3 ¼ ðlcϵDμlÞðϕϵDμϕÞ; O4 ¼ NcðDμϕϵDμlÞ;
O5 ¼ ðNclÞϵðēlÞ; O6 ¼ ðNcNÞjϕj2;
O7 ¼ ½NcσμνðϕϵWμνlÞ�; O8 ¼ ðNcσμνNÞBμν;

O9 ¼ ðd̄qÞϵðNclÞ; O10 ¼ ½ðqcϕÞϵlÞðd̄lÞ;
O11 ¼ ðNcqÞϵðd̄lÞ; O12 ¼ ðlcϵqÞðd̄NÞ;
O13 ¼ ðd̄NÞðuTCeÞ; O14 ¼ ðNclÞðq̄uÞ;
O15 ¼ ðūdcÞðd̄NÞ; O16 ¼ ½qcðϕ†qÞ�ϵðl̄dÞ;
O17 ¼ ðqcϵqÞðN̄dÞ; O18 ¼ ðd̄dcÞðd̄EÞ;
O19 ¼ ðēϕ†qÞðdcdÞ; O20 ¼ ðūNÞðd̄dcÞ: ð13Þ

This list coincides with the one previously presented in the
literature [15].
Using the results of Appendix A, it is a straightforward

exercise to determine the types of new physics that can
generate those operators at tree level.

A. Constraints on PTG operators without
right-handed neutrinos

There are a variety of existing data that can be used to
constrain the scale of new physics responsible for the
operators being considered here. In this section, we provide
limits for the PTG operators listed in Eq. (13); in obtaining
the numbers below, we assumed no deviations from the SM
and took 3σ intervals. Though there are processes that can
receive contributions from more than one operator, we will
provide limits for the most conservative case where there
are no interference effects or cancellations (if this is

TABLE II. Possible field combinations appearing in the four
fermion operators containing one scalar and no derivatives
[Eq. (12)]. The entries with one (two) asterisks have two (three)
possible SUð2Þ contractions (assuming only family-diagonal
couplings; see text).

O ¼ ðLT
1CL2ÞðLT

3CL4Þφ
L1 L2 L3 L4 ΔL ΔB φ

1 l l l ec 2 0 ϕ
2 q dc l l 2 0 ϕ
3�� q l l dc 2 0 ϕ
4 uc dc dc l 1 −1 ϕ
5 dc dc dc l 1 −1 ~ϕ
6 uc l dc dc 1 −1 ϕ
7 q uc νc ec −2 0 ~ϕ
8 q ec νc uc −2 0 ~ϕ
9� q q q νc −1 1 ~ϕ
10 q uc νc νc −2 0 ϕ
11 q dc νc νc −2 0 ~ϕ
12 q νc νc uc −2 0 ϕ
13 q νc νc dc −2 0 ~ϕ
14 l ec νc νc −2 0 ~ϕ
15 l νc νc ec −2 0 ~ϕ
16 l νc νc νc −2 0 ϕ

O ¼ ðLT
1CL2ÞðRT

1CR2Þφ
L1 L2 R1 R2 ΔL ΔB φ

1 dc l u e 2 0 ϕ
2 l l qc u 2 0 ϕ
3� q q d lc −1 1 ~ϕ
4 q ec d d −1 1 ~ϕ
5 q dc ν e 2 0 ϕ
6 uc l u ν 2 0 ϕ
7 dc l u ν 2 0 ~ϕ
8 dc l d ν 2 0 ϕ
9 l ec ν e 2 0 ϕ
10�� q l qc ν 2 0 ϕ
11 l l lc ν 2 0 ϕ
12 q νc u d −1 1 ~ϕ
13 q νc d d −1 1 ϕ
14 q uc ν ν 2 0 ϕ
15 q dc ν ν 2 0 ~ϕ
16 l ec ν ν 2 0 ~ϕ
17 l νc ν ν 2 0 ϕ
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relaxed, the restrictions can be much weaker); we also
assume that the gauge bosons are universally coupled (so
they always appear multiplied by the corresponding gauge
coupling). All limits below are on ~Λ ¼ Λ=f1=3 and translate
into limits on the new physics scale with the additional
naturality assumption f ∼ 1 (for weakly coupled heavy
physics). We also provide separately the limits derived from
neutrinoless double-beta decay experiments (for a recent
review, see Ref. [27]) to illustrate the importance of this
high-precision measurement.
(1) There are no published limits on ~Λ for O1 from

collider or gauge-boson decay data. This operator,
however, contributes to neutrinoless double-beta
decay [28] that gives the limit ~Λ > 7.5 TeV.

(2) The strictest limits on ~Λ for O2;3;4;5 from gauge
boson decays [29] are O2: 400 GeV ðW → lνÞ; O3:
35 GeV ðW → lνÞ; O4: 92 GeV ðZ → ννÞ; and O5:
182 GeV ðee → ννÞ, assuming the same error as in
the invisible decay width of the Z. The best limits on
O2;3;4 are derived from their contribution to neutrino-
less double-beta decay: O2: 106 TeV; O3;4: 7.5 TeV.

(3) The strictest limits on ~Λ for O6 from neutrino mass
constraints is 770 TeV [29]. The limit from neutrino-
less double-beta decay is significantly stronger: ~Λ >
2; 200 TeV.

(4) The strictest limits on ~Λ for O7;8 are obtained from
limits on red-giant cooling [30] generated by plas-
mon decay γ → νν, which is mediated by these
operators. Using the results in Ref. [20], we find
O7∶ 33 TeV; and O8∶47 TeV. The neutrinoless
double-beta decay on O7 is weaker: ~Λ > 7.5 TeV.

(5) The limit on ~Λ for O9;10;11;12;13;14 obtained from
π → eν decay is 2.1 TeV [29]. The limit derived
from neutrinoless double-beta decay is
stronger: ~Λ > 137 TeV.

(6) The strictest constraint on ~Λ for the baryon-number-
violating operatorsO15;16;17 is obtained from the limit
on n → πν decay and given as 1.9 × 108 TeV [29].

(7) The strictest limits on ~Λ for the baryon-number-
violating operators O18;19;20 are obtained from neu-
tron decay: O18;19∶ 9.6 × 107 TeVðn → eKÞ; and
O20∶ 1.5 × 108 TeVðn → νK0

SÞ [29].
It is worth noting that any such new physics that

generates the operators O1;3;4 at tree level necessarily
generates the dimension-5 operator Oð5Þ ¼ NcN also at
tree level [28], and the limits on Λ derived from the latter
are much stronger: 1011 TeV [assuming Oð1Þ couplings].
As can be seen from the above results, the PTG operators

in Eq. (13) without right-handed neutrinos but containing
quarks are highly constrained from various precision mea-
surements and astrophysical observations. These results rely
heavily on the assumption that there are no interference
effects among the various operator contributions—when
these are present, the above limits can be significantly

degraded. (Such cancellations may result from some
unknown symmetry and are not necessarily from fine-
tuning.) Because of this, probing the individual operator
effects (see the following section for an example) is of
importance in mapping potential NP contributions, even
though this usually provides weaker limits.

B. Neutrino Majorana masses

The PTG operators O1–14 in Eq. (13) generate neutrino
Majorana masses through radiative corrections [28], which
have the generic form mν−Maj ∼ v2=ð16π2ΛÞ, multiplied in
some cases by a SM Yukawa coupling. A detailed phe-
nomenological investigation of the consequences of these
effects is best done within the context of specific models,
since correlations between effective operator contributions
can be important (see e.g. Ref. [31]); for example, the
operator coefficients for O1;3;4;6–8 may contain Yukawa
couplings that mix heavy and light fermions, whose impact
cannot be gauged within this effective approach. We will
then restrict ourselves to displaying the generic expressions
obtained using straightforward estimates:

OperatorðsÞ mν-Majestimate

O1;3;4;6−8 v2=ð16π2ΛÞ
O2;5 vme=ð16π2ΛÞ
O9–12 vmd=ð16π2ΛÞ
O14 vmu=ð16π2ΛÞ

; ð14Þ

where me;d;u denote the masses of light charged leptons,
down quarks and up quarks, respectively; O13 contributes
only at two loops, and O15–20, being baryon-number
violating, generate contributions only through graphs
quadratic in the effective operators.
A measure of care should be exerted in obtaining the

contributions from O1;3;4;6–8: for example, after sponta-
neous symmetry breaking and in unitary gauge,

O1 ⊃
1

2
½ð∂HÞ2 −m2

ZZ
2�ðνcLνLÞ; ð15Þ

which generates two contributions to mν-Maj, one from a
Higgs (H) loop and another a Z. Each loop gives Λ=ð16π2Þ
to leading order, but they cancel, leaving only the subleading
contribution listed above. This cancellation is not accidental:
an examination of the operators shows that, absent the
spontaneous breaking of the SM gauge symmetry, they do
not generate one-loop contributions to mν–Maj.
For mν–Maj ∼ 0.1 eV, we obtain from Eq. (14) Λ ∼ 8 ×

103–4 × 109 TeV depending on the operator used, and
assuming all operator coefficients are Oð1Þ.

IV. EXAMPLE OF AN LHC EFFECT

Consider the PTG operators O1 ¼ ðlcϵDμϕÞðlϵDμϕÞ
and O3 ¼ ðlcϵDμlÞðϕϵDμϕÞ from Eq. (13). It is easy to
see that, in unitary gauge, they both contain the same
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lepton-number-violating vertex involving two W gauge
bosons and two left-handed charged leptons:

ðlcϵDμlÞðϕϵDμϕÞ;

ðlcϵDμϕÞðlϵDμϕÞ ⊃ m2
W

�
1þ h

v

�
2

Wþ2ðeTLCeLÞ: ð16Þ

[No other operator in Eq. (13) contains this vertex.] Despite
their both containing thevertex in Eq. (16),O1;3 are generated
at tree level by different types of heavy physics (see
Appendix A); this will be of use in understanding the types
of NP that can be probed through Eq. (16); see Sec. IV E.
Below, we will consider the effects of the right-hand side

in Eq. (16) in the production of same-sign dileptons at the
LHC, and determine the constraints on the scale of new
physics Λ that can be derived from existing data. It should
be noted that O1;3 also contain other lepton-number-violat-
ing vertices in addition to the one in Eq. (16): O1 ⊃
Wνe;WZνe;WAνe;WWνν and O3 ⊃ ZZνν;WZνe, plus
others involving the Higgs field; these will contribute to a
variety of other reactions from which independent con-
straints on Λ can be derived. Note, however, that such
vertices involve one or more neutrinos and/or Higgs fields,
and because of this, the corresponding constraints will be
weaker. It is for this reason that we concentrate on the term
containing two charged leptons; the constraints on Λ using
this term of course apply to all the vertices contained inO1;3.
In the following, we will define

Oll ¼ f1O1 þ f3O3 ð17Þ
and consider separately the same-sign dilepton signal
associated with two jets and the hadronically quiet trilepton
events at the Large Hadron Collider (LHC) generated by
this operator.

A. Same-sign dilepton signal at the LHC

Oll in Eq. (17) will produce a dilepton signal pp →
lljj at LHC; where l ¼ e, μ have the same sign, and the j
denote light-quark jets (after tagging efficiencies are
included, the number of τ-lepton events is too small to
be of interest). In Fig. 1, we show the dominant Feynman
diagrams that contribute to the lljj final state generated by
this operator; these can be separated into s-channel reac-
tions and t-channel reactions; we will see that the latter
dominate over the former. In the s-channel contributions
(diagrams a, d in the figure), one W in the vertex Eq. (16)
couples to the quarks in the colliding protons, while the
other couples to the light jets in the final state; in the t-
channel processes (diagrams b, c, e, f) each W couples to
an incoming and an outgoing quark.
As Oll is of dimension 7, its coefficient contains a Λ3

suppression factor that will prevent probing new physics
above the TeV region, as we will shortly demonstrate. Even
with this limitation, we will argue that the constraints

obtained are of interest. In the following, we will assume
the effective operator coefficients areOð1Þ; if this is not the
case, the limits obtained apply to the scale ~Λ introduced in
Sec. III A.
We note here that such a lepton-number-violating signal

(eeud̄; eed̄ d̄; ē ē ū d; ē ē dd) cannot be exclusively pro-
duced by SM, which conserves lepton number. Since the
amplitude contains 1=Λ3 fromOll, the signal cross section
will be proportional to 1=Λ6, so that

σðsignalÞlljj ðΛ0Þ ¼
�
Λ
Λ0

�
6

σðsignalÞlljj ðΛÞ: ð18Þ

Thus, we can compute the cross section at a convenient
value of Λ and use this scaling property to obtain σlljj for
any other scale. In the following, we evaluate first σlljj for
Λ ¼ 100 GeV at the LHC for 14 TeV and 8 TeV CM
energies (see Table III). We obtained these results using the
Calchep 3.6.14 [32] event generator to calculate the
hard cross sections, and we chose the CTEQ6L parton
distribution function [33] with the invariant mass of the two
incoming quarks as the renormalization and factorization
scales. There is a variation of up to∼15% in the cross section
when the parton distribution function and the renormaliza-
tion and factorization scales are varied, which can presum-
ably be addressed by a next-to-leading-order calculation;
this effort, however, lies beyond the scope of this inves-
tigation. We also imposed the following basic cuts:

C1∶ pT ðl;jÞ > 15 GeV; jηlj < 2.5; ð19Þ

wherepT ðl;jÞ denotes the lepton and jet transversemomenta,
and ηl denotes the lepton pseudorapidity. It is worth noting

FIG. 1. Leading Feynman diagrams that contribute to pp →
lljj at the LHC; the eeWW vertex [Eq. (16)] is generated by
Oll in Eq. (17).
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that therewill be a difference in the production cross sections
for positively and negatively charged same-sign dileptons,
which is due to the difference in the u- and d-parton
distributions in the proton; therewould be no such difference
in a pp̄ machine.
All calculations were made in the unitary gauge (again

we emphasize that the choice of Λ ¼ 100 GeV is made for
calculational ease, and not with the assumption that there is
new physics lurking at 0.1 TeV); the 1=Λ6 behavior of σlljj
as Λ changes is presented in Fig. 2. For example, we see
that for Λ ¼ 500 GeV, σlljj ¼ 0.165 fb at 14 TeV CM
energy [after the cuts C1 in Eq. (19) are imposed]. This
corresponds to 16 events for an integrated luminosity of
100 fb−1 (consistent with the expectations for “run 2” at the
LHC [34,35]); this would increase to 497 events for the
proposed high-luminosity upgrade [36] with a projected
integrated luminosity of 3000 fb−1. For 7 and 8 TeV CM

energies and Λ ¼ 500 GeV, the cross section drops to
0.011 fb and 0.017 fb, respectively, and has no observable
effects.
The discovery limit, however, depends on the SM

background estimate for the lljj signal, which we discuss
below. We will use these results to obtain the current limits
on Λ derived from the 8 TeV LHC data, and to derive the
expected sensitivity that will be reached when the CM
energy is increased to 14 TeV.

1. SM background for same-sign dilepton
signal at the LHC

The most significant background contribution to our
process is generated by SM tt̄ production, with marginal
contributions from tt̄W, tt̄Z and diboson production. For
the tt̄ background calculation, we take mtop ¼ 173.34 GeV
[37] and use the Pythia 6.4 [38] event generator at tree
level, which we multiply the by the appropriate K factor4 to
obtain the NLOþ NLL cross section at the LHC [39–41].
ThisK factor is very significant—for example, the Pythia
tt̄ production cross section is 386.8 pb at 14 TeV, while the
NNLO prediction is between 805 and 898 pb (incorporating
the jet energy scale and parton distribution function uncer-
tainties); we use the average value of 851.5 pb that gives a
K ¼ 2.2 factor. For ECM ¼ 8 TeV, the Pythia prediction
is 94 pb, while the measured value [40] in the dilepton and
leptonþ jet channels is 161.9 pb (there are variations in this
number depending on the channel used), so that we use
K ¼ 1.7 in this case.
In our analysis, we try to mimic the experimental

reconstruction for leptons and jets within Pythia by
imposing the following requirements:
(1) Leptons (l) are identified as electrons and muons

with transverse momentum pT > 10 GeV and rap-
idity jηj < 2.5. Two leptons with pseudorapidities η
and ηþ Δη, and azimuthal anglesϕ andϕþ Δϕ, will
be considered isolated if ΔR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηÞ2 þ ðΔϕÞ2

p
≥

0.2. A lepton and a jetwill be isolated ifΔR ≥ 0.4 and
if the ΔR ≤ 0.2 cone contains less than 10 GeV of
transverse energy from low-ET hadron activity.

(2) Jets (j) are formed with all the final-state particles
after removing the isolated leptons from the list with
PYCELL, a built-in cluster routine within Pythia.
The detector is assumed to span the pseudorapidity
range jηj ≤ 5 and to be segmented in 100-η and 64-ϕ
bins. The minimum transverse energy ET of each
cell is taken as 0.5 GeV, while we require ET ≥
2 GeV for a cell to act as a jet initiator. All the
partons within ΔR ¼ 0.4 from the jet initiator cell
are included in the formation of the jet, and we

TABLE III. Total cross section for lljj production, and of
the leading contributing subprocesses at the LHC with ECM ¼ 14
and 8TeVgenerated by the operatorOll. The last column indicates
the effects of the cuts in Eq. (19). We useΛ ¼ 100 GeV (see text).

ECM ¼ 14 TeV

Process Leading subprocesses σ (pb) σ after C1 (pb)

pp→eeqq

dd → eeuu 0.142 0.118
ūd → eed̄u 0.039 0.038
sd → eeuc 0.024 0.020
dd → eeuc 0.015 0.014

Totala 0.253 0.215

pp→ ēēqq

uu → ē ē dd 0.942 0.784
ud̄ → ē ē dū 0.121 0.100
uu → ē ē ds 0.097 0.082
us̄ → ē ē dc̄ 0.064 0.052

Total 1.300 1.080
pp→llqq Sum of all contributions

for l ¼ e, μ
3.106 2.590

ECM ¼ 8 TeV

Process Subprocesses σ (pb) σ after C1 (pb)

pp → eeqq

dd → eeuu 0.016 0.012
ūd → eed̄u 0.004 0.003
ds → eeuc 0.002 0.002
dd → eeuc 0.002 0.001

Total 0.028 0.021

pp → ē ē qq

uu → ē ē dd 0.102 0.084
ud̄ → ē ē dū 0.013 0.010
uu → ē ē ds 0.010 0.009
us̄ → ē ē dc̄ 0.006 0.005

Total 0.140 0.115
pp → llqq Sum of all contributions

for l ¼ e, μ
0.336 0.273

aTotals refer to the sum of all contributions, not only the
leading ones.

4The K factor is used to correct the tree-level cross sections
used by Pythia so they match the NLOþ NLL predictions or
the experimental data; these (mostly QCD) corrections can be
significant, as in the case in tt̄ production of interest here.
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require ET ≥ 20 GeV for a cell group to be consid-
ered a jet.

We now define the invariant lepton mass Mll and the
transverse event mass HT by

M2
ll ¼ 2jp1jjp2jð1 − cos θÞ; HT ¼

X
l;j

jp⊥j; ð20Þ

where θ is the relative angle of the lepton momenta p1 and
p2, and we neglect the lepton masses; p⊥ denotes the

corresponding momenta perpendicular to the beam. The
Mll andHT distributions are plotted in Fig. 3 for the signal
subprocesses ē ē jj (lilac) and eejj (green). We see that the
signal distribution from ē ē jj peaks at values Mll ∼
1–2 TeV (this property is independent of Λ), while the
SM background is already much suppressed at Mll ≃
2 TeV (see Fig. 5). Also from Fig. 3, we find that the
corresponding HT distribution for signal events peaks at
500–1000 GeV, while the background is already negligible
at 1 TeV (see Fig. 6).

200 400 600 800 1000

10–3
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10

1000

(GeV)

llj
j
[fb

]

Blue: 8 TeV

Green: 7 TeV

200 400 600 800 1000

10–4
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1

100

(GeV)

llj
j
[fb

]

FIG. 2. Production cross section for two same-sign leptons and two jets (lljj) as a function of Λ (GeV) at LHC with ECM ¼ 14 TeV
(left) and 7,8 TeV (right) in green and blue, respectively.

FIG. 3. Distributions of the invariant mass of leptons Mll (top) and transverse mass HT (bottom), for the lljj signal events at LHC
with Ecm ¼ 14 TeV (left) and Ecm ¼ 8 TeV (right). We took Λ ¼ 100 GeV [see text and Eq. (18)]. Subprocesses ē ē jj (red dots and
lilac histograms) and eejj (blue crosses and green histograms) are shown separately.
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The signal events consist of leptons plus jets and do not
involve particles like neutrinos that are not detected at the
LHC, while the background events that closely mimic the
chosen signal do produce neutrinos which pass through
the detector undetected. Therefore, signal events will be
characterized by having zero missing transverse to the
beam, while any nonzero measurement of the missing
transverse energy

ET ¼
����X
l;j

p⊥
���� ð21Þ

(where the vector sum is over all visible leptons and jets,
and p⊥ denotes the corresponding momenta perpendicular
to the beam) will indicate the presence of particles like
neutrinos in the final state, and will correspond to a
background event.5 We will then require ET ≤ 15 GeV,
in addition to C1 in Eq. (19). The usefulness of this cut can
be gauged by comparing the cross sections associated with
tt̄ production listed in Table IV: σll denotes the dilepton
production cross section (two same-sign leptons plus any-
thing); σlljj the dilepton-plus-two-jet cross section, when

both jets have transverse momentum pðjÞ
T ≥ 25 GeV;

σlljj−0 the dilepton-plus-two-jet cross section6 with zero

missing energy (ET ¼ 0) and pðjÞ
T ≥ 25 GeV, and for

which we obtain less than 1 event in our simulations.
Finally, σlljj−15 the dilepton-plus-two-jet cross section

with missing energy ET ≤ 15 GeV and pðjÞ
T ≥ 25 GeV.

We will use these last two quantities to derive a bound on Λ
(for ECM ¼ 8 TeV) and determine the expected sensitivity
for ECM ¼ 14 TeV.
The missing energy ET distribution for the SM back-

ground (Fig. 4) shows that there is a very large number of

lljj events with ET < 100 GeV, and that this is drastically
reduced to a vanishingly small number when the cut ET <
15 GeV is imposed, as also shown in Table IV. This clearly
indicates that with such a selection criteria, the signal
events are retained (as ideally they are characterized by
having zero missing energy), while the background can be
reduced significantly, allowing for a much improved
discovery limit. In addition, the invariant lepton mass
Mll (Fig. 5) and transverse event mass HT (Fig. 6)
distributions show a characteristic difference between
signal and background. For example, the Mll distribution
for signal (upper panel of Fig. 3) peaks atMll ∼ 800 GeV,
while the one for background (Fig. 5) peaks between
Mll ∼ 0 and 10 GeV, which can be also used for distin-
guishing between the contributions from new physics and
the SM background.

B. Bound on Λ from LHC data

The LHC has not seen even a 1σ excess from the
background events, so assuming Gaussian statistics,

S=
ffiffiffiffi
B

p
≤ 1;

where S and B denote the number of signal and background
events, respectively. In terms of the luminosity L and the
corresponding cross sections, S ¼ σsignalL; B ¼ σbackL,
where L is integrated luminosity. To date CMS has
analyzed LHC data for same-sign dileptons for L ¼
19.5 fb−1 at 8 TeV [42]; the background cross section

corresponds to σback ¼ σðttÞlljj−15 ¼ 1 fb in Table IV, and we
then find

σsignal ≤ 0.224 fb:

This in turn puts the bound on the new physics scale: we
know that σsignal ¼ 273 fb (after cuts) when Λ ¼ 100 GeV
(see Table III), and that the signal cross section scales as
1=Λ6 [see Eq. (18)]. It follows that

Λ ≥
�

273 fb
0.224 fb

�
1=6

× 100 GeV ¼ 327 GeV: ð22Þ

C. Discovery limit for Λ for Oll at the LHC

We will follow the same approach to evaluate the
discovery limit at the 14 TeV LHC, requiring now a 3σ
excess over the background:

σsignal ≥ 3

ffiffiffiffiffiffiffiffiffiffi
σback
L

r
:

From Table IV, we find σB ¼ σðttÞlljj−15 ¼ 7.7 fb, while from
Table III we find σsignal ¼ 2590 fb (after cuts) when the
new physics scale Λ ¼ 100 GeV. Using again the simple

TABLE IV. Dominant SM background cross section from tt̄
production (in pb) for same-sign dilepton events at Ecm ¼
14; 8 TeV including muons, antimuons, electrons or positrons.
The fourth (last) column cross sections are obtained by requiring
ET ¼ 0 (ET ≤ 15 GeV); see text. The cross sections are obtained
after multiplying by the appropriate K factor: 2.20 for 14 TeVand
1.7 for 8 TeV.

tt̄ Production at LHC σðttÞll σðttÞlljj σðttÞlljj−0 σðttÞlljj−15

ECM ¼ 14 TeV 0.47 0.145 ≤0.85 × 10−3 0.0077
ECM ¼ 8 TeV 0.089 0.0282 ≤0.162 × 10−3 0.001

5Of course, real detectors miss particles, and may misidentify
one type of event for the other.

6Our simulations generated no tt̄ events with ET ¼ 0; the
corresponding limits for σlljj−0 are obtained as follows: If a
simulation with N events produces less than 1 event for a process
with cross section σ, then Lσ=N < 1, where L is the luminosity,
so that σ < N=L. The numbers presented were obtained using
L ¼ 10 fb−1 at 8 TeV and L ¼ 1 fb−1 at 14 TeV.
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scaling of the signal cross section with Λ [see Eq. (18)],
we find

Λ ≤ 382 GeVðL ¼ 100 fb−1; ET ≤ 15 GeVÞ; ð23Þ

for an integrated luminosity L ¼ 100 fb−1.

If we use a stronger missing energy cut, the limit
improves. If we require no missing transverse energy, then
the background cross section drops to σðttÞlljj−0 ¼ σback ¼
0.85 fb (see Table IV) so that, for the same luminosity,

Λ ≤ 459 GeVðL ¼ 100 fb−1; ET ¼ 0 GeVÞ: ð24Þ

FIG. 4. ET distribution for tt̄ events at the LHC with two leptons (light green) and two leptons and two jets (red); dark green regions
correspond to the overlap of the two distributions. Left: Ecm ¼ 14 TeV. Right: Ecm ¼ 8 TeV.

FIG. 6. HT for tt̄ events at LHC. The distributions for ll and ll2j events are shown in red and light green, respectively (dark green
regions correspond to the overlap of the two distributions). Left: Ecm ¼ 14 TeV. Right: Ecm ¼ 8 TeV.

FIG. 5. Mll distribution of the leptons for tt̄ events at LHC. The distributions for ll and ll2j events are shown in red and light green,
respectively (dark green regions correspond to the overlap of the two distributions). Left: Ecm ¼ 14 TeV. Right: Ecm ¼ 8 TeV.
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D. Hadronically quiet trilepton at the LHC

The operator Oll can also produce hadronically quiet
trilepton events at the LHC, which is sometimes favored as
a signal for new physics because of its clean signature and
small SM backgrounds. We find, however, that for Oll the
total signal cross section is only 3.28 fb for Λ ¼ 100 GeV
(see Table V). This small value results from the relatively
small branching ratio of the W boson into leptons and the
absence of a t-channel diagram that generates an important
contribution to the lljj final state (compare Figs. 7 and 1).
WZ production generates a significant background to

the process being considered; in order to suppress it, we
require that the invariant mass Mll between any opposite-
sign leptons of the same flavor satisfy jMll−Mzj>15GeV.
Comparing the results in Tables V and VI, we see that by
using the cuts, we are able to significantly reduce the
background compared to the signal cross section of 2.16 fb
for Λ¼ 100GeV. Following a procedure similar to the one
we used in analyzing the same-sign dilepton events and
using Eq. (18), we determine the sensitivity to Λ using this
hadronically quiet trilepton channel; using a 3σ limit, we
obtain

Λ ≤ 130 GeV ðET ≤ 15 GeVÞ;
Λ ≤ 140 GeV ðET ¼ 0 GeVÞ ð25Þ

for a luminosity of 100 fb−1. As expected from the smaller
cross section, these limits are weaker than the ones
previously obtained.

E. Applicability of the effective field theory

The results above indicate that the reach on the
new physics scale Λ lies in the ≃500 GeV range for the

same-sign dilepton signature generated by the operator(s)
Oll at the LHC with a 14 TeV CM energy. On the other
hand, the dilepton invariant mass distribution (Fig. 3) peaks
at ∼1 TeV, a significantly higher value. We must then
investigate whether the effective theory approach is valid in
the above processes. Specifically, within the paradigm we
have adopted (that of a weakly coupled, renormalization
and decoupling heavy physics), we must determine whether
this implies that in the reactions under consideration one or
more heavy particles carries momentum ≥Λ (in which case
they could be directly produced, and the effective approach
would not be applicable). In order to investigate this, we
display in Fig. 8 the types of heavy physics that could
generate at tree level the vertex of interest (containing two
charged leptons of the same sign, two W bosons of the
same sign and two scalar isodoublets).
We see from Fig. 8 that there are two possible cases:
(1) When the heavy particles carry a momentum equal

to the invariant dilepton mass, in which case the
heavy particle is a boson isotriplet of unit hyper-
charge, or

(2) When the heavy particles carry a momentum equal
to the lepton-W invariant mass, in which case the
heavy particle Σwill be a heavy fermion isotriplet or
isosinglet of zero hypercharge.

The comments above indicate that the effective theory
would not be applicable in case 1. The situation for the
fermions Σ (case 2), however, is different: we see from

TABLE V. Cross sections for the hadronically quiet trilepton
signal at the LHC with Ecm ¼ 14 TeV. σ1 is obtained by
imposing the cut C1 [cf. Eq. (19)], and σ2 by both imposing
C1 and demanding jMeē −Mzj > 15 GeV.

p; p → l;l;l; νl σ (fb) σ1 (fb) σ2 (fb)
p; p → ē; ē; e; ν̄e 1.2 0.70 0.695
p; p → e; e; ē; νe 0.44 0.39 0.385
Total (including μ) 3.28 2.18 2.16

FIG. 7. Feynman diagrams generated by the operator Oll and
which contribute to the hadronically quiet trilepton channel
pp → eeēνe.

TABLE VI. Dominant SM background cross sections σllll (in
pb) generated by tt̄ and WZ production for hadronically quiet
trilepton events at Ecm ¼ 14 TeV including μ� and e�; the third
column provides the numbers when the cut jMll −Mzj >
15 GeV is imposed on the events. The cross sections in the
fourth and fifth columns are obtained by requiring ET ¼ 0 and
ET ≤ 15 GeV, respectively (see text for details). The cross
sections are obtained after multiplying by the appropriate K
factor (¼ 2.20 for tt̄).

SM Production
at LHC

σlll
(pb)

σlll−Mll

(pb)
σlll−Mll−0

(fb)
σlll−Mll−15

(fb)

tt̄ 0.99 0.031 ≤0.85 1.69
WZ 0.73 0.171 ≤0.058 0.46

FIG. 8. Tree-level graphs that can generate the operatorsO1 and
O3 by the exchange of a heavy fermion (left) or scalar (right),
both isotriplets with unit hypercharge (denoted by the thick
internal lines).
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Fig. 9 that the lepton-W invariant mass peaks at
≲200 GeV, significantly below the limit on Λ. It follows
that the limits we derive are applicable for the case where
the new heavy physics corresponds to the same fermions Σ
associated with type-III seesaw mechanisms [43] for
neutrino mass generation (see Appendix A).7

Direct searches of such heavy fermion isotriplets Σ
(using the full theory) at the 7 TeV LHC yield a bound
mΣ ≳ 180 GeV [44], with which our result Λ≳ 300 GeV
compares favorably. In addition, Ref. [45] presents an
analysis where dimuonþ jets data from the 8 TeV LHC are
used to derive constraints on heavy Majorana neutrinos that
can mix with the muon-neutrino (these correspond to the
case where the Σ are isosinglets). The results exclude heavy
fermion masses in the range 90–500 GeV, provided the
mixing is ≥0.005 (for the low-mass limit) and ≥0.6 for the
higher excluded mass; these constraints are then more
stringent than the ones derived above for the case of large
mixing. There are also several studies of the discovery
potential of type-III seesaw fermions at the 14 TeV LHC
through direct production [46–48] in lepton-rich final
states, and though a comparative signature space analysis
of the reach of direct production versus effective theory is
beyond the scope of this paper, a benchmark point analysis
in Ref. [46] suggests that the sensitivity to Λ obtained using
effective field theory will be competitive with the one
derived from direct searches.

V. CONSTRAINTS ON PTG OPERATORS
WITH RIGHT-HANDED NEUTRINOS

In Sec. III A, we listed the operators that do not contain
right-handed neutrinos and obtained the most stringent

bounds on the scale of new physics. In this section, we do a
similar study for operators that do contain right-handed
neutrinos. The list of such operators and their expressions
in unitary gauge can be found in Appendix B. Most of these
operators contain vertices with three fields (see Table VII),
one of which is a W, Z or H boson; the strictest limits
on Λ are then derived from Z, W, H decays and neutrino
magnetic moment, whenever kinematically allowed. When
the right-handed neutrinos are too heavy for these decays to
occur, the limits are weaker, as is the case for the operator
ðνcνÞjDϕj2 that does not contain a three-legged vertex; we
comment on this situation at the end of this section.
In the discussion below, we will assume that the right-

handed neutrinos have a Majorana mass term of the form
νTRCMννR that, for simplicity, we assume to be fully
degenerate: Mν ¼ mν1. In cases where the W, Z or H
decays are allowed, the effects of mixing (generated by
Dirac mass terms) will be small [49], and we will ignore
them. As in Sec. III A, the limits on Λ obtained below are
derived assuming that the operator coefficient isOð1Þ; if this
is not the case, such limits apply to the scale ~Λ defined in that
section. We will also ignore the possibility of cancellations
among various effective operator contributions.

A. Operators contributing to Z-invisible decay

There are two such operators (see Table VII):

1

2
ðνcγμNÞðiϕ†D

↔

μϕÞ ⊃
v3

2
ffiffiffi
2

p νcZPLν;

jϕj2ðνcσμννÞBμν ⊃ −
v2sw
2

ðνcσμνPRνÞZμν ð26Þ

(where Zμν ¼ ∂μZν − ∂νZμÞ that generate the following
contributions to the invisible Z-decay width:

v2mz

Λ3
νcZPRν∶ ΓZ1ðZ → νRνRÞ

¼ 1

96π

�
v2

Λ3

�
2

ðm2
z −m2

νÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

z − 4m2
ν

q
;

vmz

Λ3
ðνcσμνPRνÞZμν∶ ΓZ2ðZ → νRνRÞ

¼ 1

12π

�
mzv
Λ3

�
2

ðm2
z þ 2m2

νÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

z − 4m2
ν

q
: ð27Þ

(We made an Oð1Þ change in the operator coefficients in
order to have a uniform normalization of the three-legged
vertices.)
The invisible Z-decay width in the standard model is

ΓðZ → invÞ ¼ 499� 1.5 MeV [29]. If the Z decay to
right-handed neutrinos is kinematically allowed, then, at
3σ, ΓZ1;Z2 < 4.5 MeV gives the contours plotted in Fig. 10.
We see from this that the strictest limits on Λ are obtained
when the right-handed neutrino mass is small:

FIG. 9. Invariant mass distribution of the lepton with jets at
LHC with Ecm ¼ 14 TeV. The red dots (on the lilac histogram)
correspond to the ē ē jj final state; while the blue crosses (on the
green histogram) correspond to the eejj final state (the green area
corresponds to regions where these distributions overlap).

7Type I involves fermion isosinglets, and the corresponding
effective operators would not have tree-level couplings to the W.
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Z1ðmν ≪ mzÞ∶ Λ > 354 GeV;

Z2ðmν ≪ mzÞ∶ Λ > 358 GeV: ð28Þ

B. Operators with right-handed neutrinos contributing
to H-invisible decay

Again referring to Table VII, we see that there is a single
operator of this type:

νcνjϕj4 ⊃ v3HðνcPRνÞ; ð29Þ
which yields the following invisible decay width:

ΓðH → νRνRÞ ¼
1

16π
mHðv=ΛÞ6

�
1 −

2m2
ν

m2
H

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
ν

m2
H

s
:

ð30Þ

Using the limit BrðH → invÞ < 0.3 [50], and ΓSM
H ¼

4 MeV for the total SM contribution to the H width, we
find ΓðH → invÞ < 1.7 MeV, which we plot in Fig. 11. For
light neutrinos, this implies

Λ > 828 GeV; ðmν ≪ mHÞ: ð31Þ

C. Operators with right-handed neutrinos
contributing to W-leptonic decay

There are three such operators (see Table VII):

1

2
ðνcγμEÞðϕϵD↔μϕÞ ⊃ −imwv2νcWþPLe;

ðνcσμνeÞðϕϵτIϕÞWI
μν ⊃

ffiffiffi
2

p
v2ð∂μWþ

ν ÞðνcσμνPReÞ;
ðνcDμeÞðϕϵDμϕÞ ⊃ −i

ffiffiffi
2

p
mwvWþ

μ ðνc∂μPReÞ; ð32Þ

TABLE VII. Dimension-7 operators containing right-handed neutrinos, their unitary-gauge expressions, and the vertices with three
fields that they contain. We defined Fμν ¼ ∂μAν − ∂νAμ,Wþ

μν ¼ ∂μWþ
ν − ∂νWþ

μ , and Zμν ¼ ∂μZν − ∂νZμ. g and g0 denote, respectively,
the SUð2ÞL and Uð1ÞY gauge coupling constants.

O (see Sec. II) Unitary gauge expression Three-legged vertices in O (unitary gauge)
1
2
ðνcγμEÞðϕϵD↔μϕÞ − i

2
gðvþHÞ3νcWþPLe −imwv2νcWþPLe

1
2
ðνcγμNÞðiϕ†D

↔

μϕÞ
1ffiffi
8

p ðH þ vÞ3νcZPLν v3

2
ffiffi
2

p νcZPLν

ðνcγμNÞð∂μjϕj2Þ − 1ffiffi
2

p ðH þ vÞ2∂μHðνcγμPLνÞ − v2ffiffi
2

p ∂μHðνcγμPLνÞ
ðνcσμνeÞðϕϵτIϕÞWI

μν

ffiffiffi
2

p ðH þ vÞ2½∂μWþ
ν − iðeAμ þ gcwZμÞWþ

ν �ðνcσμνPReÞ v2ffiffi
2

p Wþ
μνðνcσμνPReÞ

jϕj2ðνcσμννÞBμν
1
2
ðH þ vÞ2ðνcσμνPRνÞðcwFμν − swZμνÞ 1

2
v2ðνcσμνPRνÞðcwFμν − swZμνÞ

ðνcDμeÞðϕϵDμϕÞ gffiffi
2

p ðvþHÞ2½−iðνc∂μPReÞWþ
μ þ ðνcPReÞWþ · ðeA − g0swZÞ� −i

ffiffiffi
2

p
mwvWþ

μ ðνc∂μPReÞ
ðνcνÞjDϕj2 1

2
ðνcPRνÞf½∂H þ i mz

v ðH þ vÞZ�2 þ 1
2
g2ðvþHÞ2m2

wWþ ·W−g � � �
ðνcνÞjϕj4 1

4
ðH þ vÞ4ðνcPRνÞ v3HðνcPRνÞ

10 20 30 40
100

200

300

400

500

m (GeV)v

(G
eV

)

FIG. 10. Z-invisible decay limit on neutrino massmν versus the
new physics scale Λ plane derived from Eq. (28). The light red
region and above is allowed by the operator νcZPLν, and the lilac
region is allowed by ðνcσμνPL;RνÞZμν.
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FIG. 11. H-invisible decay limit on neutrino massmν versus the
new physics scale Λ plane derived from Eq. (30). The shaded
region is allowed by the operator νcνjϕj4.
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that lead to three contributions to the leptonic W-decay
width:

mwv2

Λ3
νcWþPLe∶ ΓW1

¼ 1

192π

�
v4

Λ6m3
w

�
ðm2

w −m2
νÞ2ð2m2

w þm2
νÞ;

mwv
Λ3

ð∂μWþ
ν ÞðνcσμνPReÞ∶ ΓW2

¼ 1

12π

�
v2

Λ6mw

�
ðm2

w −m2
νÞ2ðm2

w þ 2m2
νÞ;

mwv
Λ3

Wþ
μ ðνc∂μPReÞ∶ ΓW3 ¼

1

192π

�
v2

Λ6m3
w

�
ðm2

w −m2
νÞ4:

ð33Þ
Now, the branching fraction of W to lþ νl (combined

leptonic final states) is ΓðW → lνlÞ=ΓW ¼ ð10.86�
0.09Þ% with ΓW ¼ 2.085 GeV [29]. This produces the
contours of Fig. 12 in the 3σ limit; for light neutrinos,

W1ðmν ≪ mwÞ∶ Λ > 473 GeV;

W2ðmν ≪ mwÞ∶ Λ > 460 GeV;

W3ðmν ≪ mwÞ∶ Λ > 290 GeV: ð34Þ

D. Operators contributing to the neutrino
magnetic moment

The operators relevant for this constraint are listed in
Eq. (B1), for which the most significant constraint is
derived from the cooling rate of red giants and other

astrophysical objects [30]. Using the results in Ref. [20], we
find that the strongest restriction is obtained by requiring
that the process γ þ νlight → νheavy not be a very efficient
cooling mechanism in supernovae [30]:

Λ >

�
1 −

4m2
ν

ω2
P

�
1=4

× 47 TeV; 2mν ≤ ωP ≃ 30 MeV;

ð35Þ

where ωP is the typical supernova plasma frequency; this
same limit is often expressed by the constraint that the ν
magnetic moment is smaller than 3 × 10−12μB. The shaded
region in Fig. 13 shows the allowed range of NP scale (Λ)
as a function of neutrino mass (mν) from neutrino magnetic
moment constraint as in Eq. (35).
There are no important limits on Λ for magnetic coupling

for larger neutrino masses; in particular, collider data are
useful only when the underlying physics is assumed to be
strongly coupled. For weakly coupled heavy physics, the
effective operator coefficients are too small to produce a
measurable effect given the experimental sensitivity [20].
When the above decays are forbidden, or when the

operator does not have three-legged vertices, the exper-
imental constraints are degraded. This is because in this
case existing limits are obtained within the context of
specific models and cannot be directly extended to limits on
all effective operator coefficients. For example, there are
strict limits on the masses of the right-handed neutrinos and
the right-handed WR gauge bosons present in L-R models
[51]. But these do not translate to limits on mν or Λ (when
the WR and extra scalars are assumed to be heavy, with
masses ∼Λ), since the leading effective operators (obtained
after integration of these heavy particles), whose effects are
strongly constrained by experiment, are not the ones being
considered here. The simplest way of seeing this is to note
that all our operators violate lepton number, so within such
L-R models they will appear multiplied by small coeffi-
cients (e.g., by the small vacuum expectation value of a
scalar triplet [52]) and will have subdominant effects. The
point is that without knowledge of the model realized in
nature, one cannot, in general, use limits obtained using
some operators to constrain the effects of others. A full
analysis of the potential collider reactions that can best
probe the operators in Table VII lies beyond the scope of
this paper.

VI. CONCLUSIONS

In this paper, we have worked out all possible effective
operators of dimension 7 involving SM fields and right-
handed neutrinos, indicating those that could be generated
at tree level by the underlying theory, and which may then
contribute significantly to low-energy observables. Our
results generalize lists of dimension-7 operators involving
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FIG. 12. W-decay limit on neutrino mass mν versus the
new physics scale Λ plane derived from Eq. (33). The yellow
region and above is allowed by Wþ

μ ðνc∂μPReÞ, the darker orange
region and above is allowed by ðνcσμνPReÞ∂μWþ

ν , and the
orange region and above is allowed by νcWþPLe.
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only SM fields [15], as well as earlier partial compilations
[17]. All dimension-7 operators violate B − L by 2 units.
From the operators presented, we selected two that can

generate clear dilepton and trilpeton signatures at the LHC.
The current limit on the scale of new physics is≃330 GeV
[Eq. (22)], while the sensitivity to the scale of new physics
can reach ≃460 GeV [Eq. (24)], with the dilepton channel
providing the highest sensitivity. We argue that these results
correspond to sensitivity to the presence of heavy fermion
triplets (which can also be responsible for the type-III
seesaw mechanism for generating neutrino masses) and are
competitive with the ones obtained from direct production.
We argued that these limits are not necessarily superseded
by the stronger ones derived from precision data given the
inability to account for cancellations in the latter.
We have also obtained limits on the NP scale of operators

containing right-handed neutrinos from Z, H, W decays,
which are of the order of ∼500 GeV or less for Z, W
semileptonic decays; limits on the H-invisible decay give a
stronger limit∼800 GeV (all with a dependence on the right-
handed neutrino mass). As for the light neutrinos, much
stronger constraints are obtained from themagnetic-moment
effective operator, but only for small (<30 MeV) masses.
Finally, we note that effective Lagrangian models have

recently gained interest when studying the LHC sensitivity
to various dark matter models; see, for example, Ref. [53].
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APPENDIX A: LOOP-GENERATED AND
POTENTIALLY TREE-GENERATED

OPERATORS

In this appendix, we present the arguments for determin-
ing whether an operator is necessarily generated by heavy
physics loops (LG operators), or if there are types of new
physics that can generate the operator at tree level (poten-
tially tree-generated or PTG operators). As throughout this
paper, we assume the NP is weakly coupled, and decou-
pling, and that the full theory is renormalizable. In this case,
denoting by I, E the number of internal and external lines,
respectively; by L the number of loops; and by Vn the
number of vertices with n legs, we have the well-known
relations

L ¼ I − V þ 1;
X
n≥3

nVn ¼ 2I þ E; V ¼
X
n≥3

Vn;

ðA1Þ
which for tree graphs (L ¼ 0) in renormalizable theories
(Vn≥5 ¼ 0) imply

V3 þ 2V4 ¼ E − 2: ðA2Þ

When needed, we will denote a heavy fermion by Ψ, a
heavy scalar by Φ, and a heavy vector by V; correspond-
ingly, we denote SM vectors, fermions and scalars by A, ψ
and φ, respectively.
We will also need some basic properties of the couplings

of matter and vector fields in gauge theories. We denote by
the index l a gauge direction associated with a light (SM)
vector boson, while an index h will be associated with the
heavy gauge-boson directions. Accordingly, the generators
are denoted Tl and Th, and the group structure constants
take the generic form flll;llh;lhh;hhh. The group generators in
general connect light and heavy particle (fermion and
scalar) directions; these we also denote by the subindices
l and h: ðThÞll, ðThÞlh, ðThÞhl, ðThÞhh, and similarly for Tl.
General properties of gauge theories imply that

fllh ¼ 0; ðTlÞlh ¼ ðTlÞhl ¼ 0: ðA3Þ

Since a vacuum expectation value hΦi does not break the
electroweak symmetry, we also have

TlhΦi ¼ 0: ðA4Þ

Also, since ThhΦi is a vector in the direction of a would-be
Goldstone boson, it follows that

ðThhΦiÞl ¼ 0: ðA5Þ

We now use these relations to determine the LG or PTG
character of the operators listed in Sec. II:
(1) ψ2D4 operators. These are of the form ν2AμνAρσ or

ν2Aμν
~Aρσ , and it is straightforward to see that the

possible tree diagrams involve a heavy vector, scalar
or fermion.
(a) Heavy fermion exchange: Thegraphs have a νΨA

vertex and are then proportional to ðTlÞlh ¼ 0,
because of Eq. (A3).

(b) Heavy vector exchange: The graphs have an
AAV vertex and are then proportional to
fllh ¼ 0, because of Eq. (A3).

(c) Heavy scalar exchange: The graphs have an
AAΦ vertex, and are then proportional to
hΦifTl; Tl0gΦ0 ¼ 0, because of Eq. (A4).

(2) ψ2D3φ operators. These are of the form
∂μψγνφψAμν or ∂μψγνφψ ~Aμν, and the possible tree
diagrams involve a heavy vector, scalar or fermion.
(a) Heavy fermion exchange: The graphs have a

ψΨA vertex, and are then proportional to
ðTlÞlh ¼ 0, because of Eq. (A3).

(b) Heavy vector exchange: The graphs have
a φAV vertex, and are then proportional to
hΦifTl; Thgφ ¼ 0, because of Eqs. (A4)
and (A5).
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(c) Heavy scalar exchange: The graphs have an
AφΦ vertex, which is proportional to
ðTlÞhl ¼ 0, because of Eq. (A3).

(3) ψ2D2φ2 operators. These separate into two catego-
ries according to whetherD2 represents a field tensor
D2 → Aμν or not. Both cases can be generated at tree
level by the heavy-fermion exchange diagrams ➊

and➋ in Fig. 14. None of the vertices in these graphs
are a priori forbidden by the gauge symmetry
(though they give rise to mixing among light and
heavy fermions and the associated naturality issues).
There are three operators in this group,O1;3;4, that

are associated with the type I, II and III seesaw
neutrino mass generation mechanism. To see this
relation explicitly, we define

O0
I ¼ ðlϕÞ□ðlϕÞ; O0

II ¼ ðlτlÞD2ðϕτϕÞ;
O0

III ¼ ðlτϕÞD2ðlτϕÞ; ðA6Þ
which can be generated by the exchange of a
fermion isosinglet, a scalar isotriplet or a fermion
isotriplet, respectively; the relevant graphs are given
in Fig. 14. Using the equations of motion (as allowed
by the equivalence theorem, see Sec. I), we find that
these two sets of operators are equivalent:

0
B@

O0
I

O0
II

O0
III

1
CA ¼

0
B@

0 0 2

8 4 8

−2 0 −6

1
CA
0
B@

O1

O3

O4

1
CA: ðA7Þ

The advantage of the primed basis is that it man-
ifestly depicts the type of particles that generate
them and nicely matches them to the usual seesaw
graphs associated with neutrino mass generation.
Now, becauseO1;3 contain the termm2

wWþ2e2L (O2

does not),O0
II;III will also have such interactions. The

validity of the EFT for O0
II requires that the dilepton

invariant mass satisfyMll ≪ Λ, while forO0
III theW

lepton should be similarly bound: MlW ≪ Λ.
(4) ψ2Dφ3 operators. These contain vertices with two

fermions and three scalars, and it is easy to see that
they can be generated at tree level, for example by Ψ
exchange.

(5) ψ2φ4 operators. These contain vertices with two
fermions and four scalars,. The tree-level graphs
then satisfy8 V3 þ 2V4 ¼ 4, so that V3 ¼ 2, V4 ¼ 1
or V3 ¼ 4, and the first class of graphs can generate
the operators at tree level (vertices: ψ2Φ;Φ2φ;φ3Φ,
and two internal Φ lines).

(6) ψ4D operators. These contain a vertex ψ4A, which
corresponds to tree-level graphs with E ¼ 5 and
V3 ¼ 3, V4 ¼ 0, or V3 ¼ V4 ¼ 1, but the latter do
not occur since the underlying (renormlizable)
theory does not contain four-legged vertices with
fermions; the graphs are those in Fig. 15, where

Case 1 2 3 4 5 a b

i ψ ψ A ψ ψ Φ Φ

ii ψ ψ A ψ ψ V V

iii ψ ψ A ψ ψ V Φ

iv X ψ ψ ψ ψ Ψ V

v X ψ ψ ψ ψ Ψ Φ

: ðA8Þ

(a) Case i contains the vertex ΦΦX, which has
a derivative, so the operators generated by
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FIG. 13. Shaded area: Region in the neutrino mass mν (GeV)
versus the new physics scale Λ (GeV) plane allowed by the
neutrino magnetic moment constraint [Eq. (35)].

FIG. 14. Diagrams that generate operators of the form ψ2D2φ2

at tree level [thick lines denote particles with (Λ) masses].

FIG. 15. Tree-level graph that can generate operators of the
form ψ4D; the lines labeled “a” and “b” correspond to heavy
particles (see text for details).

8The case V4 ¼ 2 does not occur, because in renormalizable
theories there are no four-legged vertices with fermions.
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such graphs are of the form ψ4X∂ and are of
dimension 8.

(b) Case ii contains the vertex VVA with one
derivative and also corresponds to operators of
dimension 8.

(c) Case iii contains the vertex XVΦ of the form
which vanishes because of Eqs. (A4) and (A5).

(d) Cases iv and v require the vertex ψXΨ, which
does not exist because of Eq. (A3).

If follows that all these are LG operators.
ψ4φ operators: Since fourr-fermion interactions

can be tree-generated by exchange of a heavy boson,
operators of the form ψ4φ can be obtained by

attaching a φ to the internal heavy boson line. These
are all PTG operators.

APPENDIX B: PTG OPERATORS CONTAINING
RIGHT-HANDED NEUTRINOS

The dimension-7 PTG operators containing right-handed
neutrinos (see Sec. II) are listed in Table VII.
It follows from this list that there are eight types of

three-legged vertices involving right-handed neutrinos and
contributing to the Z, H, W decays and neutrino magnetic
moments:

SM-like coupling Derivative coupling Magnetic coupling

Z νcZPLν � � � ðνcσμνPRνÞZμν

H HðνcPRνÞ ∂μHðνcγμPLνÞ � � �
W νcWþPLe Wþ

μ ðνc∂μPReÞ ðνcσμνPReÞWþ
μν

γ � � � � � � ðνcσμνPRνÞFμν

: ðB1Þ

The most significant constraints on Λ derived from these vertices were derived in Sec. V.
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