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In the scenario of gauge-Higgs unification, the origin of the Higgs boson is the higher-dimensional
gauge boson. Very characteristic predictions are made of the Higgs boson interactions in this scenario,
reflecting its origin. In particular, a remarkable claim has been made: the contribution of nonzero Kaluza-
Klein modes to the Higgs decayH → Zγ exactly vanishes in the minimal SU(3) electroweak unified model,
at least at the one-loop level. In this brief paper, in order to see whether this prediction is a general feature of
the scenario or the consequence of the specific choice of the model, matter content, or the order of
perturbative expansion, we perform an operator analysis. We demonstrate that no relevant operator exists,
respecting the gauge symmetry SU(3) in the bulk. We also comment on the possibly important contribution
to the photonic decay H → γγ due to the nonzero Kaluza-Klein modes of light quarks.
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I. INTRODUCTION

In spite of the great success of the Higgs boson’s
discovery by LHC experiments [1,2], we have not under-
stood the origin of the Higgs boson yet. Namely, we do not
have any conclusive argument on the important issue of
whether the discovered particle is just what we have in the
standard model (SM) or a particle within some theory
beyond the standard model (BSM) that predicts the
presence in its low-energy effective theory. Concerning
this issue, the LHC data have provided us a great hint: they
have revealed that the Higgs boson is “light” with the mass
of the order of the weak scale MW . This fact strongly
suggests that the Higgs self-coupling is governed by the
gauge principle. We may think of a few candidates of BSM
that share this property. One is the minimal supersymmetric
standard model (MSSM), where the Higgs self-coupling is
due to the D-term contribution and MH ∼MZ is predicted
at the classical level. In this paper we focus on another
attractive scenario, i.e., gauge-Higgs unification (GHU),
where the Higgs boson is originally a gauge boson.
More precisely, in this scenario the Higgs field is

identified as the [Kaluza-Klein (KK) zero mode of] the
extra space component of the higher-dimensional gauge
field [3] and its vacuum expectation value (VEV) leads to
spontaneous gauge symmetry breaking [4–6]. A nice
feature of this scenario from the viewpoint of particle
physics is that by virtue of (higher-dimensional) gauge
symmetry, the quantum correction to the Higgs mass is UV-
finite once the contributions of all KK modes are summed
up at the intermediate state of the loop diagram, thus
leading to a new avenue for the solution of the hierarchy
problem [7].
To get a conclusive understanding of the origin of the

Higgs boson, the extensive studies of the Higgs couplings
and decays are obviously very important. In particular, it is

of crucial importance to clarify the characteristic difference
between the theoretical predictions of the SM and possible
BSM models. Such differences are to be tested in the
ongoing LHC and planned ILC experiments.
Reflecting the origin of the Higgs boson as a gauge

boson, the GHU scenario makes very characteristic pre-
dictions on the Higgs interactions. First let us note that in
GHU the Higgs field can be understood as a sort of
Aharonov-Bohm (AB) phase or Wilson-loop phase. That
is why the VEV of the Higgs field, which is nothing but a
constant gauge field in GHU, has physical meaning. We
thus expect that physical observables are periodic in the
Higgs field, which is a property clearly not shared by the
SM. This characteristic property has been discussed to lead
to “anomalous" Higgs interaction, i.e., interactions which
deviate from those predicted by the SM [8–14]. A typical
example is Yukawa coupling for light fermions (like the
fermions of first and second generations), which is always
smaller than that of the SM [14] and even vanishes for a
specific choice of the compactification scale [8–13], though
such a drastic possibility has been ruled out by the recent
LHC data.
The photonic decay H → γγ, which plays an important

role in the identification of the Higgs boson, was first
discussed in GHU by Maru and Okada in their pioneering
work [15], and they found that the decay rate is suppressed
compared to that of the SM. Maru also made an operator
analysis to show the finiteness of the amplitude for the
gluon fusion process (for arbitrary space-time dimension
with one extra dimension), the main production process of
the Higgs boson [16].
As another characteristic prediction of GHU, Maru and

Okada have made a very interesting claim that in the
minimal five-dimensional (5D) electroweak SU(3) GHU
model with orbifold extra space S1=Z2 [17,18], the con-
tribution of nonzero KK modes to H → Zγ decay exactly
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vanishes, at least at the one-loop level [19]. This character-
istic prediction will be very helpful to distinguish the GHU
scenario from other possible scenarios of BSM, where there
is no reason to expect that the contributions of heavy new
particles to H → Zγ should vanish. A similar analysis has
been made in the SOð5Þ × Uð1Þ GHUmodel formulated on
the Randall-Sundrum background, and the contribution has
been shown to be strongly suppressed, even though it is not
forbidden in this model [20].
In this paper, we perform an operator analysis for

H → Zγ decay, together with H → γγ decay for compari-
son, in order to understand the deep reason why the
contribution of the new particles (nonzero KK modes) to
H → Zγ is prohibited, while the corresponding contribu-
tion to H → γγ is as we naively expect. The operator
analysis will also be useful to see whether this prediction is
a general feature of the scenario or the consequence of the
specific choice of the model and/or matter content. Another
issue is that in the previous work [15,19], the analysis was
restricted to the one-loop level. In particular, concerning the
interesting H → Zγ decay, the authors claimed that it is
impossible to draw the relevant Feynman diagram for the
process at the one-loop level. We would like to point out
that another merit of our operator analysis is that the
conclusion does not depend on the order of the perturbative
expansion, since quantum corrections at all orders of
perturbation are concentrated on the (Wilson coefficients
of) gauge-invariant operators, as long as they even exist.
We will point out that in the minimal SU(3) model, there

is no gauge-invariant bulk operator responsible for the
H → Zγ decay, while there exists a relevant operator for the
photonic decay H → γγ with mass dimension 6, including
the effect of the nonlocal operator, the Wilson loop. This
means that in the minimal model the contribution of the
nonzero KK modes to the H → Zγ decay is strictly
prohibited.
Another issue to be discussed in this paper is the question

of whether nonzero KK modes of light quarks contribute
significantly or not to the H → γγ decay in the framework
of GHU. In the SM such light quarks are known to give
negligible contributions to the decay, just because their
Yukawa couplings are very small. In the model we are
interested in, however, the situation is different. The
Yukawa couplings of nonzero KK modes are not sup-
pressed as in the case of the zero mode and are roughly of
the order of the gauge coupling. Thus there is an interesting
possibility to get a contribution that is comparable to that of
the nonzero KK modes of the heavy t quark.

II. AN OPERATOR ANALYSIS ON H → γγ
AND H → Zγ DECAYS IN GHU

We first discuss what operator is responsible for the
photonic decay H → γγ, assuming only the gauge sym-
metry of the standard model and readily generalize the

argument for the case of H → Zγ. The operator analysis in
the framework of GHU will be given afterwards.
Both H → γγ and H → Zγ decays are not allowed at the

tree level in the SM; thus the relevant operators for these
decays should have mass dimension d > 4. We may
naively expect that the operator responsible for the pho-
tonic decay, respecting Uð1Þem symmetry, is

HFðγÞ
μν FðγÞμν; ð1Þ

with d ¼ 5. Here H is the physical Higgs field and FðγÞ
μν is

the field strength of the photonic field γμ. This operator,
however, is not enough. In fact, if this d ¼ 5 operator were
responsible for the decay, in higher dimensional models
with 5D space-time, the sum over the contributions of all
nonzero KK modes to the Wilson coefficient of (1) should
be UV-divergent, since

P
n 1=ðn=RÞ (n is a positive integer

denoting KK modes and R is the size of the extra space) is
divergent. As a matter of fact, the KK mode sum turns out
to be finite [15]. The point is that the operator (1) does not
respect the gauge symmetry of the SM, since H behaves
as a SUð2ÞL doublet, while γμ belongs to the triplet or
singlet of SUð2ÞL. Let us note that even though the gauge
symmetry of the SM is eventually broken spontaneously,
all quantum corrections can be written as the contributions
to the Wilson coefficients of the gauge-invariant operators,
including, in general, the Higgs doublet.
We thus realize that actually the relevant gauge-invariant

operators should be at least d ¼ 6:

ϕ†ϕTrðWμνWμνÞ; ϕ†ϕBμνBμν; ðϕ†WμνϕÞBμν; ð2Þ

where ϕ denotes the Higgs doublet and Wμν and Bμν are
the field strengths of SUð2ÞL and Uð1ÞY gauge bosons,
respectively. After the replacement, h → vþH (v is the
VEVof the Higgs field andH is the physical Higgs field) in
the neutral component of the Higgs doublet, (2) reproduces
(1). Similarly, the relevant d ¼ 6 operators for the decay
H → Zγ are those in (2) (with different linear combinations
of the three operators from the case of the photonic decay).

A. Local operators

Now we are ready to discuss what operators are
responsible for the H → γγ and H → Zγ decays in the
framework of GHU. Here we concentrate on possible
gauge-invariant local operators in the bulk.
First we consider the simplest d ¼ 6 (from the viewpoint

of 4D space-time) operators, since if they ever exist they
describe the leading contributions of nonzero KK modes.
Here as the model to work with we adopt the minimal 5D
SU(3) electroweak unified model of GHU with orbifold
extra space S1=Z2 [17,18].
A key issue here is that in the GHU scenario, the Higgs

field is nothing but a gauge field and the relevant gauge-
invariant operators should be written solely in terms of the
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higher-dimensional gauge field AM in a 3 × 3 matrix form.
Thus the SU(3)-invariant d ¼ 6 local operator turns out to
be unique [21]:

TrfðDLFMNÞðDLFMNÞg; ð3Þ
where FMN and DL are the field strength of AM and its
covariant derivative.
We now demonstrate that the operator (3) does not

contain the operators responsible for the decays H → γγ
and H → Zγ of our interest. For that purpose we explicitly
write the KK zero mode of the 4D gauge field Aμ and 4D
scalar field (extra space component) Ay, retaining only to
the fields relevant for the decays, γμ, Zμ, and h denoting the
real part of the neutral Higgs field:

Aμ ¼
1

2

0
BB@

2ffiffi
3

p γμ 0 0

0 − 1ffiffi
3

p γμ − Zμ 0

0 0 − 1ffiffi
3

p γμ þ Zμ

1
CCA

¼ γμTγ þ ZμTZ; ð4Þ

Ay ¼
1

2

0
B@

0 0 0

0 0 h

0 h 0

1
CA ¼ hTh; ð5Þ

where Tγ ¼
ffiffi
3

p
4
λ3 þ 1

4
λ8 ¼

ffiffi
3

p
2
Q, TZ ¼ 1

4
λ3 −

ffiffi
3

p
4
λ8, Th ¼

1
2
λ6 with λ3;6;8 being Gell-Mann matrices and Q the charge

operator. We should note that Tγ etc. satisfy the following
orthogonality condition:

TrðTγTZÞ ¼ TrðTγThÞ ¼ TrðTZThÞ ¼ 0: ð6Þ

There are three possible choices concerning the indices
M, N, L in (3), depending on whether the indices take the
4D vector index denoted by μ, νð¼ 0; 1; 2; 3Þ etc. or y
denoting the extra space component:
(1) TrfðDyFμνÞðDyFμνÞg

We note from (4) that ½Aμ; Aν� ¼ 0 and that the
operation Dy is equivalent to taking the commutator
with Ay, as the derivative with respect to the extra
space coordinate y vanishes when applied to the KK
zero mode, which has a constant mode function in
the case of flat 5D space-time. Thus

DyFμν ¼ −ig½Ay; ∂μAν − ∂νAμ�
¼ −ighð∂μZν − ∂νZμÞ½Th; TZ�; ð7Þ

where we have used ½Th; Tγ� ¼ 0, just reflecting the
fact that h is electrically neutral. This means that the
operator TrfðDyFμνÞðDyFμνÞg, being proportional
to the square of hð∂μZν − ∂νZμÞ does not contribute
to H → γγ nor to H → Zγ of our interest.

(2) TrfðDμFνyÞðDμFνyÞg
In this case

DμFνy ¼ Dμð∂νhTh − igZνh½TZ; Th�Þ ð8Þ

¼ ð∂μ∂νhÞTh − igfZμ∂νhþ Zν∂μh

þ ð∂μZνÞhg½TZ;Th�
− g2ZμZνh½TZ; ½TZ; Th��: ð9Þ

Let us note that the antisymmetric part under μ ↔ ν
is identical to (7), as it should be from the Bianchi
identityDyFμνþDμFνyþDνFyμ ¼ 0. Since (9) does
not contain the photonic field, TrfðDμFνyÞðDμFνyÞg
does not contribute to H → γγ nor to H → Zγ.

(3) TrfðDyFμyÞðDyFμyÞg

DyFμy ¼ −igh½Th; ∂μhTh − igZμh½TZ; Th��
¼ −g2Zμh2½Th; ½TZ; Th��: ð10Þ

Again, TrfðDyFμyÞðDyFμyÞg does not contribute to
H → γγ nor to H → Zγ.

We thus have shown that there is no d ¼ 6 gauge-
invariant operator responsible for H → γγ or H → Zγ. The
argument above can be generalized to gauge-invariant
operators with arbitrary mass dimension. The building
block of the gauge-invariant operators is the successive
operation of the covariant derivative to the field strength,
DL1

…DLn
FMN , the generalization of DLFMN . Suitably

taking Tr of the product of these building blocks we get
various gauge-invariant operators.
Let us now investigate what kinds of operators we obtain

from DL1
…DLn

FMN . (As a specific case we include the
situation where there is no covariant derivative.) We retain
only the terms up to linear in Zμ, since we are interested in
the decays with no or one Z boson in the final state. We also
note that Dy ¼ −igh½Th, when operating to the KK zero
modes and Dμ ¼ ∂μ − igZμ½TZ, when operating to neutral
fields.
We classify into two cases depending on the choice of

the indices M, N.
(1) DL1

…DLn
Fμν

We first note Fμν ¼ ð∂μγν − ∂νγμÞTγ þ ð∂μZν−
∂νZμÞTZ. So we consider each of the following
two cases:

(1a) DL1
…DLn

ð∂μγν − ∂νγμÞTγ

As the operation of Dy to the photonic field γμ or
its space-time derivatives yields a vanishing result
because of ½Th; TA� ¼ 0, the only possible type of
operator in this case is

Dμ1…Dμnð∂μγν − ∂νγμÞTγ

¼ ∂μ1 � � � ∂μnð∂μγν − ∂νγμÞTγ: ð11Þ
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(1b) DL1
…DLn

ð∂μZν − ∂νZμÞTZ
In this case, again the operation ofDμi is equivalent

to ∂μi , since we are interested in the operators up to
linear in Zμ and ½Tγ; TZ� ¼ ½Tγ; Th� ¼ 0. Also noting
that Dy is equivalent to −igh½Th, we get operators of
the form

hm∂μ1…∂μlð∂μZν − ∂νZμÞ½Th; ½Th;…½Th; TZ�…��:
ð12Þ

(2) DL1
� � �DLn

Fμy
We note Fμy ¼ ∂μhTh − igZμh½TZ; Th� as in (9).

So we consider each of the following two cases:
(2a) DL1

� � �DLn
ð∂μhÞTh

If there appearsDy inDL1
� � �DLn

, there should be
one and only one Dμ behaving as −igZμ½TZ, to the
right of the rightmost Dy. Otherwise, the operation
of Dy to ð∂μhÞTh yields ½Th; Th� ¼ 0. Thus what we
obtain in this case is either operators containing only
the Higgs field

∂μ1…∂μn∂μhTh ð13Þ
or operators of the form

hmZμ½Th; ½Th;…½TZ; Th�…��; ð14Þ

where possible space-time derivatives acting on the
fields have been suppressed for simplicity.

(2b) DL1
…DLn

ðZμhÞ½TZ; Th�
The covariant derivative Dμ among DL1

…DLn
is

equivalent to ∂μ, as we are not interested in the
operators containing Zμ more than one time, while
Dy behaves as −igh½Th. We thus get operators of the
same form as the one in (14).
A few remarks are now in order. First, we have

checked that the results above on the possible types
of operators also can be confirmed by use of the
method of mathematical induction. As the second
remark, it may be interesting to note that the

generators Th ¼ 1
2
λ6 and TZ ¼ 1

4
λ3 −

ffiffi
3

p
4
λ8 act only

on the lower two components of the fundamental
triplet representation of SU(3), i.e., as if they are the
generators of the subgroup SU(2) acting as Pauli
matrices σ1 and σ3, respectively. In this viewpoint,

Tγ ¼
ffiffi
3

p
4
λ3 þ 1

4
λ8 ¼

ffiffi
3

p
2
Q behaves as unit matrix I2

in the subspace:

Tγ ∼ I2; Th ∼ σ1; TZ ∼ σ3; ð15Þ

where multiplied constant factors have been sup-
pressed. This leads to

½Th; ½Th;…½Th; TZ�…�� ∼ σ2 or σ3; ð16Þ

depending on whether the number of the action of
Th is odd or even.
Now it is easy to see whether relevant operators

exist for H → γγ and H → Zγ. Concerning the
photonic decay H → γγ, we should take two oper-
ators of the type (11) and one operator of the type
(13). Let us note that we cannot take the operator of
the type (13) more than once, since ∂μh is propor-
tional to the physical Higgs field H even after the
replacement, h → vþH. Multiplying these opera-
tors and then taking Tr, and by use of the fact,
TrðT2

γThÞ ∼ Trσ1 ¼ 0, we conclude that no gauge-
invariant local operator exists to describe H → γγ.
We may also argue, relying on the gauge symmetry
of the SM, especially SUð2ÞL symmetry, that an
operator with two photonic fields and one Higgs
field, as is seen in (1), is not allowed. We will argue
later that when the effects of global operators are
taken into account, we get the d ¼ 6 operator
responsible for the photonic decay.
Concerning another decay H → Zγ, we should

take one operator of the type (11), one operator of
the type (12) or (14), and at most one operator of the
type (13), and we should multiply all of them, finally
taking Tr. We now realize that after taking Tr the
operator vanishes, since [from (15) and (16)]

TrðTγ½Th; ½Th;…½Th; TZ�…��Þ ∼ TrðI2σ3Þ ¼ 0;

TrðTγTh½Th; ½Th;…½Th; TZ�…��Þ ∼ TrðI2σ1σ2Þ ¼ 0;

ð17Þ
where we have used the fact that we should have
even numbers of Th, in order to guarantee the
SUð2ÞL gauge invariance. Thus we finally conclude
that no gauge-invariant local operator exists to
describe H → Zγ.

B. The contributions of global operators

As a characteristic feature of the GHU models compac-
tified on non-simply-connected extra space such as a circle,
the Wilson loop W ¼ expðig H AydyÞ due to the KK zero
mode of Ay, namely, the Higgs field, makes physical sense.
We now expand our argument to include this gauge-
covariant global operator in the operator analysis. As a
matter of fact, in 5D GHU the Higgs potential is induced at
the quantum level and is written in terms of W.
Including the Wilson loop, the simplest possibility to

get the gauge-invariant operator responsible for the Higgs
decays of our interest should be

TrðWmÞTrðFMNFMNÞ → TrðA2
yÞTrðFμνFμνÞ

→ h2f2TrðWμνWμνÞ þ BμνBμνg:
ð18Þ
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Thus obtained, the d ¼ 6 operator clearly contributes to the
photonic decay but not to H → Zγ, since

2TrðWμνWμνÞ þ BμνBμν

→ FðγÞ
μν FðγÞμν þ ð∂μZν − ∂νZμÞð∂μZν − ∂νZμÞ; ð19Þ

when it is rewritten in terms of γμ and Zμ. More generally,
we can think of operators of the form TrðWmÞ× (gauge-
invariant local operators) with arbitrary mass dimension.
By similar argument as the one used for the purely local
operators, we again exclude the possibility to get an
operator responsible for H → Zγ.
To summarize the conclusion in this section, we have

found the d ¼ 6 operator forH → γγ by taking the effect of
the global operator into account, while the possibility of the
gauge-invariant bulk operator responsible for H → Zγ is
completely excluded.
The absence of the relevant operator explains why the

contribution of nonzero KK modes to H → Zγ exactly
vanishes in the minimal SU(3) GHU model [19]. Let us
make a brief comment on how the argument extended
above may change in the case of the SOð5Þ × Uð1Þ GHU
model. In this model, since the gauge group is not a simple
group, the Wilson coefficients of 2h2TrðWμνWμνÞ and
h2BμνBμν in (18) are anticipated to be different in general,
which in turn means that when an orthogonal transforma-
tion to the base of γμ and Zμ is made, the operators yield an

operator responsible for H → Zγ, i.e., h2FðγÞ
μν Zμν. This may

be a reason why the contribution of the nonzero KK modes
to the decay is not forbidden in the SOð5Þ × Uð1Þ GHU
model [20].
It may be interesting to ask whether the absence of the

relevant operator for H → Zγ in the minimal SU(3) model
also means that the contribution of the KK zero mode also
vanishes or not. It is interesting to note that in the SU(3)
model the contribution of the KK zero mode of the SU(3)
triplet fermion ðuL; dL; dRÞ (for the first generation) to
H → Zγ is known to vanish, since the decay amplitude is
proportional to T3 − 2ef sin2 θW , where T3 denotes the
weak isospin and the ef is the charge of the fermion [22]. In
this simplified model uL does not couple with the Higgs
field and sin2 θW ¼ 3

4
, while T3 ¼ − 1

2
, ef ¼ − 1

3
for the

contribution of the d quark.
We, however, naively expect that the contribution of the

KK zero mode just recovers that of the SM. In fact, the
contribution of the KK zero mode of Aμ, i.e., theW� boson,
to H → Zγ is known to be nonvanishing, even for
sin2 θW ¼ 3

4
[22]. So it should be reasonable to expect that

in a realistic model with a realistic weak mixing angle, the
SM prediction is recovered.
We also note that the orbifolding breaks the SU(3) gauge

symmetry in the bulk into the symmetry of the SM in the
sector of the KK zero mode of Aμ. This may be the reason

why the W� boson contributes to the decay, since the KK
zero mode of Aμ contains only the gauge bosons of the SM
[the “incomplete multiplet” of SU(3)]. Hence, the contribu-
tion is not restricted by the operator analysis done above
relying on the SU(3) symmetry.On the other hand, the quarks
form a “complete multiplet” of SU(3) triplet, if we ignore
the difference of their chiralities, and their contributions
respect the SU(3) symmetry. In the language of operators,
the orbifolding may cause brane-localized operators, which
respect only the gauge symmetry of the SM, as the con-
tribution of the KK zero mode. As a matter of fact, the
operators including theWilson loop TrðWmÞTrðWμνWμνÞ →
h2TrðWμνWμνÞ and TrðWmÞBμνBμν → h2BμνBμν may be
generated with different Wilson coefficients, in general,
which result in the operator responsible for the H → Zγ
decay, after the orthogonal transformation into the base
of γμ and Zμ.

C. On the matter content of the model

Let us note that the results on the Higgs decay obtained
above, relying on the gauge-invariant operators, do not
refer to the matter content of the SU(3) model and are
expected to hold irrespectively of the detail of the content.
However, for the model to be viable, it is of crucial
importance whether the model can incorporate quarks
and leptons as the matter fields.
As has already been mentioned above, each component

of the SU(3) triplet has a fractional electric charge and the
triplet fermions are identified with a quark multiplet:
ðuL; dL; dRÞ (for the first generation). Then an important
question is whether we can incorporate leptons with integer
charges. Since the fundamental representation has frac-
tional charges, 2

3
, − 1

3
, it will be natural to expect that the

third-rank totally symmetric tensor representation, i.e.,
10-dimensional tensor representation, has integer charges.
In fact, it is easy to know that the representation contains
SUð2ÞL doublet and singlet, which can be identified with
ðνeL; e−LÞ and e−R, respectively (again, for the first gener-
ation). The SUð2ÞL doublet also may be incorporated in the
adjoint 8 representation, though whose SUð2ÞL singlet
component does not carry electric charge and cannot be
identified with e−R. In any case, in addition to the desired
leptonic fields, some exotic fields appear and a mechanism
to remove such exotic states will be needed. A possible
mechanism is to introduce brane-localized fermions, which
form massive Dirac fields together with the exotic fields
and decouple from the low-energy effective theory [23].
Another way to adjust the electric charges of the leptonic

sector is, instead of introducing a higher-dimensional
representation of SU(3), to add a U(1) factor, thus making
the gauge group, e.g., SUð3Þ × Uð1Þ. We, however, would
like to point out that in this case, just as in the case of
SOð5Þ × Uð1Þ, the operator responsible for H → Zγ
appears and the decay is not strictly forbidden.
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III. THE CONTRIBUTION OF NONZERO
KK MODES OF LIGHT QUARKS

TO THE H → γγ DECAY

In this section we discuss the possible important con-
tributions of nonzero KK modes of light quarks to the
photonic decay H → γγ.
We first give a generic formula for the contribution of a

fermion with the mass m, the charge eQ, and Yukawa
coupling f. The contribution of the fermion to the decay
amplitude can be written in the form of the effective
Lagrangian, whose operator has appeared in (1):

L ¼ CfHFðγÞ
μν FðγÞμν; ð20Þ

where the Wilson coefficient is given as [22]

Cf ¼ −
fαQ2

2πm
· IðτÞ; ð21Þ

with α ¼ e2=ð4πÞ. The function is defined as

IðτÞ ¼ −
τ

2
þ τðτ − 1Þ

2

�
sin−1

1ffiffiffi
τ

p
�

2

; ð22Þ

with

τ ¼ 4m2

m2
h

: ð23Þ

In the limit τ → ∞, i.e., m ≫ mh, the function is well
approximated by

IðτÞ≃ −
τ

2
þ τðτ − 1Þ

2

�
1ffiffiffi
τ

p þ 1

6

1

ð ffiffiffi
τ

p Þ3
�

2

→ Ið∞Þ ¼ −
1

3
:

ð24Þ
Now we are ready to calculate the contribution of

nonzero KK modes of a light quark with charge Q in
the GHU scenario. The Yukawa coupling of its KK zero
mode is exponentially suppressed by a factor
e−πMRðMis the bulk mass andRis the radius ofS1Þ com-
pared with g4 (the 4D gauge coupling) to realize the light
quark. Such exponential suppression is due to the locali-
zation of mode functions of left- and right-handed fermions
at the different fixed points of the orbifold depending on
their chiralities, caused by the presence of the “Z2-odd”
bulk mass term.
The motivation of our study concerning the contribution

of nonzero KK modes is the fact that their Yukawa
couplings are no longer exponentially suppressed as in
the case of the KK zero mode, since their mode functions
are not localized at the fixed points, behaving as ordinary
trigonometric functions, roughly speaking. Thus their
Yukawa couplings are comparable to the gauge coupling.
Therefore, there is the chance to get a contribution to the
Wilson coefficient Cf of Eq. (21) from the nonzero KK

modes of light quarks, which is comparable to that of the
nonzero KK modes of the t quark.
We will reasonably assume that the masses of nonzero

KK fermions denoted by mð�Þ
n ðn ¼ 1; 2;…Þ are much

greater than the Higgs mass,

mh ≪ mð�Þ
n : ð25Þ

As was discussed in [14,15,21], in the GHU scenario the
nth mass eigenvalue splits into two eigenvalues by the
effect of the Higgs VEV:

mð�Þ
n ¼ n

R
�MW; ð26Þ

with MW ¼ g4
2
v for the simplified case of the vanishing

bulk mass, M ¼ 0.

Under (25), the coefficient Cð�Þ
n denoting the contribu-

tion of the KK mode with the mass mð�Þ
n can be written [by

use of (24) and (21)] as

Cð�Þ
n ≃ fð�Þ

n αQ2

6πmð�Þ
n

; ð27Þ

where fð�Þ
n is the Yukawa coupling of the KK mode, which

is generally obtained by taking the derivative of the mass
eigenvalue with respect to the VEV [14],

fð�Þ
n ¼ ∂mð�Þ

n

∂v ¼ g4
2

∂mð�Þ
n

∂MW
: ð28Þ

Thus, what we have to do is to perform the KK mode
sum

X∞
n¼1

fð�Þ
n

mð�Þ
n

�
¼

X∞
n¼1

g4
2

∂ logmð�Þ
n

∂MW

�
: ð29Þ

In the SU(3) GHU model with the bulk mass M, as was
discusses in [14], the mass eigenvalue is the solution of

�ð−1ÞnsinðMWπRÞ¼
mð�Þ

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð�Þ2

n −M2

q sin
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mð�Þ2
n −M2

q
πR

�
:

ð30Þ

Although this equation cannot be solved analytically for

mð�Þ
n , it is still possible to get the eigenvalue approximately

by utilizing the perturbative expansion in terms of MW .

Ignoring the OðM3
WÞ, mð�Þ

n is written as

mð�Þ
n ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n
R

�
2

þM2

s
þ αð�Þ

n MW þ βð�Þ
n M2

W: ð31Þ

The reason to keep the terms up to OðM2
WÞ is that the

operators in (2) suggest that the contribution to the decay
amplitude appears only at the second order of the
weak scale.

K. HASEGAWA and C. S. LIM PHYSICAL REVIEW D 94, 055021 (2016)

055021-6



From (31), we get the following approximate relations:

sinð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð�Þ2

n −M2

q
πRÞ≃ ð−1Þn

( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnRÞ2 þM2

q
ðnRÞ

αð�Þ
n ðMWπRÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnRÞ2 þM2

q
nπ

βð�Þ
n ðMWπRÞ2 −

1

2

M2

nπðnRÞ2
αð�Þ2
n ðMWπRÞ2

)
:

ð32Þ
Substituting these approximate relations in the rhs of (30), we get

mð�Þ
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mð�Þ2
n −M2

q sinð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð�Þ2

n −M2

q
πRÞ≃ ð−1Þn 1

ðnRÞ
×

�ðnRÞ2 þM2

ðnRÞ
αð�Þ
n ðMWπRÞ

þ 1

nπ

�
−
3

2

M2

ðnRÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n
R

�
2

þM2

s
αð�Þ2
n þ

��
n
R

�
2

þM2

�
βð�Þ
n

	
ðMWπRÞ2



: ð33Þ

On the other hand, the lhs of (30) is simply approximated
up to the OðM2

WÞ as

�ð−1Þn sinðMWπRÞ≃�ð−1ÞnðMWπRÞ: ð34Þ

Comparing this with (33), we get coupled equations for the

coefficients αð�Þ
n , βð�Þ

n :

ðnRÞ2 þM2

ðnRÞ2
αð�Þ
n ¼ �1; ð35Þ

−
3

2

M2

ðnRÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n
R

�
2

þM2

s
αð�Þ2
n þ

��
n
R

�
2

þM2

�
βð�Þ
n ¼ 0;

ð36Þ

which lead to

αð�Þ
n ¼ � ðnRÞ2

ðnRÞ2 þM2
; ð37Þ

βð�Þ
n ¼ 3

2

ðnRÞ2M2

½ðnRÞ2 þM2�52 : ð38Þ

We thus have obtained the approximate formula for the
mass eigenvalues,

mð�Þ
n ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n
R

�
2

þM2

s
� ðnRÞ2
ðnRÞ2 þM2

MW

þ 3

2

ðnRÞ2M2

½ðnRÞ2 þM2�52 M
2
W: ð39Þ

Then the ratio of the Yukawa coupling to the mass
eigenvalue is approximated to be

fð�Þ
n

mð�Þ
n

¼
g4
2
∂mð�Þ

n∂MW

mð�Þ
n

≃g4
2

α�n þ2βð�Þ
n MWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnRÞ2þM2
q

þαð�Þ
n MW

≃g4
2

�
� ðnRÞ2
½ðnRÞ2þM2�32þ

3ðnRÞ2M2−ðnRÞ4
½ðnRÞ2þM2�3 MW



:

ð40Þ

The first term, corresponding to the possible d ¼ 5
operator, cancels out between the contributions of two

different types of nonzero KK modes with mðþÞ
n and mð−Þ

n ,
as it should be. Thus we are left with the summation

X∞
n¼1

3ðnRÞ2M2 − ðnRÞ4
½ðnRÞ2 þM2�3 ; ð41Þ

corresponding to the contribution of the d ¼ 6 operator,
which should be UV-finite for 5D space-time. The summay
be rearranged into three terms:

X∞
n¼1

3ðnRÞ2M2 − ðnRÞ4
½ðnRÞ2 þM2�3 ¼ −

X∞
n¼1

1

ðnRÞ2 þM2

þ 5M2
X∞
n¼1

1

½ðnRÞ2 þM2�2

− 4M4
X∞
n¼1

1

½ðnRÞ2 þM2�3 : ð42Þ

The relevant formulas are the following, where the
second and the third formulas are obtained by taking a
derivative − d

da2 ¼ − 1
2a

d
da of the previous formulas:

X∞
n¼1

1

n2 þ a2
¼ −

1

2a2
þ π

2a
cothðaπÞ; ð43Þ
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X∞
n¼1

1

ðn2 þ a2Þ2 ¼ −
1

2a4
þ π

4a3
cothðaπÞ þ π2

4a2
1

sinh2ðaπÞ ; ð44Þ

X∞
n¼1

1

ðn2 þ a2Þ3 ¼ −
1

2a6
þ 3

16

π2

a4
1

sinh2ðaπÞ þ
3

16

π

a5
cothðaπÞ þ 1

8

π3

a3
cothðaπÞ
sinh2ðaπÞ : ð45Þ

By use of these formulas, the KK mode summation is performed as, with MR ¼ a,

X∞
n¼1

3ðnRÞ2M2 − ðnRÞ4
½ðnRÞ2 þM2�3 ¼ −R2

�
−

1

2a2
þ π

2a
cothðaπÞ

	
þ 5R2a2

�
−

1

2a4
þ π

4a3
cothðaπÞ þ π2

4a2
1

sinh2ðaπÞ
	

− 4R2a4
�
−

1

2a6
þ 3

16

π2

a4
1

sinh2ðaπÞ þ
3

16

π

a5
cothðaπÞ þ 1

8

π3

a3
cothðaπÞ
sinh2ðaπÞ

	

¼ π2

2
R2

1 − ðaπÞ cothðaπÞ
sinh2ðaπÞ : ð46Þ

Surprisingly, in (46) the terms with power suppression,
i.e., the terms proportional to R2

a2 and
R2π
a cothðaπÞ, turn out

to disappear completely. This means that the KK mode sum
leaves a contribution, which is exponentially suppressed for
the case πMR ¼ aπ ≫ 1:

X∞
n¼1

3ðnRÞ2M2 − ðnRÞ4
½ðnRÞ2 þM2�3 ∼ 2π2R2ð1 − πMRÞe−2πMR: ð47Þ

Thus, it has turned out that the contribution of the nonzero
KK modes of light quarks to the photonic Higgs decay is
strongly suppressed compared to the contribution of the
nonzero KK modes of the t quark by the factor e−2πMR, in
contrast to our naive expectation.
Such exponential suppression may be understood from

the operator analysis in the previous section. There we
found that the d ¼ 6 operator including the effect of the
Wilson-loop, Eq. (18), contributes to the photonic decay.
Now the exponential suppression, seen in (47), is an
inevitable consequence of the operator, since the Wilson

loop comes from the Feynman diagrams where the fermion
loop is wrapped around S1 of the extra space, where the
fermion propagator gets a suppression factor e−MR, as in the
case of the Yukawa-type potential, due to the presence of
the bulk mass M. Or, in the analogous situation of finite
temperature field theory, the factor e−MR can be understood
to correspond to the Boltzmann factor e−

M
T . A similar

exponential suppression factor was found in the effective
Higgs potential in GHU [7], which is also described by the
Wilson loop.
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