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We study bounds from perturbative unitarity in a composite two-Higgs doublet model (C2HDM) based
on the spontaneous breakdown of a global symmetry SOð6Þ → SOð4Þ × SOð2Þ at the compositeness scale
f. The eight pseudo-Nambu-Goldstone bosons (pNGBs) emerging from such a dynamics are identified as
two isospin doublet Higgs fields. We calculate the S-wave amplitude for all possible two-to-two-body
elastic (pseudo)scalar boson scatterings at energy scales

ffiffiffi
s

p
reachable at the Large Hadron Collider (LHC)

and beyond it, including the longitudinal components of weak gauge boson states as the corresponding
pNGB states. In our calculation, the Higgs potential is assumed to have the same form as that in the
elementary two-Higgs doublet model (E2HDM) with a discrete Z2 symmetry, which is expected to be
generated at the one-loop level via the Coleman-Weinberg mechanism. We find that the S-wave amplitude
matrix can be block-diagonalized with maximally 2 × 2 submatrices in a way similar to the E2HDM case as
long as we only keep the contributions from OðξsÞ and Oðξ0s0Þ in the amplitudes, where ξ ¼ v2SM=f

2 and
vSM ≃ 246 GeV, which is an appropriate approximation for our analysis. By requiring the C2HDM to
satisfy perturbative unitarity at energies reachable by the LHC, we derive bounds on its parameters such as
ξ and the masses of extra Higgs bosons present in the scenario alongside the Standard Model-like Higgs
state discovered in 2012.

DOI: 10.1103/PhysRevD.94.055017

I. INTRODUCTION

The search for additional Higgses, after the one dis-
covered so far [1,2] and the possible evidence of a new
(pseudo)scalar state with mass around 750 GeV [3], is one
of the most important tasks of Run 2 of the Large Hadron
Collider (LHC). It is widely known that extra spinless states
with or without Standard Model (SM) quantum numbers
can induce sizable tree-level effects in the couplings of the
discovered state, which have been under close scrutiny for
three years now. It is also true that direct searches for new
Higgs states, as shown by the aforementioned recent
preliminary results, could have a dramatic impact on
LHC activities. These two facts seem already remarkable
motivations to study the phenomenology of extra Higgses
at the present CERN machine.
Despite the obvious far-reaching consequences of a

discovery of even a single additional scalar, the presence
of another Higgs would not by itself be evidence for the
naturalness of the weak scale: such a defining situation
would still depend upon the whole subject. Just like for the
case of a single Higgs doublet, for which the hierarchy
problem can be explained by its pseudo-Nambu-Goldstone
boson (pNGB) nature, we would like to link the presence of

extra Higgs particles to natural theories of the Fermi scale.
In particular, we have in mind composite Higgs models,
where the mass of the lightest Higgs state is kept naturally
lighter than a new strong scale around ∼TeV by an
approximate global symmetry [4], broken by SM inter-
actions in the partial compositeness paradigm [5,6].
In the minimal composite Higgs model [7,8], the only

light scalar in the spectrum is a pNGB, surrounded by
spanned composite resonances roughly heavier by a loop
factor. The underlying symmetries protect the Higgs mass
from quantum corrections, thus giving a simple solution to
the hierarchy problem. The only robust way to expect new
light (pseudo)scalars in the spectrum is to make them also
pNGBs. Even in the case that they are not expected to be as
light as the SM Higgs, it is interesting to find a mechanism
for describing all the Higgses as pNGBs and to explain
their mass differences. Last, but not least for importance, in
the case of extra Higgs doublets with no vacuum expect-
ation value (VEV) nor couplings to quark and leptons, one
could also have the possibility to describe neutral light
states as possible composite dark matter candidates [9].
In this paper we aim at identifying among the lightest

scalars at least two Higgs doublets as this would lead to a
composite two-Higgs doublet model (C2HDM) [10]. The
latter represents the simplest natural two-Higgs doublet
alternative to supersymmetry. The composite Higgses
arising from a new dynamics at the TeV scale ultimately
drive the electroweak (EW) symmetry breaking. To include
them as pNGBs, one has basically two different and
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complementary approaches: (i) to write down an effective
Lagrangian (e.g., à la strongly interacting light Higgs [11])
invariant under SM symmetries for light composite SUð2Þ
Higgses; (ii) to explicitly impose a specific symmetry-
breaking structure containing multiple pNGBs. We take
here the second approach. In particular, we will study in
detail models based on the spontaneous global symmetry
breaking of SOð6Þ → SOð4Þ × SOð2Þ [10]. We will focus
on their predictions for the structure of the (pseudo)scalar
spectrum and the deviations of their couplings from those
of a generic renormalizable elementary two-Higgs doublet
model (E2HDM). In the f → ∞ limit the pNGB states are
in fact identified with the physical Higgs states of doublet
scalar fields of the E2HDM.1 Deviations from the E2HDM
are parametrized by ξ ¼ v2SM=f

2, where vSM is the SM
Higgs VEV.
Once the strong sector is integrated out, the pNGB

Higgses, independently of their microscopic origin, are
described by a nonlinear σ model associated to the coset.
We construct their effective low-energy Lagrangian accord-
ing to the prescription developed by Callan, Coleman,
Wess, and Zumino (CCWZ) [13], which makes only a few
specific assumptions about the strong sector, namely, the
global symmetries, their pattern of spontaneous breaking,
and the sources of explicit breaking (we assume that they
come from the couplings of the strong sector with the SM
fields). The scalar potential is in the end generated by loop
effects and, at the lowest order, is mainly determined by the
free parameters associated to the top sector [10].
Here we will focus on the unitarity properties of a

C2HDM,2 namely, we will derive the bounds on the
parameters of the model by requiring perturbative unitarity
to hold at the energies reachable by the LHC. In fact,
contrary to the E2HDM, which is renormalizable, the
C2HDM is an effective theory. The pNGB nature of the
Higgses leads to a modification of their couplings to matter
with respect to the E2HDM case and, as a consequence,
forces a nonvanishing s dependence of the scattering
amplitudes. This means that the C2HDM is not unitary
for energies above a critical value or, alternatively, one
needs to consider other new physics contributions (e.g.,
new composite fermions and gauge bosons) to make the
model unitary above that energy scale. Since the fermion
content of the model does not play a role in the present
investigation, we will not specify the fermion representa-
tion and we will not calculate the Higgs potential generated
by the radiative corrections. Instead, we will assume the
same general form of the Higgs potential as in the E2HDM
with a Z2 symmetry, the latter imposed in order to avoid
flavor-changing neutral currents (FCNCs) at the tree level

[15]. Therefore, in the energy region where the E2HDM
and C2HDM are both unitary, it is interesting to compare
the bounds on the additional Higgs masses. In fact, due to a
compensation amongst mass- and energy-dependent con-
tributions, we find that regions not allowed in the E2HDM
are instead permitted in the C2HDM for the most general
configuration of their parameter spaces.
The paper is organized as follows. In Sec. II we describe

the C2HDM based on SOð6Þ=SOð4Þ × SOð2Þ. We sepa-
rately discuss two scenarios: the active one in which both
Higgs doublet fields acquire a VEV and the inert one in
which only one does. In Sec. III, the unitarity properties of
the C2HDM are discussed by calculating all the two-to-
two-body (pseudo)scalar boson scattering amplitudes and
by deriving constraints through all these channels.
Conclusions are drawn in Sec. IV. Some technical details
of the derivation of the pNGB kinetic terms are given in the
Appendix.

II. THE MODEL

A. Higgs doublets as pNGBs

We first discuss how we obtain two isospin scalar
doublets from the spontaneous breakdown of the global
symmetry, i.e., SOð6Þ → SOð4Þ × SOð2Þ. In order to
clarify this, we introduce the following fifteen SOð6Þ
generators:

Ta
L;R ¼ −

i
2

�
1

2
ϵabcðδbi δcj − δbjδ

c
i Þ ∓ ðδai δ4j − δajδ

4
i Þ
�
;

TS ¼ −
iffiffiffi
2

p ðδ5i δ6j − δ5jδ
6
i Þ;

Tâ
1 ¼ −

iffiffiffi
2

p ðδâi δ5j − δâjδ
5
i Þ; Tâ

2 ¼ −
iffiffiffi
2

p ðδâi δ6j − δâjδ
6
i Þ;

with ða; b; c ¼ 1− 3Þ; ði; j ¼ 1− 6Þ; ðâ ¼ 1− 4Þ:
ð1Þ

The above generators are classified into the seven unbroken
generators Ta

L;R and TS and the eight broken generators Tâ
1

and Tâ
2 . We can confirm that Ta

L;R and TS are the
subalgebras which generate the SOð4Þ × SOð2Þ subgroup
by looking at the following commutation relations:

½Ta
L; T

b
L� ¼ iϵabcTc

L; ½Ta
R; T

b
R� ¼ iϵabcTc

R;

½Ta
L; T

b
R� ¼ ½Ta

L; TS� ¼ ½Ta
R; TS� ¼ 0; ð2Þ

½Ta
L; TΦα

� ¼ −
1

2
σaTΦα

; ½T3
R; TΦα

� ¼ −
1

2
TΦα

; ð3Þ

where

TΦα
¼

�
T2
α þ iT1

α

T4
α − iT3

α

�
; α ¼ 1; 2: ð4Þ

1For an updated review of the theory and phenomenology of
E2HDMs see Ref. [12].

2For the discussion of unitarity in minimal composite Higgs
models see Ref. [14].
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Equation (2) tells us that the commutation relations among
Ta
L;R and TS are closed plus that Ta

L (Ta
R) generates the

SUð2ÞL (SUð2ÞR) subgroup of SOð4Þ which is identified
as the custodial symmetry of the SM Higgs sector.
Furthermore, Eq. (3) shows that TΦα

transforms as the
SUð2ÞL doublet with charge þ1=2.3 Therefore the broken
generators are associated with the pNGBs, transforming as
a (4, 2) of SOð4Þ × SOð2Þ.
We then introduce the following two SUð2ÞL doublet

scalar fields associated with TΦα
as pNGBs:

Φα ≡ 1ffiffiffi
2

p
�
h2α þ ih1α
h4α − ih3α

�
≡

� ωþ
α

vαþhαþizαffiffi
2

p

�
; ð5Þ

where the vα’s are the VEVs of Φα. The relation among v1,
v2, and the Fermi constant GF will be discussed in Sec. II B.
Notice that, in order to assign the right hypercharge to
fermions, one also has to introduce an extra Uð1ÞX. The
electric charge Q will be then defined as usual by Q ¼
T3
L þ Y with the hypercharge Y given by Y ¼ T3

R þ X,
whereX is theUð1ÞX charge. In this paper, we do not discuss
the fermion sector which is not relevant to the following
analysis, so we can omit this extra Uð1ÞX group.

B. Kinetic Lagrangian

In general, once the coset space has been chosen, the
low-energy Lagrangian is fixed at the two-derivative level,
the basic ingredient being the pNGB matrix which trans-
forms nonlinearly under the global group.
The kinetic Lagrangian invariant under the SOð6Þ

symmetry can be constructed by the analogue of the
construction in nonlinear sigma models developed in
Ref. [13] as

Lkin ¼
f2

4
ðdâαÞμðdâαÞμ; ð6Þ

where

ðdâαÞμ ¼ itrðU†DμUTâ
αÞ: ð7Þ

Here U is the pNGB matrix:

U ¼ exp

�
i
Π
f

�
;

with Π≡ ffiffiffi
2

p
hâαTâ

α ¼ −i

0
B@

04×4 hâ1 hâ2
−hâ1 0 0

−hâ2 0 0

1
CA: ð8Þ

In Eq. (7), the covariant derivative Dμ is given by

Dμ ¼ ∂μ − igTa
LW

a
μ − ig0YBμ: ð9Þ

The expressions for ðdâαÞμ up to Oð1=fÞ are given in the
Appendix.
In order to see how the gauge boson masses are

generated, let us consider the fourth components of the
Higgs fields:

hâ1 ¼ ð0; 0; 0; ~h1Þ; hâ2 ¼ ð0; 0; 0; ~h2Þ; ð10Þ

with

~h1 ¼ h1 þ v1; ~h2 ¼ h2 þ v2: ð11Þ

In this case, the matrix U defined in Eq. (8) takes a simple
form,

U ¼

0
BBBBB@

14×4 −
�
1 − cos ~h

f

�
44

~hâ1
~h
sin ~h

f

~hâ2
~h
sin ~h

f

−
~hâ1
~h
sin ~h

f 1 −
~h21
~h2

�
1 − cos ~h

f

�
− ~h1 ~h2

~h2

�
1 − cos ~h

f

�
−

~hâ2
~h
sin ~h

f − ~h1 ~h2
~h2

�
1 − cos ~h

f

�
1 −

~h22
~h2

�
1 − cos ~h

f

�

1
CCCCCA; ð12Þ

where

~h≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~h21 þ ~h22

q
: ð13Þ

The two-gauge-boson terms are extracted from Eqs. (6),
(7), and (12) as

Lmass
kin ¼ f2

8
ð2g2Wþ

μ W−μ þ g2ZZμZμÞsin2
~h
f
; ð14Þ

and thus the gauge boson masses are given by

m2
W ¼ g2

4
f2sin2

v
f
; m2

Z ¼ g2Z
4
f2sin2

v
f
; ð15Þ

where v2 ≡ v21 þ v22 and gZ ¼ g=cos θW , with θW being the
weak mixing angle. Notice here that the VEV v is different

3The overall minus sign is a convention as the T3
R charge

should be þ1=2 to get Y ¼ þ1=2 and Q ¼ þ1 for the upper
component of the Higgs doublet.
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from the one vSM in the SM as long as we take a finite value
of f. The relationship among v, vSM, and GF is expressed
as follows:

v2SM ≡ 1ffiffiffi
2

p
GF

¼ f2sin2
v
f
≃ ð246 GeVÞ2: ð16Þ

The ratio of the two VEVs is defined by tan β ¼ v2=v1.
Similarly to the E2HDM, we can define the so-called

Higgs basis [16] in which only one of the two doublet fields
contains the VEV v and the Nambu-Goldstone states G�

and G0 absorbed into the longitudinal components of W�
and Z bosons, respectively:

�
Φ1

Φ2

�
¼RðβÞ

�
Φ

Ψ

�
; RðxÞ¼

�
cosx −sinx

sinx cosx

�
; ð17Þ

where

Φ ¼
� Gþ

vþh0
1
þiG0ffiffi
2

p

�
; Ψ ¼

� Hþ
h0
2
þiAffiffi
2

p

�
: ð18Þ

In the above expressions, H� and A are the physical
charged and CP-odd neutral Higgs boson, respectively,
while h01 and h02 are the CP-even Higgs bosons which in
general can be mixed with each other. In this basis, the two-
derivative terms for scalar bosons are extracted up to
Oð1=f2Þ:

L2-der
kin ¼

�
1 −

ξ

3

��
j∂μGþj2 þ 1

2
ð∂μG0Þ2 þ 1

2
ð∂μh02Þ2

�

þ j∂μHþj2 þ 1

2
ð∂μAÞ2 þ

1

2
ð∂μh01Þ2; ð19Þ

where

ξ ¼ v2SM
f2

: ð20Þ

We see that the kinetic terms for G�, G0, and h02 are not in
canonical form and we need to rescale the fields:

Gþ →

�
1 −

ξ

3

�
−1=2

Gþ; G0 →

�
1 −

ξ

3

�
−1=2

G0;

h02 →
�
1 −

ξ

3

�
−1=2

h02: ð21Þ

After this shift, we can define the mass eigenstates for
the CP-even scalar bosons by introducing the mixing angle
θ as

�
h01
h02

�
¼ RðθÞ

�
h

H

�
; ð22Þ

where h is assumed to be the observed Higgs boson with a
mass of 125 GeV. The mixing angle θ is determined by the
mass matrix for the CP-even states calculated from the
Higgs potential, which will be discussed in the next
subsection.

C. Higgs potential

The Higgs potential is generated through the Coleman-
Weinberg (CW) mechanism [17] at loop levels. There are
two types of contributions to the potential, coming from
gauge boson loops and fermion loops. The former con-
tribution can be calculated without any ambiguities and it
generates a positive squared-mass term in the potential [7].
Thus, EW symmetry breaking does not occur by the gauge
loops alone. Fermion loops can provide a negative con-
tribution to the squared mass term, so their effect is
essentially important to trigger EW symmetry breaking.
However, the contribution from fermion loops depends on
the choice of the representation of fermions.
The structure of the Higgs potential in the

SOð6Þ=SOð4Þ × SOð2Þ model has been studied in
Ref. [10] assuming several representations of fermion
fields. They also assumed that the explicit breaking of
the global symmetry is associated with the couplings of the
strong sector to the SM fields, that is, gauge and Yukawa
interactions. This assumption, dictated by minimality,
allows one to parametrize the Higgs potential at each given
order in the fermion and gauge couplings in terms of a
limited number of coefficients. If this assumption is
relaxed, the parameter space of the C2HDM could be
significantly enlarged. The form of the potential they
obtained is given by the general E2HDM one, but each
of the parameters is expressed in terms of those in the
strong sector (mainly associated to the top dynamics). In
our paper, however, we do not explicitly calculate the CW
potential and we do not specify the fermion representations,
making our analysis applicable to different choices of them.
In fact, while the coupling of the vector bosons is fixed by
gauge invariance, more freedom exists in the fermion sector
and, to specify the model, one must fix the quantum
numbers of the strong sector operators which mix with
the SM fermions, in particular with the top quark. The CW
potential clearly depends on these choices. Instead of
performing the explicit calculation, we assume here the
same form of the Higgs potential as that in the E2HDM.
Our results on the unitarity properties of the C2HDM will
be expressed as bounds on the masses of the Higgses which
are free parameters in the E2HDM. Once the model is
explicitly specified, we will have the possibility to check,
by calculating the CW potential, if the composite Higgs
spectrum of that particular configuration satisfies the
unitarity bounds.
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In order to avoid FCNCs at the tree level, a discrete Z2

symmetry [15] is often imposed on the potential, which is
what we also do here.4 Under the Z2 symmetry, the two
doublet fields are transformed as ðΦ1;Φ2Þ → ðþΦ1;−Φ2Þ.
This symmetry can also avoid a large contribution to the
EW T parameter which could emerge in C2HDMs from
the dimension-six operator in the kinetic Lagrangian.5

Depending on the nature of the Z2 symmetry, i.e., softly
broken or unbroken, the properties of the Higgs bosons can
drastically change. In the following, we first discuss the
softly broken Z2 case and then we consider the unbroken
case. For the latter case, the VEVof Φ2 must be taken to be
zero to avoid the spontaneous breakdown of the Z2

symmetry. In analogy with the E2HDM we will refer to
the former scenario as the active C2HDM, while the latter
describes the inert C2HDM.

1. Active C2HDM

The Higgs potential under the gauge symmetry
SUð2ÞL ×Uð1ÞY with the softly broken Z2 symmetry is
given by

VðΦ1;Φ2Þ ¼ m2
1Φ

†
1Φ1 þm2

2Φ
†
2Φ2 −m2

3ðΦ†
1Φ2 þ H:c:Þ

þ 1

2
λ1ðΦ†

1Φ1Þ2 þ
1

2
λ2ðΦ†

2Φ2Þ2

þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ þ λ4jΦ†
1Φ2j2

þ 1

2
λ5½ðΦ†

1Φ2Þ2 þ H:c:�; ð23Þ

where m2
3 and λ5 are generally complex, but we assume

they are real for simplicity. It is useful to rewrite the soft-
breaking Z2 parameter m2

3 through M2 [19] as follows:

M2 ¼ m2
3

sβcβ
; ð24Þ

where sβ ¼ sin β and cβ ¼ cos β. In the following, we use
the shorthand notations sX ¼ sinX and cX ¼ cosX for an
arbitrary angle X.
The tadpole conditions for h1 and h2 fields, assuming

v1 ≠ 0 and v2 ≠ 0, are given by

m2
1 þ

1

2
v2ðλ1c2β þ λ345s2βÞ −M2s2β ¼ 0; ð25Þ

m2
2 þ

1

2
v2ðλ2s2β þ λ345c2βÞ −M2c2β ¼ 0; ð26Þ

where λ345 ¼ λ3 þ λ4 þ λ5. The mass matrices for the
charged states M2

� in the basis of (ω�
1 , ω

�
2 ) and the CP-

odd scalar states M2
odd in the basis of (z1, z2) are

diagonalized as

RTðβÞM2
�RðβÞ ¼ diagð0; m2

H�Þ;
RTðβÞM2

oddRðβÞ ¼ diagð0; m2
AÞ; ð27Þ

where m2
H� and m2

A are the squared masses of H� and A:

m2
H� ¼ M2 −

v2

2
ðλ4 þ λ5Þ; m2

A ¼ M2 − v2λ5: ð28Þ

The massless states correspond to the modes G� and G0.
The mass matrix for the CP-even scalar states is also
calculated in the basis of (h01; h

0
2) as

M2
even ¼

� ðMevenÞ211 ðMevenÞ212
ðMevenÞ212 ðMevenÞ222

�
; ð29Þ

where each of matrix elements is expressed by

ðMevenÞ211 ¼ v2ðλ1c4β þ λ2s4β þ 2λ345c2βs
2
βÞ; ð30Þ

ðMevenÞ222¼
�
1þ ξ

3

�
½M2þv2ðλ1þλ2−2λ345Þs2βc2β�; ð31Þ

ðMevenÞ212 ¼ v2
�
1þ ξ

6

�
½−λ1c2β þ λ2s2β þ c2βλ345�sβcβ:

ð32Þ

This matrix can be diagonalized by the rotation RðθÞ
introduced in Eq. (22) as

m2
h ¼ c2θðMevenÞ211 þ s2θðMevenÞ222 þ 2sθcθðMevenÞ212; ð33Þ

m2
H ¼ s2θðMevenÞ211 þ c2θðMevenÞ222 − 2sθcθðMevenÞ212; ð34Þ

tan 2θ ¼ 2ðMevenÞ212
ðMevenÞ211 − ðMevenÞ222

: ð35Þ

Now, we can rewrite all the λi parameters of the potential
(23) in terms of the masses of the physical Higgs bosons
and the mixing angle θ as follows:

4In Ref. [10], the Z2 symmetry (Φ1 → þΦ1 and Φ2 → −Φ2) is
referred to as the C2 symmetry whose transformation can be
expressed by a diagonal 6 × 6 matrix form acting on the 6 × 6
pNGB matrix given in Eq. (8).

5The issue of anomalous contribution to the T parameter and to
FCNCs in C2HDMs was faced also in Ref. [18] where they
discussed T-safe models based on different cosets, in particular
SO(9)/SO(8).
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λ1 ¼
1

v2c2β

�
m2

hc
2
βþθ þm2

Hs
2
βþθ −M2s2β

þ ξ

3
sβðm2

hcβþθsθ −m2
HsβþθcθÞ

�
; ð36Þ

λ2 ¼
1

v2s2β

�
m2

hs
2
βþθ þm2

Hc
2
βþθ −M2c2β

−
ξ

3
cβðm2

hsβþθsθ þm2
HcβþθcθÞ

�
; ð37Þ

λ3 ¼
1

v2

�
2sβþθcβþθ

s2β
ðm2

h −m2
HÞ þ 2m2

H�

−M2 −
ξ

3s2β
ðm2

hsθc2βþθ −m2
Hcθs2βþθÞ

�
; ð38Þ

λ4 ¼
1

v2
ðM2 þm2

A − 2m2
H�Þ; ð39Þ

λ5 ¼
1

v2
ðM2 −m2

AÞ: ð40Þ

There are in total nine independent parameters which can
be expressed as mH, mA, mH� , cos θ, tan β, M2, ξ (or f), v,
and mh. The latter two parameters will be fixed in our
analysis by requiringmh ¼ 125 GeV and vSM ¼ 246 GeV.

2. Inert C2HDM

The Higgs potential is given as in Eq. (23) without the
m2

3 term. Because of the absence of the VEVof Φ2, we have
only one tadpole condition for m1, and the m2 parameter
will set the scale for the mass of the inert Higgs. Thus, the
mass relations are the following:

m2
H� ¼ m2

2 þ
υ2

2
λ3; ð41Þ

m2
A ¼ m2

2 þ v2

2
ðλ3 þ λ4 − λ5Þ; ð42Þ

m2
H ¼

�
1þ ξ

3

��
m2

2 þ v2

2
λ345

�
; ð43Þ

m2
h ¼ λ1v2: ð44Þ

From the above four relations, the λ1, λ3, λ4, and λ5
parameters can be rewritten in terms of the four mass
parameters and m2

2:

λ1 ¼
m2

h

v2
; ð45Þ

λ3 ¼
2

v2
ðm2

H� −m2
2Þ; ð46Þ

λ4 ¼
1

v2

�
m2

A − 2m2
H� þm2

H

�
1 −

ξ

3

��
; ð47Þ

λ5 ¼
1

v2

�
m2

H

�
1 −

ξ

3

�
−m2

A

�
: ð48Þ

We note that the λ2 parameter is not determined in terms of
the Higgs masses, just like the m2

2 parameter.
The eight independent parameters in the potential can be

expressed as mH, mA, mH� , m2
2, λ2 and ξ (or f), v, and mh.

Similar to the active case, mh and v will be fixed by
125 GeV and by requiring vSM ¼ 246 GeV, respectively.

III. UNITARITY BOUNDS

In this section, we discuss the bound from perturbative
unitarity in our C2HDM. We consider all possible two-to-
two-body bosonic elastic scatterings. The procedure to
obtain the unitarity bound is similar to that in elementary
models such as the SM [20] and E2HDM [21–25]. Namely,
we compute the S-wave amplitude matrix, derive its
eigenvalues xi, and then impose the following criterion
[26] for each of these:

jReðxiÞj ≤ 1=2: ð49Þ

The most important difference between the unitarity
bound in elementary models and that in composite models
is that there is a squared energy dependence in the S-wave
amplitude for the latter. This is exactly canceled in
elementary models among the diagrams with the gauge
boson mediation, the Higgs boson mediation, and the
contact interactions. In composite models, however, this
cancellation does not work, because the sum rule of the
Higgs-gauge-gauge-type couplings is modified from that in
the elementary ones. For example, in the E2HDM, the
squared sum of the hVV andHVV (V ¼ W, Z) couplings is
the same as the squared hSMVV coupling in the SM, while
in the C2HDM, it is modified by the factor (1 − ξ). The
energy dependence of the S-wave amplitudes leads to
unitarity violation and asks for an ultraviolet (UV) com-
pletion of the C2HDM. The study of the unitarity bounds in
this effective theory therefore gives an indication of the
scale at which the onset of other effects of the strong sector
become relevant.

A. The Wþ
LW

−
L → Wþ

LW
−
L reference process

In order to clearly show the difference between pertur-
bative unitarity properties in the E2HDM and those in the
C2HDM, let us calculate the elastic scattering of the
longitudinal component of the W-boson scattering, i.e.,
Wþ

LW
−
L → Wþ

LW
−
L, in the active case.

The contribution from the diagrams without the Higgs
bosons is calculated as in the SM,
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MðWþ
LW

−
L → Wþ

LW
−
LÞgauge ¼

s
2v2SM

ð1 − cϕÞ −
g2Z
4

�
ð2cos2θW − 1Þð1þ cϕÞ − 2tan2

ϕ

2

�
þOðs−1Þ; ð50Þ

where ϕ is the scattering angle and s is the squared center-of-mass (CM) energy. The contribution from the Higgs boson
mediation (h and H) is given by

MðWþ
LW

−
L → Wþ

LW
−
LÞHiggs ¼ −

s
2v2SM

ð1 − cϕÞð1 − ξÞ − 2

v2SM
ð1 − ξÞðm2

hc
2
θ þm2

Hs
2
θÞ þOðs−1Þ: ð51Þ

Thus, in the total amplitude the s dependence appears which vanishes in the limit of ξ → 0:

MðWþ
LW

−
L → Wþ

LW
−
LÞtot ¼

sξ
2v2SM

ð1 − cϕÞ −
2

v2SM
ðm2

hc
2
θ þm2

Hs
2
θÞð1 − ξÞ þOðg2; s−1Þ: ð52Þ

The S-wave amplitude a0, defined by

a0 ¼
1

32π

Z
1

−1
d cosϕM ¼ −

1

32π

Z
0

π
dϕ sinϕM; ð53Þ

is calculated for the Wþ
LW

−
L → Wþ

LW
−
L process as

a0ðWþ
LW

−
L → Wþ

LW
−
LÞ ¼

s
32πv2SM

ξ −
1

8πv2SM
ðm2

hc
2
θ þm2

Hs
2
θÞð1 − ξÞ þOðg2; s−1Þ: ð54Þ

Therefore, S-matrix unitarity is broken at a certain energy scale as long as we take ξ ≠ 0.
We expect that exactly the same result as in Eq. (54), up to Oðs0Þ, is obtained by using the equivalence theorem [27], in

which theW�
L mode is replaced by the Nambu-Goldstone modeG�. Let us check this. There are three relevant diagrams for

the amplitude ðGþG− → GþG−Þ, i.e., the contact diagram (denoted byMc), and the s- and t-channel diagrams (denoted by
Ms and Mt, respectively) with the h and H exchanges. Each of these diagrams is calculated as

McðGþG− → GþG−Þ ¼ s
2
ð1 − cϕÞðgG�G�;G∓G∓ − gGþG−;GþG−Þ þ λGþG−GþG− ; ð55Þ

MsðGþG− → GþG−Þ ¼ −
X
φ¼h;H

1

s −m2
φ

�
s
2
ð2gG�φ;G∓ − gGþG−;φÞ þ λGþG−φ

�
2

; ð56Þ

MtðGþG− → GþG−Þ ¼ −
X
φ¼h;H

1

t −m2
φ

�
t
2
ð2gG�φ;G∓ − gGþG−;φÞ þ λGþG−φ

�
2

: ð57Þ

In the above expressions, we introduced the scalar trilinear λabc and quartic λabcd couplings from the potential as well as
the scalar trilinear gab;c and quartic gab;cd couplings with two derivatives coming from the kinetic Lagrangian. They are
defined by

λabcd ≡ −
∂4V

∂a∂b∂c∂d ; λabc ≡ −
∂3V

∂a∂b∂c ; ð58Þ

and

gab;cd ≡ ∂4Lkin

∂ð∂μaÞ∂ð∂μbÞ∂c∂d ; gab;c ≡ ∂3Lkin

∂ð∂μaÞ∂ð∂μbÞ∂c : ð59Þ

While gab;cd and gab;c are proportional to ξ=v2SM, the λabcd and λabc couplings contain ξ
0 terms plus corrections proportional

to ξ. These scalar couplings appearing in Eqs. (55)–(57) are given by
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λGþG−GþG− ¼ −
2

v2SM

�
1þ ξ

3

�
ðm2

hc
2
θ þm2

Hs
2
θÞ; ð60Þ

λGþG−h ¼ −
m2

h

vSM

�
1þ ξ

6

�
cθ; λGþG−H ¼ m2

H

vSM

�
1þ ξ

6

�
sθ; ð61Þ

gGþG−;GþG− ¼ −
ξ

3v2SM
; gG�G�;G∓G∓ ¼ 2ξ

3v2SM
; ð62Þ

gGþG−;h ¼ −
2ξ

3vSM
cθ; gG�h;G∓ ¼ ξ

3vSM
cθ; ð63Þ

gGþG−;H ¼ 2ξ

3vSM
sθ; gG�H;G∓ ¼ −

ξ

3vSM
sθ: ð64Þ

By substituting in Eqs. (55)–(57), we find that the total amplitude of theGþG− → GþG− process is exactly the same as that
of the Wþ

LW
−
L → Wþ

LW
−
L one given in Eq. (52). In the following, we calculate all the other two-to-two-body scattering

channels using the equivalence theorem.

B. Generic formulas for the two-to-two-body (pseudo)scalar boson scatterings

We discuss here the general two-to-two-body scattering process denoted by AB → CD with A, B, C, and D being
(pseudo)scalar bosons. There are contributions from contact Mc, s-channel Ms, t-channel Mt, and u-channel Mu
diagrams as shown in Fig. 1. Each of the amplitudes is calculated in the following way:

McðAB → CDÞ ¼ −ðgAB;CDpAB þ gCD;ABpCDÞ þ gAC;BDpAC þ gBD;ACpBD þ gAD;BCpAD þ gBC;ADpBC þ λABCD; ð65Þ

MsðAB → X → CDÞ ¼ −
1

s −m2
X
ðgXA;BpXA þ gBX;ApBX − gAB;XpAB þ λABXÞ

× ðgXC;DpXC þ gDX;CpDX − gCD;XpCD þ λCDXÞ; ð66Þ

MtðAB → X → CDÞ ¼ −
1

t −m2
X
ðgAC;XpAC þ gXA;CpXA − gCX;ApCX þ λACXÞ

× ðgBD;XpBD − gXB;DpXB þ gDX;BpDX þ λBDXÞ; ð67Þ

MuðAB → X → CDÞ ¼ −
1

u −m2
X
ðgAD;XpAD þ gXA;DpXA − gDX;ApDX þ λADXÞ

× ðgBC;XpBC − gXB;CpXB þ gCX;BpCX þ λBCXÞ; ð68Þ

where pij ¼ pi · pj. In the above expression, λabc and λabcd are defined in Eq. (58) while ga;bc and gab;cd are defined in
Eq. (59). The four-momenta of the particles A, B, C, and D are expressed as

pμ
i ¼ ðEi; ~piÞ; ði ¼ A; B;C;DÞ; ð69Þ

with Ei and ~pi being the energy and three-momentum of the particle i, respectively. In the CM frame, these quantities are
expressed by

EA ¼
ffiffiffi
s

p
2

ð1þ xA − xBÞ; EB ¼
ffiffiffi
s

p
2

ð1þ xB − xAÞ; ð70Þ

EC ¼
ffiffiffi
s

p
2

ð1þ xC − xDÞ; ED ¼
ffiffiffi
s

p
2

ð1þ xD − xCÞ; ð71Þ

~pA ¼ ð0; 0; pinÞ; ~pC ¼ ðpoutsϕ; 0; poutcϕÞ; ~pB ¼ −~pA; ~pD ¼ −~pC; ð72Þ
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and

pin ¼
ffiffiffi
s

p
2

λ1=2ðxA; xBÞ; pout ¼
ffiffiffi
s

p
2

λ1=2ðxC; xDÞ; xi ¼
m2

i

s
: ð73Þ

The two-body phase-space function λ is given by

λðx; yÞ ¼ 1þ x2 þ y2 − 2xy − 2x − 2y: ð74Þ

In the massless limit of the external particles, i.e., xi → 0, we obtain the simpler form

Mc → −
s
2

�
gAB;CD þ gCD;AB −

1 − cϕ
2

ðgAC;BD þ gBD;ACÞ −
1þ cϕ

2
ðgAD;BC þ gBC;ADÞ

�
þ λABCD; ð75Þ

Ms → −
s2

4ðs −m2
XÞ

�
gXA;B þ gBX;A − gAB;X þ 2

s
λABX

�
× ðA → C;B → DÞ;

¼ −
1

2
ðgXA;B þ gBX;A − gAB;XÞλCDX þ ½ðA; BÞ ↔ ðC;DÞ� þOðs−1Þ; ð76Þ

Mt → −
t2

4ðt −m2
XÞ

�
gAC;X − gXA;C − gCX;A −

2

t
λACX

�
× ðA → B;C → DÞ;

¼ −
1

2
ðgAC;X − gXA;C − gCX;AÞλBDX þ ½ðA;CÞ ↔ ðB;DÞ� þOðs−1Þ; ð77Þ

Mu → −
u2

4ðu −m2
XÞ

�
gAD;X − gXA;D − gDX;A −

2

u
λADX

�
× ðA → B;D → CÞ

¼ −
1

2
ðgAD;X − gXA;D − gDX;AÞλBCX þ ½ðA;DÞ ↔ ðB;CÞ� þOðs−1Þ: ð78Þ

From the above expressions, it is clear that the S-wave
amplitude can be classified into three types of contributions
up to Oðs0Þ: i.e., (i) terms proportional to sξ, (ii) terms
proportional to s0ξ0, and (iii) terms proportional to s0ξ. The
contributions (i) and (ii) come only from the gAB;CD and
λABCD coupling, respectively, in the scalar contact inter-
action diagram as it is seen in Eq. (75). The contribution
(iii) comes from the cross term gA;BC × λABC in the s-, t-,
and u-channel diagrams and also from the contact diagram
in Eq. (65). When we neglect the contribution (iii), the
calculation of the S-wave amplitude becomes extremely
simple for the following reason. In this approximation, the
propagator of (pseudo)scalar bosons and the invariant mass

term from the product of the momentum pij do not enter the
calculations. We thus can choose any basis of scalar states.
In other words, the eigenvalues of the S-wave matrix do not
depend on the mixing angles β and θ for the scalar bosons.6

Clearly, the simplest way to calculate the S-wave matrix is
by using the weak eigenbasis and we adopt it to calculate
the S-wave amplitudes for all the scattering states in the
next subsection.
Before calculating all the scattering amplitudes, let us

consider another particular process, e.g., HþH− → HþH−,
again in the active case, in order to see if the Oðξs0Þ term
can be relevant. Using Eqs. (65)–(67), we obtain the
amplitude for the HþH− → HþH− process as follows:

MðHþH− → HþH−Þ ¼ s
2v2SM

ξð1þ cϕÞ −
m2

H�

v2SM
ξ

�
2

3
þ 4cϕ

�
þ λHþH−HþH− −

X
φ¼h;H

λ2HþH−φ

�
1

s −m2
φ
þ 1

t −m2
φ

�
ð79Þ

6Even the shift of scalar fields given in Eq. (21) is not needed in this calculation, because the ξ factor from the shift providesOðξ2sÞ or
Oðξs0Þ contributions.
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¼ s
2v2SM

ξð1þ cϕÞ −
m2

H�

v2SM
ξ

�
2

3
þ 4cϕ

�
þ λHþH−HþH− þOðs−1Þ; ð80Þ

and the couplings relevant to this process are given by

λHþH−HþH− ¼ 2

v2SM

�
1 −

ξ

3

�
½4cot22βM2 − ðcθ þ 2 cot 2βsθÞ2m2

h − ðsθ − 2 cot 2βcθÞ2m2
H�

þ 4c2β
3v2SMs

2
2β

ξ½ðcθs2β þ 2sθc2βÞsθm2
h þ ð2cθc2β − sθs2βÞcθm2

H�; ð81Þ

λHþH−h ¼
1

vSM

�
2s2βþθ

s2β
M2 − ðcθ þ 2sθ cot 2βÞm2

h − 2cθm2
H�

�

þ ξ

vSM

�
−
cθ
3
M2 þ 1

6
ðcθ þ 4sθ cot 2βÞm2

h þ
cθ
3
m2

H�

�
; ð82Þ

λHþH−H ¼ 1

vSM

�
2c2βþθ

s2β
M2 þ ðsθ − 2cθ cot 2βÞm2

H þ 2sθm2
H�

�

þ ξ

vSM

�
sθ
3
M2 þ 1

6
ð−sθ þ 4cθ cot 2βÞm2

H −
sθ
3
m2

H�

�
; ð83Þ

and

gHþH−;HþH− ¼ −
ξ

3v2SM
; gH�H�;H∓H∓ ¼ 2ξ

3v2SM
; ð84Þ

gHþH−;h ¼ gH�h;H∓ ¼ gHþH−;H ¼ gH�H;H∓ ¼ 0: ð85Þ

Notice that the contribution from the s and t channels with
h and H mediation only give the Oðs−1Þ term in the
HþH− → HþH− amplitude due to the absence of the
trilinear ga;bc couplings as shown in Eq. (85). In contrast,
the s- and t-channel contributions to the GþG− → GþG−

amplitude do give Oðξs0Þ terms. In addition, the second
term in Eq. (80) comes from the mass dependence of the

product of the four momenta [see Eqs. (70)–(73)] in the
contact interaction diagram.
Let us now show some numerical results for the S-wave

amplitudes of the GþG− → GþG− and HþH− → HþH−

scatterings. First, we show the results by neglecting the
Oðs−1Þ terms in order to fully see the effect of the Oðξs0Þ
contributions. In Figs. 2 and 3, we plot the absolute value of
a0ðGþG− → GþG−Þ as a function of

ffiffiffi
s

p
in the case of

cos θ ¼ 1 and cos θ ¼ 0.99, respectively. In both figures,
the solid (dashed) curves show the case with (without)
Oðξs0Þ contributions and the scale f is taken to be 500 GeV
(black), 750 GeV (blue), and 1000 GeV (red). In Fig. 3, we

FIG. 1. Feynman diagrams for the two-to-two-body (pseudo)
scalar boson scatterings. The arrow with each dashed line shows
the momentum flow of each particle.
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FIG. 2. S-wave amplitude for the GþG− → GþG− process as a
function of

ffiffiffi
s

p
in the case of cos θ ¼ 1 and f ¼ 500 GeV (black),

750 GeV (blue), and 1000 GeV (red). The solid (dashed) curves
are the result with (without) Oðξs0Þ terms.
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takemH ¼ 500, 1000, and 1500 GeV in the left, center, and
right panels, respectively. As expected, the S-wave ampli-
tude grows as

ffiffiffi
s

p
increases because of the OðξsÞ terms, so

that the unitarity constraint will give an upper limit on
ffiffiffi
s

p
for a given set of the parameters with ξ ≠ 0. We see that the
difference between the solid and dashed curves for each
fixed value of f is negligibly small for cos θ ¼ 1 because
the difference only comes from the m2

h term, as shown in
Eq. (54), whereas the mH dependence vanishes. For the

case with cos θ ¼ 0.99, a slightly larger difference appears,
especially for a larger value of mH, as expected from
Eq. (54). Although a further larger difference is expected to
appear as θ increases for a fixed value of mH, such a
scenario is disfavored by the current LHC data [28,29],
which causes a large deviation in the hVV coupling from
the SM value. So, in summary, we can safely neglect the
Oðξs0Þ contributions in the S-wave amplitude for the
GþG− → GþG− process.
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FIG. 3. S-wave amplitude for the GþG− → GþG− process as a function of
ffiffiffi
s

p
in the case of cos θ ¼ 0.99 and f ¼ 500 GeV (black),

750 GeV (blue), and 1000 GeV (red). The solid (dashed) curves are the result with (without) Oðξs0Þ terms. The left, center, and right
panels show the result for mH ¼ 500, 1000, and 1500 GeV, respectively.
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FIG. 4. S-wave amplitude for the HþH− → HþH− process as a function of
ffiffiffi
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in the case of cos θ ¼ 1, tan β ¼ 1 and f ¼ 500

(black), 750 (blue), and 1000 GeV (red). The solid (dashed) curves are the results with (without)Oðξs0Þ terms. The left, center, and right
panels show the results for mΦð¼ mA ¼ mH ¼ mH�Þ ¼ M ¼ 500, 1000, and 1500 GeV, respectively.
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The solid (dashed) curves are the result with (without) Oðξs0Þ terms.
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In Fig. 4, we show the S-wave amplitude for theHþH− →
HþH− scattering as a function of

ffiffiffi
s

p
in the case of cos θ ¼ 1,

tan β ¼ 1, andM ¼ mΦð¼ mA ¼ mH ¼ mH�Þ. Similarly to
Fig. 2, the solid and dashed curves show the cases with and
without Oðξs0Þ terms, respectively. Because of the m2

H�ξ
term in Eq. (80), the difference between these two cases
becomes larger when we take larger values of mΦ and
small f.
In Fig. 5, we show the constraints on the (

ffiffiffi
s

p
, mΦ) plane

by the requirement that the magnitude of a0ðHþH− →
HþH−Þ does not exceed 1=2. When we include the Oðξs0Þ
contribution, the constraints become slightly weaker
because of the destructive contributions between the ξs
and ξm2

H� terms.
From the above results shown in Figs. 2–5, we can

conclude that theOðξs0Þ contributions are not so important
as long as we consider the case mΦ ≲ 1000 GeV. Since we
expect the same holds true for the other two-to-two-body
scalar scattering amplitudes entering the S-wave amplitude
matrix, we will in the following neglect the Oðξs0Þ terms
and we will focus our analysis on the region mΦ ≲
1000 GeV where this approximation is safe. Notice also
that this is the region of the C2HDM parameters that we are
interested in for the phenomenology at the LHC.
Next, we discuss the effect of the Oð1=sÞ terms on the

S-wave amplitudes which were neglected in the above

numerical calculations. In Fig. 6, we show the regions
allowed by the unitarity bound using the GþG− → GþG−

(upper panels) and HþH− → HþH− (lower panels) scat-
tering amplitudes in the case of tan β ¼ 1, cos θ ¼ 0.99,
and M ¼ mΦ. The black shaded regions show the allowed
parameter space using the exact formulas given in Eqs.
(55), (56), (57), and (79), while the green shaded regions do
so using the approximate formulas given in Eq. (54) by
neglecting the Oð1=sÞ terms. The value of f is taken to be
3000 GeV, 5000 GeV, and infinity (corresponding to the
E2HDM) in the left, center, and right panels, respectively.
We see that these two results are in good agreement for
large values of

ffiffiffi
s

p
as compared to mH. In the comple-

mentary region of mH ≳ ffiffiffi
s

p
, we find somewhat significant

differences between these two results. In particular, the
region with

ffiffiffi
s

p ≃mH is excluded if we look at the result
using the exact formula, which is due to the resonant/
divergent effect of the s- and t-channel diagrams that makes
the S-wave amplitude quite large. Therefore, as long as we
consider the phenomenologically interesting case, i.e., the
mass of the extra Higgs boson is taken to be 1 TeVor below
and

ffiffiffi
s

p
> 1 TeV, the differences due to the Oð1=sÞ terms

are not important either and we can use the approximate
formulas to study the unitarity bounds of our model.
Figure 6 also allows a direct comparison between the

C2HDM (left and center panels) and the E2HDM (right

FIG. 6. Allowed regions from perturbative unitarity in the ð ffiffiffi
s

p
; mHÞ plane from GþG− → GþG− (upper panels) and from HþH− →

HþH− (lower panels) scattering amplitudes within the C2HDM. We take cos θ ¼ 0.99, tan β ¼ 1, and mΦð¼ mH ¼ mA ¼ mH�Þ ¼ M.
The grey regions are obtained by using the exact formulas, and the green ones by neglecting Oð1=sÞ terms. The left, center, and right
panels show the cases with f ¼ 3 TeV, 5 TeV, and infinity (corresponding to the E2HDM).
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panels). Given a finite value for f, there is an energy scale
over which the theory is no longer valid and a UV
completion is required (for example, for f ¼ 3 TeV we
get

ffiffiffi
s

p ≲ 20 TeV). But, for energies below this cutoff, the
bound on the mass of the extra Higgs boson is less stringent
than the one in the E2HDM. This is due to a partial
cancellation between the term growing with s and the one
proportional to m2

H in the scattering amplitudes considered
here (or to a squared Higgs mass in general in all other
channels). This property will be confirmed by the forth-
coming analysis of the unitarity bounds via the complete
S-wave amplitude matrix.
Furthermore, in Fig. 6 one may notice that (e.g., in the

left two panels, for f ¼ 3 TeV, where the effect is most
apparent) the C2HDM remains perturbative for very large
values of

ffiffiffi
s

p
, if mΦ is also taken to be large. On the one

hand, this corresponds to a very fine-tuned region where
perturbativity is achieved through a strong cancellation
between the large scalar mass term and the contribution
growing with energy proportionally to ξ, the two there-
by compensating each other. On the other hand, over the
same region, there are stronger bounds on mΦ emerging
from the HH → Hh and/or Hh → hh channels, especially
when tan β≃ 1 and sin θ≃ 0. This is mainly because
a larger value of the Hhhh and HHHh quartic couplings
is obtained as compared to the GþG−GþG− and

HþH−HþH− ones. For the same configuration given in
Fig. 6, the above neutral (pseudo)scalar channels give an
upper limit on mΦ of about 2 TeV for f ¼ 3 TeV andffiffiffi
s

p ≃ 0, i.e., several TeV less than in the charged (pseudo)
scalar scattering cases. In general, the upper limit on mΦ
becomes stronger when we combine all the scattering
channels together and impose the constraint from vacuum
stability as well, as we will see later on in Sec. III D.
Finally, despite not being explicitly presented here, we

confirm that the results of the inert case do not differ
substantially from those of the active case, so we shall
adopt the same approximations in both constructions.

C. Diagonalization of the S-wave amplitude matrix

In this subsection, we calculate all the two-to-two-body
(pseudo)scalar boson scattering amplitudes by keeping the
OðξsÞ and Oðξ0s0Þ contributions only. In this case, the
diagonalization of the S-wave amplitude matrix is analyti-
cally done as we will explain below. (We note that the
following discussion is valid in both the active and
inert case.)
In the C2HDM there are 14 neutral, 8 singly charged,

and 3 doubly charged states as in the E2HDM. In the weak
eigenbasis introduced in Eq. (5), the 14 neutral channels are
expressed by

ωþ
i ω

−
i ;
ziziffiffiffi
2

p ;
hihiffiffiffi
2

p ; hizi; h1h2; z1z2; h1z2; h2z1;ω
þ
1 ω

−
2 ;ω

þ
2 ω

−
1 ði ¼ 1; 2Þ: ð86Þ

The eight (positive) singly charged channels are
expressed by

ωþ
i zi;ω

þ
i hi;ω

þ
1 z2;ω

þ
2 z1;ω

þ
1 h2;ω

þ
2 h1 ði ¼ 1; 2Þ: ð87Þ

The three (positive) doubly charged channels are
expressed by

ωþ
i ω

þ
iffiffiffi

2
p ;ωþ

1 ω
þ
2 ði ¼ 1; 2Þ: ð88Þ

The negative charged states are simply obtained by taking
the charge conjugation of the corresponding positive states.
Although each neutral, singly charged, and doubly

charged state gives a 14 × 14, 8 × 8, and 3 × 3 S-wave
amplitude matrix, respectively, they can all be simplified
into a block-diagonal form with maximally 2 × 2 subma-
trices by taking appropriate unitary transformations of the
scattering states. As discussed in Ref. [23], such an
appropriate basis can be systematically obtained by using
the conserved quantum numbers, e.g., the hypercharge Y,
the weak isospin I, its third component I3, and the Z2

charge of two-to-two-body scattering states.

First of all, by using the Z2 charge, we can separate the
14 neutral channels into eight Z2-even and six Z2-odd
channels:

ωþ
i ω

−
i ;
ziziffiffiffi
2

p ;
hihiffiffiffi
2

p ; hizi ði ¼ 1; 2Þ ½Z2-even states�; ð89Þ

h1h2; z1z2; h1z2; h2z1;ω
þ
1 ω

−
2 ;ω

þ
2 ω

−
1 ½Z2-odd states�: ð90Þ

Next, the eight Z2-even states are further decomposed into
the following orthogonal states:

1ffiffiffi
2

p
�
ωþ
i ω

−
i þ 1

2
zizi þ

1

2
hihi

�
;

1ffiffiffi
2

p
�
ωþ
i ω

−
i −

1

2
zizi −

1

2
hihi

�
;
1

2
ðzizi − hihiÞ; zihi: ð91Þ

The corresponding 8 × 8 S-wave matrix in the above basis
is given by

a00ðZ2-evenÞ ¼ diagðA1;A2;A3;A4Þ; ð92Þ
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where

A1 ¼
sξ

2v2SM

�
3 1

1 3

�
−
�

3λ1 2λ3 þ λ4

2λ3 þ λ4 3λ2

�
; ð93Þ

A2 ¼
sξ

2v2SM

�−1 1

1 −1

�
−
�
λ1 λ4

λ4 λ2

�
;

A3 ¼ A4 ¼
sξ

2v2SM

�−1 1

1 −1

�
−
�
λ1 λ5

λ5 λ2

�
: ð94Þ

The six Z2-odd states are further decomposed into the
following orthogonal states:

1ffiffiffi
2

p ð−z1z2 þ h1h2Þ;
1ffiffiffi
2

p ðh1z2 þ h2z1Þ;
1

2
ð−z1z2 − h1h2 þ ωþ

1 ω
−
2 þ ωþ

2 ω
−
1 Þ;

1

2
ðih1z2 − ih2z1 − ωþ

1 ω
−
2 þ ωþ

2 ω
−
1 Þ;

1

2
ðz1z2 þ h1h2 þ ωþ

1 ω
−
2 þ ωþ

2 ω
−
1 Þ;

1

2
ð−ih1z2 þ ih2z1 − ωþ

1 ω
−
2 þ ωþ

2 ω
−
1 Þ: ð95Þ

The corresponding 6 × 6 S-wave matrix in the above basis
is given by

a00ðZ2-oddÞ ¼
sξ
v2SM

diagð−1;−1;−1; 1; 1; 1Þ

− diagðλ3 þ λ4; λ3 þ λ4; λ3 þ λ5; λ3 − λ5; λ3

þ 2λ4 þ 3λ5; λ3 þ 2λ4 − 3λ5Þ: ð96Þ

Similarly to the neutral states, we can separate the singly
charged states into four Z2-even and four Z2-odd states:

ωþ
i zi;ω

þ
i hi; ½Z2-even states�;

ωþ
1 z2;ω

þ
2 z1;ω

þ
1 h2;ω

þ
2 h1 ½Z2-odd states�: ð97Þ

The four Z2-even states are further decomposed into the
following orthogonal states:

1ffiffiffi
2

p ðiziωþ
i þ hiω

þ
i Þ;

1ffiffiffi
2

p ð−iziωþ
i þ hiω

þ
i Þ; ð98Þ

and the corresponding 4 × 4 S-wave matrix in the above
basis is given by

a�0 ðZ2-evenÞ ¼ diagðA3;A2Þ: ð99Þ

The four Z2-odd states are further decomposed into the
following orthogonal states:

1

2
ðiωþ

1 z2 þ iωþ
2 z1 þ ωþ

1 h2 þ ωþ
2 h1Þ;

1

2
ð−iωþ

1 z2 þ iωþ
2 z1 − ωþ

1 h2 þ ωþ
2 h1Þ;

1

2
ð−iωþ

1 z2 − iωþ
2 z1 þ ωþ

1 h2 þ ωþ
2 h1Þ;

1

2
ðiωþ

1 z2 − iωþ
2 z1 − ωþ

1 h2 þ ωþ
2 h1Þ; ð100Þ

and the corresponding 4 × 4 S-wave matrix in the above
basis is given by

a�0 ðZ2-oddÞ ¼
sξ
v2SM

diagð−1; 1;−1; 1Þ

− diagðλ3 þ λ4; λ3 − λ4; λ3 þ λ5; λ3 − λ5Þ:
ð101Þ

Finally, the three doubly charged states can be separated
into two Z2-even (ωþ

i ω
þ
i =

ffiffiffi
2

p
) and one Z2-odd state

(ωþ
1 ω

þ
2 ). They give

a��
0 ðZ2-evenÞ¼A3; a��

0 ðZ2-oddÞ¼−
sξ
v2SM

− ðλ3þ λ4Þ:

ð102Þ

Consequently, the analytic formulas of all the indepen-
dent eigenvalues are obtained by diagonalizing the 2 × 2
submatrices as

16πx�1 ¼ 3

2

sξ
v2SM

−
3

2
ðλ1þλ2Þ

�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðλ1−λ2Þ2þ

�
sξ
v2SM

−4λ3−2λ4

�
2

s
; ð103Þ

16πx�2 ¼ −
1

2

sξ
v2SM

−
1

2
ðλ1 þ λ2Þ

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 − λ2Þ2 þ

�
ξs
v2SM

− 2λ4

�
2

s
; ð104Þ

16πx�3 ¼ −
1

2

sξ
v2SM

−
1

2
ðλ1 þ λ2Þ

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 − λ2Þ2 þ

�
ξs
v2SM

− 2λ5

�
2

s
; ð105Þ

16πx�4 ¼ sξ
v2SM

− ðλ3 þ 2λ4 � 3λ5Þ; ð106Þ

16πx�5 ¼ � sξ
v2SM

− ðλ3 ∓ λ5Þ; ð107Þ
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16πx�6 ¼ � sξ
v2SM

− ðλ3 ∓ λ4Þ: ð108Þ

It is important to mention here that the above eigenvalues
can be applied to both the active and inert cases, as already
mentioned. However, once we rewrite the λ parameters in
terms of the physical parameters (such as, e.g., the masses
of extra Higgs bosons), then we obtain different expres-
sions between the active and inert cases. For this reason, the
constraints on the physical parameters induced by the
unitarity bound could be different in these two cases even
if we use the same expressions for the eigenvalues given in
Eqs. (103)–(108).

D. Constraints by all channels

We now perform the numerical evaluations of the
theoretical constraints on the C2HDM parameter space
induced by the requirement of perturbative unitarity using
all the eigenvalues given in Eqs. (103)–(108). In addition to
the unitarity constraints, we also impose the vacuum
stability condition, where we require that the scalar
potential is bounded from below in any direction of the
scalar field space with a large field value. The vacuum
stability is guaranteed by satisfying the following inequal-
ities [30,31]7:

λ1> 0; λ2 > 0;
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
þλ3þMINð0;λ4�λ5Þ> 0:

ð109Þ

We first discuss the constraints for the active C2HDM. In
Fig. 7, we show the allowed parameter regions in the (

ffiffiffi
s

p
,

mA) plane for each fixed value of f, i.e., 500, 1000, and
3000 GeV, and infinity (only for the right panel), where
f ¼ ∞ corresponds to the limit of the E2HDM. We take
cos θ ¼ 1 (left) and 0.99 (right). In both panels,mH� ¼ mA
and tan β ¼ 1 is taken whileM is scanned in a wide enough
range so as to maximize the allowed parameter region. The
solid and dashed curves, respectively, show the case of
mH ¼ mA and mH scanned within mA � 500 GeV. We can
see from the left panel that there is an upper limit on

ffiffiffi
s

p
of

about 2, 4, and 13 TeV in the case of f ¼ 500, 1000, and
3000 GeV, respectively. The dependence on mA for these
limits is negligible in the range mA ≤ 1 TeV. If we look at
the right panel, we find the limits not only on

ffiffiffi
s

p
but also

on mA, except for the case of f ¼ ∞ in which the limit onffiffiffi
s

p
vanishes as we expect in the E2HDM. It is also

observed that a bit milder bound on
ffiffiffi
s

p
and mA is given

in the case where we relax the mass degeneracy between
mA and mH (dashed curves).
In Fig. 8, we show the case for M ¼ 0 by retaining the

same configuration used in Fig. 7. Clearly, a stronger
constraint on the (

ffiffiffi
s

p
,mA) plane is provided as compared to

the case with scanned M. According to Ref. [10], no M
term can be generated by the C2HDM potential if the
fermions fill the fundamental 6-plet representation of the
SOð6Þ group, while a nonzero value of M can be obtained
in the C2HDM with traceless symmetric 20-plet fermion
representations.
In Fig. 9, we show the allowed parameter region in the

(tan β, mA) plane in the case of cos θ ¼ 0.99, mA ¼ mH� ,
and

ffiffiffi
s

p ¼ 3 TeV. The value of M is scanned in the left
panel while it is fixed to be zero in the right panel. Similarly
to Fig. 7, the solid and dashed curves show the case of
mH ¼ mA and mH scanned within mA � 500 GeV,
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FIG. 7. Constraint on the parameter space of the C2HDM from the unitarity and the vacuum stability in the case of tan β ¼ 1 and
mH� ¼ mA for several fixed values of f. The left and right panels show the case with cos θ ¼ 1 and 0.99, respectively. The lower-left
region from each curve is allowed. We take the value of mH to be equal to mA for the solid curves, while we scan it within the region of
mA � 500 GeV for the dashed curves. For all the plots, M is scanned.

7We note here that, in general, higher-order dimensional terms
appear in the scalar potential due to its nonlinear nature and these
can change the shape of it for large values of the scalar fields,
especially when f is not very large. In total, eight independent
dimension-six operators, such as ∼jΦ1j6, can be written in
addition to the terms given in Eq. (23), which are proportional
to 1=f2. In our approach, as we explained in Sec. II C, we assume
the same form of the potential as in the E2HDM, so that we do not
take into account the effect of such higher-order operators on the
bound from vacuum stability. In fact, the potential breaking the
EW symmetry in a generic composite Higgs model is generated
by loops so that such terms, despite being present and partici-
pating in the tree-level expansion, are not responsible for mass
generation and for inducing a nonzero VEV of the Higgs fields.
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respectively. The case f → ∞ is almost the same as the case
with f ¼ 3000 GeV. We find in the left panel that the case
tan β≃ 8 gives the weakest bound on mA, while for
tan β ≳ 10 the bound gets stronger. For the case M ¼ 0,
the bound is stronger than the case shown in the left panel.
In Fig. 10, we show the allowed parameter region in

the (mA, mH) plane in the case of mH� ¼ mA andffiffiffi
s

p ¼ 3000 GeV. The values of ðcos θ;MÞ are fixed to
be ð1; mAÞ for the upper-left, ð0.99; mAÞ, upper-right, (1, 0),
lower-left (0.99, 0), and lower-right panels. For the upper
two panels, the region inside the two curves is allowed by
unitarity and vacuum stability, where the lower (upper)
curve is given by the constraint from vacuum stability
(unitarity). From the upper two panels, we learn that a too
large mass difference betweenmA andmH is not allowed by
either the unitarity or vacuum stability constraint. In
addition, if we consider the case for cos θ ¼ 0.99 (upper-
right panel), only the region with small masses of mA and
mH, i.e., less than 1 TeV, is allowed (we already saw this
behavior in the right panel of Fig. 7). Regarding the lower
panels, we only have an upper bound on mH and mA from
the unitarity requirement, whereas the vacuum stability
bound does not give a lower limit because taking M ¼ 0
renders the λ1−5 parameters positive [see Eqs. (36)–(40)].
Figure 11 is the same as Fig. 10 with the only difference

being that we take
ffiffiffi
s

p ¼ 1000 GeV where also the case
f ¼ 500 GeV is allowed. The distributions here are similar
to the case at higher energy, with the effect that more
parameter space becomes available to the C2HDM with
respect to the E2HDM, for smaller f values.
Figure 12 is instead a remake of Fig. 10 withmH� ¼ mH.

Here, we notice that the distributions of parameter space
available in the C2HDM follow an opposite trend for the
same f value. We trace this back to a change of sign in λ4,
which therefore induces a destructive (constructive) inter-
ference (in the case mH� ¼ mH) when it was instead a
constructive (destructive) one (in the case mH� ¼ mA). A
similar pattern emerges also for

ffiffiffi
s

p ¼ 1000 GeV.
Finally, we briefly discuss the constraints in the inert

case. In Fig. 13, we show the allowed parameter region in
the (mA, mH) plane in the case of mH� ¼ mA ¼ m2 andffiffiffi
s

p ¼ 3000 GeV. We take λ2 ¼ 0.1 (left), 2 (center), and 4
(right). Similarly to the upper panels in Fig. 10, the lower
and upper curves are, respectively, determined by the
constraints from vacuum stability and unitarity while
the regions inside the two curves are allowed. We see that
the vacuum stability bound becomes slightly milder in the
case of a larger value of λ2, while the unitarity bound is not
changed significantly. Again, we have here swapped the
role of A and H (by requiring mH� ¼ mH ¼ m2) as well as
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FIG. 9. Constraint on the parameter space in the (tan β, mA) plane from unitarity and vacuum stability in the case of cos θ ¼ 0.99,ffiffiffi
s

p ¼ 3000 GeV, andmH� ¼ mA for f ¼ 1000 GeV (blue) and f ¼ 3000 GeV (red). The lower-left region from each curve is allowed.
The left panel shows the case withM to be scanned, while the right one shows the case withM ¼ 0. We take the value ofmH to be equal
to mA for the solid curves, while we scan it within the region of mA � 500 GeV for the dashed curves.
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FIG. 8. Same as Fig. 7, but we take M ¼ 0.
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lowered
ffiffiffi
s

p
to 1000 GeV, like in the case of the active

C2HDM, and have found similar patterns to those pre-
viously described.
In Fig. 13 we have considered h as the lightest Higgs,

but a choice of parameters leading to a different mass

spectrum is possible. For example, we have checked that
for mH ¼ m2 ¼ 100 GeV the upper limit from unitarity on
mAð¼ mH�Þ is about 700 GeV. So, a dark-matter-motivated
scenario is available as it is consistent with the unitarity
bounds derived in this paper.
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FIG. 11. Same as Fig. 10 with
ffiffiffi
s

p ¼ 1000 GeV.
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FIG. 10. Constraint on the parameter space in the (mA, mH) plane by unitarity and vacuum stability in the case with mH� ¼ mA,
tan β ¼ 1, and

ffiffiffi
s

p ¼ 3000 GeV. The upper-left, upper-right, lower-left, and lower-right panels show the cases of
ðcos θ;MÞ ¼ ð1; mAÞ; ð0.99; mAÞ; ð1; 0Þ, and (0.99,0), respectively.
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IV. CONCLUSIONS

We have studied the bounds from perturbative unitarity
as well as vacuum stability in a C2HDM based on the
spontaneous breakdown of a global symmetry SOð6Þ →
SOð4Þ × SOð2Þ at the compositeness scale f. We have
shown that the ensuing eight pNGBs can be regarded as
two-Higgs doublet fields and have derived the kinetic
Lagrangian according to the CCWZ method. We have
assumed the same form of the Higgs potential as in the
E2HDM with the softly broken or exact Z2 symmetry,
where all the parameters in the potential are taken to
be free.
In this construction, we have calculated the S-wave

amplitude for the elastic two-to-two-body (pseudo)scalar
boson scattering processes. We have explicitly shown that

the amplitude grows with
ffiffiffi
s

p
in the Wþ

LW
−
L → Wþ

LW
−
L

(equivalently GþG− → GþG−) and the HþH− → HþH−

processes as examples, so that unitarity is broken at a
certain energy scale depending on the scale f. We have
compared the allowed parameter region from the perturba-
tive unitarity bound in these particular channels using the
exact formulas and those neglecting Oð1=sÞ and/or Oðs0ξÞ
terms. We have found that the results using the exact and
the approximate formulas agree well in the region of

ffiffiffi
s

p ≳
mΦ (Φ ¼ H, A orH�) andmΦ ≲ 1 TeV which is motivated
for the LHC phenomenology. Therefore, the contribution
from Oðs0ξÞ and Oðs−1Þ terms can be safely neglected as
long as we focus on this parameter region, and it allowed us
to get the explicit analytic expression for the eigenvalues of
the S-wave amplitude for all the possible two-to-two-body
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FIG. 12. Constraint on the parameter space in the (mA, mH) plane by unitarity and vacuum stability in the case with mH� ¼ mH,
tan β ¼ 1, and

ffiffiffi
s

p ¼ 3000 GeV. The upper-left, upper-right, lower-left, and lower-right panels show the case of ðcos θ;MÞ ¼
ð1; mHÞ; ð0.99; mHÞ; ð1; 0Þ, and (0.99,0), respectively.
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(pseudo)scalar boson scatterings, namely, 14 neutral, 8
singly charged, and 3 doubly charged states.
We then numerically demonstrated the allowed param-

eter space from the unitarity bound using all the afore-
mentioned scattering channels and the vacuum stability
bound as well. In this analysis, we set the mass of the SM-
like Higgs boson h to be 125 GeV, the hVV coupling to be
close to the SM value (as the discovered Higgs boson is
consistent with the SM Higgs boson), and taken the masses
of the CP-odd and charged Higgs bosons to be degenerate,
i.e., mA ¼ mH� (a condition compliant with EW precision
data). We have also checked how results change by
requiring mH ¼ mH� . We have discovered significant
differences of the allowed parameter space in the
E2HDM and C2HDM that can be exploited in order to
phenomenologically separate the two-Higgs scenarios. The
main result that we have found is the following. If we take
the no-mixing limit between h and H, i.e., cos θ ¼ 1 and
take the degenerate masses of all the extra Higgs bosons
then we got the upper limit on

ffiffiffi
s

p
under the scan of M2,

e.g.,
ffiffiffi
s

p ≲ 2, 4, and 13 TeV for the case of f ¼ 500, 1000,
and 3000 GeV, respectively, as we have already seen this
behavior in the particular scattering channels GþG− →
GþG− and HþH− → HþH−. If we consider the nonzero-
mixing case, e.g., cos θ ¼ 0.99, we got the upper limit not
only on

ffiffiffi
s

p
but also on mΦ. Typically, we obtained the

upper limit on mΦ in the nonzero-mixing case to be
Oð1Þ TeV, but this can become stronger depending on
the choice of the values of tan β and M2. We also have
considered the case with relaxed mass degeneracy, i.e.,
mA ≠ mH. In particular, for the case ofmH� ¼ mA ¼ M we
have observed that a somewhat larger mass region becomes
available to the extra Higgs states H, A, or H� in the
C2HDM with respect to the E2HDM, the more so the
smaller f. We have checked that similar behavior is seen in
the case of mH� ¼ mH ¼ M. However, if we take mH� ¼
mH and M ¼ mA, a larger value of f gets a larger allowed
parameter space. This is true irrespective of whether we
assume the additional doublet (with respect to the SM-like
one) to be active or inert.
Hence, a thorough investigation of the Higgs mass

patterns that may emerge at the LHC could enable us to
find hints of a C2HDM hypothesis and to distinguish it
from the E2HDM one. Also, from the analysis of the
various scattering processes, one can infer the value of the
compositeness scale f. This, however, requires the calcu-
lation of both production and decay rates of the various
Higgs states, a task which we postpone to a separate
publication.

Finally, before closing, wewould like to mention that our
hybrid construction of the C2HDM—wherein we are using
the same form of the scalar potential as in the E2HDM
except for the “kinetic” term which is taken to be the first
order of a chiral expansion—makes it difficult to extract
trustable hints about the nature of the underlying dynamics
of compositeness. In adopting such a choice for the scalar
potential, we are clearly inducing a model dependence in
our approach. However, by choosing the most general CP-
conserving 2HDM potential which is phenomenologically
viable and highlighting the parameter space regions
where differences can be found between the E2HDM
and C2HDM, our work will inform the choice of how to
construct a realization of a C2HDM (in terms of underlying
gauge symmetries, their breaking patterns, and the ensuing
new bosonic and fermionic spectra) that is notably different
from the E2HDM. In essence, our findings will serve as a
useful tool to take into account the constraints from
perturbative unitarity in generic composite Higgs models
with two-Higgs-like doublets. Namely, if one calculates the
CW potential in a given configuration of composite Higgs
models, then all the parameters in the Higgs potential can
be written in terms of those belonging to the composite
sector (such as masses and couplings of strong resonances).
Using such parameters, one can then easily apply the
formulas of the unitarity bounds given in our paper to a
C2HDM with a proper CW potential.

ACKNOWLEDGMENTS

All of the authors are grateful to Shinya Kanemura for
fruitful discussions. S. D. C. would also like to thank
Michele Redi, Andrea Tesi, and Elena Vigiani for useful
discussions. K. Y. is grateful to Kunio Kaneta for helpful
discussions. The work of S. M. is financed in part through
the New connections between Experiment and Theory
(NExT) Institute and by the Science and Technology
Facilities Council (STFC) Consolidated Grant ST/
J000391/1. This work was supported by a Japan Society
for the Promotion of Science (JSPS) postdoctoral fellow-
ships for research abroad (K. Y.). E. Y. was supported by
the Ministry of National Education of Turkey.

APPENDIX: KINETIC TERM

According to the prescription developed by Callan,
Coleman, Wess, and Zumino [13], the kinetic Lagrangian
in nonlinear sigma models is expressed in Eq. (6). In this
expression, each of the dμ’s defined in Eq. (7) are calculated
in the SOð6Þ → SOð4Þ × SOð2Þ model by

ðd1̂αÞμ ¼ −
ffiffiffi
2

p

f
∂μh1α −

g
2f

½ðh4α − ih3αÞWþ
μ þ ðh4α þ ih3αÞW−

μ � −
ffiffiffi
2

p
gZ
f

�
1

2
− sin2θW

�
h2αZμ −

ffiffiffi
2

p
e

f
h2αAμ þOð1=f3Þ; ðA1Þ
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ðd2̂αÞμ ¼ −
ffiffiffi
2

p

f
∂μh2α − i

g
2f

½ðh4α − ih3αÞWþ
μ − ðh4α þ ih3αÞW−

μ � þ
ffiffiffi
2

p
gZ
f

�
1

2
− sin2θW

�
h1αZμ þ

ffiffiffi
2

p
e

f
h1αAμ þOð1=f3Þ; ðA2Þ

ðd3̂αÞμ ¼ −
ffiffiffi
2

p

f
∂μh3α þ

g
2f

½ðh2α − ih1αÞWþ
μ þ ðh2α þ ih1αÞW−

μ � −
gZffiffiffi
2

p
f
h4αZμ þOð1=f3Þ; ðA3Þ

ðd4̂αÞμ ¼ −
ffiffiffi
2

p

f
∂μh4α þ i

g
2f

½ðh2α − ih1αÞWþ
μ − ðh2α þ ih1αÞW−

μ � þ
gZffiffiffi
2

p
f
h3αZμ þOð1=f3Þ: ðA4Þ

These expressions can be rewritten as

iðd1̂αÞμ þ ðd2̂αÞμ ¼ −
2

f

�
∂μω

þ
α − i

gffiffiffi
2

p ϕ0
αWþ

μ − igZ

�
1

2
− sin2θW

�
ωþ
α Zμ − ieωþ

α Aμ

�
þOð1=f3Þ; ðA5Þ

−iðd3̂αÞμ þ ðd4̂αÞμ ¼
2

f

�
∂μϕ

0
α − i

gffiffiffi
2

p ωþ
αW−

μ þ i
gZ
2
ϕ0
αZμ

�
þOð1=f3Þ; ðA6Þ

where ϕ0
α ¼ ðh4α − ih3αÞ=

ffiffiffi
2

p
.
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