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This work deals with the right-handed sneutrino as thermal cold dark matter candidate. This scalar
emerges in a supersymmetric version of the SUð3Þc ⊗ SUð3ÞL ⊗ Uð1ÞX gauge model where right-handed
neutrinos are a natural component of leptonic chiral scalar supermultiplets. We first consider the issue of a
125 GeV Higgs boson mass in this model, showing that constraints on the stop mass and trilinear soft
coupling are considerably alleviated compared to the minimal supersymmetric standard model. Then, we
investigate the region of parameter space that is consistent with right-handed sneutrino as thermal cold dark
matter, under the light of Planck results on the relic abundance and direct detection from the LUX
experiment. This sneutrino mainly annihilates through an extra neutral gauge boson, Z0, and Higgs
exchange so that the physics of dark matter is somewhat related to the parameters determining Higgs and Z0

masses. We then obtain that the right-handed sneutrino in this model must be heavier than 400 GeV to
conform with Planck and LUX, simultaneously constraining the Z0 mass to be above 2400 GeV, which is in
perfect agreement with LHC searches in a nonsupersymmetric version of this model.
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I. INTRODUCTION

The amount of missing mass in the Universe, the so-called
dark matter, has been precisely determined after WMAP [1]
and Planck [2] satellites. However, there seems to be no real
appealing solution to this problembesides it being constituted
of new neutral and stable particle(s) beyond those already
known. Several facilities were aimed at detecting it directly
[3–6], mainlywhen it lies in the range of the hundreds of GeV
mass scale, characterizing what is known as a weakly
interacting massive particle (WIMP) [7,8]. The WIMP
paradigm is so largely accepted because it miraculously fits
what is expected from a natural extension of the standard
model of electroweak interactions (SM), realized close to its
symmetry-breaking scale, around 1 TeV, and the interactions
of which are sort of weak, too, allowing for the observed
abundance of cold dark matter (CDM). Concomitantly, there
are strong reasons to believe that supersymmetry (SUSY)
may exist at very high energies and be broken close to the
electroweak scale, being phenomenologically accessible at
the LHC. If SUSY is armed with R-parity symmetry for the
component fields, R ¼ ð−1Þ3ðB−LÞþ2s, a discrete symmetry
that may be a remnant of a Uð1ÞB−L lepton-baryon number
gauge symmetry, avoiding theprotondecay, it simultaneously
provides a stable supersymmetric particle with the right
features to be a WIMP.
Among the neutral supersymmetric particles, the sneutrino

[9–11] as well as neutralino [7] are the two kinds of particles
that may play the role of WIMPs. However, in the minimal
supersymmetric standard model (MSSM), only the neutra-
lino is viable as a CDM candidate because the left-handed
sneutrino has a sizable coupling with the Z0 boson and,
consequently, either gives a small relic abundance or is

excluded by direct CDM searches [3–6]. It would be
interesting to look for extensions of the MSSM that could
accommodate both forms of WIMPs as viable CDM (not
simultaneously though), augmenting the chances of describ-
ing it while conforming with phenomenological constraints
over the model. In this direction, there is no other alternative
except considering the scalar superpartner of the right-
handed neutrino [12–23].
Instead of only adding a new singlet superfield to the

MSSM to obtain the right-handed sneutrino, we call on the
supersymmetric version of a gauge extension of the SM,
the SUð3ÞC × SUð3ÞL ×Uð1ÞX (3 − 3 − 1) gauge model
that already possesses right-handed neutrinos as a natural
ingredient of their particle content [24–26]. This class of
model presents appealing features, one of them being the
fact that a minimal of three families is necessary in order to
cancel anomalies, offering an explanation to the old family
puzzle [27,28]. They also shed some light on the under-
standing of the quantization of electric charges [29] and
provide a solution to the strong CP problem [30–32],
address the neutrino mass and oscillation pattern [33–37],
possess neutral stuff that can be accommodated in a WIMP
framework [38–41], can account for a possible extra
radiation imprint on the cosmic microwave background
radiation [42,43], etc. These features surely confer enough
motivation that justifies the development of such a class of
gauge models and their supersymmetric versions.1

1Although 3 − 3 − 1 gauge models are becoming popular and
very well developed, their supersymmetric versions have received
scarce attention. For some works considering SUSY 3 − 3 − 1,
see Refs. [44–47].
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In this work,we study theHiggs and the darkmatter sector
of the supersymmetric version of the 3 − 3 − 1 model with
right-handed neutrinos (S331RHν). We argue that the right-
handed sneutrino, decoupled from theZ0 gauge boson, is the
simplest form of the CDM candidate provided by the model.
We then calculate its relic abundance and investigate the
direct detection of the sneutrino as a WIMP. To be sure that
our results are realistic,we also investigate the scalar sector of
themodel and show that aHiggswith amass of 125GeVwith
stopmass and soft trilinear coupling below the TeV scale is a
natural outcome of the model.
The paper is divided in the following way. In Sec. II, we

introduce the main ingredients of the model, identifying its
content, mass spectrum, superpotential, and soft SUSY-
breaking terms according to the gauge and discrete sym-
metries imposed. Next, in Sec. III, we focus on numerical
calculation of the Higgs mass in this model, looking at the
leading quantum contribution. We then, in Sec. IV, analyze
the sneutrino as a WIMP candidate by computing its relic
abundance and direct-detection cross section, contrasting
them with observation. We finally conclude in Sec. V.

II. MAIN INGREDIENTS OF THE MODEL

In the leptonic sector, the superfields of the three gener-
ations compose triplet and singlet representations according
to the following transformation by the 3 − 3 − 1 symmetry,

L̂a ¼

0
B@

ν̂a

êa
ν̂ca

1
CA

L

∼ ð1; 3;−1=3Þ; l̂caL ∼ ð1; 1;−1Þ; ð1Þ

wherea ¼ 1, 2, 3 represents the family index for theusual three
generations of leptons. Observe that right-handed neutrinos are
incorporated as the third component of a fundamental repre-
sentation of SUð3ÞL for leptons, while the right-handed
charged leptons are singlets under this symmetry.
In the hadronic sector, the superfields of the third

generation come in the triplet representation, and the
superfields of the other two are in antitriplet representations
of SUð3ÞL, as a requirement for anomaly cancellation.
They are given by

Q̂αL ¼

0
B@

d̂α
ûα

d̂0α

1
CA

L

∼ ð3; 3�; 0Þ;

ûcαL ∼ ð3�; 1;−2=3Þ; d̂cαL ; d̂
0c
αL ∼ ð3�; 1; 1=3Þ;

Q̂3L ¼

0
B@

û3
d̂3
û03

1
CA

L

∼
�
3; 3;

1

3

�
;

ûc3L; û
0c
3L ∼ ð3�; 1;−2=3Þ; d̂c3L ∼ ð3�; 1; 1=3Þ; ð2Þ

where α ¼ 1, 2.

The scalars of the model, responsible for the sponta-
neously broken gauge symmetry, compose the superfields

η̂ ¼

0
B@

η̂1

η̂−

η̂2

1
CA; χ̂ ¼

0
B@

χ̂1

χ̂−

χ̂2

1
CA; ρ̂ ¼

0
B@

ρ̂þ1
ρ̂

ρ̂þ2

1
CA; ð3Þ

where η̂, χ̂ ∼ ð1; 3;−1=3Þ, η̂ ∼ ð1; 3; 2=3Þ, and

η̂0 ¼

0
B@

η̂01
η̂0−

η̂02

1
CA; χ̂0 ¼

0
B@

χ̂01
χ̂0−

χ̂02

1
CA; ρ̂0 ¼

0
B@

ρ̂01:
þ

ρ̂0

ρ̂02:
þ

1
CA;

ð4Þ

where η̂0, χ̂0 ∼ ð1; 3�; 1=3Þ, ρ̂0 ∼ ð1; 3�;−2=3Þ. It is oppor-
tune to remark that the nonsupersymmetric version of this
model demands a total of at least three scalar triplets in
order to engender spontaneous symmetry breaking and
describe fermion masses. The scalars that transform in the
same way (η̂ and χ̂, for example) have different neutral
components developing a vacuum expectation value (VEV)
in a way that lepton number is conserved by the vacuum.
This is the reason to have two such triplets. Considering
this and given their quantum numbers, we are obliged to
duplicate all three scalar triplets associating opposite
quantum numbers to them so as to cancel gauge anomalies,
justifying the choice above.
For reasons of simplicity (and avoiding spontaneous

lepton-number violation), we assume that only the neutral
scalars η1, η01, ρ, ρ

0, χ2, and χ02 develop nonzero VEV
according to

hη1i ¼
vη1ffiffiffi
2

p ; hη01i ¼
vη0

1ffiffiffi
2

p ; hρi ¼ vρffiffiffi
2

p ;

hρ0i ¼ vρ0ffiffiffi
2

p ; hχ2i ¼
vχ2ffiffiffi
2

p ; hχ02i ¼
vχ0

2ffiffiffi
2

p : ð5Þ

These VEVs lead to the following gauge symmetry-
breaking pattern:

SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX⇒
vχ2 ;vχ02

SUð3ÞC

⊗ SUð2ÞL ⊗ Uð1ÞY⇒
vη1 ;vη01

;vρ;vρ0

SUð3ÞC ⊗ Uð1ÞQED: ð6Þ

With the breaking of the gauge symmetry by this set of
VEVs, the expected particles, including the supersymmet-
ric ones, receive mass. What matters for us here are the
scalars’ and gauge bosons’ masses. Concerning the gauge
bosons, they are composed by the standard gauge bosons γ,
Z0, andW�; two new neutral massive gauge bosons Z0 and
U0; and two simply charged gauge bosons V� with the
mass expression
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M2
Z0 ¼ g2

4

ð3þ 4t2Þ
ð3þ t2Þ ðv2ρ þ v2ρ0 þ v2η1 þ v2η0

1
Þ; ð7Þ

M2
Z0 ¼ g2

9
ð3þ t2Þðv2χ2 þ v2χ0

2
Þ; ð8Þ

MU0 ¼ g2

4
ðv2ρ þ v2ρ0 þ v2χ2 þ v2χ0

2
Þ; ð9Þ

MW� ¼ g2

4
ðv2ρ þ v2ρ0 þ v2η1 þ v2η0

1
Þ; ð10Þ

MV� ¼ g2

4
ðv2η1 þ v2η0

1
þ v2χ2 þ v2χ0

2
Þ; ð11Þ

where t ¼ gN=g, v2ρ þ v2ρ0 þ v2η1 þ v2η0
1
¼ v2ew and v2χ2 þ

v2χ0
2
≡ v2χ with vχ lying in the TeV scale.

On imposing the standard relation,

M2
Z0

M2
W�

¼ ð3þ 4t2Þ
ð3þ t2Þ ¼ 1

cos2θW
; ð12Þ

we obtain

t2 ¼ sin2θW
1 − 4=3sin2θW

; ð13Þ

where θW is the electroweak mixing angle. In addition, the
mixing between the neutral gauge bosons is given by2

WN ¼
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4t2

p γ −
3tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 4t2
p ffiffiffiffiffiffiffiffiffiffiffiffi

3þ t2
p Z0 þ tffiffiffiffiffiffiffiffiffiffiffiffi

3þ t2
p Z0;

ð14Þ

W8 ¼ −
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 4t2
p γ þ

ffiffiffi
3

p
t2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 4t2
p ffiffiffiffiffiffiffiffiffiffiffiffi

3þ t2
p Z0 þ

ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffi
3þ t2

p Z0;

ð15Þ

W3 ¼
ffiffiffi
3

p
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 4t2
p γ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
3þ t2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4t2

p Z0: ð16Þ

To work in the minimal scenario, we assume R-parity
conservation and invariance by a Z2 symmetry with the
following superfields transforming nontrivially under Z2:
ðl̂c; d̂c; ûc; ρ̂; ρ̂0; η̂; η̂0Þ → −ðl̂c; d̂c; ûc; ρ̂; ρ̂0; η̂; η̂0Þ. This set
of symmetries allows us to work with a shortened super-
potential that is formed by the terms

W331 ¼ λlijL̂iρ̂
0 l̂cj þ λdαiQ̂αη̂d̂

c
iL þ λd3iQ̂3ρ̂

0d̂ciL þ λuαi Q̂αρ̂ûciL
þ λu3iQ̂3η̂

0ûciL þ λ0αβQ̂αχ̂d̂
0c
βL þ λ033Q̂3χ̂

0û0c3L
þ f1εijkη̂0iρ̂

0
jχ̂

0
k þ f2εijkη̂iρ̂jχ̂k

þ μηη̂η̂
0 þ μρρ̂ρ̂

0 þ μχχ̂χ̂
0 þ H:c:; ð17Þ

where α, β ¼ 1, 2 and i, j, k ¼ 1, 2, 3.
Until this point, the masses of the ordinary particles are

equal to the masses of their superpartners. As usual in
phenomenological supersymmetric models, SUSY must be
broken so as to provide a reasonable shift between ordinary
particles and their supersymmetric partners. In this work,
we assume that SUSY is broken explicitly through the set
of soft breaking terms that are invariant under the sym-
metries assumed here,

LSoft ¼ −
1

2

�
mλG

X8
b¼1

ðλbGλbGÞ þmλW

X8
b¼1

ðλbWλbWÞ þmλXλXλX þ H:c:

�
þm2

L
~L† ~Lþm2

l
~l†i ~li þm2

Q3

~Q3
† ~Q3

þm2
Qα

~Qα
† ~Qα þm2

ui ~ui
† ~ui þm2

ui ~ui
† ~ui þm2

di
~di
† ~di þm2

u0
~u0† ~u0 þm2

d0α
~d0α
† ~d0α −m2

ηη
†η −m2

ρρ
†ρ

−m2
χχ

†χ −m2
η0η

0†η0 −m2
ρ0ρ

0†ρ0 −m2
χ0χ

0†χ0 þ ylij ~Liρ~l
c
jL þ ydαi ~Qαη ~d

c
iL þ yd3i ~Q3ρ

0 ~dciL þ yuαi ~Qαρ ~uciL

þ ydαi ~Qαη ~d
c
iL þ yu3i ~Q3η

0 ~uciL þ y0αi ~Qαχ ~d
0c
iL þ yu33 ~Q3χ

0 ~u0c3L − ½k1εijkηiρjχk þ k2εijkη0iρ
0
jχ

0
k þ H:c:�

þ bηη0ηþ bχχ0χ þ bρ ρ0ρ; ð18Þ

where λbG are the gluinos; λbW are gauginos associated to

SUð3ÞL (in both cases, b is the gauge group index); λX is

the gaugino associated to Uð1ÞX; scalar supersymmetric

partners of fermion fields, f, are denoted by ~f; and the
remaining fields are self-evident.
Once we have settled the interactions and parameters of

the S331RHν model, we are then ready to start the
development of the main proposal of this work that is to
check if the R-sneutrino of the model is a good CDM. But
first, we study the possible range of parameters that can

2Provided that the mixing among Z0 and Z0 is very small [48],
we neglect such mixing throughout this work.
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explain the observed 125 GeV Higgs mass. This will
constrain the parameters that will be used in the CDM
analysis.

III. HIGGS MASS: NUMERICAL RESULTS

In this section, we obtain the mass of the lightestCP-even
neutral scalar provided by themodel, whichwe assume is the
Higgs boson. First of all, we have to obtain the scalar
potential, which is composed of V ¼ VF þ VD þ Vsoft,
where VF and VD are the F-term and D-term, respectively,
andVsoft comes from the soft SUSY-breaking terms.With the
potential in hand, we are ready to obtain the minimum
conditions over the potential which translate to a set of
constraint equations, ∂V

∂ϕi
jϕi¼hϕii0 ¼ 0, where ϕi ¼ hϕii0

means that all scalar fields are computed at their VEV.
The squared mass matrix can then be built by taking
∂2V

∂ϕa∂ϕb
jϕi¼hϕii0 . Finally, by applying the set of minimum

conditions over the mass matrices and diagonalizing them,
we obtain the physical scalars of the model. Because of the
complexity of V, we are not showing here the analytical
expressions for ∂V∂ϕi

jϕi¼hϕii0 ¼ 0 and ∂2V
∂ϕa∂ϕb

jϕi¼hϕii0 , which are
not illuminating at all. We then proceed with a numerical
approach to diagonalize the mass matrices in question.
For this, we made use of a subroutine called jacobi [49],
which composes the micrOMEGAs package [50,51]. This is
enough to develop the features of the model we are
interested in.
TheCP-even neutral scalar fields compose a 10 × 10mass

matrix. However, the neutral scalars η2, η02, χ1, χ
0
1 carry two

units of lepton number, and as far as lepton number is
conserved, they decouple from the other six neutral scalars.
Ondiagonalizing the remaining6 × 6massmatrix,weobtain

six physicalCP-even neutral scalars. Twoof them,which is a
combinationmainly of χ2 and χ02, arevery heavywithmass at
the 3 − 3 − 1 scale, typically around fewTeV. The other four,
which are mainly combinations of η1 η01, ρ, and ρ0, acquire
masses at electroweak scale with the lightest of them being
the Higgs. We refer to these four scalars as h (the Higgs
boson), h0, H, and H0.
In what follows, we present the results only for the

lightest CP-even scalar, the Higgs boson. For this, we
choose as independent parameters the set of variables

0.0001 ≤ jf1; f2j ≤ 0.0049;

8 GeV ≤ jk1; k2j ≤ 15 GeV;

400 GeV ≤ jμη; μρj ≤ 700 GeV;

800 GeV ≤ jμχ j ≤ 10000 GeV;

300 GeV2 ≤ jbη; bρj ≤ 500 GeV2;

50000 GeV2 ≤ jbχ j ≤ 100000 GeV2;

40 ≤ vη1 ≤ 140 GeV;

30 GeV ≤ vη0
1
; vρ0 ≤ 50 GeV;

5000 GeV ≤ vχ2 ≤ 10000 GeV;

700 GeV ≤ vχ0
2
≤ 2000 GeV; ð19Þ

where their range of values to be scanned in the numerical
computation were fixed so as to guarantee the scalar
potential stability, while there is a constraint among some
of the VEVs,

v2ρ þ v2η1 þ v2η01 þ v2ρ0 ¼ ð246 GeVÞ2;

which comes from the known W� mass.
From the numerical diagonalization of the 6 × 6 mass

matrix, we obtain that the lightest CP-even neutral scalar
gains mass at tree level in the range from 80 to 100 GeV.
Considering that in the MSSM the maximal value the Higgs
mass may attain at tree level is 91 GeV, we have that the
S331RHν model provides a better tree-level contribution to
the Higgs mass. However, loop corrections to the Higgs
mass are still necessary. At this point, we just consider the
leading one-loop correction for the Higgs mass dictated by
the MSSM of which the expression is3

Δm2
h ¼

3m4
t

2π2v2ew

�
log

�
M2

s

m2
t

�
þ X2

t

M2
s

�
1 −

X2
t

12M2
s

��
; ð20Þ

where mt is the top mass, vew ¼ 246 GeV is the standard
electroweak VEV, Xt is the soft trilinear coupling of the

FIG. 1. Contour plot corresponding to mh ¼ 125 GeV in the
Ms vs the Xt plane where mt ¼ 173 GeV and vew ¼ 246 GeV.
The legend bar indicates the range of values provided solely by
the tree-level mass.

3While the S331RHν model contains the MSSM, justifying
this approximation, we remark that a finer computation can be
pursued not only by including full two-loop effects [52] but also
the new contributions specific from the enlarged particle spec-
trum of the model.
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stops, and Ms ≡ ðm~t1m~t2Þ1=2 is the SUSY scale (scale of
superpartners masses) where m~t is the stops’ mass, that we
suppose to be degenerated.
We add this one-loop contribution to the tree level Higgs

mass and then perform the scan on the parameter space.
Our results are shown in Fig. 1.
It is remarkable that the S331RHνmodel is able to yield a

tree-level Higgs mass around 100 GeV (the lightest blue in
Fig. 1),where stopmass,m~t, belowTeValongwith a smallXt
are enough to generate the necessary radiative corrections to
produce the observed Higgs mass at one loop in the
approximation where only stops were taken into account.
In other words, differently from the MSSM where m~t is
pushed beyond 1 TeVandXt is rather large, there are no tight
constraints on these parameters in the S331RHν model,
which can easily accommodate a 125 GeV Higgs mass.
This result is not a surprise at all. Extensions of the

MSSM that present cubic invariant terms in the super-
potential generate new contributions to the Higgs potential
of the MSSM which, consequently, result in new correc-
tions at tree level to the Higgs mass. For example, in the
Next to minimal supersymmetric standard model, the
superfield singlet ϕ̂ is added to the MSSM superfield
content and composes with the standard superfields Ĥu and
Ĥd the following invariant cubic term λĤuĤdϕ̂ in the
superpotential of the model. Such a term furnishes an
additional tree-level correction to the Higgs mass expres-
sion of the MSSM which makes it possible to lift the Higgs
mass by some units of GeV, which is sufficient to alleviate
the tension on the quantum corrections involving stops
[53]. Another example is the extension of the MSSM with
the superfiled triplets Δ̂1 and Δ̂2. In this case, the cubic
invariant terms λ1ĤuΔ̂1Ĥu þ λ2ĤdΔ̂2Ĥd compose the
superpotential of the model and provide robust tree-level
corrections to the Higgs mass [54]. In the particular case of
3 − 3 − 1 models, the Higgs sector usually involves three
Higgs triplets. When this is the case, cubic invariant terms
as f1 and f2 given in Eq. (17) compose the superpotential
of the supersymmetric versions of these models.
Consequently these terms will generate new corrections
at tree level to the Higgs mass predicted by theMSSM. This
was first perceived in Ref. [55]. Our numerical approach
here is in agreement with such predictions.
Once we are sure that our model recovers the observed

Higgs boson mass, we are then ready to examine if ~νR is
viable as CDM candidate. We do this in the next section.

IV. RELIC ABUNDANCE AND DIRECT
DETECTION

In a SUSY model where R-parity is conserved, the
lightest supersymmetric particle (LSP) is the natural can-
didate for CDM [7,8]. In the MSSM, the CDM may be a
scalar; the superpartner of the left-handed neutrino, ~νL; or a
combination of Majorana fermionic superpartners of the

scalars and the Z boson, the neutralinos. However, we
already pointed out the reason why ~νL is not a viable CDM
candidate, and then the MSSM inevitably offers only
neutralinos to play this role.
Nevertheless, extensions or variants of the MSSM do

allow sneutrinos as CDM, which happens when right-
handed neutrinos are somehow part of the field content to
be supersymmetrized [12–23]. In this case, generally, a
mixing among right-handed and left-handed sneutrinos
may be the LSP and constitute the CDM candidate.
In the S331RHνmodel, in addition to ~νL and neutralinos,

we have a third possibility in the form of a scalar right-
handed neutrino (or simply R-sneutrino), ~νR, which
emerges naturally in this model as the third component
in the leptonic triplet of SUð3ÞL. Since the SUð2ÞL
subgroup of SUð3ÞL contains the matter content of
MSSM, the same conclusions over the CDM candidates
derived there apply to the ~νL in our model. We are then left
with neutralinos or an R-sneutrino, which possibly can play
the CDM role. Both were already investigated in a similar
SUSY model with different scalar content and assumptions
in Refs. [56,57]. Besides, their analysis on the R-sneutrino
was taken considering it as self-interacting dark matter and
cannot be compared with ours. There is a reasonable
complication in our neutralino spectrum compared to the
MSSM, which is related to the larger Higgsino as well as
gaugino spectrum of the S331RHν model, as can be seen
from Eqs. (3), (4), and (7). The resulting neutralino mass
eigenstate amounts to diagonalizing a 15 × 15 mass matrix
in contrast to the 4 × 4 mass matrix of the MSSM. In this
work, we are not considering the neutralinos as CDM,
though. Instead, our interest is driven to the LSP as
the R-sneutrino.
In what concerns ~νR, we stress that in the S331RHν

model as well as in the MSSM neutrinos gain mass through
effective operators. The gauge and discrete, Z2, symmetries
assumed in this work allow for the effective operators

λνL

Λ
ðL̂η̂0Þðη̂0L̂Þ þ λνR

Λ
ðL̂χ̂0Þðχ̂0L̂Þ ð21Þ

as a source of neutrino masses, where λνL and λνR are
dimensionless parameters and Λ is a grand unification mass
scale.4 Notice that the first effective operator engenders a
mass term to the νL, since only the scalar component η01 of
η̂0 develops a VEV, while the second operator gives mass to
νR, in this case because only the χ02 scalar component of χ̂0

develops a VEV. This implies that the left-handed neutrinos
do not mix with the right-handed ones. Also, they are
completely sterile in relation to the standard gauge boson
interactions as they interact solely with the gauge bosons of

4In the numerical computations, we will take the R-sneutrino
mass as a free parameter, varying other parameters like soft
masses and VEVs that constrain the former ones in order to
obtain the correct active neutrinos’ masses.
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the 3 − 3 − 1 symmetry, namely, V�, Z0, and U0. These
properties are inherited by R-sneutrinos, and consequently,
~νR also does not mix with ~νL. Besides, the bridge between
them and SM particles is made through Z0 and the scalars.
All these features make ~νR rather distinct from the usual
MSSM extensions where the R-sneutrino is the CDM
candidate, justifying and further motivating our analysis
of ~νR in this context. Finally, it is important to say that, as
far as we know, this is the first time that ~νR is considered as
a WIMP in the framework of the S331RHν model. We
compute its relic abundance and direct-detection con-
straints in the following subsections.

A. Relic abundance

It is well known that the relic abundance of a WIMP is
directly related to its thermal averaged annihilation cross
section at the time of freeze-out [7,8]. Its decoupling is
roughly determined when the interaction rate drops below
the expansion rate of the Universe. To obtain the WIMP’s
abundance, we have to solve the Boltzmann equation,

dY
dT

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πg�ðTÞ
45

r
Mp − hσviðY2 − Y2

eqÞ; ð22Þ

which gives the evolution of the abundance of a generic
species in the Universe. In it, Y is the relic abundance as a

function of the temperature, T, of the thermal bath; Yeq is
the thermal equilibrium abundance; g� is the effective
number of degrees of freedom at thermal equilibrium;
and Mp is the Plank mass. hσvi is the thermal averaged
cross section for WIMP annihilation, with v the relative
velocity between the annihilating particles. It is in this cross
section that the particle physics modeling gets into the
scene, and its expression can be written as [50,51]

hσvi ¼
P

i;jgigj
R
ðmiþmjÞ2 ds

ffiffiffi
s

p
K1ð

ffiffi
s

p
T Þp2

ij

P
k;lσij;klðsÞ

2TðPigim
2
i K2ðmi=TÞÞ2

;

ð23Þ

where gi is the number of degrees of freedom of the species
involved, σij;kl is the total cross section for annihilation of a
pair of particles with massesmi,mj into some SM particles
ðk; lÞ of masses mk, ml; pij is the momentum of incoming
particles in their center-of-mass frame, with squared total
energy, s; and the functions K1 and K2 are modified Bessel
functions of first and second kinds, respectively.
The relic density is obtained integrating from T ¼ ∞ to

T ¼ T0, where T0 is the temperature of the Universe today,
precisely measured by the cosmic microwave backgraound
radiation spectrum [1,2]. It can be cast as [50,51]

FIG. 2. Dominant processes contributing to the R-sneutrino abundance. q and l mean quarks and leptons, respectively.

FIG. 3. Relic density vs WIMP mass. The right panel is an improvement in resolution around the Planck bounds. The gray dots are
ruled out by direct-detection data. The green dots are in accordance with LUX bounds [6], while the region enclosed by purple lines
represents the Planck constraints (blue shaded region on the right panel) [2].
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Ωh2 ¼ 2.742 × 108
MWIMP

GeV
YðT0Þ: ð24Þ

Given the large amount of interactions and mass diag-
onalization required in the model, an analytical approach to
computing the relic abundance is unfeasible. Instead, we
opt for a numerical computation using the following codes:
LanHEP [58] to generate the Feynman rules in a CalcHEP
[59] output to be called in micrOMEGAs [50,51]. The
micrOMEGAs code is very useful in computing the CDM
abundance, including coannihilation. In addition, by means
of CalcHEP, it allows us to calculate the CDM scattering
cross section normalized to the nucleon, so we can compare
with exclusion plots given by recent direct-detection
experiments [3–6].
From now on, for simplicity, we will assume that right-

handed neutrinos and sneutrinos are in a diagonal basis and
will consider that the lightest of the R-sneutrinos is our
WIMP. We start by presenting the main channels involved in
the CDM annihilation cross section, where the relevant
interactions are mediated by Higgs and Z0, as can be seen
in Fig. 2.
In Fig. 3, we show the results of the R-sneutrino relic

density. Observing the dips in the scatter plot presented in the
left panel, one clearly recognizes the resonances,h,H,h0,H0,
and Z0, the masses of which are mh ¼ 125 GeV,
mH ¼ 300 GeV,mh0 ¼mH0 ¼ 1000GeV, and 2000 GeV <
mZ0 < 4000 GeV, respectively (these phenomenological
reasonable values for the heavier scalars were fixed for
simplicity, although they could also be varied). In the right
panel, we show the same results as the left panel but
zoomed in the region in the vicinity of the relic density as
observed by the Planck satellite [2]. In these plots, we have
included the direct-detection results provided by LUX [6],
which are going to be better explained in the next section.
The gray region is excluded, and the green region is
allowed by LUX results. In addition, to provide the precise
values of the parameters involved in the process and the
dominant channels in different DM mass regions, four
benchmark points were included in all plots, given by
Table I, all in agreement with the constraints mentioned
before.
In principle, we have four possible regions providing the

correct abundance, where the WIMP mass prefers take the

values 60,5 or 500 GeV. It may also prefer to lie into the
range 1000 and 2000 GeV. However, when we take into
account the direct-detection bounds theWIMPmass prefers
lie around 500 GeV (scalar resonances) or between 1000
and 2000 GeV (Z0 resonance).
In the next section, we will detail the CDM scattering

cross section to the nucleon and show the results obtained
for our model including the complementary CDM relic
density.

B. Direct detection

It is a well-motivated hope that, generally, any possible
CDM candidate may interact with the target nuclei
(more specifically the nucleons) of the detectors. These
interactions may be axial, referred as spin-dependent
interactions, or scalar- and/or vectorlike, known as spin-
independent interactions (SI). In our model, the principal
channels providing considerable direct-detection rates are
given by Higgs particles and Z0 (see Fig. 4), meaning we
have just SI interactions.
The effective Lagrangian for SI contributions is given by

L ⊃ αSq ~ν
†
R ~νRqqþ αVq ~ν

†
R∂μ ~νRqγμq; ð25Þ

with the couplings αSq and αVq depending on the parameters
of the model. The WIMP-nucleus cross section that can be
derived from this Lagrangian is [50]

σ0 ¼
4μ2N
π

½Zfp þ ðA − ZÞfn�2; ð26Þ

where μN is the WIMP-nucleus reduced mass, Z is the
number of protons, and A is the number of nucleons. The
function fp;n is the WIMP-nucleon amplitude that carries
the particle physics model information which, for the
proton, is given by6

TABLE I. In this table, we show some points with specific values for parameters of the model and the dominant
channels.

Symbol M ~νR (GeV) Ωh2 σ ~νR−n (pb) MZ0 (GeV) Main channels

★ 400 0.1215 4.041 × 10−9 3630
~νR, ~νR !h

0;H0
W�, Z0, Z0

♣ 600 0.1171 4.249 × 10−9 3597
~νR, ~νR !h

0;H0
W�, Z0, Z0

♠ 1480 0.1213 5.463 × 10−9 3400
~νR, ~νR!Z

0
q̄, q

♦ 1934 0.1226 3.400 × 10−9 3819 ~νR, ~νR!Z
0
q̄, q

5Such a low mass would be ruled out by the preference of the
Higgs to decay into two WIMPs in this model, as could be
directly inferred from the investigation in Ref. [40].

6We restrict ourselves to the scalar interaction since the
experimental results are parametrized by this contribution to
the WIMP-nucleon cross section.
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fp

mp
¼

X
q¼u;d;s

αSq
mq

fpTq þ
2

27
fpTG

X
q¼c;b;t

αSq
mq

; ð27Þ

where the coefficients fpTq and fpTG are the contributions of
light quarks to the proton mass,mpf

p
Tq ¼ hpjmqqqjpi, and

the WIMP-gluon interaction through quark loops, respec-
tively, with fpTG ¼ 1 −

P
q¼u;d;sf

p
Tq. Experimentally, we

have

fpTu ¼ 0.020� 0.004; fpTd ¼ 0.026� 0.005;

fpTs ¼ 0.118� 0.062: ð28Þ

The expression for fn can be easily obtained taking into
account that fnTu ¼ fpTd, f

n
Td ¼ fpTu and f

n
Ts ¼ fpTs. We then

can write the Wimp-nucleon scalar cross section that is
useful for comparison with experimental results as

�
dσWimp−nucleon

dER

�
SI
¼ mNσp;n

2μ2p;nv2
½Zfp þ ðA − ZÞfn�2

ðfp;nÞ2 F2ðERÞ;

ð29Þ

where F2ðERÞ is the nuclear form factor, ER is the nucleus
recoil energy, v is the WIMP velocity, μp;n is the WIMP-
nucleon reduced mass, and σp;n is given by

σp;n ¼
4μ2p;n
π

ðfp;nÞ2: ð30Þ

For detailed steps leading to the cross section in Eq. (29)
above, we indicate Refs. [7,50,60].
Once again, in order to perform thenumerical computation

and obtain the elastic scatteringWIMP-nucleon cross section
for the S331RHν model, we use the numerical package
micrOMEGAS [50,51].We present our results in Fig. 5 in the
plane WIMP-nucleon cross section vs WIMP mass. In this
plot, the yellow line represents the upper bound on the CDM
cross section provided by LUX [6]; again, we use the
complementary abundance constraints. The region in light
green is overabundant, light blue is underabundant, and blue
are in agreement with the cosmological CDM abundance.
Here, we included the same benchmark points presented in
Table I. Observe that the blue dots follow the resonance
regions mentioned before. It is also important to emphasize
that the direct detection puts the following lower bound on
the ~νR mass (m~νR ≥ 400 GeV).

As our last result, we obtain the constraint coming from
CDM observables on the Z0 mass. The results are presented
in Fig. 6. The gray points are ruled out by LUX [6], while
the green points lie in the allowed region of the parameter
space. The blue points provide the observed values for the
CDM relic density from Planck [2]. As we can see, the
LUX constraints on the elastic WIMP-nucleon scattering
cross section along with the correct relic density observed
by Planck are able to establish a lower bound on the Z0
mass, mZ0 ≳ 2400 GeV, compatible with a model-
independent analysis performed in Ref. [61] as well as a
particular 3 − 3 − 1model with left-handed neutrinos in the
leptonic triplet [62]. Besides, this result is close to LHC
constraints on a non-SUSY 331 model with right-handed
neutrinos that impose Z0 mass to lie above MZ0 ≳
2200 GeV [63], which can be further investigated in the
context of the S331RHν in future work.

FIG. 5. WIMP-nucleon cross section vs dark matter mass. In
this plot, the green points indicate overabundance, the blue points
are those in agreement with the Planck bounds, and light blue
points correspond to an abundance lower than needed to explain
all CDM. All points above the yellow curve are excluded by
direct detection from LUX [6].

FIG. 6. Z0 mass vs WIMP mass. The blue points furnish the
correct abundance as indicated by Plank [2]. The green region is
in agreement with recent direct-detection experiment LUX [6],
and the gray region is excluded by it.

FIG. 4. Dominant processes to the WIMP-nucleon scattering
cross section.
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V. CONCLUSIONS

We have built a SUSY version of the gauge SUð3Þc ⊗
SUð3ÞL ⊗ Uð1ÞX model with right-handed neutrinos with
three scalar triplets, the S331RHν model. Our first aim was
to show that a Higgs boson mass of 125 GeV can be
obtained without the tight bounds on stop mass and soft
trilinear coupling, usually required in MSSM versions.
Since our model was able to generate a tree-level Higgs
mass between 80 and almost 100 GeV, the loop corrections
coming from stops were alleviated, demanding a stop mass
as low as 200 GeV at one-loop leading order and never
much higher than 1 TeV for extremely low (close to zero)
soft trilinear coupling. By itself, that is already an appealing
motivation to develop this model.
We also enjoyed the opportunity to investigate the right-

handed sneutrino, ~νR, as a CDM candidate since the model
has it for free in its particle multiplets. The ~νR in this kind of
gaugemodel was never studied as aWIMP; only scarcely the
neutralinos were considered and in a rather different version
of thismodel as amatter of fact [57], although these are a little
more intricate here as it involves a mixing of 15 neutral
particles. Then, the S331RHν model offers two possibilities
of WIMPs, but we concentrated on sneutrinos because they
are simpler to handle than neutralinos, besides being a natural
possibility in this model, not easy to attain in every SUSY
model. We have computed the relic abundance of the
sneutrino, contrasted with Plank observed CDM density,
and direct-detection bounds fromLUX experiment.We have
analyzed a large portion of the parameter space, highlighting
somebenchmark points, and our results have shown that ~νR is
a viableWIMP if itsmass is above 400GeV,whichmakes it a
very interesting WIMP to be searched at the LHC.
Finally, since the right-handed sneutrino couples to a

new neutral gauge bozon, Z0, we pushed our CDM search
to put some bounds on Z0 mass. Assuming that ~νR is the
only CDM component (or at least the one that corresponds
to almost all CDM observed), the Planck results together
with LUX exclusion plots allowed us to impose a bound on
the plane WIMP mass against the Z0 mass, implying a
lower bound MZ0 ≳ 2400 GeV, in consonance with
existing bounds on the nonsupersymmetric version of this
model coming from LHC searches on Z0.
All of this constitutes interesting outcomes of this

supersymmetric model that contains several theoretical
features to be further explored, besides being phenomeno-
logically testable at the LHC, as well as current experi-
ments on CDM direct and indirect detection, which we
intend to explore soon.
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APPENDIX: RELEVANT INTERACTIONS

The relevant interaction terms involving the R-sneutrino,
Higgs, and Z0 that matter for the calculation of abundance
and scatter cross sections are given by

L ⊃ −
g

ffiffiffiffiffiffiffiffiffiffiffiffi
3þ t2

p

3
~ν†Rð∂μ ~νRÞZ0

μ −
1

18

X
j

λj ~ν
†
RSj ~νR; ðA1Þ

where

λj ¼ gða1jð−3þ 2t2Þvη1 − a2jð3þ 2t2Þvη0
1

− a3jð3þ 4t2Þvρ þ a4jð−3þ 4t2Þvρ0 Þ; ðA2Þ

with j ¼ 1, 2, 3, 4 and Sj ¼ H0, h0, H, h, respectively. The
coefficients aij are the mixing parameters involving the
Higgs. They are calculated numerically.
The other set of relevant interactions for our calculations

is those involving quarks, leptons, and Z0 provided by the
Lagrangian

L ⊃ i
X
f

f γμðgfZ0
l:h:PL þ gfZ

0
r:h:PRÞfZ0

μ þ
X
f;j

λffSjf; ðA3Þ

where j ¼ 1, 2, 3, 4 with Sj ¼ H0, h0,H, h, respectively, and

PR;L ¼ 1
2
ð1� γ5Þ. The couplings gfZ

0
l:h: , g

fZ0
r:h:, and λf are given

by Table II, and the parametersMe andMq are the physical
masses of charged leptons and quarks, respectively.

TABLE II. Z0 and scalars couplings of Eq. (A3).

Fermions (f) gfZ
0

l:h: gfZ
0

r:h:
λf

ei − gð3−2t2Þ
12

ffiffiffiffiffiffiffi
3þt2

p 6gt2

12
ffiffiffiffiffiffiffi
3þt2

p − 2a4jMei
vρ0

νRi − gð3−2t2Þ
12

ffiffiffiffiffiffiffi
3þt2

p 0 0

u, c 3g

12
ffiffiffiffiffiffiffi
3þt2

p − 4gt2

12
ffiffiffiffiffiffiffi
3þt2

p − 2a3jMu;c

vρ

d, s 3g

12
ffiffiffiffiffiffiffi
3þt2

p 2gt2

12
ffiffiffiffiffiffiffi
3þt2

p − 2a1jMd;s

vη1

b − gð3þ2t2Þ
12

ffiffiffiffiffiffiffi
3þt2

p 2gt2

12
ffiffiffiffiffiffiffi
3þt2

p − 2a4jMb

vρ0

t − gð3þ2t2Þ
12

ffiffiffiffiffiffiffi
3þt2

p − 4gt2

12
ffiffiffiffiffiffiffi
3þt2

p − 2a2jMt

vη0
1
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