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We study a geometric transition in a nonperturbative topological string. We consider two cases. One is
the geometric transition from the closed topological string on the local B; to the closed topological string
on the resolved conifold. The other is the geometric transition from the closed topological string on the
local B35 to the open topological string on the resolved conifold with a toric A-brane. We find that, in both
cases, the geometric transition can be applied for the nonperturbative topological string. We also find the
corrections of the value of the Kdhler parameters at which the geometric transition occurs.
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I. INTRODUCTION

Recently, in unrefined topological string theory on
noncompact toric Calabi-Yau threefolds, the free energy
including nonperturbative effects is proposed [1]. The
nonperturbative parts can be obtained by considering the
Nekrasov-Shatashvili limit [2]. We call this “nonperturba-
tive free energy.” Nonperturbative free energy is finite for
any string coupling owing to the Hatsuda-Moriyama-
Okuyama (HMO) cancellation mechanism [3] This free
energy has been studied in various situations [4—14]. For
example, it is known that this free energy is closely related
to the quantization of a mirror curve for the noncompact
toric Calabi-Yau threefold [15-21]. This provides us with
the nonperturbative definition of the topological string.
However, it is unclear whether the important properties of
the perturbative topological string hold, even if we consider
the nonperturbative topological string.

In this paper, we study a geometric transition [22-24] in
the nonperturbative topological string. As an example, we
study the geometric transition in the closed topological
string on the local ;. We consider two cases. One is the
geometric transition from the local B; to the resolved
conifold in the closed topological string. The other is the
geometric transition from the closed topological string on
the local Bj to the open topological string on the resolved
conifold with a toric A-brane.

We first consider the geometric transition from the local
Bj; to the resolved conifold in the closed topological string.
Then we find that, by calculating the nonperturbative free
energy of the closed topological string on the local B; and
the resolved conifold, the geometric transition can be
applied even if the nonperturbative effects are included.
We also find that, in contrast to the case involving
perturbative free energy, the values of the Kihler param-
eters in which the geometric transition occurs are corrected
by the nonperturbative effects.
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Next we consider the geometric transition from the
closed topological string to the open topological string
with a toric A-brane. Then we find that the HMO
cancellation mechanism can be applied, even if there is
a toric A-brane. We also find that the nonperturbative parts
of this free energy have the same structure as the one in
Refs. [20,25-27]. We check this statement up to O(Q?).
The Kéhler parameters are corrected by the nonperturbative
effects as in the above case.

This paper is organized as follows. In Sec. II, we calculate
the nonperturbative free energy of the closed topological
string on the local B; by using the refined topological vertex
formalism [28-35]. In Sec. III, we consider the geometric
transition from the local B; to the resolved conifold in the
closed topological string. We also consider the geometric
transition in which the toric A-brane occurs. Finally, we
summarize our results and discuss future work in Sec. IV.

II. FREE ENERGY FOR THE TOPOLOGICAL
STRING ON THE LOCAL B;

In this section, we calculate the nonperturbative free energy
of the closed topological string on the local B5. We also check
the HMO cancellation mechanism for this free energy.

A. Calculation of the refined topological string

In order to calculate the nonperturbative free energy, we
use the refined topological vertex formalism. The web
diagram of the local B5 is shown in Fig. 1, where we define
Qi2py=e"120/, and ¢, 5, ; are the Kéhler parameters.

We can then write the partition function of the refined
topological string on this geometry Zyo,5,(Q:t,q) as
follows:

ZLocalB3 (Q’ L Q)
~ 1 2
= (=0, (=000 2 (1.q)2)) 25

Hp -y

(2.1)

where we define

© 2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.94.055010
http://dx.doi.org/10.1103/PhysRevD.94.055010
http://dx.doi.org/10.1103/PhysRevD.94.055010
http://dx.doi.org/10.1103/PhysRevD.94.055010

YUIJI SUGIMOTO

(a) (b)
\ Qy
Qy s
Q" QvQy Q
FIG. 1.
20 = 37 (=0 (=0,)1F, (1.9)Cayp (1 @)
Myt
X Cﬂ’ﬂlﬂb (L Q>C(b/f]0(q’ t)’ (22)
2 = (=0 (=00) el (1. q)C i (9.1)
HyH2
X Cou i (4> )Crgn (1, q).- (2.3)

(2.2) and (2.3) correspond to the building blocks on the left
side and right sides in Fig. 1(b), respectively. We also
define the refined topological vertex C,,,(f,q) and the

framing factors f,(, g), f”(t, q) as follows:

\Iu I1? uun2+uun2
Cﬂmx(ﬁ‘]) 2 q 1/( Q)
\nw\ Jt|
X Z( ) (P q)8, (0 q77),
(2.4)
Stg)= ] (1= g7 )=, (2.5)
(i.j)ev
Fultq) = (~D)Hlg 455 (2.6)
lu i
Rty = 0M () e e
q

where the function S,1/,7(X1,x2,~--) is the skew Schur
function. By using some formulas from the appendixes,
we obtain

n _5 5 i 12 12
ﬂbﬁb_Z ( )Z~ (t Q) 2
Um0 =00, )
i,j=1 (1—th ﬂb-J-Hq_/‘bJ‘H 1) ’
(2.8)
2 5 (4 n2+u,4 12
Zl(lbLb :Zﬂﬁ,(q I)Z (q,t)t : .

X ! i ~ . .
ij=l (1- th_ﬂb-f+l_1q_/4b.i+l>

(2.9)
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(a) Web diagram of the local B5. (b) Its building blocks.

In order to clarify the discussion in the next section, we
normalize (2.8) and (2.9) by dividing the trivial building
blocks Z% and Zé,%ﬂ). Again, by using some formulas, we
obtain

3(1)

ol T
= Zﬂb(t7 Q)Zﬁb (t’ Q)q
1 1= Q,Qt ighimit:

i —itl )

(e, 1= Qe gt

ﬂhﬁh/ 09

i 12+l I
2

1-0,; t_i+%qﬁb.i_j+%
X b

- 2.10
_ th_”rb.ﬂ" q—ﬁb.i+J—l ( )

(iiy |
%(2) . Z(2) (2)
Z#bﬁb - Zﬂbﬁb/zgg

lt 12 +H;¢ I

(g, 1)t

1-— QZQfl*_lJ"iqﬂbAi_jJr%
1= thf‘;aj_iq#b,i—j+1

=Zu(9.1)Z;

(i) Emp

1 = O, iTaghsi—i+s
< ] 1 A1)
— th Hp.j q_ﬂh,i+]

=

Thus, the partition function Zycap, (Q;1, ) is as follows:

Zrocas, (@31, q) = Zh 25 Z(_Qb)‘ﬂh‘ (=0y) ™!
Moy

X f2(L9)Z

(1) %)
ﬂbﬁbz fi

P (2.12)

B. Nonperturbative free energy of the topological string

Now we define the perturbative free energy of the refined
topological string F(Q;t, ¢) and the unrefined topological
string Fyws(Q;q) as follows:

Fws(Q;59) = F(Q:q).
(2.13)

Then we define the perturbative parts of the nonperturba-
tive free energy as

F(0;t,q) = —log[Z(0;1,q)],

_ . o o 2
FWS(e 2ml/h+m’e 2xty/h T o 27ty /h T o 271[//}1;6471 1/h).

(2.14)
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Note that we redefine the Kéhler parameters due to the
HMO cancellation.

The nonperturbative parts of the nonperturbative free
energy are obtained by using the Nekrasov-Shatashvili
limit of the refined topological string [2],

Fns(Qsq) = 3i3)62F(Q; t,q)
(g=e,1=e"). (2.15)

Then the nonperturbative parts of the free energy Fiyp, (t; 7)
are defined as follows:

i 0 .
Fyp(t; 7) =3, t‘aFNs(e"i;elh)
2 0 —t;. nift
+ 1 (Frs(e™se™) /)|, (2.16)
oh
where we define
h = 4n’ /g, (2.17)

and t := (tlv t2, tb, tf)
Thus, the nonperturbative free energy of the topological
string on the local Bs Jycup, (t; 72) is as follows:

JLocalB3 (t, h) = FWS (e—2m1/h+ﬂi’ e—2m2/h—ﬂi’
e—27rtb/h—7ti’ e—27rtf/h; e4ﬂ2i/h) + FMZ(t; fl)
(2.18)

In this case, Jyoqg,(t;7) is finite for any g, or A
For example, when we set 7 = 2z, we obtain

hlingﬂ‘] LocalB; (t’ h )

_2+7r2+2t1+t%e_tl _2+ﬂ2+2t2+t§e_tz

87 87
2 2
+2—|—7z + 21, + zge_th +2+2zf+ oty
82 4n?
(2442 2+ 20 + 1 t}e_,l_tf
87 ‘
2424242+ 20 + G+ 1 ety
87 ’
24977 + 21, — 61, — 61,1 + 15 — 315 s
- 32 e 4L

(2.19)

A more general discussion for this pole cancellation
appears in Ref. [3].

III. GEOMETRIC TRANSITION IN THE
NONPERTURBATIVE TOPOLOGICAL STRING

In this section, we consider the geometric transition.
We first consider the geometric transition from the local
Bj; to the resolved conifold. In order to know how to set the
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Kéhler parameters for this geometric transition, we con-
sider the geometric transition in the perturbative topological
string at the beginning. After consideration, we consider the
geometric transition in the nonperturbative topological
string. Then we find that the nonperturbative free energy
after the geometric transition agrees with the one on the
resolved conifold which is obtained in Ref. [9]. We also
find that the Kihler parameters are corrected by the
nonperturbative effects.

We next consider the geometric transition from the local
B5 to the resolved conifold with a toric A-brane. As with the
above case, we consider the geometric transition in the
perturbative topological string at the beginning. After
consideration, we consider the geometric transition in the
nonperturbative topological string. Then we find that the
nonperturbative parts of this free energy after the geometric
transition have the same structure as the one in Ref. [27].

A. Geometric transition from the local B;
to the resolved conifold

In this subsection, we consider the geometric transition
from the local 35 to the resolved conifold in the closed string
(see Fig. 2).

1. Perturbative free energy

To begin with, we consider how to set the Kihler
parameters to special values in the refined topological
string. In accordance with Refs. [36-39], we set the
parameters Q; and Q, as follows:

le\/z7 QZZ\/Q
q t

Then the factors in 2’(1).
HbHp

H (] _ Qlt—i+%ql~4h,i—j+%) — H (] — t—i+1qﬁh.i—j)

(i.))€Efip (i.))€Efip

(3.1)

(3.2)

become zero unless the Young diagram i, becomes empty.
Then, after several cancellations, we obtain

(o]

ZLocalB3(Q; Z, Q> = H (1 - tiqj_l)(l - ti_lqj)

i,j=1
X Z(_Qb)‘ﬂb‘zﬂb(t’ Q)
Hp

12
”,‘,7"2 H#bl\

X Zy(q.1)q = 1.

(3.3)

This expression agrees with the partition function of the
closed topological string on the resolved conifold, except for
the factors Hﬁ‘}:l(l—tiqf‘l)(l—ti‘qu).] Thus, in an

"This difference is due to the normalization of the topological
vertex.
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unrefined case, this geometric transition occurs when we set

0,=0,=1

The same can be said of the perturbative free energy about
the relation between the partition function and the free
energy.

(3.4)

2. Nonperturbative free energy

We next consider the nonperturbative free energy. Then,
by considering the HMO cancellation mechanism, the
Kihler parameters of the perturbative parts are replaced
as follows:

t, = =2xty/h + i, (3.5)
ty > —2xty/h — 7i, (3.6)

Thus, in order to consider the above geometric transition in
the perturbative part, we set the Kihler parameters as
follows:

Zﬂtl

—T-f—ﬂ'i:o, (38)
2rt
—%—sz. (3.9)
By using the relation (2.17), we obtain

273
t = , 3.10
1= (3.10)

272
h=-"1 (3.11)

9s

This means that the Kéhler parameters are corrected by the
nonperturbative parts. Then the nonperturbative parts
Fyp(t; 71) become

Py (6 7)]; 4 fixed
(n/2) cosB] + (1 + 1,,) sin[Z] .

= h —Ip
fiR) + 4rsin® (2]
hcos[h] + (1 +21,)sin[A] _,
e
167sin? A

(3.12)

where f(#) is the function which is independent of the
Kihler parameters.2 Thus, this function corresponds to the
factors [[¢5_,(1 —#'¢/~")(1 —1~'¢/). This expression
agrees with the one on the resolved conifold which is
obtained in Ref. [9] except for f(%). Therefore, we

*It would be interesting to consider the meaning of f (h) in
terms of the constant map. We would like to thank Sanefumi
Moriyama for discussing it with us.
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conclude that the geometric transition can be applied, even
if we consider the nonperturbative topological string.

B. Geometric transition from the local B; to the
resolved conifold with a toric A-brane

In this subsection, we consider the geometric transition
from the closed topological string on the local B; to the
open topological string on the resolved conifold with a toric
A-brane.

1. Perturbative free energy

We consider again the refined topological string at the
beginning. In accordance with Refs. [36-39], we set the
parameters Q; and Q, as follows:

Ql:\/zi QZZZ\/E
q t

Then, as we said in the previous section, the Young diagram
i, becomes empty. Thus, by using the expressions (2.10)
and (2.11), we obtain

(3.13)

ZLocalB3(Q;t7 Q) = H (1 — tiqj)(l — tiqj—l)

ij=1
X Z(_Qb)‘ﬂb‘zﬂb(l" Q)
Hp
~ eyl W1 1
xXZ;(q,t)g 2 t2 _—
ﬂb( ) E] _ th_ﬂb,/'qj
(3.14)

In order to check for consistency, we calculate the
partition function of the open topological string on the
resolved conifold with a toric A-brane. Its web diagram is
shown in Fig. 3. Then we write the partition function from
the web diagram as follows:

Z (_Qb)lmcﬂﬂu(t, Q>Cﬂ’@ﬂ’(Qv t>Tr/4”Va

all indices

Z open —

(3.15)

where V is the holonomy matrix. Since there is a single
A-brane, the matrix V is the one by one matrix,

V = diag(z). (3.16)
Then we obtain
5 5 Lal® 12
Zopen = Z(_Qb)lﬂlzy(h Q)Zu’(q’ [)C] 22
i
N — (3.17)
j=1 11—zt ﬂf+2qj !
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FIG. 2. The geometric transition in the closed topological string.

Then (3.14) agrees with (3.17) under the relation between z
and Qf,

except for the factors [, ;_, (1 = #'¢’)(1 = r'¢/~"). Thus, in
the perturbative topological string, the geometric transition
occurs when we set

Ql = 17

0 =q. (3.19)

2. Nonperturbative free energy

We now consider the nonperturbative free energy of the
open topological string. With the above discussion in mind,
we set the Kihler parameters for the geometric transition in
the perturbative parts:

2 2
n=""1 (3.20)
95
27%
t=-""_ 2z (3.21)
9

Then we obtain the nonperturbative effects Fyp,(t; 7):

Frp(67)], 4 fixed

B (7/2) cos[4] + (1 + 1;,) sin[4]

=9(h) + 4sin?[2] )
hcos[h] + (1 +2t,)sin[A] _, —t

167sin? |7 2 sin[4]

 oin - \5ih/2 - \3in/2
ie - ie ie ot
i e e )

2 sin[5] 2sinfA]  2sinfh

(e . ie3in ey
4sin[h] ~ 2sin|[A]

-1

jein/2

(3.22)

N\

_(

FIG. 3.

where g(7) is the function which is independent of the
Kéhler parameters. Moreover, according to the relation
(3.18), we set the correspondence between Qf and z as
follows:

2w 272 2w
- —X¢>tf

=y i 3.2
A f+ A ) ( 3)

= x + 7,

where we define z = e™. Thus, we obtain

)|t| trfixed

Fyp(tsh
(h/2) cos[ |4+ (1+41,) sm[ ]
A €

=9n) + 4rsin? [2
2

hicos[h] + (1 + 2t,) sin[A] 2 iel"/2 (—e)
167sin? 7] T3 sin[#]

il edin/2 je3in/2
1€
e~ (_e—x) + ( )

* 2sin[4] 2sinfh 2 sin[A

ieZih ie3ifl 5
— 20 (_e=*)2 1 ...
<4sin[h]+251n[h]>e (=) 4

Then we find that the nonperturbative parts of the open
topological string have the same structure as the one in
Ref. [27]. We check this up to second order of the Kéhler
parameters.

Thus, we obtain the nonperturbative free energy of the
open topological string on the resolved conifold with a toric
A-brane,

-1

(3.24)

JEN (6 h) = Jx(th)] Lo o

1= g5 27 s

L. (325)

This free energy is finite for any g, or # because of the
HMO cancellation mechanism. For example, when we set
h = 2x, the free energy Jy " (t;7) becomes

The geometric transition from the closed topological string to the open topological string.
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lim JP" (t; 7
hinélﬂ X ( )

=9+ 247 4+ 10m 27+ i(1 + 1)
B 1672 * 27
N 4r + mi(1 + 2t;) e 2472+ 21, - oo
872 872
3z +i(l+ 1, +tf)
- 27
1+ 2727 +21,(1 + 1)
- 3277

e lr

eIty

e_2th+...’

(3.26)
where tp=x-— 7.

IV. SUMMARY AND FUTURE WORK

In this paper, we have considered the geometric transition
in the nonperturbative topological string in two cases. One is
the geometric transition from the local 55 to the resolved
conifold. The other is the geometric transition from the local
B5 to the resolved conifold with a toric A-brane. Then we
have found that the geometric transition can be applied, even
if the nonperturbative effects are included. We have also
found that the Kéhler parameters are corrected by the
nonperturbative effects. In the open topological string, the
nonperturbative free energy which we have obtained has had
the same structure as the one in Ref. [27].

We have various areas of future work. First of all,
considering the general formula of the nonperturbative
open topological string would be interesting. Its structure
would be similar to the free energy of the closed topological
string which is derived in Ref. [1].

In this paper, we have considered the open topological
string with a toric A-brane. Now we want to consider the
open topological string in the presence of N A-branes. We
would be able to use the geometric transition to obtain this
free energy. In this case, we set the Kéhler parameters as
follows:

272
H = 7 (4.1)
b= -2 N (4.2)
95
_2”,,+4”21(-_1> _ 2
AT U2 n
(j=1,2....N), (4.3)

where the variables x; correspond to the positions of the A-
branes. The justification of this parameter choices would be
important.

In terms of the mirror curve, we consider the mirror
curve of genus 1 in this paper. Then, naively, we can derive
the mirror curve of genus O by using the geometric
transition. On the other hand, according to Ref. [17], the
quantization of the mirror curve relates to the free energy of

PHYSICAL REVIEW D 94, 055010 (2016)

the topological string on the toric Calabi-Yau manifold
associated with the mirror curve. However, there is a crucial
problem. For the quantization of the mirror curve of genus
0, the expectation value of the trace class operator which is
defined by the quantization of the mirror curve diverges
since the spectrum of this operator is continuous. Then, by
using our result and mirror symmetry [40,41], we might
obtain the finite expectation value for the mirror curve of
genus 0 by setting some parameters in the expectation value
of the mirror curve of genus 1, whose expectation value is
finite.

The above discussion about the mirror curve can be applied
to the open string. Then, the free energy of the open topological
string might be able to relate to the quantization of the mirror
curve. It would be interesting to also consider this.

ACKNOWLEDGMENTS

I would like to thank Satoshi Yamaguchi and Sanefumi
Moriyama for their discussions and comments. I also would
like to thank Taro Kimura for the discussions.

APPENDIX A: DEFINITIONS
AND SOME FORMULAS

In this appendix, we summarize the definitions and the
formulas which we use in this paper.
(i) The refined topological vertex is

2
O g P e
2 q

> Z,(t,q)

[l +13]=u|
2

Ci;w(tvCI) =t

<2(7)

Z,(t.9)= T (1=g=t )~

(i,j)ev

s/l’/r](t_pq_y)sy/n(t_yrq_p)7

Up) I(p)
<|ﬂ|==2#i,llﬂllz==ZM?>- (A1)
i=1 i=1
(i) The gluing factors are
_ [y i
fult,q) = (=1)¥g=="r2,
Jul
~ r\ 2 ul? 12
Ry = (04 (2) 0w

where s,,/,(x;, X5, ...) is the skew Schur function. We also
define the Young diagram p as in Fig. 4. When we set
t = g, the refined topological vertex becomes the unrefined
topological vertex.
We also include some useful formulas.
(i) Some formulas pertaining to the Schur polynomial
are

s1/.(ax) = a|’1|“”|s/1/,,(x), (A3)
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(a) (b) (c)
[y H(00) Kj
251 J A/J
ILL2 /L i,/'
| 2 (i, 7)
Py L] | _I

FIG. 4. The Young diagram. Definitions are for (a) y;, (b) u, and (c) the coordinate (i, ).

Z'Sﬂ//1 ’7/# H ] - xlyj Zsy/‘r s/l/r (A4)
ij=
ZS” X '7/ﬂ(y H + XiYj ZSM'/T Sﬂ’/r (AS)

(i) Normalization formulas include

= 1= Qgu ! IR
1 T—ogirt [T (t=0g=ts= ) TT (1 = @grti=1ei), (A6)
ij=1 q (ij)ev (ij)en
o0 Vi—itl iyl
1 =0 2g™™ H il
11 = [ (- 0qitiY, (A7)
= 1—0t gt (i,j)ev
< | — Qg 1
11 = ] -0, (A8)
i 1 — Qq 27 (i.jjev

APPENDIX B: TOPOLOGICAL STRING ON LOCAL B;

1. Partition function of the refined topological string

We write the partition function of the refined topological string on the local 55 for certain orders explicitly,

ﬁ (1= Q17373 (1 — Q1 2g/72) (1 - Qlefi_%qj_l)(l - Qlefi_%qj_%>
(1- fol Yg/)(1 - thlq] )

X {1 { % 1- Qlet 2612)(1 - Qfot 2612) tzq (1 - Ot oqz)(l _ ta_%q%)

ZLocalB3(Q L, q

=0 -q)(1-0)(1-0;q) ' (1=0)(I- )(1—Qf)(l—thq—l)Qf]Qb

( Pq(l - 0,01 2q2)<1 — 0,01 ’qz)(l — 0041 2612)(1 = 041" 2612)

L=0)(1 =) (1 =1q)(1 = q)(1 = Q) (1 = Qpr " )(1 = Qsr7'q)(1 = Q1 72q)
1q*(1 - Qlet_%CI%)(l - Qlet‘%q%)(l - Qfot'%q%)(l - Qfot'%q%) >

(1=g)(1 =) (1 =1q)(1 =1)(1 = Qp)(1 = Qrq)(1 = Qpqr~")(1 = Qyg°t™")

+

055010-7



PHYSICAL REVIEW D 94, 055010 (2016)

YUJI SUGIMOTO
(1 - 0,132 (1 — Qlet‘%q%)(l — Ot 3qE)(1 - Qfot‘%q%) 0
(1=02(1-q2(1-00(1=0rq)(1 -0 (1 =0,q7") =
N < g7 (1= 0117¢2) (1 = Q1173q2) (1 = Qa173g2) (1 — Q173
(=01 -2)(1-1q)(1 - q)(1 - 0,)(1 - 0,1)(1 - Qeg~)(1 - 0,;2q ™)
Pq?(1= 01172q)(1 = 01173¢3) (1 = Qot—2q2) (1 = Qi 73¢P) 2o 0.
0= =1g) (=01 -0, (1 - Qg )1 = 0ytg")(1 - szq-2>>Q-f] O+ } (BL)

In this paper, we use this expression.

2. Free energy of the topological string
a. Free energy of the unrefined topological string

The free energy of the unrefined closed topological string on the local 55 is as follows
201 4+ 08 4+ (010,)" + (220,)" — 207 1 3 5
F 5 - m m 2
(@0 =3 g =) R e e A
—2 0,0 ! 0,07 - 2 0,0 ! 0,07 + 1 00,0
- 2Xf T 1 _1 2 _ I¥f 7 1T 1=l L g x1X2XSf
(¢* - q )2 (¢ =g (¢"—q7)? (-2 7 (¢-q?)?
6 3 5
+— 3 QQQ)Q +< —< i - - >Q2+,QQ2
(¢ - ) 'V \g-g?? 2a-a7) (g-gip
2 4
- = 2 - - 0202 _-___° 2 2 B2
2(q q )2 Q2Q (q ) Qle ( _q_])z Qle (q%_q_%)z QlQZQf)Qb+ ( )
b. Free energy of the topological string in the NS limit
The NS limit for the free energy of the closed topological string on the local Bj is as follows
O+ 0+ (0100)" +(0:0,)"  =CF (4" —g™")
F (Q’q) = ( [ —m - [ T
w00 = (T 2wl =4
+( S L R L R L 00~ s 0.0,
¢-g (¢-g < g @ —gT T (¢ g
2 _ - _ 1 3
B Y %QZQZ ——0,0:0; +7Q1Q2Qf) 0,
(-q7) (q*—q7)? -9 (q2=q™)?
1 qZ—q‘ ¢ -q7) 4 -q ) ¢-q>
+ -+ 5+ - 0+ 1100
(4(q—q ) <(q—q 2 4g-q?  a—a ) (g
E—q3 P-q? ¢ —q2 ¢ g2
+mQ2Qf ﬁQ Qf ﬁQfo m&Qfo
+ 4a—qD Q%Q%Q}) 0; + (B3)

APPENDIX C: PROOF OF THE GEOMETRIC TRANSITION FROM THE LOCAL B;
TO THE RESOLVED CONIFOLD

In this section, we show that the nonperturbative parts of the free energy of the local 35 become the free energy of the

resolved conifold after setting the Kihler parameters to (3.8) and (3.9)
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We first consider some derivatives. We define

1— Qlet—iJr%quh,,-—H%
1-— thﬁ;;,j_i+lqﬂh.i_j

(1) . —
Wﬂbﬁh<Q’ 2 q) - H

(i.J)Emp

H 1 f— Qlt_ijL%qﬁlxi_j"’%

——— (C1
H T g—hpiti—1
(i.j)Eftp I- Qfl Hpj lq HpitJ
- it ghimity
Wﬂ(i}lb(Q;t’Q) - H 1 QZQI’];Z i~ Zbi_j+l
(ijew, 1= Qpt gt
1- ta_i""%qﬁb.i—j-k% <C2)
— -1 5 i
(ifem, | = Qpt T gt

These expressions are factors of 27,(42% and 2 Lb The
Nekrasov-Shatashvili limit does not affect WIE ﬂh(Q 1, q),

ﬂb”b(Q t,q) since they do not have the pole. Then, by
performing the derivatives, we obtain

[atl[hmw (Q L, Q) ﬂbﬂb(Q’ ’Q)]”tl t, fixed

_Z qu”bl ' 1
=0 1= 05"

1_qﬂh,i_1
< 11 A
— 0, it
_#01 Qg it

(i) Efipofip,i—J (i.J) €ty

1 — qﬁb,i_j+l
1 - qu_ﬁb1+f ’

(C3)

[, [th (Ot W2 (0. )]l 1y e

B quﬂb,;—j+1
=D 1o g g (C4)
Hp !
. 1 2
0, [Him W,z (05 1. @)W, (051 )l 1y a = 0.
(Cs)
[ftaﬁ[th Qi)W (0569, 1y e
- i qum” J Z QqHvi~ s
2 1= quﬂhx 2 qﬂb,-—/+1
i 1 1-— qﬂb.i‘]
21— -1 — ~fpi+j=1
2V= 00 i jregipin iz L ~ Cr ™
— ghvi—J+1
= L

Then, we can show that the contributions in Fyp(t, #)
which come from the above terms cancel out each other.
Thus, we obtain

PHYSICAL REVIEW D 94, 055010 (2016)

Fyp(tih) = Fys(e7;e)

27 {tb oty

0 ~ .
w1 Bas(etie )] | 1. (€)
where we define

Fys(e™;ei") = lime; log [Z(—Qb)””zﬂb(W)Zﬂz

€)—>
Hp

2 et 112
X lanaslt (c3)

This expression agrees with the nonperturbative parts of the
free energy of the resolved conifold, except for f(#).

For Zé,g and Zéﬁg, we can easily show that these
contributions become parts of f(%) by using the following
formula:

[Se]

[[01-0r)

i,j=1
I
1m (tm/Z _ t—m/Z)(qm/Z

m=

=exp [— (C9)

_ q—m/Z) :

APPENDIX D: BUBBLING CALABI-YAU

In this section, we show that the partition function of the
refined open topological string on the conifold with N toric
A-branes agrees with the one of the refined closed topological
string on the local B; under some correspondence. This
phenomenon is known as the bubbling Calabi-Yau [36,38].

Let us consider the following web diagram. We write the
partition function of the refined open topological string by
using the refined topological vertex formalism,

opcn ZCQ/M q, )TI‘ V. (Dl)
By using the formula
Tr,V = s,(x), V = diag(zy, 2, .-, 2n) (D2)
we obtain

Qs
Q2

FIG. 5. The web diagram. The figure (a) is the web diagram
with the toric A-branes. This web diagram becomes the web
diagram (b) via the geometric transition. This phenomenon is
known as the bubbling Calabi-Yau.
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We next consider the web diagram in Fig. 5(b). The
partition function of this diagram is

chosed = Z(_Qf)‘ﬂf‘ (_Q2)‘M2‘}‘;fl (t’ q)cﬂfﬂ@ (q’ t)

HysH2

(D3)

X Cuzy}.ﬂ(qv I)Cugﬂﬂ(t’ CI) (D4)
After some calculation, we obtain
(1- szi_%qj_%)(l - 0,0 'li_%qj_%>
Zelosed = H ! ) (DS)

ij=1 (1-0s1q)

PHYSICAL REVIEW D 94, 055010 (2016)

We then set
0, =V % (D6)
Qpqt3 =2z(i=1,2,...,N). (D7)

The partition function (D3) agrees with (D5) except for the
factors []; ;—; (1 — #"~'¢/). This difference is due to the
difference of normalization between the refined Chern-
Simons theory and the refined topological vertex. This is
the refinement of the bubbling Calabi-Yau.

The web diagram we consider in Sec. III corresponds to
the case of N = 1.
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