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A minimal extension of the Standard Model that provides both a dark matter candidate and a strong first-
order electroweak phase transition (EWPT) consists of two additional Lorentz and gauge singlets. In this
paper we work out a composite Higgs version of this scenario, based on the coset SOð7Þ=SOð6Þ. We show
that by embedding the elementary fermions in appropriate representations of SOð7Þ, all dominant
interactions are described by only three free effective parameters. Within the model dependencies of the
embedding, the theory predicts one of the singlets to be stable and responsible for the observed dark matter
abundance. At the same time, the second singlet introduces new CP-violation phases and triggers a strong
first-order EWPT, making electroweak baryogenesis feasible. It turns out that this scenario does not conflict
with current observations and it is promising for solving the dark matter and baryon asymmetry puzzles.
The tight predictions of the model will be accessible at the forthcoming dark matter direct detection and
gravitational wave experiments.
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I. INTRODUCTION

In light of the celebrated discovery of the Higgs boson
[1,2], and the absence of further signatures of new physics
at the LHC and other experiments (we cannot assert the real
nature of the 750 GeV excess [3,4] for the time being), the
success of the Standard Model (SM) of particle physics has
become unquestionable nowadays. Nonetheless, there are
both experimental observations and theoretical reasons not
to consider the SM as a complete description of nature even
at low energies. As a matter of fact, the SM does not
account for the neutrino oscillations, nor for the evidence of
dark matter (DM) and the baryon-antibaryon asymmetry of
the Universe, among others. On top of that, the unnatural
size of the Higgs mass suggests that new degrees of
freedom should show up at energies of the order of the
TeV scale. In this spirit, composite Higgs models (CHMs)
[5–7] have played a major role in recent years. In particular,
the minimal CHM [8] has deserved special attention, but
nonminimal CHMs have also been studied in detail, as their
extended scalar sectors may provide solutions to the
intricacies of new physics [9–18]. This is especially well
motivated, given that departures from the SM predictions
can be plausibly hidden in the Higgs sector, which is not
precisely measured yet.
Nonminimal CHMs are very predictive in comparison to

their renormalizable counterparts built in a bottom-up
approach. In CHMs the light scalars are indeed the

pseudo-Nambu-Goldstone bosons (pNGBs) of a sponta-
neously broken global symmetry of a new strongly coupled
sector. The derivative and gauge interactions are hence
fixed by the coset structure. The leading-order one-loop
potential is instead computed as an expansion on spurion
insertions parametrizing the explicit breaking of the global
symmetry [19]. The crucial point in this regard is that the
number of independent spurion invariants is generally
smaller than the number of independent interactions com-
patible with the remnant symmetry, which in addition may
be larger than the SM gauge group. A caveat is still in order
for that matter; namely small spurion multiplets are
typically disfavored. In fact, they used to generate no
quartic term for the Higgs boson at leading order; the
proper size of such a term arising only by assuming large
next-to-leading order corrections, which tend to make the
usual perturbative ordering unreliable [19].
In view of the discussion above, in the present paper we

explore the phenomenology of a nonminimal CHM based
on the coset SOð7Þ=SOð6Þ. We show that by taking
spurions transforming in the fundamental representation
7 and the symmetric representation 27 of SOð7Þ, the model
provides a rather predictive setup where the low-energy
scalar sector consists of a Higgs field and two real scalars, η
and κ, that are singlets under the SM gauge group.
Remarkably, this SOð7Þ breaking pattern leads to an
approximate Z2 symmetry for κ and an exact Z2 symmetry
for η. In addition, the field κ does not acquire a vacuum
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expectation value (VEV). It is hence stable and turns out to
be a good DM candidate. At the same time, within the
(modest) model dependencies of the theory, the singlet η
acquires a VEV prior to the electroweak symmetry
breaking and ultimately promotes a strong first-order
electroweak phase transition (EWPT) with sizable gravi-
tational wave signals. Besides, higher-dimensional oper-
ators with sizable CP-violation phases are expected [11],
opening up the possibility of electroweak baryogenesis [20]
(related results in noncomposite models are discussed in
Refs. [21–24]). Notably, domain wall problems avoided for
the Z2 symmetry of κ is not exact. Hence, within the natural
values, the model can potentially solve the hierarchy
problem as well as the cosmological evidence of DM
and the baryon-antibaryon asymmetry of the Universe.
Forthcoming experiments will be able to probe the model
predictions.
The rest of this paper is structured as follows. In Sec. II

we revisit briefly the basics of CHMs, paying special
attention to the computation of the scalar potential. In
Sec. III we introduce the model. In Sec. IV we work out the
implications for DM while in Sec. V we study the EWPT.
In Sec. VI we discuss the current constraints and future
probes, including gravitational wave searches, Higgs phys-
ics, DM direct-detection experiments, and LHC searches
for DM and dijet resonances. Section VII is devoted to
conclusions.

II. A QUICK LOOK AT COMPOSITE MODELS

In this section we present some introductory ideas on
CHMs and set up conventions. Readers interested in further
details are referred to, e.g., the recent review [19], whereas
those familiar with CHMs may go directly to Sec. III.
CHMs extend the SM with a new strongly interacting

sector characterized by a typical scale f ∼ TeV and a
coupling g. This new sector is endowed with an
approximate global symmetry group, G, spontaneously
broken into some subgroup, H, containing the SM gauge
group. The Higgs boson is assumed to be a pNGB of this
symmetry-breaking pattern, and hence is naturally lighter
than f.
The global symmetry is assumed to be explicitly broken

mainly by the linear mixings between the SM fermions and
composite operators O of the strong sector. The dynamics
of the Higgs and other potential pNGBs is dictated by the
following Lagrangian:

L ¼ Lσ þ Ly − V: ð1Þ

Lσ describes the gauge and (derivative) scalar interactions.
It is fixed by the coset structure G=H. At the leading order
in the derivative expansion, it reads

Lσ ¼
f2

4
TrðdμdμÞ; ð2Þ

where dμ is the projection of the Maurer-Cartan one-form
ωμ ¼ iU−1DμU into the broken generators Ti, with U
being the Goldstone matrix

U½Π� ¼ exp

�
−i

ffiffiffi
2

p

f
hiTi

�
ð3Þ

and hi the pNGBs. Ly and V stand for the Yukawa
Lagrangian and the scalar potential, respectively. They
arise from the explicit breaking of the global symmetry.
According to the partial compositeness setup [25], such a
breaking is provided by

Lmix ¼
X
Ψ

λΨΨ̄OΨ þ H:c:; ð4Þ

with Ψ running over incomplete representations of G
(also called spurions) embedding the SM fermions. The
composite operators OΨ manifest as vectorlike fermions at
low energy. These are expected to be much heavier than the
SM and the pNBG fields, and hence do not intervene in
the phenomenology under study. Thus, we disregard their
effects in what follows.
The so-called dressed fieldsΨD can be constructed out of

the spurions as

ΨD ≡U−1Ψ: ð5Þ

In general,ΨD transform in reducible representations of the
unbroken group H, namely

ΨD ¼⨁ ΨD
m; ð6Þ

with m running over the irreducible representations of H.
The dressed fields are useful to determine the invariants

of H. By calling Ijn the jth invariant of H involving a
number n of fields, the scalar potential can be expressed as
the following expansion [19]:

V ∼
�
λΨ
g

�
2X

j

cj2I
j
2 þ

�
λΨ
g

�
4X

j

cj4I
j
4 þ � � � ; ð7Þ

where cjm are in practice free parameters. Given that λΨ is
expected to be much smaller than the new strong coupling
g, Ij2 dominate the previous expansion. However, when Ψ
transforms in a small representation of G, the leading order
invariants Ij2 do not usually generate the Higgs quartic
coupling, and hence electroweak symmetry breaking
(EWSB) cannot be achieved at the leading order.1 Small
representations can still be considered if one assumes that V
is not dominated by the (formally) leading-order

1For instance, in the minimal CHM this occurs for the 4 and 5
representations but not for the 14 one.
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contribution. The problem of this regime is twofold. On one
hand, the fine-tuning for keeping the leading-order con-
tribution small is obviously large. On the other hand,
sizable next-to-leading order contributions come at the
expense of predictivity. Indeed, fewer spurions, and hence
free parameters, are present at the leading order. For the
sake of example, 2 versus 15 independent spurions arise at
the leading and next-to-leading order, respectively, in the 5
of SOð5Þ [19].
In the present work we proceed in the regime where the

next-to-leading contributions are subleading, and we hence
neglect them unless otherwise stated. As previously dis-
cussed, we work out the coset SOð7Þ=SOð6Þ. We embed
the SM fermions in the 7 and 27 of SOð7Þ. The latter arises
as the symmetric part of 7 × 7 ¼ 1þ 21þ 27, in complete
analogy with the 14 in SOð5Þ. Under SOð6Þ, we obtain the
following branching rules:

7 ¼ 1þ 6; ð8Þ

27 ¼ 1þ 6þ 20: ð9Þ

One and two independent spurion invariants can therefore
be constructed at the leading order from the 7 and 27
representations, respectively.

III. MODEL DESCRIPTION

The model we analyze is based on the symmetry-
breaking pattern SOð7Þ ×Uð1Þ0=SOð6Þ × Uð1Þ0. We pro-
ceed in the unitary gauge. Two gauge singlets, η and κ, arise
in the pNGB spectrum in addition to the Higgs degrees of
freedom ϕ ¼ ½ϕþ; ðhþ iϕ0Þ= ffiffiffi

2
p � T. The addition of a

spectator group Uð1Þ0 is required in order for the SM-
fermion hypercharges to be correctly reproduced, in the
same vein as in the minimal CHM.
The 15 unbroken and 6 broken generators of SOð7Þ, T

and X, respectively, can be conveniently written as

Tmn
ij ¼ −

iffiffiffi
2

p ðδmi δnj − δni δ
m
j Þ; m < n ∈ ½1; 7�;

Xm7
ij ¼ −

iffiffiffi
2

p ðδmi δ7j − δ7i δ
m
j Þ; m ∈ ½1; 6�: ð10Þ

The SM SUð2ÞL ×Uð1ÞY gauge group is thus generated by

J1L ¼ 1ffiffiffi
2

p ðT14 þ T23Þ; J2L ¼ 1ffiffiffi
2

p ðT24 − T13Þ;

J3L ¼ 1ffiffiffi
2

p ðT12 þ T34Þ; J3R ¼ 1ffiffiffi
2

p ðT12 − T34Þ; ð11Þ

being the hypercharge defined as Y ¼ J3R þ Y 0 with Y 0 the
generator of Uð1Þ0.
The dynamics of the pNGBs is described by the

Goldstone matrix

U ¼ exp

�
−i

ffiffiffi
2

p

f
½T47hþ T57ηþ T67κ�

�
: ð12Þ

After performing the replacements [9]

h2

h2 þ η2 þ κ2
sin2

��
h2 þ η2 þ κ2

f2

�1
2

�
→ h2; ð13Þ

η2

h2 þ η2 þ κ2
sin2

��
h2 þ η2 þ κ2

f2

�1
2

�
→ η2; ð14Þ

κ2

h2 þ η2 þ κ2
sin2

��
h2 þ η2 þ κ2

f2

�1
2

�
→ κ2; ð15Þ

we bring U to the two-block matrix form

U ¼

0
BBBBBBBB@

13×3

1 − h2
1þΣ − hη

1þΣ − hκ
1þΣ h

− hη
1þΣ 1 − η2

1þΣ − ηκ
1þΣ η

− hκ
1þΣ − ηκ

1þΣ − κ2

1þΣ κ

−h −η −κ Σ

1
CCCCCCCCA
; ð16Þ

where

Σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − h2 − η2 − κ2

q
: ð17Þ

The sigma model interactions are thus described by the
Lagrangian

Lσ ¼ Lkinetic þ
1

2

ðh∂μhþ η∂μηþ κ∂μκÞ2
f2 − h2 − η2 − κ2

: ð18Þ

At the level of the sigma model there is a Z2 × Z2 × Z2

symmetry given by h → −h, κ → −κ, and η → −η, for the
coset is symmetric. This symmetry will be broken only by
the external sources, which will also induce a potential for
the pNGBs.
At the renormalizable level, the most general potential

for η (stable), κ, and the Higgs boson h reads

V ¼ −
1

2
μ2hh

2 þ 1

2
μ2ηη

2 þ 1

2
μ2κκ

2

þ 1

3
Aκhκh2 þ

1

3
Aκηκη

2 þ 1

3
Aκκ

3

þ 1

4
λhh4 þ

1

4
ληη

4 þ 1

4
λκκ

4

þ 1

4
λhηh2η2 þ

1

4
λhκh2κ2 þ

1

4
ληκη

2κ2; ð19Þ

which involves 12 independent parameters. Not all of them
will, however, be generated in the present composite setup,
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at least at the (unsuppressed) leading order. In particular, if
we want κ to lead to a two-step EWPT and η to be a DM
candidate without conflicting with Higgs searches (see
Secs. IV and V), the following conditions must hold:
(i) η → −η is an unbroken symmetry; (ii) μ2κ < 0; and
(iii) the physical masses of h and κ are such thatmh < 2mκ,
which is favored by λhκ ≳ λh.
In the present composite scenario, a minimal content

satisfying the above three conditions consists of the mixing
Lagrangian

Lmix ¼
X
Ψ

λΨR
ΨR

IðOR
ΨÞI þ

X
Ψ0

λΨL
ΨL

IðOL
ΨÞI þ H:c:;

where the first sum extends over Ψ ¼ T, B, C and the
second overΨ0 ¼ Qt;Qb;Qc, with TR andCR transforming
in complete singlets of SOð7Þ with Uð1Þ0 charge 2=3, BR

and Qb
L transforming in fundamental representations 7 of

SOð7Þ with Uð1Þ0 charges −1=3, and Qt
L and Qc

L trans-
forming instead in the symmetric representation 27 of
SOð7Þ that results from the tensor product of fundamental
representations, i.e., 7 × 7 ¼ 1þ 21þ 27. The most gen-
eral embedding fulfilling these assignments is explicitly
provided by2

BR ¼ ð 0 0 0 0 0 iγbR bR ÞT; ð20Þ

Qb
L ¼ 1ffiffiffi

2
p ð−itL tL ibL bL 0 0 0 ÞT; ð21Þ

Qt
L ¼ 1

2

0
BBBBBBBBBBBB@

06×6 ibL
bL
itL
−tL
0

0

ibL bL itL −tL 0 0 0

1
CCCCCCCCCCCCA

;

Qc
L ¼ 1

2

0
BBBBBBBBBBBB@

05×5 ζsL isL
−iζsL sL
ζcL icL
iζcL −cL
0 0

ζsL −iζsL ζcL iζcL 0 0 0

isL sL icL −cL 0 0 0

1
CCCCCCCCCCCCA

:

ð22Þ

Heavier quarks couple more strongly to the composite
sector, and hence b and c contributions to the one-loop
potential can be neglected unless they are multiplied by a
large γ or ζ, respectively.3

Note also that the drastically different structure of the
lepton sector, and in particular the tiny neutrino masses,
suggests that the left-handed leptons do not couple sizably
to the new strong dynamics in any way. This could be
overcome in particular scenarios [26], which would
increase the parameter space of this setup. At any rate,
we are just assuming that the main contributions to the
potential come from the quark sector.
In this embedding the potential acquires the form

V ¼ −
1

2
μ2hh

2 þ 1

2
μ2ηη

2 þ 1

2
μ2κκ

2

þ 1

4
λhh4 þ

1

4
λκκ

4 þ 1

4
λhηh2η2 þ

1

4
λhκh2κ2: ð23Þ

The quartic coupling λκ is generated only at the next-to-
leading order, but it has been introduced since it plays an
important role in the EWPT phenomenology. At any rate, it
is expected to be much smaller than the other quartic
couplings. The rest of the parameters are functions of the
dimensionless spurion coefficients αq;i, as well as γ and ζ,

μ2h ¼ −
1

2
f2ð4αt;1 − 7αt;2 þ αc;2ζ

2Þ; ð24Þ

μ2η ¼ −2αt;2f2; ð25Þ

μ2κ ¼ 2f2ðαbγ2 þ αc;2ζ
2 − αt;2Þ; ð26Þ

λh ¼ 4ðαt;2 − αt;1Þ; ð27Þ

λhη ¼ 4ðαt;2 − αt;1Þ; ð28Þ

λhκ ¼ 4½αt;2 − αt;1 þ ðαc;1 − αc;2Þζ2�: ð29Þ

In our analysis we will consider the following two broad
parameter regimes depending on the actual values of αc;i:
Regime I: αc;2 ¼ −αc;1. This is the most natural scenario
since the size of these two coefficients is expected to be
similar, and it still allows for λhκ ≳ λh, contrary to the
case αc;2 ¼ αc;1.
Regime II: jαc;2j ≪ jαc;1j ∼ jαt;i=ζ2j. As we will see,
accounting for the DM relic density observation will
completely fix the mass of η and its interactions with
nuclei in this case.4

In both cases, the coefficients αiq as well as γ and ζ can be
traded by the measured values of the Higgs VEV

2See Refs. [9,10,12,14] for Z2-preserving embeddings in other
models of composite DM.

3If both γ and ζ were zero, κ would also be protected by a Z2

symmetry.
4The case jαc;1j ≪ jαc;2j would be quite similar to Regime I.
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(v≃ 246 GeV) and physical mass (yielding λ≃ 0.13), and
only three free parameters, namely, f, μ2κ , and λhκ. Indeed,
in Regime I we obtain

μ2η ¼
1

3
f2
�
7

4
λh þ

1

4
λhκ − 4λhξ

�
; ð30Þ

λhη ¼ λh; ð31Þ

while in Regime II we get

μ2η ¼
2

3
λhf2ð1 − 2ξÞ; ð32Þ

λhη ¼ λh; ð33Þ

with ξ≡ v2=f2.
Finally, the Yukawa Lagrangian takes the form

Ly ¼ −
X

q¼t;b;c

yqq̄qh

�
1 −

1

f2
ðh2 þ η2 þ κ2Þ

�1
2

− i
h
f
κ½γybb̄γ5bþ ζycc̄γ5c�; ð34Þ

with yq the Yukawa couplings.
According to these results, several comments are in

order here:
(i) Neither a single cubic coupling nor a quartic term for

η or a quartic coupling between η and κ are generated
at leading order. At higher orders only the Z2

symmetry of κ is broken. Therefore, since μ2η is
predicted to be positive,5 η is stable and hence a DM
candidate. Finally, κ is subject to model dependen-
cies that allow μ2κ < 0.6

(ii) The second quark generation has to be included in
order for the coupling λhκ to be large enough to
achieve the hierarchy m2

h=4 < m2
κ ¼ μ2κ þ 1=2λhκv2

between the h and κ physical masses. Otherwise the
experimental bound on the Higgs decay into non-
SM particles [28] would be hard to evade.

(iii) γ and ζ could have a small imaginary part, even in
the top sector, without substantially changing the
equations above. If this was the case, they could
provide a new sizable source ofCP violation [11], as
required by electroweak baryogenesis. The imagi-
nary part would manifest in the potential as a bunch
of κ-odd terms, making the Higgs mix with κ after
EWSB. This mixing further introduces electric

dipole moments (EDM), mainly via two-loop dia-
grams, as discussed in Ref. [11]. According to it,
EDMs are under control provided κ is close in mass
to h. This holds even for large values of the
imaginary part, which we explicitly disregard.

(iv) From the EWSB conditions one obtains jαt;ij∼
λh ≃ 0.13. Besides we expect jαcj < jαbj < jαt;ij.
We have checked that, in both regimes, independ-
ently of f ≤ 5 TeV, any value ofmκ below 200 GeV
and any value of λhκ between 0.1 and 0.4 can be
reached by barring this parameter space region with
mild values of γ; ζ ∈ ½3; 5�.

IV. DARK MATTER PREDICTIONS

As previously discussed, η can provide a DM candidate
since it is protected by a Z2 symmetry not even sponta-
neously broken. The main diagrams contributing to the
annihilation of η are shown in Fig. 1. For the choice f ∼
TeV that is favored by electroweak precision data and
Higgs physics (see Sec. VI), all depicted processes are
kinematically accessible. Indeed, as Eqs. (30) and (32)
show, the physical mass of η, mη, is larger than the
electroweak scale (and thus larger than the quark and
remaining pNGB masses) when f ≫ v. Because of this
hierarchy, the DM phenomenology is dominated by one
single scale, mη (or equivalently f). No strong dependence
on mκ is thus expected.
One can use dimensional analysis to estimate the

annihilation cross sections of η. As the processes with
mediators are suppressed, from Eqs. (18), (23), and (34)
one deduces

σðηη → hhÞv0 ∼
1

m2
η

�
λh −

4m2
η

f2

�
2

; ð35Þ

σðηη → κκÞv0 ∼
1

m2
η

�
4m2

η

f2

�
2

; ð36Þ

σðηη → tt̄Þv0 ∼
1

m2
η

�
mtmη

f2

�
2

; ð37Þ

with v0 the (small) velocity of the colliding DM particles. It
is then expected that the ηη → κκ channel dominates the

FIG. 1. Main diagrams contributing to the DM annihilation.
The double dashed lines stand for η. In the first plot the solid legs
account for either SM particles or κ. In the second diagram the
simple dashed lines represent either the Higgs boson or κ. In the
third diagram the fermion lines stand for (mainly) the top quark.
In the fourth diagram the simple dashed lines represent the Higgs
boson.

5This is apparent in Regime II from Eq. (32), given the large
hierarchy between f and v, and hence the small value of ξ. In
Regime I, instead, it could be violated if −λhκ ≫ λh, which is in
conflict with Higgs searches, as commented in (ii).

6Relevant comments in this respect have been previously
pointed out in Ref. [27].
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annihilation cross section, for a partial cancellation between
the Higgs quadratic coupling and the derivative contribu-
tion from Lσ arises in σðηη → hhÞ. This implies that the
DM phenomenology can be very different from the smaller
composite setup SOð6Þ=SOð5Þ.
Interestingly, in our framework the DM abundance is

fixed by only a few free parameters. Indeed, since σðηη →
κκÞ is the dominant annihilation cross section, the relic
density depends only on λhκ and f in Regime II, and
uniquely on f in Regime II [cf. Eqs. (30) and (32)]. This
feature also arises in our numerical study. Specifically, we
employ Feynrules [29] to implement the model, and
micrOmegas [30] to determine the parameter region where
the relic abundance of η, Ωηh2, is compatible with the
experimental measurement ΩDMh2 ¼ 0.119� 0.003 [31].
The finding is summarized in Fig. 2 which highlights the
constraint f½λhκ� that guarantees Ωηh2 ¼ 0.119 in Regime I
(dashed blue line) and Regime II (solid green line). Clearly,
for λhκ ¼ λh the expected value of f is the same in both
regimes. The figure also displays two successful parameter
points with somehow extreme values of λhκ and the
corresponding predictions for mη. In conclusion, because
of the DM relic density constraints, we expect mη ≃
730–960 GeV and f ≃ 2.4–2.9 TeV.
It is worth noting that the rather large η mass is in

agreement with naturalness arguments. This relies on the
fact that, unlikemh,mη is not directly related to the tuned v,
which is indeed (unnaturally) much smaller than the scale f
in all composite models. See, for example, Ref. [32] for
more details.

V. ELECTROWEAK BARYOGENESIS

As generically expected in composite models, and
commented above, the interactions between the quarks

and the strong sector can contain new CP-violation phases.
It was observed that these phases, together with the
sphaleron processes, can lead to the observed baryon
asymmetry, provided the EWPT is of strongly first order
[11]. Here we demonstrate that, in our composite model,
such a strong EWPT is rather likely within the parameter
region compatible with the present constraints, DM bounds
included.7

We deduce the properties of the EWPT from the one-
loop finite-temperature scalar potential V1Lðh; κ; η;TÞ,
with T representing the temperature. Since the new fields
have small couplings and negligible mixing with the
Higgs, at qualitative level V1Lðh; 0; 0;T ¼ 0Þ is similar to
the potential in Eq. (23). Therefore, in the sizable part of
the fundamental parameter space predicting μ2κ < 0 and
λhκ > 0, the minima of V1Lðh; κ; η;T ¼ 0Þ are

v1ðT ¼ 0Þ ¼ ðv½T ¼ 0�; 0; 0Þ; ð38Þ

v2ðT ¼ 0Þ ¼ ð0; vκ½T ¼ 0�; 0Þ; ð39Þ

with vκ½T ¼ 0�≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ2κ=λκ

p
and v½T ¼ 0� ¼ v.8

This structure of the minima hints at the possibility of a
two-step EWPT. In this case the electroweak breaking
minimum is reached via the changes of phases ð0; 0; 0Þ →
v2ðT 0Þ and v2ðTnÞ → v1ðTnÞ, with T 0 > Tn. The latter
transition is the one that is required to be strong (i.e.,
jv1ðTnÞj=Tn > 1) for successful electroweak baryogenesis.
To determine the possible phase transitions and their

characteristics, we use CosmoTransitions [41]. In the code we
specify V1Lðh; κ; η;TÞ in the customary form [42]

V1Lðh; κ;TÞ ¼ V þ ΔVCW þ ΔVT≠0; ð40Þ

with V given in Eq. (23) and

ΔVCW ¼ 1

64π2
X
i

ð�1Þnim4
i ðh; κÞ

�
log

m2
i ðh; κÞ
v2

− ci

�
;

ΔVT≠0 ¼
T4

2π2
X
i

ð�1Þni J�
�
m2

i ðh; κÞ
T2

�
;

J�ðxÞ ¼
Z

∞

0

dyy
h
1 ∓ exp

	
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q 
i
; ð41Þ
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FIG. 2. Value of f leading to Ωη ¼ ΩDM as a function of λhκ in
Regime I (dashed blue line) and Regime II (solid green line). The
massesmη corresponding to two extreme points are also depicted.

7A phase transition, possibly linked to the baryon asymmetry
production [33,34], may also occur during the breaking of the
composite strong symmetry [35–40]. Such a transition would
modify our results only if, in the present setup, it turned out to be
of first order and very supercooled, and with a reheating
temperature around or below the electroweak scale, character-
istics that may or may not be realized depending on the ultraviolet
completion [35,39] and its parameter values [33,34].

8It is not restrictive to ignore the other symmetric minima.
Moreover, because of the (suppressed) explicit breaking of the κ
discrete symmetry, only one of the two minima �v2 will be
relevant in the evolution of the Universe [11].
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in which the dependence on the background field of η is
removed because ∂2

ηV > 0 for any VEVof h and κ below f.
In Eq. (41) i extends to the fields that couple stronger to the
Higgs sector, namely the κ − h mixing states ϕ1;2, the SM
Goldstones G0;�, the singlet η, the top quark t, and the
gauge bosons W� and Z. The factor ni is the number of
degrees of freedom of the field i, and the upper sign (lower
sign) in “�” and “∓” applies to the bosonic (fermionic)
contributions. The coefficient ci is equal to 5=6 for gauge
bosons and to 3=2 otherwise. Finally, the field-dependent
squared massesm2

ϕ1
ðh; κÞ andm2

ϕ1
ðh; κÞ are the eigenvalues

of the symmetric matrix M2 with entries

M2
1;1 ¼ −μ2h þ 3λhh2 þ

1

2
λhκκ

2; ð42Þ

M2
2;2 ¼ μ2κ þ 3λκκ

2 þ 1

2
λhκh2; ð43Þ

M2
1;2 ¼ λhκhκ; ð44Þ

while the other masses are

m2
G0;�ðh; κÞ ¼ −μ2h þ λhh2 þ

1

2
λhκκ

2; ð45Þ

m2
Wðh; κÞ ¼

1

4
g2h2; ð46Þ

m2
Zðh; κÞ ¼

1

4
ðg2 þ g02Þh2; ð47Þ

m2
t ðh; κÞ ¼

1

2
y2t h2; ð48Þ

m2
ηðh; κÞ ¼ CðhÞ; ð49Þ

where g, g0, and yt stand for the SUð2ÞL and Uð1ÞY gauge
couplings and the top Yukawa, respectively. The function
CðhÞ depends on which regime we consider. Taking into
account the DM constraint that establishes the function
f½λhκ� (see Fig. 2), we have

CðhÞ ¼ 1

3

�
7

4
λh þ

1

4
λhκ − 4λhξ

�
f2½λhκ� þ

1

2
λhh2 ð50Þ

in Regime I and

CðhÞ ¼ 1

2
λh

�
4

3
ð1 − 2ξÞf2½λhκ� þ h2

�
ð51Þ

in Regime II.
For the numerical analysis we scan over the parameter

region
ffiffiffiffiffiffiffiffi
−μ2κ

p
=GeV ∈�0; 100� and λhκ ∈ ½0.1; 0.4�. For each

pair fμ2κ ; λhκg we consider the lowest value of λκ ∈
½0.01; 0.02;…; 0.06� for which the EWPT is strong, if such
a transition arises.9 The findings are presented in Fig. 3 for
Regime I (left panel) and Regime II (right panel). Both filled
and empty circles represent the parameter points where the
EWPT v2ðTnÞ → v1ðTnÞ satisfies the condition
v1ðTnÞ=Tn > 1. In the orange area, defined by the con-
dition V1Lðv1;T ¼ 0Þ ≥ V1Lðv2;T ¼ 0Þwith λκ ≤ 0.06, no
EWPT arises because the Universe gets stuck in the phase
v2. In the white area μ2κ is positive. In the region on the left
of the dashed line, all signal strengths of the Higgs into SM
particles are diluted, for the channel h → κκ is allowed. The
strong EWPTs found in this area are then ruled out by the
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0.30
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FIG. 3. Scatter plot of the parameter space exhibiting a strong EWPT in Regime I (left panel) and Regime II (right panel). The region in
green indicates the points for which V1Lðh; κ;T ¼ 0Þ has a local minimum at v1 (the contrary in the white area) and such a minimum is
deeper than the one at v2 (the contrary in the orange area). The points on the left of the black dashed line are unfavored by the Higgs
searches. The filled (empty) circles correspond to EWPTs with bubbles expanding (not expanding) at the speed of light. For some
parameter points the outcome is not determined because of numerical instabilities in CosmoTransitions, as commented in footnote 9.

9Because of some numerical instabilities, the code identifies
only a subset of the satisfactory parameter points. Since our aim is
to highlight the abundance of points with a strong first-order
EWPT, we do try to circumvent this issue and we just display the
numerous points that the code finds.
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present LHC measurements [28]. Overall, within the
parameter space compatible with DM and the EWSB
constraints, the ingredients for electroweak baryogenesis
are often realized in the present CHM.
We remark that our result is not a full proof that the

model can actually reproduce the measured baryon asym-
metry [43]. By applying straightforwardly the analysis of
Ref. [11] to our setup, one would naively reach a positive
conclusion. Nevertheless, the expansion velocities [44–48]
of our EWPT bubbles may not be subsonic (i.e., the bubble
speed is smaller than 1=

ffiffiffi
3

p
) as assumed in Ref. [11]. Were

this the case, the evaluation of the baryon asymmetry would
be controversial [49]. This particularly applies to the
EWPTs marked as filled circles in Fig. 3. They satisfy
the runaway condition α > α∞ with

α≃ V1Lðv2ðTnÞ;TnÞ − V1Lðv1ðTnÞ;TnÞ
35T4

n
; ð52Þ

α∞ ≃ 4.9 × 10−3
�
v1ðTnÞ
Tn

�
2

; ð53Þ

which hints at expansion velocities similar to the speed of
light [45,50]. Consistently, they also fulfill the micro-
physical-approach runaway condition ~V1Lðv1ðTnÞ;TnÞ <
~V1Lðv2ðTnÞ;TnÞ, with ~V being the one-loop thermal
potential evaluated in the mean field approximation
[51].10 Smaller velocities can instead arise for the
EWPTs represented by empty circles (satisfying the non-
runaway relation α < α∞), although determining whether
such speeds are too large for electroweak baryogenesis
would be delicate [46,48]. Because of these uncertainties,
we cannot go further than claiming that a quantitative
explanation of the observed baryon asymmetry is conceiv-
able in the parameter points highlighted in Fig. 3.

VI. OTHER CONSTRAINTS AND FUTURE
EXPECTATIONS

We have seen that, for f ≃ 2.5–2.9 TeV, mκ ≃ 70–
120 GeV, λhk ≃ 0.2–0.4, and λκ ≃ 0.01–0.06, which are
natural values within our CHM, the observed DM relic
abundance and the EWPT that is necessary for electroweak
baryogenesis are achieved. In this section we check that
these ranges of values are not in conflict with present
experimental bounds but testable in the forthcoming years.

A common prediction to all CHMs (and models with
nonlinear realizations of a gauge symmetry in general) is
the modification of the Higgs couplings to the SM fermions
and gauge bosons. As in the minimal CHM, if we expand
Eqs. (18) and (34) to order Oðv2=f2Þ, we obtain the
following ratios of the tree level couplings of the Higgs
to two SM particles:

RhVV ≡ ghVV
gSMhVV

≃ 1 −
v2

2f2
; ð54Þ

Rhψψ ≡ ghψψ
gSMhψψ

≃ 1 −
3v2

2f2
; ð55Þ

where V and ψ stand for any electroweak gauge boson and
SM fermion, respectively. Even for f ¼ 2.5 TeV, we
obtain RhVV ∼ 0.99 and Rhψψ ∼ 0.98, therefore well within
the current LHC limits [28]. Such small deviations from the
SM predictions, however, might be accessible at a future
linear collider (see, e.g., Ref. [53]).
Concerning direct detection experiments, the two main

diagrams contributing to the scattering between DM
particles and nuclei are depicted in Fig. 4. The correspond-
ing cross section can be parametrized as [22]

σ ¼ λ2h
f2N
4π

μ2rm2
n

m4
hm

2
η

�
1þm2

η

f2

�
; ð56Þ

wheremn is the nucleon mass, μr is the reduced mass of the
system (with mη ≫ mn)

μr ¼
mηmn

mη þmn
∼mn ∼ 1 GeV; ð57Þ

and fN ∼ 0.3 [54–56]. For the considered ranges of param-
eter values, Eq. (56) yieldsσ ∼ 10−46–10−45 cm2, depending
on the actual value of f. These values are around 1 order of
magnitude below the Large Underground Xenon (LUX)
experiment bound in theDMmass range 730–960GeV [57].
However, it will definitely be reachable in the new round of
data and experiments [58].11

FIG. 4. Main diagrams contributing to the scattering of DM
particles by nuclei.

10We remind the reader that these conditions guarantee a
runaway behavior only to those bubbles that have an initial
ultrarelativistic speed. Here we adopt the simple criterion
α > α∞, where the results are slightly more stringent than the
microphysical one, as noticed also in Ref. [52]. On the other
hand, unquestionable uncertainties jeopardize these criteria.
Further developments in the field are then expected to modify
our runaway/nonrunaway classifications.

11This result can be straightforwardly applied to the simpler
model SOð6Þ=SOð5Þ with qL transforming in the representation
20, which is analogous to our model in the limitmκ ≫ mη. In this
case, the observed DM abundance fixes mη ≃ 500 GeV, for
which the scattering cross section at zero momentum is larger
(∼2 × 10−45 cm2) but is still below the LUX upper limit.
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On another front, LHC searches for DM in monojet and
tt̄ events produced in association with large missing
transverse energy do not provide relevant constraints.
Indeed, the cross sections of these signals are suppressed
by the small available phase space and the small ratio
v2=f2. On the same vein, searches for double η or κ
production mediated by an off-shell Higgs boson are
extremely challenging [59–63] and hence negligible.
Searches for the Higgs boson decaying to non-SM particles
[64] instead constrain only the small region on the left of
the dashed vertical line in Fig. 3.
A last collider constraint comes from dijet searches. The

field κ couples linearly to c and b quarks, mainly. Hence, κ
can be singly produced in hadron colliders, with a sub-
sequent dijet decay. The strongest and updated upper bound
on such a process can be found in Ref. [65] (see also
Ref. [66]). Given the large QCD background, the main
constraints at Oð100 GeVÞ invariant masses come from
UA2 [67] and LHC searches for dijet resonances in
association with a W or a Z at

ffiffiffi
s

p ¼ 8 TeV [68], the
latest being dominant for invariant masses below
≲200 GeV. In this region, the upper limit on the cross
section ranges between ∼0.1 and 0.2 pb. On the other hand,
by using MadGraph [69] we find that, even for γ ¼ ζ ¼ 10,
the production of κ in association with a massive gauge
boson is smaller than 0.002 pb for any mass in our range of
values. The particle κ would then be difficult to discover by
means of the usual analyses.
Flavor constraints can be evaded provided that, as we

assume, the fermion mixings in the infrared are SM-like,
whose explanation is a common issue to all realistic models
of composite Higgs in which the elementary fermions mix
with different operators of the strong sector [19]. This

depends strongly on the particularities of the ultraviolet,
and therefore goes beyond the scope of this study.
Finally, a strong EWPT produces a gravitational

wave stochastic background whose typical spectrum
has a peak at frequencies eLISA is sensitive to [70,71].
eLISA might hence be able to probe the CHM under
study. We explore this possibility by following
Ref. [50], assuming the plausible “N2A5M5L6”
eLISA experimental design [50,72]. Thus, for each
point in Fig. 3, we calculate β=H ≡ T∂TðS3=TÞjT¼Tn

(where S3 is the O3-symmetric bubble action [42]) by
running CosmoTransitions.12 We display these points in the
fα; β=Hg plane, and check whether they are located
inside the pertinent eLISA detection region. The find-
ings for Regime I ( Regime II) are presented in the left
(right) panel of Fig. 5. The nonrunaway (runaway)
strong-EWPT points are displayed as empty blue (filled
red) circles. The purple area (the junction of the blue
and purple areas) corresponds to the N2A5M5L6
eLISA detection region for runaway scenarios with
Tn ≈ 50 GeV and α∞ ≈ 0.05 (for nonrunaway scenarios
at Tn ≈ 50 GeV).13 It results that, among the strong
EWPTs identified in Sec. V, none of those with a
nonrunaway behavior is detectable, whereas the
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104

105

0.001 0.010 0.100 1 10
10

100

1000

104

105

FIG. 5. The identified first-order EWPTs of Regime I (left panel) and Regime II (right panel) in the fα; β=Hg plane. Empty blue circles
and filled red circles represent the EWPTs with a nonrunaway and a runaway behavior, respectively. eLISA in the N2A5M5L6
experimental design can test the nonrunaway EWPTs in the (either purple or blue) region on the right of the green curve and the runaway
EWPTs in the (purple) region on the right of the red curve.

12The code determines Tn by solving the condition
SðTnÞ=Tn ¼ 140 [41]. It is then easy to obtain a second temper-
ature, TC, given by SðTCÞ=TC ¼ C, and use that in the approxi-
mation β=H ≈ TnðC − 140Þ=ðTC − TnÞ. We use C ¼ 240 in our
estimates.

13The choice of these particular regions is due to the fact that in
our set of points the nucleation temperature of the EWPT is 30–
80 GeV, and that the points at the border of detection turn out to
have α∞ ≃ 0.05. The regions are taken from Ref. [50].
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runaway ones can be basically all probed.14 From
Fig. 3 we hence deduce that, overall, eLISA can detect
a sizable fraction of the strong EWPTs predicted within
our model.

VII. CONCLUSIONS

We have presented a composite version of the Higgs
sector extended with two gauge singlets η and κ based on
the coset SOð7Þ=SOð6Þ. The embedding of the elementary
fermions into appropriate representations of SOð7Þ can
both make η stable and generate a negative quadratic term
for κ. As a consequence, this theoretical setup can provide a
natural explanation for the observed dark matter abundance
and the baryon-antibaryon asymmetry via freeze-out and
electroweak baryogenesis. We have emphasized that, con-
trary to its renormalizable counterpart, the dominant terms
in the scalar potential are described by only three free
parameters, namely the physical massmη of the dark matter
scalar, the physical mass mκ of the second singlet, and
the coupling λhκ of the quartic interaction between the

Higgs and κ. We have shown that fulfilling the dark matter
relic density observation requires mη ∼ 730–960 GeV,
irrespective of mκ, which is required to live in the region
50–100 GeV for λhκ ∼ 0.15–0.4 to trigger the strong
first-order electroweak phase transition required by electro-
weak baryogenesis. We have subsequently studied the
implications of this scenario in Higgs physics, dark matter
direct detection experiments, LHC searches for dark matter,
as well as searches for dijet resonances. All together, they
are in agreement with current data. The observation (or not)
of a dark matter direct detection signal in the sub-TeV
region compatible with a total cross section of
10−46–10−45 cm2, possibly followed by the measurement
of the gravitational wave stochastic background at eLISA,
will definitely shed light on whether this model is realized
in nature.
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