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We present results for the isovector axial, scalar, and tensor charges gu−dA , gu−dS , and gu−dT of the nucleon
needed to probe the Standard Model and novel physics. The axial charge is a fundamental parameter
describing the weak interactions of nucleons. The scalar and tensor charges probe novel interactions at the
TeV scale in neutron and nuclear β-decays, and the flavor-diagonal tensor charges guT , g

d
T , and g

s
T are needed

to quantify the contribution of the quark electric dipole moment (EDM) to the neutron EDM. The lattice-
QCD calculations were done using nine ensembles of gauge configurations generated by the MILC
Collaboration using the highly improved staggered quarks action with 2þ 1þ 1 dynamical flavors. These
ensembles span three lattice spacings a ≈ 0.06; 0.09, and 0.12 fm and light-quark masses corresponding to
the pion masses Mπ ≈ 135; 225, and 315 MeV. High-statistics estimates on five ensembles using the all-
mode-averaging method allow us to quantify all systematic uncertainties and perform a simultaneous
extrapolation in the lattice spacing, lattice volume, and light-quark masses for the connected contributions.
Our final estimates, in the MS scheme at 2 GeV, of the isovector charges are gu−dA ¼ 1.195ð33Þð20Þ,
gu−dS ¼ 0.97ð12Þð6Þ, and gu−dT ¼ 0.987ð51Þð20Þ. The first error includes statistical and all systematic
uncertainties except that due to the extrapolation Ansatz, which is given by the second error
estimate. Combining our estimate for gu−dS with the difference of light quarks masses ðmd −muÞQCD ¼
2.67ð35Þ MeV given by the Flavor Lattice Average Group, we obtain ðMN −MPÞQCD ¼ 2.59ð49Þ MeV.
Estimates of the connected part of the flavor-diagonal tensor charges of the proton are guT ¼ 0.792ð42Þ and
gdT ¼ −0.194ð14Þ. Combining our new estimates with precision low-energy experiments, we present
updated constraints on novel scalar and tensor interactions, ϵS;T , at the TeV scale.
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I. INTRODUCTION

The nucleon axial charge gu−dA is an important parameter
that encapsulates the strength of weak interactions of
nucleons. It enters in many analyses of nucleon structure
and of the Standard Model (SM) and beyond-the-SM
(BSM) physics. For example, the rate of proton-proton
fusion, which is the first step in the thermonuclear reaction
chains that power low-mass hydrogen-burning stars like the
Sun, is sensitive to it. It impacts the extraction of Vud and
tests of the unitarity of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix, as well as the analysis of neutrinoless
double-beta decay. At present, the ratio of the axial to
the vector charge, gA=gV , is best determined from the

experimental measurement of neutron beta decay using
polarized ultracold neutrons by the UCNA Collaboration,
1.2756(30) [1], and by PERKEO II, 1.2761þ14−17 [2]. Note
that, in the SM, gV ¼ 1 up to second order corrections in
isospin breaking [3,4] as a result of the conservation of the
vector current. Using Vud determined from superallowed
nuclear beta decay or pion decay in combination with the
average neutron lifetime measurement also gives a con-
sistent value for gu−dA [5,6]. Given the important role gu−dA
plays in parametrizing the structure and weak interactions
of nucleons, and probing signatures of new physics, it is
important to calculate it directly with Oð1%Þ accuracy
using lattice QCD and eventually confront the theoretical
prediction with experimental measurements.
The isovector scalar and tensor charges of the nucleon,

combined with the helicity-flip parameters b and bν in the
neutron decay distribution, probe novel scalar and tensor
interactions at the TeV scale [7]. To optimally bound such
scalar and tensor interactions using planned measurements
of these b and bν parameters at the 10−3 precision level
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[8–10] requires the matrix elements of the local scalar and
tensor quark bilinear operators within the nucleon state to
be calculated with a precision of 10%–15% [7]. Future
higher-precision measurements of b and bν would require
correspondingly higher-precision calculations of the matrix
elements to place even more stringent bounds on TeV-scale
couplings. In a recent work [11], we showed that lattice-
QCD calculations have reached a level of control over all
sources of systematic errors needed to yield the tensor
charge with the required precision. The data for the scalar
3-point functions is about a factor of 5 more noisy. In this
paper we show that by using the all-mode-averaging
(AMA) error-reduction technique [12,13] on the same
set of ensembles used in Ref. [11], we can increase the
statistics significantly and extract the scalar charge with
Oð15%Þ uncertainty. These higher-statistics results also
improve upon our previous estimates of the tensor charges.
In addition to probing novel scalar and tensor inter-

actions at the TeV scale, precise estimates of the matrix
elements of the flavor-diagonal tensor operators are needed
to quantify the contributions of the u, d, s, c quark electric
dipole moments (EDM) to the neutron electric dipole
moment (nEDM) [11,14]. Most extensions of the
Standard Model designed to explain nature at the TeV
scale have new sources of CP violation, and the nEDM is a
very sensitive probe of these. Thus, planned experiments
aiming to reduce the current bound on the nEDM of
2.9 × 10−26e cm [15] to around 10−28e cm will put strin-
gent constraints on many BSM theories, provided the
matrix elements of novel CP-violating interactions, of
which the quark EDM is one, are calculated with the
required precision.
The tensor charges are also given by the zeroth moment

of the transversity distributions that are measured in
many experiments including Drell-Yan and semi-inclusive
deep inelastic scattering (SIDIS). Transversity distributions
describe the net transverse polarization of quarks in a
transversely polarized nucleon, and there exists an active
program at Jefferson Lab (JLab) to measure them [16]. The
extraction of the transversity distributions from the data
taken over a limited range ofQ2 and Bjorken x, however, is
not straightforward and requires additional phenomeno-
logical modeling. As discussed in Sec. VIII, lattice-QCD
estimates of gu−dT are the most accurate at present. Future
experiments will significantly improve the extraction of
the transversity distributions. Thus, accurate calculations of
the tensor charges using lattice QCD will continue to help
elucidate the structure of the nucleon in terms of quarks and
gluons and provide a benchmark against which phenom-
enological estimates utilizing measurements at JLab and
other experimental facilities worldwide can be compared.
The methodology for calculating the isovector charges in

an isospin symmetric theory, that is, measuring the con-
tribution to the matrix elements of the insertion of the zero-
momentum bilinear quark operators in one of the three

valence quarks in the nucleon, is well developed [17–19].
Calculation of the flavor-diagonal charges is similar except
that it gets additional contributions from contractions of the
operator as a vacuum quark loop that interacts with the
nucleon propagator through the exchange of gluons. Our
estimates of disconnected contributions to gu;d;sT were given
in Ref. [11], where we showed that these contributions
are small, Oð0.01Þ, and in most cases consistent with zero
within errors.1 For the disconnected contribution of the
strange quark, also needed for the neutron EDM analysis,
we were able to extrapolate the data to the continuum limit
and find gsT ¼ 0.008ð9Þ [11,20]. We do not have new
results for these disconnected contributions. In this paper,
we report on improvements in the estimate of the isovector
charges gu−dA , gu−dS , and gu−dT and in the connected parts of
the flavor-diagonal charges guA;S;T and gdA;S;T , and the
isoscalar combination guþd

T through a high-statistics study
using the AMA method on five ensembles.
Overall, we analyze nine ensembles of 2þ 1þ 1 flavors

of highly improved staggered quarks (HISQ) [21] gener-
ated by the MILC Collaboration [22]. The high-statistics
study using the AMA method [12,13] allows us to
demonstrate control over various sources of systematic
errors and obtain reliable error estimates. Using these data,
we perform a combined extrapolation to infinite volume,
the continuum limit, and the physical light-quark masses
and obtain gu−dA ¼ 1.195ð33Þð20Þ, gu−dS ¼ 0.97ð12Þð6Þ,
and gu−dT ¼ 0.987ð51Þð20Þ. The first error includes statis-
tical and all systematic uncertainties except that due to the
extrapolation Ansatz, which is given by the second error
estimate. Throughout the paper, we present results for the
charges of the proton, which by convention are called
nucleon charges in the literature. From these, results for the
neutron are obtained by u ↔ d interchange. A preliminary
version of these results was presented in Ref. [23].
This paper is organized as follows. In Sec. II, we describe

the parameters of the gauge ensembles analyzed and the
lattice methodology. The fits used to isolate excited-state
contamination are described in Sec. III. The renormaliza-
tion of the operators is discussed in Sec. IV. Our final
results for the isovector charges and the connected parts of
the flavor-diagonal charges are presented in Sec. V. Results
from additional simulations to validate our analysis of
excited-state contamination are presented in Sec. VI, and
the estimation of errors is revisited in Sec. VII. A
comparison with previous works is given in Sec. VIII.
In Sec. IX, we provide constraints on novel scalar and
tensor interactions at the TeV scale using our new estimates
of the charges and precision beta decay experiments and
compare them to those from the LHC. Our final conclu-
sions are presented in Sec. X.

1The five ensembles analyzed were a12m310, a12m220,
a09m310, a09m220, and a06m310. Analysis of the physical
mass ensemble a09m130 is ongoing.
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II. LATTICE METHODOLOGY

The nine ensembles used in the analysis cover a
range of lattice spacings (0.06≲ a≲ 0.12 fm), pion
masses (135≲Mπ ≲ 320 MeV) and lattice volumes
(3.3≲MπL≲ 5.5) and were generated using 2þ 1þ 1-
flavors of HISQ [21] by the MILC Collaboration [22].
These are the same ensembles as used in Ref. [11], where
we presented an analysis of the tensor charge. Their
parameters are summarized in Table I.
The correlation functions needed to calculate the matrix

elements are constructed using Wilson-clover fermions on
these HISQ ensembles. This mixed-action, clover-on-HISQ
approach leads to a nonunitary formulation that at small,
but a priori unknown, quark masses suffers from the
problem of exceptional configurations. In Ref. [11], we
described the tests performed to show the absence of any
such exceptional configurations in our statistical samples.
The mixed-action approach also introduces additional
corrections to the leading chiral and continuum extrapola-
tion Ansatz. In Sec. V, we analyze the observed dependence
of the charges onMπ over the range 135≲Mπ ≲ 320 MeV
with and without the chiral logarithm corrections in the fit
Ansatz. It turns out that with our current data, the observed
dependence on the lattice spacing a and the quark masses is
accounted for by the lowest-order correction terms.
The parameters used in the analysis of 2- and 3-point

functions with clover fermions are given in Table II. The
Sheikholeslami-Wohlert coefficient [24] used in the clover
action is fixed to its tree-level value with tadpole improve-
ment, csw ¼ 1=u30, where u0 is the fourth root of the
plaquette expectation value calculated on the hypercubic
(HYP) smeared [25] HISQ lattices.
The masses of light clover quarks were tuned so that the

clover-on-HISQ pion masses, Mval
π , match the HISQ-on-

HISQ Goldstone ones, Msea
π . Both estimates are given in

Table I. All fits inM2
π to study the chiral behavior are made

using the clover-on-HISQ Mval
π since the correlation func-

tions, and thus the chiral behavior of the charges, have a
greater sensitivity to it. Henceforth, for brevity, we drop
the superscript and denote the clover-on-HISQ pion mass
as Mπ . Performing fits using the HISQ-on-HISQ values,
Msea

π , did not change the estimates significantly.
Most of the details of the methodology, the calculation

strategy, and the analysis are the same as described in
Ref. [11]. The new feature in the current work is the use of
the AMAmethod [12,13] to recalculate all quantities on the
five ensembles that had the largest uncertainty: a12m310,
a12m220L, a09m130, a06m310, and a06m220. These
new estimates have significantly smaller statistical errors,
and this improvement allows us to better understand and
quantify the excited-state contamination. Using these more

TABLE II. The parameters used in the calculation of clover
propagators. The hopping parameter κ in the clover action is
given by 2κl ¼ 1=ðml þ 4Þ. The Gaussian smearing parameters
are defined by fσ; NGSg, both in CHROMA convention [26]. The
parameter NGS is the number of applications of the Laplacian
operator, and the width of the smearing is controlled by σ:ml is
tuned to achieve Mval

π ≈Msea
π .

ID ml cSW Smearing parameters

a12m310 −0.0695 1.05094 f5.5; 70g
a12m220S −0.075 1.05091 f5.5; 70g
a12m220 −0.075 1.05091 f5.5; 70g
a12m220L −0.075 1.05091 f5.5; 70g
a09m310 −0.05138 1.04243 f5.5; 70g
a09m220 −0.0554 1.04239 f5.5; 70g
a09m130 −0.058 1.04239 f5.5; 70g
a06m310 −0.0398 1.03493 f6.5; 70g
a06m220 −0.04222 1.03493 f5.5; 70g

TABLE I. Parameters, including the Goldstone pion mass Msea
π , of the 2þ 1þ 1-flavor HISQ lattices generated by the MILC

Collaboration and analyzed in this study are quoted from Ref. [22]. The lattice scale is determined using r1 [22]. Symbols used in the
plots are defined along with the ensemble ID. All fits are made versus Mval

π , and finite-size effects are analyzed in terms of Mval
π L.

Estimates ofMval
π , the clover-on-HISQ pion mass, are the same as given in Ref. [11], and the error is governed mainly by the uncertainty

in the lattice scale. For each ensemble, we also give the values of the source-sink separation tsep simulated, the number of configurations
analyzed, and the number of measurements made using the HP and AMA methods. The HP calculation on the a12m220L ensemble has
been done with a single tsep ¼ 10 while the LP analysis has been done with tsep ¼ f8; 10; 12; 14g.
Ensemble ID a [fm] Msea

π [MeV] Mval
π [MeV] L3 × T Mval

π L tsep=a Nconf NHP
meas NAMA

meas

a12m310 0.1207(11) 305.3(4) 310.2(2.8) 243 × 64 4.55 f8; 9; 10; 11; 12g f8; 10; 12g 1013 8104 64832
a12m220S 0.1202(12) 218.1(4) 225.0(2.3) 243 × 64 3.29 f8; 10; 12g 1000 24000
a12m220 0.1184(10) 216.9(2) 227.9(1.9) 323 × 64 4.38 f8; 10; 12g 958 7664
a12m220L 0.1189(09) 217.0(2) 227.6(1.7) 403 × 64 5.49 f10g f8; 10; 12; 14g 1010 8080 68680
a09m310 0.0888(08) 312.7(6) 313.0(2.8) 323 × 96 4.51 f10; 12; 14g 881 7048
a09m220 0.0872(07) 220.3(2) 225.9(1.8) 483 × 96 4.79 f10; 12; 14g 890 7120
a09m130 0.0871(06) 128.2(1) 138.1(1.0) 643 × 96 3.90 f10; 12; 14g 883 7064 84768
a06m310 0.0582(04) 319.3(5) 319.6(2.2) 483 × 144 4.52 f16; 20; 22; 24g 1000 8000 64000
a06m220 0.0578(04) 229.2(4) 235.2(1.7) 643 × 144 4.41 f16; 20; 22; 24g 650 2600 41600
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precise estimates improves our final combined extrapola-
tion in the lattice volume, MπL → ∞, lattice spacing,
a → 0, and the light-quark mass, Mπ0 → 135 MeV.

A. Correlation functions

The interpolating operator χ used to create/annihilate the
nucleon state is

χðxÞ ¼ ϵabc
�
qa1

TðxÞCγ5
ð1� γ4Þ

2
qb2ðxÞ

�
qc1ðxÞ ð1Þ

with color indices fa; b; cg, charge conjugation matrix
C ¼ γ0γ2, and q1 and q2 denote the two different flavors of
light quarks. At zero momentum, this operator couples only
to the spin-1

2
state. The nonrelativistic projection ð1� γ4Þ=2

is inserted to improve the signal, with the plus and minus
signs applied to the forward and backward propagations in
Euclidean time, respectively [27].
The 2-point and 3-point nucleon correlation functions at

zero momentum are defined as

C2pt
αβ ðtÞ ¼

X
x

h0jχαðt;xÞχ̄βð0; 0Þj0i; ð2Þ

C3pt
Γ;αβðt; τÞ ¼

X
x;x0

h0jχαðt;xÞOΓðτ;x0Þχ̄βð0; 0Þj0i; ð3Þ

where α and β are spinor indices. The source is placed at
time slice 0, t is the sink time slice, and τ is an intermediate
time slice at which the local quark bilinear operator
Oq

ΓðxÞ ¼ q̄ðxÞΓqðxÞ is inserted. The Dirac matrix Γ is 1,
γ4, γiγ5, and γiγj for scalar (S), vector (V), axial (A), and
tensor (T) operators, respectively. In this work, subscripts i
and j on gamma matrices run over f1; 2; 3g, with i < j.
The nucleon charges gqΓ are obtained from the matrix

element

hNðp; sÞjOq
ΓjNðp; sÞi ¼ gqΓūsðpÞΓusðpÞ ð4Þ

with spinors satisfying

X
s

usðpÞūsðpÞ ¼ pþmN: ð5Þ

To extract the charges, we first construct the projected
2- and 3-point correlation functions

C2ptðtÞ ¼ hTr½P2ptC2ptðtÞ�i; ð6Þ

C3pt
Γ ðt; τÞ ¼ hTr½P3ptC

3pt
Γ ðt; τÞ�i: ð7Þ

The operator P2pt ¼ ð1þ γ4Þ=2 is used to project on to
the positive parity contribution for the nucleon propagating
in the forward direction. For the connected 3-point con-
tributions, P3pt ¼ P2ptð1þ iγ5γ3Þ is used. Note that the

C3pt
Γ ðt; τÞ defined in Eq. (7) becomes zero if Γ anticom-

mutes with γ4, so only Γ ¼ 1, γ4, γiγ5, and γiγj elements of
the Clifford algebra survive. The fits used to extract the
charges from the 2- and 3-point functions defined in
Eqs. (6) and (7) are discussed in Sec. III.

B. The AMA method

The high-statistics calculation using the AMA technique
[12,13] was carried out on five ensembles. To implement
the AMA method, we choose four different source time
slices separated by T=4 on each configuration. Starting
from each of these time slices we calculate the 2- and
3-point correlators by choosing NLP ¼ 16 source locations
from which low-precision (LP) evaluation of the quark
propagator is carried out. The resulting LP estimates for
2- and 3-point functions from these 4 × 16 ¼ 64 sources
may be biased due to incomplete inversion of the Dirac
matrix. To remove this bias, we place an additional high-
precision (HP) source on each of the four time slices from
which we calculate both LP and HP correlation functions.
Thus, in our implementation of the AMA method, 64þ 4
LP and 4 HP calculations are done on each configuration.
These 4 HP calculations are the same as used in the full HP
study presented in Ref. [11] and, therefore, needed no
additional calculations. In total, the new simulations
generated 4 × 16þ 4 ¼ 68 LP 2- and 3-point correlation
functions per configuration.
Using four HP and 64þ 4 LP correlators on each

configuration, the bias corrected 2- and 3-point functions
are given by

Cimp ¼ 1

NLP

XNLP

i¼1

CLPðxLP
i Þ

þ 1

NHP

XNHP

i¼1

h
CHPðxHP

i Þ − CLPðxHP
i Þ

i
; ð8Þ

where CLP and CHP are the 2- and 3-point correlation
functions calculated in LP and HP, respectively, and xLP

i
and xHP

i are the two kinds of source positions.
The basic idea of AMA is that, in the low-precision

evaluation, the LP average, first term in Eq. (8), may be
biased. The bias is corrected by the second low-
statistics term without significantly increasing the overall
statistical errors. To determine the LP stopping criteria,
we compared LP and AMA results using 50 configura-
tions from the a12m310 ensemble with rLP≡
jresiduejLP=jsourcej ¼ 10−2, 5 × 10−3, 10−3, and 10−4.
All four LP estimates agreed with the AMA estimate
within 1σ. To reduce computational cost and yet be
conservative, we selected rLP ¼ 10−3 for all calculations
presented in this work.
In our current implementation, 17 LP measurements cost

the same as one HP when using the multigrid algorithm for
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inverting the Dirac matrix [28]. Adding 64þ 4 LP mea-
surements doubled the cost compared to 4 HP measure-
ments, whereas the increase in statistics is by a factor of 16
in the AMA analysis with bias correction. Note that only
four of the existing eight HP source positions were used for
bias correction as these were found to be sufficient. Also,
on the a06m220 ensemble, only four HP measurements
were made on each configuration.
To test how the errors changewith the bias correction, we

compare the results for the charges on the five ensembles
analyzed using both HP and AMA methods. We compared
both HP versus AMA and AMA versus LP estimates. A
comparison of the HP versus the AMA data for the masses
and amplitudes extracted from the nucleon 2-point function
is shown in Tables III and IV. Comparison of the isovector
charges gu−dA , gu−dS , gu−dT , and gu−dV is shown in
Figs. 1,2,3 and 4, respectively. The increase in statistics

with the AMA method (see Table I) significantly improves
the precision of the data at the various source-sink
separations, tsep, we have used in the analysis of the
3-point functions. In each panel of Figs. 1–4, the grey
error band and the solid line within it give the tsep → ∞
value obtained from the 2-state fit using Eqs. (9) and (10).
The two estimates are, in most cases, consistent, and in the
rest the difference is less than 2σ. The AMA data at each
tsep has much smaller errors; consequently, the tsep → ∞
estimates from the 2-state fit to the AMA data are more
precise.
Comparing the AMA with the LP data, we find that in

each case the difference is a tiny fraction of the statistical
error in the AMA calculation; that is, the bias correction
term is negligible. This is shown in Tables III and IV for the
2-point data and in Tables VI, VII, and VIII for the matrix

TABLE III. Estimates of the masses M0 and M1 and the amplitudes A0 and A1 extracted from the fits to the 2-point correlation
functions using the 2-state Ansatz given in Eqs. (9) and (10). We give the results of fits to both the HP and the AMA data for the five
ensembles a12m310, a12m220L, a09m130, a06m310, and a06m220. The Gaussian smearing parameters, fσ; NGSg, used in the
calculation of the 2- and 3-point connected correlation functions are given in Table II. The fit range used is listed as Case 1 in Table V.

ID Type Fit range aM0 aM1 A2
0 × 1011 A2

1 × 1011 A2
1=A

2
0

a12m310 HP 2–15 0.6669(53) 1.36(11) 6.57(27) 6.28(61) 0.96(7)
a12m310 AMA 3–15 0.6722(22) 1.64(16) 6.95(12) 9.5(3.4) 1.36(47)
a12m220S HP 2–15 0.6233(55) 1.42(13) 6.58(26) 6.94(93) 1.05(11)
a12m220 HP 2–15 0.6232(49) 1.45(15) 6.58(24) 6.8(1.1) 1.03(14)
a12m220L HP 2–15 0.6046(71) 1.16(12) 5.68(37) 5.63(51) 0.99(6)
a12m220L LP 3–15 0.6118(26) 1.18(7) 5.99(15) 4.64(50) 0.78(7)
a09m310 HP 4–20 0.4943(62) 0.87(9) 13.6(1.1) 14.4(1.7) 1.05(8)
a09m220 HP 4–20 0.4535(58) 0.86(8) 11.8(9) 15.2(2.1) 1.29(11)
a09m130 HP 3–20 0.4186(76) 0.83(6) 9.74(89) 17.2(1.0) 1.76(10)
a09m130 AMA 5–20 0.4150(45) 0.73(5) 8.70(59) 11.7(8) 1.34(6)
a06m310 HP 5–30 0.3219(37) 0.58(2) 0.53(4) 1.26(6) 2.35(12)
a06m310 AMA 7–30 0.3277(18) 0.59(2) 0.59(2) 1.10(8) 1.86(8)
a06m220 HP 5–30 0.3166(66) 0.64(5) 13.0(1.5) 38.5(5.4) 2.96(20)
a06m220 AMA 7–30 0.3068(17) 0.63(2) 11.3(3) 38.5(3.0) 3.41(18)

TABLE IV. Same as Table III except that the fit range used is listed as Case 3 in Table V.

ID Type Fit range aM0 aM1 A2
0 × 1011 A2

1 × 1011 A2
1=A

2
0

a12m310 HP 3–15 0.6641(76) 1.20(17) 6.38(46) 4.5(9) 0.70(11)
a12m310 AMA 3–15 0.6722(22) 1.64(16) 6.95(12) 9.5(3.4) 1.36(47)
a12m220S HP 3–15 0.6202(94) 1.20(27) 6.37(54) 4.3(1.5) 0.67(18)
a12m220 HP 3–15 0.6216(73) 1.27(30) 6.47(42) 4.5(2.2) 0.69(30)
a12m220L HP 3–15 0.597(14) 0.96(17) 5.16(87) 4.19(33) 0.81(14)
a12m220L LP 4–15 0.6109(35) 1.11(13) 5.92(22) 3.78(98) 0.64(15)
a09m310 HP 5–20 0.4933(78) 0.84(12) 13.4(1.5) 13.0(2.9) 0.97(15)
a09m220 HP 5–20 0.4529(68) 0.84(12) 11.7(1.1) 14.1(3.8) 1.21(24)
a09m130 HP 4–20 0.413(12) 0.75(10) 8.9(1.6) 14.0(1.4) 1.56(18)
a09m130 AMA 6–20 0.4137(60) 0.71(7) 8.50(85) 10.8(1.5) 1.27(9)
a06m310 HP 6–30 0.3190(47) 0.54(3) 0.50(5) 1.08(6) 2.17(16)
a06m310 AMA 8–30 0.3268(23) 0.56(3) 0.58(3) 0.95(10) 1.66(11)
a06m220 HP 6–30 0.3149(84) 0.61(8) 12.5(2.0) 32.3(7.3) 2.59(28)
a06m220 AMA 8–30 0.3069(18) 0.63(3) 11.3(4) 39.2(5.0) 3.47(35)
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FIG. 1. Comparison of the unrenormalized gu−dA data obtained using all HP measurements (left) with the AMA method (right). The
parameters for these five ensembles are given in Table I. The increase in statistics with the AMA method significantly improves the
resolution of the data at the various source-sink separations, tsep. In each case, the solid line within the grey error band is the tsep → ∞
result given by the 2-state fit using Eqs. (9) and (10), and the colored lines are its values for different tsep plotted in the same color as the
data. On the a12m220L ensemble, the HP data was generated only with tsep ¼ 10.
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elements extracted from the 3-point data. Thus, our con-
clusion is that using the multigrid solver [28,29] with a low-
accuracy stopping criterion rLP ≡ jresiduejLP=jsourcej ≈
10−3 is as good as the HP inversion with rHP ¼
10−8–10−12 for the calculation of the nucleon charges at
the level of statistical precision achieved in this work.

Our final errors are obtained using a single elimination
jackknife analysis over the configurations; that is, we first
construct the average defined in Eq. (8) on each configu-
ration. Because of this “binning” of the data, we do
not need to correct the jackknife estimate of the error
for correlations between the 64 LP measurements per

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-4 -2  0  2  4
g Su-

d

a12m310

Extrap
tsep=8
tsep=9

tsep=10
tsep=11
tsep=12

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

-4 -2  0  2  4

a12m310 AMA

Extrap
tsep=8

tsep=10
tsep=12

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-4 -2  0  2  4

g Su-
d

a12m220L

Extrap tsep=10
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

-4 -2  0  2  4

a12m220L AMA

Extrap
tsep=8

tsep=10

tsep=12
tsep=14

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-6 -4 -2  0  2  4  6

g Su-
d

Extrap
tsep=10

tsep=12
tsep=14

a09m130
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

-6 -4 -2  0  2  4  6

Extrap
tsep=10

tsep=12
tsep=14

a09m130 AMA

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-8 -6 -4 -2  0  2  4  6  8

g Su-
d

Extrap
tsep=16
tsep=20

tsep=22
tsep=24

a06m310

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

-8 -6 -4 -2  0  2  4  6  8

Extrap
tsep=16
tsep=20

tsep=22
tsep=24

a06m310 AMA

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-8 -6 -4 -2  0  2  4  6  8

g Su-
d

τ - tsep/2

Extrap
tsep=16
tsep=20

tsep=22
tsep=24

a06m220

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

-8 -6 -4 -2  0  2  4  6  8
τ - tsep/2

Extrap
tsep=16
tsep=20

tsep=22
tsep=24

a06m220 AMA

FIG. 2. Comparison of the unrenormalized gu−dS data obtained using all HP measurements (left) with the AMAmethod (right). The rest
is the same as in Fig. 1.
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configuration. It is, however, useful to determine the
number of source positions one can place on each con-
figuration beyond which the additional computational cost
offsets the gain in statistics. The following tests indicate
that the correlations between estimates from various
sources are reasonably small with up to Oð100Þ sources

per configuration on lattices with MπL≳ 4 and
MπT ≳ 8.

(i) Comparing the errors in the estimates for masses
and amplitudes given in Tables III and IV, we find
that the AMA errors are a factor of 2–4 smaller
than those in the all HP analysis. (In the limit of no
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FIG. 3. Comparison of the unrenormalized gu−dT data obtained using all HP measurements (left) with the AMAmethod (right). The rest
is the same as in Fig. 1.
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correlations, the scaling factor should be
ffiffiffiffiffiffiffiffiffiffi
64=8

p ¼
2.83.) A similar improvement is seen in the matrix
elements as shown in Tables VI, VII, and VIII. In
most cases, the improvement is observed to become
better with decreasing quark mass and lattice
spacing.

(ii) Figure 5 illustrates that the errors decrease by a factor
of about 3.7 when the number of LP sources are
increased from 4 to 64 on the a06m220 lattices. The
gain is similar in both the 2- and 3-point functions.

(iii) On the a06m310 ensemble, we compared estimates
of the 2- and 3-point correlation functions using 64
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FIG. 4. Comparison of the unrenormalized gu−dV data obtained using all HP measurements (left) with the AMAmethod (right). The rest
is the same as in Fig. 1.
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and 128 LP sources during the study of the dis-
connected diagram contribution reported in
Ref. [11]. We found that the errors are reduced by
only a factor of 1.2. A similar comparison of 2- and
3-point functions obtained using 64 and 128 LP
sources in the a06m310 AMA2 study discussed in
Sec. VI shows that errors reduce by only a factor
of 1.15. Thus, both tests indicate that the gain in
statistics becomes small when more the 64 LP
sources per configuration are used on lattices
with MπL ∼ 4.

A second technique used to reduce correlations in the
AMA calculations is to choose the 64 LP source points

randomly within and between configurations. On each
configuration, the four source time slices are chosen
randomly to be rþ αT=4 with r a random integer ∈
f1; T=4g and α ∈ f0; 1; 2; 3g. On the a06m220 ensemble,
each of these four time slices is then divided into 16 boxes
of size L=2 × L=2 × L=4, and a random source point is
chosen within each of these boxes. On the rest of the
ensembles, the 16 source points on each of the 4 time slices
are chosen randomly. In the HP calculation, the 8 source
points were taken to be the same on all the configurations.
A statistical analysis comparing the HP and AMA data
shows that choosing the source points randomly reduces
the final errors. For example, the standard error in the mean
constructed by choosing a single source point per configu-
ration is smaller for the LP data with randomly selected
source point versus the HP data in which the source point
was fixed to be the same on all the configurations.
To reduce computational cost, we have used the coherent

sequential source method [30]. Four sequential sources on
the four sink time slices were calculated and held in
computer memory. These were added and a single inversion
performed to construct the coherent sequential propagator.
Details of the method are given in Ref. [31], where we also
showed that this method does not increase the bias or the
errors.
To estimate errors, we performed both correlated and

uncorrelated fits to the nucleon 2- and 3-point functions
data. The final statistical errors were calculated using a
single elimination jackknife method with uncorrelated fits
to both the 2- and 3-point functions since correlated fits

TABLE V. The fit parameters tmin and τskip defining the four
cases used to analyze the 2- and 3-point functions data. The
parameter tmin is the starting value of time used in the 2-point fit,
and τskip is the number of points skipped adjacent to the
source and sink in the fit to the 3-point data. The triplets
of numbers correspond to the three lattice spacings
a ¼ f0.12; 0.09; 0.06g fm, respectively. The three exceptions
to these fit ranges are specified in Tables III and IV. The
ending time slices in the 2-point fits were chosen to be
tmax ¼ f15; 20; 30g in all cases.

Fit tmin (2pt HP) tmin (2pt AMA) τskip (3pt)

Case 1 f2; 4; 5g f3; 5; 7g f2; 3; 4g
Case 2 f2; 4; 5g f3; 5; 7g f3; 4; 6g
Case 3 f3; 5; 6g f4; 6; 8g f2; 3; 4g
Case 4 f3; 5; 6g f4; 6; 8g f3; 4; 6g

TABLE VI. Estimates of the matrix element h0jOAj0i for the isovector axial operators for four cases of the fit ranges defined in
Table V. We also give estimates of the matrix elements h0jOAj1i and h1jOAj1i for Case 1 and Case 3. For the four ensembles, a12m310,
a09m130, a06m310, and a06m22, we give both the AMA and LP estimates. We find that the bias correction term is negligible in all
cases.

h0jOAj0i Case 1 Case 3

ID Type Case 1 Case 2 Case 3 Case 4 h0jOAj1i h1jOAj1i h0jOAj1i h1jOAj1i
a12m310 HP 1.249(22) 1.246(26) 1.248(26) 1.243(33) −0.019ð42Þ −2.4ð62Þ −0.016ð46Þ 0.4(2.8)
a12m310 AMA 1.252(9) 1.251(11) 1.252(9) 1.251(11) −0.060ð24Þ −22ð28Þ −0.060ð24Þ −22ð28Þ
a12m310 LP 1.252(9) 1.251(11) 1.252(9) 1.251(11) −0.060ð24Þ −22ð28Þ −0.060ð24Þ −22ð28Þ
a12m220S HP 1.275(32) 1.287(39) 1.283(39) 1.295(48) −0.187ð64Þ −7.ð18Þ −0.199ð69Þ 0.6(6.2)
a12m220 HP 1.271(27) 1.265(33) 1.273(30) 1.263(39) −0.068ð58Þ −16.0ð2.5Þ −0.063ð63Þ −5.ð15Þ
a12m220L HP 1.285(22) 1.291(25) 1.337(83) 1.346(89) −0.125ð47Þ −0.145ð60Þ
a12m220L LP 1.276(10) 1.275(14) 1.279(12) 1.276(16) −0.084ð22Þ −0.8ð18Þ −0.087ð25Þ −0.0ð1.7Þ
a09m310 HP 1.255(21) 1.255(25) 1.262(30) 1.262(30) −0.118ð35Þ −0.7ð18Þ −0.123ð38Þ −0.3ð1.9Þ
a09m220 HP 1.267(22) 1.277(25) 1.272(30) 1.283(33) −0.135ð34Þ −2.0ð25Þ −0.138ð37Þ −1.7ð2.9Þ
a09m130 HP 1.172(39) 1.164(46) 1.177(44) 1.163(55) −0.029ð44Þ 0.4(13) −0.028ð49Þ 0.84(77)
a09m130 AMA 1.247(16) 1.258(19) 1.255(24) 1.266(27) −0.096ð19Þ 0.64(35) −0.102ð24Þ 0.72(38)
a09m130 LP 1.247(16) 1.257(19) 1.255(24) 1.265(26) −0.094ð19Þ 0.60(36) −0.100ð23Þ 0.69(38)
a06m310 HP 1.167(22) 1.156(26) 1.172(24) 1.157(29) −0.020ð22Þ 0.03(70) −0.019ð24Þ 0.45(50)
a06m310 AMA 1.209(14) 1.209(15) 1.212(14) 1.212(16) −0.058ð16Þ −2.3ð16Þ −0.060ð17Þ −1.2ð1.4Þ
a06m310 LP 1.210(13) 1.210(15) 1.213(14) 1.213(16) −0.058ð16Þ −2.4ð17Þ −0.061ð17Þ −1.3ð1.4Þ
a06m220 HP 1.227(50) 1.238(57) 1.234(51) 1.244(60) −0.182ð61Þ −0.2ð3.1Þ −0.186ð62Þ 0.6(2.3)
a06m220 AMA 1.234(17) 1.241(19) 1.234(17) 1.241(19) −0.122ð18Þ −6.0ð3.2Þ −0.121ð18Þ −6.3ð3.9Þ
a06m220 LP 1.234(17) 1.241(18) 1.234(17) 1.241(18) −0.117ð18Þ −7.0ð3.4Þ −0.116ð18Þ −7.5ð3.9Þ
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were not stable for the 3-point functions in all cases. In all
cases in which the correlated fits to the 3-point functions
were stable under changes in the fit ranges and had χ2 ≤ 1,
the correlated and uncorrelated fits gave overlapping
estimates.
Having high-statistics data with the AMA method

significantly improves the analysis. For example, the
plateaus in the effective-mass plots extend to larger
Euclidean time as discussed in Sec. III. This allowed fits

to the 2-point AMA data to be made using a later starting
time slice, tmin, thus reducing contributions from excited
states in the extraction of the masses and amplitudes as
shown in Figs. 6 and 7. Similarly, the improvement in the
estimates of the matrix elements from the 3-point functions
is shown in Figs. 1, 2, 3, and 4.
To summarize, we find that the AMA method with

Oð100Þ randomly selected source positions on each con-
figuration is a very cost-effective way to increase the

TABLE VII. Estimates of the matrix elements for the isovector scalar operator. The rest is the same as in Table VI.

h0jOSj0i Case 1 Case 3

ID Type Case 1 Case 2 Case 3 Case 4 h0jOSj1i h1jOSj1i h0jOSj1i h1jOSj1i
a12m310 HP 0.83(9) 0.79(10) 0.82(10) 0.77(12) −0.06ð11Þ 10(23) −0.05ð12Þ 6(11)
a12m310 AMA 0.91(4) 0.91(4) 0.91(4) 0.91(4) −0.29ð5Þ 6(56) −0.29ð5Þ 6(56)
a12m310 LP 0.91(4) 0.91(4) 0.91(4) 0.91(4) −0.29ð5Þ 6(56) −0.29ð5Þ 6(56)
a12m220S HP 1.01(27) 1.03(30) 1.03(32) 1.07(37) −0.16ð22Þ −40ð13Þ −0.17ð26Þ −11ð38Þ
a12m220 HP 0.69(16) 0.64(18) 0.67(18) 0.61(20) −0.07ð16Þ 80(14) −0.06ð18Þ 35(77)
a12m220L HP 1.01(10) 1.00(10) 1.10(17) 1.08(17) −0.34ð15Þ −0.39ð18Þ
a12m220L LP 0.83(5) 0.83(7) 0.83(6) 0.83(7) −0.18ð6Þ 4.9(6.2) −0.20ð7Þ 4.1(4.8)
a09m310 HP 0.92(9) 0.93(10) 0.94(10) 0.94(11) −0.33ð9Þ 1.1(2.5) −0.34ð10Þ 1.2(2.1)
a09m220 HP 0.88(12) 0.86(13) 0.88(13) 0.87(14) −0.28ð10Þ 2.7(4.2) −0.28ð11Þ 2.7(3.8)
a09m130 HP 0.70(32) 0.72(36) 0.73(37) 0.75(42) −0.27ð17Þ 3.4(9.6) −0.29ð19Þ 2.5(5.5)
a09m130 AMA 0.98(10) 0.97(11) 0.99(11) 0.97(12) −0.37ð6Þ 4.0(1.6) −0.40ð9Þ 3.8(1.5)
a09m130 LP 0.99(10) 0.97(11) 1.00(11) 0.98(11) −0.36ð6Þ 3.9(1.6) −0.39ð8Þ 3.6(1.4)
a06m310 HP 1.24(10) 1.22(11) 1.28(11) 1.24(12) −0.26ð6Þ −3.4ð2.1Þ −0.28ð7Þ −1.8ð1.6Þ
a06m310 AMA 1.16(4) 1.17(5) 1.18(5) 1.19(5) −0.38ð3Þ −1.1ð1.1Þ −0.40ð4Þ −0.5ð1.0Þ
a06m310 LP 1.16(4) 1.17(5) 1.18(5) 1.19(5) −0.38ð3Þ −1.1ð1.1Þ −0.40ð4Þ −0.5ð1.0Þ
a06m220 HP 0.65(28) 0.60(29) 0.64(29) 0.59(31) −0.21ð14Þ 11(17) −0.21ð15Þ 8.(13)
a06m220 AMA 1.04(6) 1.05(7) 1.04(6) 1.05(7) −0.30ð4Þ −0.6ð2.5Þ −0.30ð4Þ −0.7ð2.6Þ
a06m220 LP 1.04(6) 1.05(7) 1.04(6) 1.05(7) −0.30ð3Þ −1.1ð2.5Þ −0.30ð3Þ −1.2ð2.6Þ

TABLE VIII. Estimates of the matrix elements for the isovector tensor operator. The rest is the same as in Table VI.

h0jOT j0i Case 1 Case 3

ID Type Case 1 Case 2 Case 3 Case 4 h0jOT j1i h1jOT j1i h0jOT j1i h1jOT j1i
a12m310 HP 1.096(21) 1.092(24) 1.084(31) 1.081(33) 0.187(32) −2.5ð4.9Þ 0.200(35) −0.5ð2.4Þ
a12m310 AMA 1.087(10) 1.082(10) 1.087(10) 1.082(10) 0.243(20) 12(14) 0.243(20) 12(14)
a12m310 LP 1.087(10) 1.082(10) 1.087(10) 1.082(10) 0.243(20) 13(14) 0.243(20) 13(14)
a12m220S HP 1.086(26) 1.079(31) 1.067(46) 1.060(51) 0.264(55) −1ð11Þ 0.280(57) 0.3(3.3)
a12m220 HP 1.111(24) 1.107(28) 1.105(32) 1.102(36) 0.202(47) −17ð22Þ 0.209(49) −6ð14Þ
a12m220L HP 1.058(19) 1.059(20) 1.043(29) 1.050(29) 0.168(33) 0.193(43)
a12m220L LP 1.063(12) 1.063(13) 1.056(19) 1.058(18) 0.200(17) 1.31(74) 0.213(25) 1.03(60)
a09m310 HP 1.025(24) 1.027(26) 1.021(31) 1.023(31) 0.157(24) 0.10(87) 0.164(30) 0.15(80)
a09m220 HP 1.030(20) 1.039(21) 1.029(22) 1.039(22) 0.124(25) −0.3ð1.1Þ 0.127(26) −0.2ð1.1Þ
a09m130 HP 0.993(33) 1.001(36) 0.980(45) 0.993(47) 0.136(36) 0.48(88) 0.147(40) 0.63(53)
a09m130 AMA 0.974(20) 0.981(20) 0.967(28) 0.975(26) 0.164(16) 0.79(14) 0.174(25) 0.75(12)
a09m130 LP 0.973(19) 0.979(19) 0.966(28) 0.974(26) 0.167(16) 0.77(14) 0.177(25) 0.72(12)
a06m310 HP 0.961(20) 0.958(22) 0.951(24) 0.950(26) 0.124(15) 0.68(40) 0.131(16) 0.75(27)
a06m310 AMA 0.976(10) 0.981(10) 0.972(12) 0.978(12) 0.122(9) 0.46(26) 0.128(10) 0.50(22)
a06m310 LP 0.976(10) 0.981(10) 0.972(12) 0.978(12) 0.122(9) 0.45(26) 0.128(10) 0.49(22)
a06m220 HP 0.995(43) 1.002(47) 0.990(48) 1.000(51) 0.109(38) −0.5ð2.5Þ 0.110(39) 0.0(1.9)
a06m220 AMA 0.984(10) 0.986(10) 0.984(10) 0.986(10) 0.103(8) −0.50ð52Þ 0.103(8) −0.53ð59Þ
a06m220 LP 0.984(9) 0.985(10) 0.984(9) 0.986(10) 0.105(8) −0.59ð54Þ 0.105(8) −0.63ð62Þ
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statistics significantly and consequently improve the qual-
ity of the fits used to extract the estimates for the charges on
each ensemble. Having these estimates with small errors
improves the quality of the final fits made to obtain results
in the continuum limit and at the physical light-quark mass
as discussed in Sec. V.

III. EXCITED-STATE CONTAMINATION

Nucleon charges are given by the matrix elements of the
bilinear quark operators between ground-state nucleons.
The lattice operator χ given in Eq. (1), however, couples to
the nucleon, its excitations, and multiparticle states with the
same quantum numbers. We incorporate three strategies to
reduce excited-state contamination:

(i) The overlap between the nucleon operator and the
excited states is reduced by using tuned smeared
sources when calculating the quark propagators. We
construct gauge-invariant Gaussian smeared sources
by applying the three-dimensional Laplacian operator
∇2 a fixed number of times NGS, ð1 − σ2∇2=
ð4NGSÞÞNGS . The smearing parameters fσ; NGSg for
each ensemble are given inTable II and are the sameas
in Ref. [11] in order to avoid repeating the expensive
HP calculation needed for the AMA analysis. Also,
the same smearing is used at the source and sink points
to construct the smeared-smeared 2- and 3-point
correlation functions.

(ii) We calculate the 3-point correlation functions for a
number of values of the source-sink separation tsep
given in Table I. We fit the data at all tsep simulta-
neously using the 2-state Ansatz given in Eq. (10) to
estimate the tsep → ∞ value.

(iii) We include one excited state in the analysis of the
2-point and 3-point functions as given in Eqs. (9)
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FIG. 5. Illustration of the decrease in the errors in the 2- and
3-point functions calculated on the a06m220 lattices with the
number N of LP measurements made per configuration. (Top)
The 2-point nucleon correlation function at time separations 12,
16, 20. (Bottom) The data for the four charges at the midpoint
τ ¼ 10 of the tsep ¼ 20 calculation. The errors are normalized
using the N ¼ 64 estimates and decrease by a factor of about 3.7
between N ¼ 4 and 64 measurements compared to the expected
factor of 4 for uncorrelated data.
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and (10). We find that this Ansatz has enough free
parameters to fit the data and the additional five
parameters needed to include a second excited state
would be very poorly determined.

The 2-state Ansatz used to fit the 2- and 3-point
functions is

C2ptðtf; tiÞ ¼ jA0j2e−M0ðtf−tiÞ þ jA1j2e−M1ðtf−tiÞ; ð9Þ

C3pt
Γ ðtf; τ; tiÞ ¼ jA0j2h0jOΓj0ie−M0ðtf−tiÞ

þ jA1j2h1jOΓj1ie−M1ðtf−tiÞ

þA0A�
1h0jOΓj1ie−M0ðτ−tiÞe−M1ðtf−τÞ

þA�
0A1h1jOΓj0ie−M1ðτ−tiÞe−M0ðtf−τÞ; ð10Þ

where τ is the time at which the operator is inserted and
tf − ti ¼ tsep in the 3-point function calculation. The states
j0i and j1i represent the ground and “first excited” nucleon
states, respectively. To extract the charges gu−dA , gu−dS , and
gu−dT , we only need to examine the real part of the
correlation functions with the operator insertion at zero
momentum, in which case A0 and A1 are real and the
matrix element h0jOΓj1i ¼ h1jOΓj0i. Thus, we need to
extract seven parameters from fits to the 2- and 3-point
functions. The four parameters, M0, M1, A0, and A1 are
estimated first from the 2-point data and are then used as
inputs in the extraction of matrix elements from fits to the
3-point data. Fits to both 2- and 3-point data are done
within the same jackknife process to take into account
correlations.
Five of the seven parameters, M0, M1 and the three

matrix elements h0jOΓj0i, h0jOΓj1i, and h1jOΓj1i, are
physical once the discretization errors and higher excited-
state contaminations have been removed from them.
The amplitudes A0 and A1 depend on the choice of the
interpolating nucleon operator and the smearing parameters
used to generate the smeared sources. It is clear from
Eqs. (9) and (10) that the ratio of the amplitudes,A1=A0, is
the quantity to minimize in order to reduce excited-state
contamination since it determines the relative strength of
the overlap of the nucleon operator with the first excited
state. Estimates of h0jOΓj1i, h1jOΓj1i, the mass gap
M1 −M0, and the ratio A1=A0 can be used, post facto,
to bound the size of the excited-state contamination for a
given source-sink separation tsep.
Results of the 2-state fits to the 2-point functions needed

to extract M0, M1, A0, and A1 are consistent within errors
for two sets of starting time slices tmin as shown in
Tables III and IV. The χ2=d:o:f: of the correlated fits are
also similar for the two fit ranges. These fit ranges are
specified in Table V.
Higher statistics with the AMAmethod allow us to fit the

data with larger tmin. The HP and AMA estimates for M0

and A0 with different fit ranges are consistent for all the

ensembles and are independent of tmin. This is expected
since these ground-state estimates are sensitive only to the
data at large t and that is the same in both choices of the fit
ranges. We also note that the scaling of the errors is
consistent with the naïve expectation,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NHP=NLP

p
.

We illustrate the improvement with the AMA method
compared to just the HP analysis in Fig. 6 using the
a09m130 data fit with tmin ¼ 6. The plateau in the
effective-mass Meffðtþ0.5Þ¼−logfC2ptðtþ1Þ=C2ptðtÞg,
where C2ptðtÞ is the 2-point nucleon correlation function
at time separation t, extends about four time slices further
with the AMA data. In the limit t → ∞, MeffðtÞ converges
to the ground-state mass M0. A comparison of the error
estimates in both the data points and in the result of the fit
shows that the extraction of the masses and the amplitudes
improves very significantly with the AMA method.
The data in Tables III and IV show a 2σ difference in the

extraction of M0 from the four ensembles a12m220S,
a12m220, a12m220L (HP), and a12m220L with AMA.2

The effective-mass data for the four calculations are shown
in Fig. 7. The errors in the a12m220S, a12m220 data are
large, and the data show a noisy plateau over the range
7 ≤ t ≤ 10. As a result, the 2-state fit is sensitive to the
choice of tmin. The higher statistics and larger volume
a12m220L AMA data show a plateau over the interval
9 ≤ t ≤ 15, and the fit is stable under changes in tmin.
Because of this difference in the quality of the data, it is
difficult to assess if the t → ∞ estimates have been
obtained in the a12m220S and a12m220 data. As a result,
we are not able to determine what fraction of the difference
in M0 is due to finite-volume effects and how much is due
to statistics.
The quantities that are harder to extract and are sensitive

to the choice of tmin areM1 andA1. In most cases, results of
fits with larger tmin (Case 3 versus Case 1 in Table V) yield
smaller values for M1 and A1. This is expected since,
within a 2-state fit Ansatz, these parameters effectively
capture the contributions of all the higher states and fitting
with larger tmin uses data with relatively less higher-states
contamination. In practice, one has to compromise between
using data with smaller errors at smaller tmin and picking
a large tmin to reduce higher excited-state contamination.
We have picked the second set with the larger tmin for
presenting our final results. Note that the error estimates are
slightly larger with this choice.
As discussed above, we need to minimize the ratio of the

amplitudes, A1=A0, to reduce the overlap of the nucleon
operator with the first excited state by tuning the smearing
parameters. (In general, all theAn=A0 when up to n excited
states are included in the fit Ansatz.) Our additional tests on

2We checked for bias in the a12m220L data using the tsep ¼
10 HP data and found it to be negligible as in the other four AMA
studies. Assuming that this is true at other values of tsep, we
include the a12m220L LP data as part of the AMA discussion.
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the a06 ensembles discussed in Sec. VI show that increas-
ing the smearing size σ over the range simulated reduces
A1=A0 and the excited-state contamination, most notably
in the axial and scalar charges. On the other hand, beyond a
certain size σ, the statistical errors based on a given number
of gauge configurations start to increase. Also, when
calculating the form factors, one expects the optimal σ
to decrease with increasing momentum. Thus, one has to
compromise between obtaining a good statistical signal and
reducing excited-state contamination in both the charges
and the form factors, when all these quantities are being
calculated with a single choice of the smearing parameters.
The data in Tables III and IV show an increase in the

ratio A1=A0 as the lattice spacing is decreased. This
suggests that the smearing parameter σ (see Table II)
should have been scaled with the lattice spacing a. The
dependence of the ratio on the two choices of tmin used in
the fits (estimates in Table III versus Table IV) and between
the HP and AMA estimates for each choice is much

smaller. Based on these trends and additional tests dis-
cussed in Sec. VI, a better choice for the smearing
parameters when calculating the matrix elements at zero-
momentum transfer is estimated to be f5; 70g, f7; 120g,
and f9; 200g for the a ¼ 0.12, 0.09, and 0.06 fm ensem-
bles, respectively. In physical units, a rule-of-thumb esti-
mate for tuning the smearing size is σa ≈ 0.55 fm.
To extract the three matrix elements h0jOΓj0i, h1jOΓj0i,

and h1jOΓj1i, for each operator OΓ ¼ OA;S;T;V, from the
3-point functions, we make one overall fit using the data at
all values of the operator insertion time τ and the various
source-sink separations tsep using Eq (10). From such fits
we extract the tsep → ∞ estimates under the assumption
that the contribution of all higher states is isolated by the
2-state Ansatz given in Eqs. (9) and (10).
In Figs. 8, 9, and 10, we show the data for the

unrenormalized isovector charges gu−dA , gu−dS , and gu−dT
for the seven ensembles at different values of a and Mπ

used in the final analysis. The other two ensembles,
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a12m220S and a12m220 at a ¼ 0.114 fm and
Mπ ¼ 227 MeV, allow us to study the finite-volume effect.
The data at central values of τ ≈ tsep=2 show significant,
about 15%, dependence of gu−dA on tsep between 1 and
1.5 fm for the a ¼ 0.09 and 0.06 fm ensembles. In gu−dT ,
this effect is less than 5%. The size of the effect in gu−dS is
not clear due to the much larger errors. Based on these data
and additional tests discussed in Sec. VI, the two key
observations are the following: (i) the 2-state Ansatz given
in Eqs. (9) and (10) fits the data at multiple values of tsep
and gives a reliable estimate of the tsep → ∞ value, and
(ii) the behavior of the unrenormalized data versus τ and
tsep are less sensitive to the value of Mπ for fixed a
compared to versus a for fixed Mπ. The behavior of the
renormalized charges is discussed in Sec. V.
The estimates of the matrix elements obtained from the

fits to the 3-point correlation functions for the unrenor-
malized charges are given in Tables VI, VII, and VIII for
the nine ensembles. Again, for the case of the five
ensembles analyzed using the AMA method, we give

the HP and the AMA estimates. For each of the two
choices of fit ranges for the 2-point functions, listed in
Tables III and IV, we determined the three matrix elements
for two different choices of the number of time slices, τskip,
skipped on either end of the 3-point correlation functions.
These two choices are τskip ¼ f2; 3; 4g and f3; 4; 6g for the
three lattice spacings a ¼ f0.12; 0.09; 0.06g fm, respec-
tively. The four cases of fit parameters used in the analysis
are summarized in Table V.
The results for h0jOΓj0i for all four cases (two fit ranges

for the 2-point functions and two choices of τskip for the
3-point functions) are consistent as shown in Tables VI,
VII, and VIII. Estimates of h0jOΓj1i and h1jOΓj1i are also
similar between Case 1 and Case 3, especially for the data
with the AMA method. We choose Case 3 for our final
estimates as it has (i) the larger tmin corresponding to a
larger suppression of excited states in the 2-point fits, and
(ii) the smaller value for τskip whereby more points at each
tsep are included in the 3-point fits to give a better
determination of h0jOΓj1i. Last, note that the estimates
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FIG. 9. The 2-state fit results for the unrenormalized scalar charge gu−dS data. The rest is the same as in Fig. 8.
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from the HP data presented here are consistent but slightly
different from those published in Ref. [11] because of the
different choices of the fit ranges.
The consistency between the four estimates of the matrix

elements allows us to draw the following qualitative
conclusions regarding excited-state contamination in
gu−dA , gu−dS , and gu−dT :

(i) Estimates of h1jOΓj1i given in Tables VI, VII,
and VIII are poorly determined. Within the 2-state
approximation, the effect of a nonzero h1jOΓj1i is to
change the data at all τ, for fixed tsep, by a constant
amount. For gu−dA , h1jOΓj1i is large on the a ¼ 0.09
and 0.06 fm ensembles and has the same sign as
h0jOΓj1i. The two contributions, therefore, add to
give a large excited-state contribution. For gu−dT , the
data in Fig. 10 show less than 5% dependence on tsep
in the central regions (values of operator insertion
time τ at which the contribution of a nonzero
h0jOΓj1i is the smallest) and the contribution of
h1jOΓj1i is small. For gu−dS , the data in Fig. 9 show
a significant excited-state effect only for the

a ¼ 0.06 fm ensembles that is largely accounted
for by the contribution of the h0jOSj1i term.

(ii) Estimates of h0jOSj1i vary between −0.05 and
−0.41 for gu−dS . This matrix element gives the
negative curvature observed in Fig. 9, and the
ground-state estimate of gu−dS converges from below.

(iii) Data for gu−dS show excited-state contamination on
the two a ¼ 0.06 fm ensembles a06m310 and
a06m220. The 2-state fit gives reliable tsep → ∞
estimates as shown in Fig. 9. In Sec. VI, we present
data from additional simulations on the a06m310
and a06m220 ensembles and discuss the limitations
of the 2-state fit when the errors are large and the
data at different tsep overlap as a result.

(iv) Estimates of h0jOT j1i vary between 0.1 and 0.26 for
gu−dT and give rise to the positive curvature evident in
Fig. 10. The ground-state estimate of gu−dT converges
from above.

(v) There is evidence for excited-state contamination
in gu−dT on the a12m310, a12m220L, and a09m130
ensembles with AMA as shown in Fig. 10. This 5%
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FIG. 10. The 2-state fit results for the unrenormalized tensor charge gu−dT data. The rest is the same as in Fig. 8.
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effect can be accounted for by the larger value of
h1jOΓj1i that has the same sign as the h0jOΓj1i
contribution as shown in Table VIII. In all three cases,
the 2-stateAnsatz fits the data atmultiple values of tsep
covering the range 1.0–1.4 fm, and gives stable tsep →
∞ estimates under changes in τskip and tsep.

(vi) In all cases, the data with the largest tsep are noisy
and do not contribute significantly to the fit. Much
higher statistics are needed for fits to be sensitive to
data with tsep ≳ 1.5 fm.

Our conclusion is that the 2-state fit reduces the
uncertainty due to the excited-state contamination in
gu−dA , gu−dS , and gu−dT to within a few percent (size of the
statistical errors) with the smearing parameters and values
of tsep we have used. Also, the data in Tables VI, VII,
and VIII indicate that the variation in the determination of
A1=A0 and M1 −M0 with different choices of the fit
ranges does not have a significant effect on the final
tsep → ∞ estimates of the charges obtained from the
2-state fits.

FIG. 11. Data for the four renormalization constants ZA, ZS, ZT , and ZV in the M̄S scheme at μ ¼ 2 GeV as a function of the lattice
momenta jqj used in the RI-sMOM scheme. The data are organized as follows: (left column) a ¼ 0.12 fm, (middle column)
a ¼ 0.09 fm, and (right column) a ¼ 0.06 fm ensembles. In each panel, we show the data at the two values ofMπ analyzed and use blue
squares to label the Mπ ≈ 310 MeV and red diamonds for the Mπ ≈ 220 MeV ensembles. The dashed line is the linear part of the fit
c=q2 þ Z þ dq used in method A to extract the Z’s. Data in the region of q2 used to extract the Z’s using method B are shown using
green (Mπ ≈ 310 MeV) and orange (Mπ ≈ 220 MeV) symbols.
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IV. RENORMALIZATION OF OPERATORS

The calculation of the renormalization constants ZA, ZV ,
ZS, and ZT of the quark bilinear operators in the regulari-
zation-independent symmetric momentum-subtraction (RI-
sMOM) scheme [32,33] has been done on six ensembles:
a12m310, a12m220, a09m310, a09m220, a06m310, and
a06m220. The method and the details of this calculation
have been given in Ref. [11], and here we briefly describe
new aspects of the calculations and state the results.
To derive ZA, ZS, ZS, and ZV in the continuum MS

scheme at μ ¼ 2 GeV, starting with the lattice results
obtained in the RI-sMOM scheme, we proceed as follows.
The RI-sMOM estimate obtained at a given lattice squared
four-momentum q2 is first converted to the MS scheme at
the same scale (horizontal matching) using two-loop
perturbative relations expressed in terms of the coupling
constant αMSðq2Þ [34]. This estimate at μ ¼ q2 is then run
in the continuum in the MS scheme to 2 GeV using the
3-loop anomalous dimension relations for the scalar and
tensor bilinears [5,35]. The result is a set of data points as a
function of q2 that are shown in Figs. 11 and 12. The mass-
independent renormalization factors are extracted from
these as discussed below.

In calculations at sufficiently small values of the lattice
spacing a, one expects a window, ηΛQCD ≪ q ≪ ξπ=a, in
which the data for the Z’s, shown in Figs. 11 and 12, are
independent of q; that is, the data should show a plateau
versus q. The lower cutoff ηΛQCD is dictated by non-
perturbative effects and the upper cutoff ξπ=a by discre-
tization effects. Here η and ξ are, a priori, unknown
dimensionless numbers of Oð1Þ that depend on the lattice
action and the link smearing procedure. The main system-
atics contributing to the lack of such a window and the
resulting uncertainty in the extraction of the renormaliza-
tion constants are (i) breaking of the Euclidean Oð4Þ
rotational symmetry to the hypercubic group, because of
which different combinations of qμ with the same q2 give
different results in the RI-sMOM scheme; (ii) nonperturba-
tive effects at small q2; (iii) discretization errors at large q2

other than the Oð4Þ breaking effects listed above; and
(iv) truncation errors in the perturbative matching to the MS
scheme and running to 2 GeV. These systematics are
discussed below.
To assess the truncation errors, we compare the con-

version factor using 2-loop matching and 3-loop running
versus 1-loop matching and 2-loop running. The 2-loop
series for the matching of ZT is poorly behaved. For

FIG. 12. Data for the ratios of renormalization constants ZA=ZV , ZS=ZV , ZT=ZV in the M̄S scheme at μ ¼ 2 GeV as a function of the
lattice momenta jqj used in the RI-sMOM scheme. The rest is the same as in Fig. 11.
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example, the 2-loop series for ZT when using horizontal
matching between the RI-sMOM and MS schemes is
1þ 0.0052þ 0.0159 at q2 ¼ 4 GeV2 and is 1þ 0.0037þ
0.0078 at q2 ¼ 25 GeV2. In obtaining these estimates
we used the 4-flavor αsðMS; 2 GeVÞ ¼ 0.3051 and
αsðMS; 5 GeVÞ ¼ 0.2138. On the other hand, the 2-loop
series for ZS at q2 ¼ 4 GeV2, 1 − 0.0157 − 0.0039, is
much better behaved. The poor convergence of the 2-loop
matching factor suggests a systematic uncertainty of
Oð2%Þ for ZT. Our final error estimates given in
Table X are larger than this. The series for the factor
describing the running in the continuum is better behaved,
and the difference between the 2- and 3-loop estimates
between the values of q2 used in the analysis and 4 GeV2 is
less than 20% of the quoted errors and starts to become
significant only for q2 < 1 GeV2 where αs is large.
Consequently, we use data with q2 > 4 GeV2 when
obtaining our final estimates given in Tables IX and XII.
The lattice data in the RI-sMOM scheme have significant

Oð4Þ breaking effects. The size of the spread in ZA, ZS, ZT ,
and ZV and in the ratios ZA=ZV , ZS=ZV , and ZT=ZV is
illustrated in Fig. 13 using the a06m220 ensemble by
plotting all the data using green circles. From this full
data set, we pick the points with the smallest values ofP

μðp1Þ4μ=ððp1Þ2Þ2 þ
P

μðp2Þ4μ=ððp2Þ2Þ2, where ðp1Þμ and
ðp2Þμ are the momenta in the two external fermion legs,

qμ ¼ ðp1Þμ − ðp2Þμ and ðpiÞ2 ¼
P

μðpiÞ2μ. These points,
shown as red diamonds, are expected to have smaller Oð4Þ
breaking effects. Of these red points, the data between 9.2
and 11.2 GeV2 used to extract the Z’s using method B
discussed below are shown as black diamonds.
The data for the ratios ZA=ZV , ZS=ZV , and ZT=ZV

show much smaller Oð4Þ breaking, presumably because
some of the systematics cancel. Our final estimates of
the renormalized charges are, therefore, obtained using
these ratios as discussed below. Overall, a better under-
standing and control over the artifacts due to Oð4Þ
symmetry breaking in the RI-sMOM scheme is needed
as the contribution of the uncertainty in the renormal-
ization constants to the errors in the charges is now
larger than the statistical errors and the excited-state
contamination.
After conversion to the MS scheme at 2 GeV, the

selected data points that minimize
P

μðp1Þ4μ=ððp1Þ2Þ2þP
μðp2Þ4μ=ððp2Þ2Þ2 for each q2 are plotted in Fig. 11 for

the six ensembles as a function of q2. The data for ZΓ
and ZΓ=ZV show nonperturbative effects at low jqj values
followed by an approximate plateau for ZA, ZT , and ZV ,
whereas the data for ZS continue to show a large q
dependence.
From these data in the MS scheme at 2 GeV, we extract

the estimates in two ways [11]:

TABLE IX. The renormalization constants ZA, ZS, ZT , ZV and the ratios ZA=ZV , ZS=ZV , and ZT=ZV in the M̄S scheme at 2 GeV
obtained on six ensembles at the three values of the lattice spacings. (Top) Estimates are from method A using the fit 1=q2 þ Z þ dq.
(Bottom) Estimates from method B obtained by averaging the data over an interval in q2 as described in the text.

ID ZA ZS ZT ZV ZA=ZV ZS=ZV ZT=ZV

a12m310 0.929(5) 0.912(06) 0.899(4) 0.904(4) 1.035(3) 0.975(04) 1.000(2)
a12m220 0.926(7) 0.852(20) 0.901(6) 0.890(6) 1.045(4) 0.984(13) 1.012(3)
a09m310 0.951(4) 0.868(45) 0.945(5) 0.912(7) 1.037(6) 0.909(54) 1.031(4)
a09m220 0.899(9) 0.867(22) 0.931(9) 0.889(8) 1.018(5) 1.007(20) 1.050(7)
a06m310 0.948(5) 0.863(11) 1.005(6) 0.934(4) 1.014(3) 0.922(10) 1.068(5)
a06m220 0.979(4) 0.901(10) 1.043(5) 0.951(3) 1.032(2) 0.952(09) 1.103(5)
a12m310 0.979(1) 0.925(17) 0.989(14) 0.933(14) 1.0472(21) 0.991(17) 1.058(2)
a12m220 0.970(9) 0.914(11) 0.984(9) 0.921(10) 1.0526(35) 0.994(14) 1.068(4)
a09m310 0.975(10) 0.901(13) 1.013(11) 0.937(11) 1.0411(22) 0.962(5) 1.081(2)
a09m220 0.972(7) 0.878(6) 1.018(6) 0.934(7) 1.0407(14) 0.941(8) 1.090(3)
a06m310 0.980(8) 0.840(9) 1.064(8) 0.951(8) 1.0300(6) 0.883(4) 1.118(2)
a06m220 0.981(7) 0.835(3) 1.060(5) 0.957(6) 1.0255(8) 0.873(4) 1.109(3)

TABLE X. The final mass-independent renormalization constants ZA, ZS, ZT , ZV and the ratios ZA=ZV , ZS=ZV ,
and ZT=ZV in the M̄S scheme at 2 GeV at the three values of the lattice spacings used in our analysis. The central
value is the average of estimates from the two methods and at the two pion masses given in Table IX, and the errors
are taken to be half the spread.

ID ZA ZS ZT ZV ZA=ZV ZS=ZV ZT=ZV

a12 0.95(3) 0.90(4) 0.94(4) 0.91(2) 1.045(09) 0.986(09) 1.034(34)
a09 0.95(4) 0.88(2) 0.98(4) 0.92(2) 1.034(11) 0.955(49) 1.063(29)
a06 0.97(3) 0.86(3) 1.04(3) 0.95(1) 1.025(09) 0.908(40) 1.100(25)
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(i) Method A: We fit the data with q2 > 0.8 GeV2

using the Ansatz c=q2 þ Z þ dq, where the first
term c=q2 is used to account for nonperturbative
artifacts and the third, dq, for the discretization
errors. The errors in the Z’s are obtained by using
100 bootstrap samples.

(ii) Method B: The estimate for Z is taken to be an
average over the data points in an interval about
q2 ¼ Λ=a, where the scale Λ ¼ 3 GeV is chosen to
be large enough to avoid nonperturbative effects and

above which perturbation theory is expected to be
reasonably well behaved. This choice satisfies both
qa → 0 and Λ=q → 0 in the continuum limit as
desired, and qμa − sinðqμaÞ < 0.05 to bound dis-
cretization effects. In our simulations, this choice
corresponds to q2 ¼ 5, 6.8, and 10.2 GeV2 for the
a ¼ 0.12, 0.09, and 0.06 fm ensembles, respectively.
To estimate the value and the error, we further
choose an interval of 2 GeV2 about these q2; i.e.,
we take the mean and the standard deviation of

TABLE XI. Estimates of the bare connected charges using the fit ranges defined under Case 3 in Table V. The isovector charges
gu−dΓ ¼ h0jOΓj0i are the same as Case 3 in Tables VI, VII, and VIII. Ensembles marked with an asterisk denote results obtained with the
AMA method.

ID guA gdA gu−dA guS gdS gu−dS guT gdT gu−dT

a12m310 0.923(25) −0.326ð14Þ 1.248(26) 3.43(20) 2.61(15) 0.82(10) 0.867(25) −0.218ð12Þ 1.084(31)
a12m310* 0.932(9) −0.320ð5Þ 1.252(9) 3.31(6) 2.40(4) 0.91(4) 0.873(9) −0.215ð4Þ 1.087(10)
a12m220S 0.969(37) −0.313ð21Þ 1.283(39) 4.49(52) 3.45(37) 1.03(32) 0.858(41) −0.208ð21Þ 1.067(46)
a12m220 0.942(29) −0.332ð15Þ 1.273(30) 3.87(27) 3.21(21) 0.67(18) 0.885(26) −0.218ð16Þ 1.105(32)
a12m220L 1.015(75) −0.322ð22Þ 1.337(83) 4.74(72) 3.67(63) 1.10(17) 0.855(24) −0.189ð18Þ 1.043(29)
a12m220L* 0.949(11) −0.332ð6Þ 1.279(12) 4.10(18) 3.27(14) 0.83(6) 0.847(16) −0.209ð7Þ 1.056(19)
a09m310 0.949(24) −0.312ð15Þ 1.262(30) 3.78(30) 2.84(24) 0.94(10) 0.821(25) −0.200ð11Þ 1.021(31)
a09m220 0.928(23) −0.343ð16Þ 1.272(30) 4.16(25) 3.29(19) 0.88(13) 0.815(21) −0.213ð9Þ 1.029(22)
a09m130 0.864(42) −0.314ð25Þ 1.177(44) 5.01(58) 4.28(37) 0.73(37) 0.764(46) −0.215ð21Þ 0.980(45)
a09m130* 0.909(17) −0.345ð15Þ 1.255(24) 5.49(35) 4.51(31) 0.99(11) 0.778(23) −0.189ð10Þ 0.967(28)
a06m310 0.873(23) −0.299ð13Þ 1.172(24) 4.31(18) 3.03(11) 1.28(11) 0.764(22) −0.187ð10Þ 0.951(24)
a06m310* 0.895(14) −0.317ð8Þ 1.212(14) 4.12(11) 2.94(7) 1.18(5) 0.782(10) −0.188ð4Þ 0.972(12)
a06m220 0.904(48) −0.328ð25Þ 1.234(51) 3.63(40) 2.99(20) 0.64(29) 0.749(47) −0.240ð18Þ 0.990(48)
a06m220* 0.907(16) −0.326ð9Þ 1.234(17) 4.24(9) 3.20(5) 1.04(6) 0.792(9) −0.192ð4Þ 0.984(10)
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FIG. 13. Data for the renormalization constants in the M̄S scheme at μ ¼ 2 GeV as a function of the lattice momenta jqj used in the
regularization independent symmetric momentum (RI-sMOM) scheme. (Top) The data for ZA, ZS, and ZT for all combinations of ðp1Þμ
and ðp2Þμ calculated are plotted using green circles. The subset of points that minimize

P
μðp1Þ4μ=ððp1Þ2Þ2 þ

P
μðp2Þ4μ=ððp2Þ2Þ2 for each

q2 are shown using red diamonds. The value and error using method B discussed in the text is given by the average and variance of the
points shown in black over the range 9.2–11.2 GeV2. (Bottom) The data for the ratiosZA=ZV , ZS=ZV , and ZT=ZV using the same symbols.
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the data over the ranges 4–6, 5.8–7.8, and
9.2–11.2 GeV2.

The interval of q2 that contributes to both methods is
consistent with the general requirement that ηΛQCD ≪
q ≪ ξπ=a, with η and ξ of Oð1Þ, to avoid both nonpertur-
bative and discretization artifacts.
The estimates using method B for all four Z’s and at all

three values of the lattice spacing are found to overlap for
the two values of Mπ . As a result, in Ref. [11] we had
neglected possible mass dependence in implementing
method A and made a fit using the Ansatz c=q2 þ Z þ
dq to the combined data. In this work, we analyze the six

ensembles separately and present the estimates from both
methods in Table IX.
The estimates from method A show significant depend-

ence on Mπ in some cases even though the data at the two
values of Mπ overlap. We do not find a uniform trend with
Mπ at the three different values of a, and given the size of
the errors in the data at the two values of Mπ at fixed a we
are not able to make a reliable extrapolation in Mπ . So we
ignore possible dependence on Mπ in the data and average
the estimates from the two methods at the two values ofMπ
given in Table IX to obtain a “mass-independent” estimate.
For the error estimate we take the larger of the two: half the
spread or the largest statistical error.

TABLE XIII. Estimates of the renormalized isovector charges obtained using ZΓ × gbareΓ with ZΓ given in Table X
and gbareΓ in Table XI. All estimates are obtained using the fit ranges defined under Case 3 in Table V. We also give
results for the bare and renormalized gu−dV in columns five and six. Estimates in the sixth column differ from
ZVgu−dV ¼ 1, predicted by the conservation of the vector charge, by 2%–3%. Ensembles marked with an asterisk
denote results obtained with the AMA method.

ID gu−dA gu−dS gu−dT gVbare; u − d ZVgu−dV

a12m310 1.185(45) 0.738(97) 1.019(52) 1.068(10) 0.972(23)
a12m310* 1.189(39) 0.817(50) 1.022(44) 1.065(4) 0.969(22)
a12m220S 1.219(53) 0.93(29) 1.003(61) 1.055(14) 0.960(25)
a12m220 1.209(48) 0.61(16) 1.038(54) 1.073(12) 0.977(24)
a12m220L 1.270(88) 0.99(16) 0.981(50) 1.088(36) 0.990(39)
a12m220L* 1.215(40) 0.749(62) 0.993(46) 1.065(3) 0.969(21)
a09m310 1.199(58) 0.824(90) 1.000(51) 1.060(8) 0.975(33)
a09m220 1.208(58) 0.78(11) 1.008(47) 1.053(8) 0.969(32)
a09m130 1.118(63) 0.64(33) 0.960(59) 1.029(18) 0.947(35)
a09m130* 1.192(55) 0.87(10) 0.948(47) 1.055(5) 0.971(32)
a06m310 1.137(42) 1.10(10) 0.989(38) 1.032(10) 0.980(23)
a06m310* 1.176(39) 1.017(56) 1.011(32) 1.034(4) 0.982(21)
a06m220 1.197(62) 0.55(25) 1.030(58) 1.015(21) 0.964(29)
a06m220* 1.197(41) 0.894(63) 1.024(31) 1.047(6) 0.995(22)

TABLE XII. Results for the renormalized charges using the fit ranges defined under Case 3 in Table V. Estimates of the flavor diagonal
charges include only the connected contribution. The final errors are obtained by adding in quadrature the errors in estimates of the ratios
gbareΓ =gbareV to the errors in the ratios of the renormalization constants ZΓ=ZV given in Table X. Estimates for guþd

T neglect the
disconnected contributions that were shown to be tiny in Ref. [11]. The rest is the same as in Table XI. Ensembles marked with an
asterisk denote results obtained with the AMA method.

ID guA gdA gu−dA guS gdS gu−dS guT gdT gu−dT guþd
T

a12m310 0.903(26) −0.319ð14Þ 1.221(28) 3.16(18) 2.41(14) 0.757(92) 0.839(37) −0.211ð13Þ 1.050(45) 0.628(32)
a12m310* 0.914(11) −0.3145ð55Þ 1.229(14) 3.066(62) 2.226(39) 0.840(36) 0.848(29) −0.2088ð80Þ 1.055(36) 0.640(23)
a12m220S 0.960(38) −0.310ð22Þ 1.270(42) 4.19(48) 3.23(34) 0.96(30) 0.840(49) −0.204ð22Þ 1.046(56) 0.637(50)
a12m220 0.917(30) −0.323ð16Þ 1.240(32) 3.56(25) 2.95(20) 0.62(16) 0.853(38) −0.210ð17Þ 1.064(47) 0.641(35)
a12m220L 0.975(48) −0.309ð19Þ 1.284(46) 4.29(52) 3.32(47) 1.00(13) 0.812(47) −0.180ð22Þ 0.992(63) 0.636(38)
a12m220L* 0.931(13) −0.3254ð69Þ 1.255(16) 3.79(16) 3.03(14) 0.770(54) 0.822(31) −0.2032ð95Þ 1.025(39) 0.618(25)
a09m310 0.926(26) −0.304ð15Þ 1.231(33) 3.40(32) 2.56(25) 0.844(98) 0.823(33) −0.200ð13Þ 1.024(42) 0.623(29)
a09m220 0.911(26) −0.337ð16Þ 1.249(35) 3.78(30) 2.98(23) 0.80(12) 0.823(31) −0.215ð11Þ 1.039(36) 0.608(29)
a09m130 0.868(44) −0.316ð26Þ 1.182(48) 4.65(59) 3.97(41) 0.67(34) 0.789(50) −0.222ð23Þ 1.012(52) 0.567(58)
a09m130* 0.891(20) −0.338ð15Þ 1.230(29) 4.97(41) 4.08(35) 0.90(11) 0.784(31) −0.191ð11Þ 0.975(38) 0.592(26)
a06m310 0.867(24) −0.297ð13Þ 1.165(26) 3.79(23) 2.67(15) 1.13(11) 0.814(29) −0.199ð11Þ 1.014(33) 0.615(28)
a06m310* 0.888(16) −0.3144ð84Þ 1.202(18) 3.62(19) 2.58(13) 1.038(64) 0.832(22) −0.2005ð65Þ 1.034(26) 0.631(18)
a06m220 0.913(50) −0.332ð27Þ 1.246(56) 3.25(38) 2.67(22) 0.57(26) 0.812(50) −0.260ð21Þ 1.073(53) 0.553(54)
a06m220* 0.888(18) −0.3190ð90Þ 1.208(20) 3.68(18) 2.78(13) 0.901(67) 0.832(21) −0.2016ð65Þ 1.034(26) 0.630(18)
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The data for the ratios ZΓ=ZV are shown in Fig. 12. As
highlighted above, we find that the systematic effects due to
Oð4Þ breaking are smaller in the ratios. The data again
show a rough plateau in ZA=ZV and ZT=ZV but not in
ZS=ZV . We also find a significant variation with Mπ and
between the two methods in some cases, which we include
in our error estimates as explained above. The final mass-
independent renormalization constants ZΓ and ZΓ=ZV at
the three lattice spacings are given in Table X. The errors in
these renormalization constants are added in quadrature to
those in the extraction of the bare nucleon charges gbareA;S;T

and gbareA;S;T=g
bare
V given in Table XI to obtain the renormal-

ized charges in two ways:
(i) Using the product of the ratios, ðZΓ=ZVÞ×

ðgΓ=gu−dV Þ, along with the identity ZVgu−dV ¼ 1.
These are given in Table XII.

(ii) Using the product ZΓgΓ. These estimates are given in
Table XIII for the isovector charges.

The two estimates differ by 1%–3%. Most of this
difference correlates with the deviation of ZVgu−dV from
unity as shown in Table XIII. The deviation is about 1σ:
approximately 3%, 3%, and 2% at the three lattice spacings,
a ¼ 0.12, 0.09, and 0.06 fm, respectively. The magnitude
of these deviations is consistent with our estimates of errors
in the renormalization constants given in Table X, which
are now larger than the statistical errors. A more detailed
discussion of the error budget and the final error estimates
are given in Sec. VII.
The discretization errors in the two estimates of the

renormalized charges are different, so one should only
compare the results after extrapolation. In Sec. V, we show
that even though the estimates on individual ensembles
differ by 1%–3%, the value of the charges after extrapo-
lation to the continuum limit and the physical pion mass are
consistent. The errors in the data ZΓgΓ and in the extrapo-
lated value obtained from them are larger. This is because
the data for both, ZΓ=ZV and gΓ=gu−dV , have smaller errors,
presumably because some of the systematics cancel in the
ratios. Our final estimates are, therefore, obtained using
ðZΓ=ZVÞ × ðgΓ=gu−dV Þ with the relation ZVgu−dV ¼ 1.

V. RESULTS FOR THE CHARGES gA, gS, gT

To extrapolate the estimates of the renormalized charges
given in Table XII to the continuum limit (a → 0), the
physical pion mass (Mπ0 ¼ 135 MeV) and the infinite
volume limit (L → ∞), we need to use an appropriate fit
Ansatz, motivated by chiral perturbation theory, for the
nine data points. For discussions on predictions of chiral
perturbation we direct the reader to Refs. [36–41]. To test
these predictions, one ideally requires data at many lattice
spacings and small pion masses. Also, the analysis is
simplest if one can hold two of the three variables constant
to study the variation with the third. Our nine data points do
not allow such a study. For example, estimates at the three

different volume points, a12m220S, a12m220, and
a12m220L, at fixed Mπ and a are consistent within errors
for all the three charges. In fact, the spread in the data in
most cases is small enough that they can be fit with a linear
Ansatz in each variable. Our goal, given the limited number
of data points and the small variations in each of the three
variables, is to make a simultaneous fit keeping the
minimum number of parameters corresponding to the
leading terms in the chiral expansion.
Keeping only the leading corrections in a and MπL,

we have studied the following Ansatz motivated by chiral
perturbation theory [36–42]:

gA;Tða;Mπ; LÞ ¼ c1 þ c2aþ c3M2
π þ clog3 M2

π ln

�
Mπ

Mρ

�
2

þ c4M2
π

e−MπL

XðMπLÞ
; ð11Þ

gSða;Mπ; LÞ ¼ c1 þ c2aþ c03Mπ þ c3M2
π

þ clog3 M2
π ln

�
Mπ

Mρ

�
2

þ c04Mπ
e−MπL

YðMπLÞ
;

ð12Þ

where Mρ is the chiral renormalization scale. Note that the
leading discretization errors are linear in a for our clover-
on-HISQ formalism with unimproved operators, and the
leading chiral correction to gu−dS starts at OðMπÞ [36]. The
finite-volume correction, in general, consists of a number
of terms, each with different powers of MπL in the
denominator and depend on several low-energy constants
(LEC) [39]. These powers of MπL are symbolically
represented by XðMπLÞ and YðMπLÞ. Since the variation
of these factors is small compared to the exponential over
the range of MπL investigated, we set XðMπLÞ ¼
YðMπLÞ ¼ const and retain only the appropriate overall
factor Mn

πe−MπL, common to all the terms in the finite-
volume expansion, in our fit Ansatz.
The dependence of the data on the lattice spacing, the

pion mass, and the lattice volume is small. We, therefore,
investigated fits with the Ansatz given in Eqs. (11) and (12)
and, in addition, a number of Ansätze with various subsets
of terms. In each case, the parameters clog3 and c4 (or c04) are
poorly determined and consistent with zero, reflective of
the small range and small variation in the data with the pion
mass and the lattice volume. Also, χ2d:o:f: < 1 in all cases, so
it does not provide a good criterion for deciding the best fit
Ansatz. We, therefore, considered the Ansatz with just the
leading term in each of the three variables,

gA;Tða;Mπ; LÞ ¼ c1 þ c2aþ c3M2
π þ c4M2

πe−MπL; ð13Þ

gSða;Mπ; LÞ ¼ c1 þ c2aþ c03Mπ þ c04Mπe−MπL: ð14Þ

TANMOY BHATTACHARYA et al. PHYSICAL REVIEW D 94, 054508 (2016)

054508-22



FIG. 14. The 9-point fit using Eqs. (13) and (14) to the data for the renormalized isovector charges, gu−dA , gu−dS , and gu−dT , in the M̄S
scheme at 2 GeV. The result of the simultaneous extrapolation to the physical point defined by a → 0, Mπ → Mphys

π0
¼ 135 MeV, and

L → ∞ are marked by a red star. The error bands in each panel show the simultaneous fit as a function of a given variable holding the
other two at their physical value. The data are shown projected on to each of the three planes. The overlay in the middle figures with the
dashed line within the grey band is the fit to the data versusM2

π neglecting dependence on the other two variables. The symbols used for
data points from the various ensembles are defined in Table I.

FIG. 15. The 9-point fit using Eqs. (13) and (14) to the data for the renormalized isovector charges obtained using ZAg
bare;u−d
A ,

ZSg
bare;u−d
S , and ZTg

bare;u−d
T . The rest is the same as in Fig. 14.
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Using these Ansätze, the 9-point fits (9-pt) to the
data for the isovector charges, renormalized using
gbareΓ =gbareV × ZΓ=ZV , are shown in Fig. 14. The fits to
gu−dA and gu−dS show a sizable variation with a. We show the
same 9-point fit in Fig. 15 using the renormalized charges
obtained using ZΓ × gΓ and find that the variation of gu−dA
with a is smaller. The systematics in the two ways of
obtaining the renormalized charges are different but
removed by the extrapolation to the continuum limit as
suggested by the agreement between the results shown
in Table XIV. The errors in the ratio method,
gbareΓ =gV × ZΓ=ZV , are smaller because, as discussed in
Sec. IV, some of the systematics cancel in each of the two
ratios. We, therefore, use the estimates from the ratio
method in all subsequent analysis.

We also show two additional fits to illustrate the
dependence of the estimates of the charges on the fit
Ansatz: (i) we add the chiral logarithm term to the 9-point
fit and call it the 9-point log fit (9-ptL), and (ii) we remove
the smallest volume point a12m220S and perform an
8-point fit (8-pt) using Eqs. (13) and (14). These two fits
are shown in Figs. 16 and 17, respectively. The resulting
values of the fit parameters and estimates for the three
isovector charges are given in Table XV. To choose
between the 9-point and the 9-point with chiral logarithm
fit, we used the Akaike information criteria (AIC) [43]. As
can be seen from Table XV, the χ2 does not decrease by 2 to
justify adding an extra parameter, the chiral logarithm
term. Our final estimates, given in Sec. VII, are, therefore,
obtained with the 9-point fit without the chiral logarithm.
We find that the smallest volume point, a12m220S,

provides a large lever arm in the determination of the shape
of the finite-volume correction, as can be seen by compar-
ing the 9-pt (Fig. 14) versus the 8-pt (Fig. 17) fits.
Nevertheless, the fits do not show a significant difference
for MπL≳ 4.
To further explore the sensitivity of the data for the

isovector charges gu−dA;S;T to chiral logarithms, we make
8-point fits (neglecting the a12m220S point and assuming
that the finite-volume corrections can be ignored for
MπL≳ 4) with and without a chiral logarithm term,

TABLE XIV. Results of the 9-point fit to the data for the
isovector charges renormalized in two ways: using gbareΓ =gbareV ×
ZΓ=ZV with gbareV ZV ¼ 1 given in Table XII and gbareΓ × ZΓ given
in Table XIII.

Method gu−dA gu−dS gu−dT

gbareΓ =gbareV × ZΓ=ZV 1.195(33) 0.97(12) 0.987(51)

χ2=d:o:f: 0.28 0.67 0.44

gbareΓ × ZΓ 1.187(69) 0.97(13) 0.990(62)

χ2=d:o:f: 0.05 0.65 0.39

FIG. 16. The 9-point extrapolation of the isovector charges including the chiral logarithm term, defined in Eqs. (11) and (12), in the fit
Ansatz. The rest is the same as in Fig. 14.
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gA;Tða;MπÞ ¼ c1 þ c2aþ c3M2
π þ clog3 M2

π ln
M2

π

M2
ρ
;

gSða;MπÞ ¼ c1 þ c2aþ c03Mπ þ clog3 M2
π ln

M2
π

M2
ρ
: ð15Þ

The chiral renormalization scale is taken to be
Mρ ¼ 0.775 GeV. Results for the parameters ci are sum-

marized in Table XVI with and without the clog3 term. The
parameter c3 (or c03) is again poorly constrained by the data
since the variation in the estimates between Mπ ¼ 135 and
320 MeV is comparable to the errors in the individual points
for all three charges as can be seen inFigs. 14, 16, and 17. The
main effect of adding the clog3 term is an adjustment with c3:
there is a large cancellation between the contributions of

these two terms. Also, the errors in both c3 and c
log
3 areOð1Þ

in all three charges. To test whether the chiral logarithm term
improves the predictive power of the fit, we again use the
Akaike information criterion [43]. The χ2 changes by much
less than twounits, indicating that adding the chiral logarithm
is not justified. Also, for the scalar charge, we find little
difference in the fits between using c3M2

π versus c03Mπ as the
leading chiral term.
The bottom line is that changing the fit Ansatz from

Eqs. (11) and (12) to Eqs. (13) and (14) to that given in
Eq. (15) does not significantly change the estimates for the
charges as can be seen by comparing the last column of
Tables XV and XVI.
Our final results for the isovector charges using the

9-point fit are presented in Table XXII in Sec. VII after we

FIG. 17. The 8-point fit to the isovector charges neglecting the a12m220S point. The rest is the same as in Fig. 14.

TABLE XV. Values of the fit parameters defined in Eqs. (11) and (12). The 9-point fit to the isovector charges includes terms with c1,
c2, c3 (or c03 for g

u−d
S ), and c4 (or c04 for g

u−d
S ). The 9-ptL fit includes the chiral logarithm term clog3 . The 8-pt fit uses the same Ansatz as

the 9-pt fit but neglects the a12m220S data point. The last column gives the value of the charge at the physical point.

c1 c2 [ fm−1] c3 [GeV−2] c03 [GeV−1] clog3 [GeV−2] c4 [GeV−2] c04 [GeV−1] χ2=d:o:f: gΓ

gA (9-pt) 1.201(35) 0.55(27) −0.34ð38Þ 1(26) 0.28 1.195(33)
gA (9-ptL) 1.166(87) 0.53(27) −1.1ð1.8Þ −0.62ð1.4Þ −3ð26Þ 0.30 1.185(40)
gA (8-pt) 1.208(35) 0.40(31) 0.19(68) −43ð53Þ 0.12 1.211(37)
gS (9-pt) 0.91(15) −2.4ð0.9Þ 0.48(59) 20(29) 0.67 0.97(12)
gS (9-ptL) 0.62(30) −2.4ð0.9Þ 13(12) 21(19) 4(32) 0.53 1.10(17)
gS (8-pt) 0.91(15) −2.5ð1.0Þ 0.57(68) 14(38) 0.82 0.99(13)
gT (9-pt) 0.980(55) 0.26(46) 0.37(57) 6(39) 0.44 0.987(51)
gT (9-ptL) 0.85(12) 0.20(47) −2.7ð2.5Þ −2.4ð1.9Þ −9ð39Þ 0.15 0.951(58)
gT (8-pt) 0.986(61) 0.19(54) 0.6(1.1) −20ð10Þ 0.54 0.997(67)

AXIAL, SCALAR, AND TENSOR CHARGES OF THE … PHYSICAL REVIEW D 94, 054508 (2016)

054508-25



revisit our error analysis and assign an additional system-
atic error to account for the uncertainty due to the various fit
Ansatz discussed above.
To obtain the flavor-diagonal charges guΓ and gdΓ and the

isoscalar combination guþd
Γ requires calculation of the

disconnected contributions. We have not carried out any
new simulations to update estimates of the disconnected
contributions to the tensor charges that were shown to be
Oð1%Þ of the connected contribution and consistent with
zero in Ref. [11]. We, therefore, consider the connected part
to be a good approximation to the full result and present
updated results for guT, g

d
T , and guþd

T in Table XVII. The
disconnected contributions to the axial and scalar charges
are larger, about 0.1 and Oð1Þ, respectively, and we are
working on a more detailed analysis of these. We, therefore,

do not present results for the isoscalar combinations guþd
A

and guþd
S but give only the connected contributions to

the flavor-diagonal charges gu;dA;S using the same three fits,
9-point, 9-point with log, and 8-point, in Table XVII.
We show the behavior of the connected parts of the

flavor-diagonal charges gu;dA;S;T versus the lattice spacing and
the pion mass in Figs. 18, 19, and 20 using 9-point fits with
clog3 ¼ 0 in the Ansatz given in Eq. (15). The plots show
that estimates of guT are about 4 times larger than of gdT , and
both are essentially flat with respect to the pion mass, the
lattice spacing, and the lattice volume. The behavior of gu;dA ,
shown in Fig. 19, is similar in magnitude and sign to that in
gu;dT . Again, data show little dependence on the pion mass;
however, there is a notable increase of guA with a that carries

TABLE XVI. Values of the fit parameters for the 8-point fit defined in Eq. (15) are given in the top row for each charge. The bottom
row uses the same fit Ansatz but with clog3 set to 0. The last column gives the value of the charge at the physical point.

c1 c2 [fm−1] c3 [GeV−2] c03 [GeV−1] clog3 [GeV−2] χ2=d:o:f: gΓ

gu−dA 1.171(85) 0.51(27) −1.0ð1.7Þ −0.5ð1.4Þ 0.24 1.188(38)
gu−dA 1.201(35) 0.52(27) −0.31ð28Þ 0.23 1.195(32)
gu−dS 0.60(28) −2.46ð88Þ 14(10) 22(17) 0.41 1.12(13)
gu−dS 0.91(15) −2.61ð87Þ 0.75(47) 0.68 1.01(11)
gu−dT 0.85(12) 0.20(48) −2.5ð2.4Þ −2.4ð1.9Þ 0.16 0.955(58)
gu−dT 0.982(55) 0.23(48) 0.43(44) 0.43 0.990(50)

TABLE XVII. Estimates of the connected parts of the flavor diagonal charges and guþd
T with the three different fits described in

Table XV. The estimates for the isovector charges gu−dA;S;T are reproduced from Table XV to make comparison easier.

ID guA gdA gu−dA guS gdS gu−dS guT gdT gu−dT guþd
T

9-pt 0.856(27) −0.335ð15Þ 1.195(33) 4.94(30) 4.00(22) 0.97(12) 0.792(42) −0.194ð14Þ 0.987(51) 0.598(36)
9-ptL 0.841(31) −0.342ð20Þ 1.185(40) 5.59(48) 4.59(39) 1.10(17) 0.766(48) −0.183ð17Þ 0.951(58) 0.579(41)
8-pt 0.877(31) −0.333ð16Þ 1.211(37) 5.09(33) 4.13(25) 0.99(13) 0.796(55) −0.197ð17Þ 0.997(67) 0.599(46)

FIG. 18. The 9-point simultaneous fits to the connected contributions to guT and gdT versus a, M2
π , and MπL using Eq. (13). The

dependence on the three variables M2
π , a, or MπL is small. The data symbols are defined in Table I.
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over to gu−dA plotted in Fig. 14. The 9-point fits with the c03
term for guS and gdS are shown in Fig. 20. These data are
much larger in magnitude and show a significant depend-
ence on the quark mass.
The final results for the connected parts of the flavor-

diagonal charges guΓ and gdΓ from the 9-point fit are
presented in Table XXIII in Sec. VII. The new estimates
of gu;dT , needed to analyze the contribution of the EDM of
the quarks to the neutron EDM, supersede the values
presented in Refs. [11,20].

VI. CONFIRMATION OF THE 2-STATE ANALYSIS

The analysis in the previous sections was predicated on
the assumption that the 2-state Ansatz given in Eqs. (9)
and (10) resolves the excited-state contamination in the

FIG. 19. The 9-point simultaneous fits to the connected contributions to guA and gdA versus a,M2
π , andMπL using Eq. (13). The data for

guA show a notable dependence on the lattice spacing a. The rest of the panels show little dependence on either M2
π or MπL. The data

symbols are defined in Table I.

FIG. 20. The 9-point simultaneous fits to the connected contributions to guS and g
d
S versus a,M

2
π , andMπL using Eq. (14) plus a c3M2

π

term. The data show significant dependence on M2
π and are much larger in magnitude compared to guA;T and gdA;T . The data symbols are

defined in Table I.
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FIG. 21. Comparison of the nucleon effective mass obtained on
the a06m310 and a06m220 ensembles with different smearing
sizes. The lattice parameters are summarized in Table XVIII.
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2- and 3-point functions. In this section, we provide
further confirmation of this assumption using additional
high-statistics AMA simulations on the a06m310 and
a06m220 ensembles with different smearing parameters.
These are listed in Table XVIII under the label AMA2.
A comparison of the effective mass for the two smear-

ings is shown in Fig. 21, and of the excited-state contami-
nation using Eqs. (9) and (10) using fits to the 3-point
functions data is shown in Figs. 22 and 23. The results of
the fits to the 2-point function are given in Table XIX, and
for the three matrix elements h0jOΓj0i, h1jOΓj0i, and
h1jOΓj1i are given in Table XX. A summary of the notable
features is as follows:

(i) Increasing the smearing size σ reduces the ratio
A1=A0 and the relative contribution of the excited
states. Estimates of M0 and the isovector charges
gu−dA , gu−dT , and gu−dV (given by h0jOΓj0i) with the
two different smearing sizes agree within 1σ. The
one exception is gu−dS from the a06m220 ensemble.

(ii) The excited-state contamination in gu−dA is signifi-
cantly reduced with the larger smearing size from
15% to 5%. This can be seen by comparing the data at
the central values of τ. The 2-state fit to both sets of
data gives consistent estimates of the tsep → ∞
value.

(iii) The excited-state effect in gu−dT at the central
values of τ is less than 5% in all cases as
shown in Figs. 10, 22, and 23. Comparing the data
with the two smearing sizes, we find that the 2-state
fit gives consistent and stable estimates of the
tsep → ∞ value for both a06m310 and a06m220

ensembles.
(iv) The data for gu−dS at different tsep with the larger

smearing size overlap and are not well resolved as
shown in Figs. 22 and 23. The pattern of variation of
the a06m220 AMA2 data versus tsep is opposite to
that seen in the other three ensembles listed in

TABLE XVIII. The smearing parameters, the values of tsep, and the statistics used in the two AMA simulations on the a06m310 and
a06m220 ensembles to test the efficacy of the 2-state fit in controlling excited-state contamination. The second set of AMA
measurements with the larger smearing size is labeled AMA2. The number of HP measurements used to correct the bias in the AMA
method is listed under NHP

meas.

Ensemble ID Type σ NGS tsep=a Nconf NHP
meas NAMA

meas

a06m310 AMA 6.5 70 f16; 20; 22; 24g 1000 4000 64,000
a06m310 AMA2 12 250 f18; 20; 22; 24g 500 2000 64,000
a06m220 AMA 5.5 70 f16; 20; 22; 24g 650 2600 41,600
a06m220 AMA2 11 230 f18; 20; 22; 24g 650 2600 41,600

TABLE XIX. Comparison of the masses aM0 and aM1 and the amplitudesA0 andA1 obtained using the AMA method with different
smearing parameters on the a06m310 and a06m220 ensembles. The AMA estimates are the same as in Table III. The smearing
parameters and the statistics for the two runs are given in Table XVIII.

ID Type Fit range aM0 aM1 A2
0 × 1011 A2

1 × 1011 A2
1=A

2
0

a06m310 AMA 8–30 0.3268(23) 0.56(3) 0.58(3) 0.95(10) 1.66(11)
a06m310 AMA2 5–25 0.3282(17) 0.68(5) 1.32ð4Þ × 10−11 1.5ð2Þ × 10−11 1.16(14)
a06m220 AMA 8–30 0.3069(18) 0.63(3) 11.3(4) 39.2(5.0) 3.47(35)
a06m220 AMA2 4–30 0.3037(13) 0.64(2) 2.66ð6Þ × 10−9 3.8ð2Þ × 10−9 1.41(4)

TABLE XX. Comparison of results with the two different smearing parameters defined in Table XVIII for the three unrenormalized
matrix elements h0jOΓj0i, h1jOΓj0i, and h1jOΓj1i for the isovector axial, scalar, and tensor operators using the 2-state Ansatz given in
Eqs. (9) and (10). The fit ranges for the 3-point functions are defined under Case 3 in Table V. The AMA estimates are the same as given
in Tables VI, VII, and VIII.

Axial Scalar Tensor

ID Type h0jOΓj0i h0jOΓj1i h1jOΓj1i h0jOΓj0i h0jOΓj1i h1jOΓj1i h0jOΓj0i h0jOΓj1i h1jOΓj1i
a06m310 AMA 1.212(14) −0.060ð17Þ −1.2ð1.4Þ 1.18(5) −0.40ð4Þ −0.5ð1.0Þ 0.972(12) 0.128(10) 0.50(22)
a06m310 AMA2 1.210(13) −0.042ð26Þ −2.6ð6.2Þ 1.17(7) −0.43ð8Þ −9ð25Þ 0.987(12) 0.219(18) 0.6(4.0)
a06m220 AMA 1.234(17) −0.121ð18Þ −6.3ð3.9Þ 1.04(6) −0.30ð4Þ −0.7ð2.6Þ 0.984(10) 0.103(8) −0.53ð59Þ
a06m220 AMA2 1.222(13) −0.063ð21Þ −4.2ð3.9Þ 0.79(8) −0.17ð7Þ 38(25) 0.969(11) 0.203(16) 1.6(2.4)
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Table XVIII. The 2-state fit takes this into account
with an unreasonably large value of h1jOΓj1i and
with the opposite sign. As a result, the two estimates
of gu−dS from the a06m220 ensemble differ by
roughly 3σ. We consider this inverted pattern of
the h1jOΓj1i contribution in the AMA2 data to be a
statistical fluctuation and regard the AMA estimate
to be more reliable.

(v) Estimates of h0jOΓj1i agree in sign and roughly in
magnitude for all the charges.

(vi) Estimates of h1jOΓj1i for the three charges are
poorly determined with either smearing size.

(vii) The differences in M1, h0jOΓj1i, and h1jOΓj1i are
large in some cases. These differences reflect the
fact that the 2-state fit lumps the contribution of all

the excited states into one “effective” excited state,
and their contributions vary with the smearing size
and the fit ranges. Much higher-statistics data with
better interpolating operators that enable a three-
state fit will be needed to obtain reliable estimates
of these first excited-state parameters.

(viii) The errors in the two matrix elements h0jOΓj1i and
h1jOΓj1i given by the 2-state fit are larger in the
AMA2 analysis even though the total number of
measurements in the two cases is the same. With
reduced excited-state contamination, the data at
different tsep overlap and the 2-state fit becomes
less stable with respect to values of tsep used in the
fit. Consequently, higher statistics are needed to
provide reliable tsep → ∞ estimates.
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FIG. 22. Comparison of the excited-state contamination in the extraction of unrenormalized isovector charges gu−dA;S;T;V from the
a06m310 ensemble. The plots on the left are with smearing parameters fσ ¼ 6.5; NGS ¼ 70g and on the right with
fσ ¼ 12; NGS ¼ 250g. Both calculations were done using the AMA method with parameters summarized in Table XVIII.
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The bottom line is that these two additional simulations
validate the results based on 2-state fits to data at multiple
values of tsep presented in Sec. V. They also show that the
large excited-state contamination in gu−dA and gu−dS on the
a ¼ 0.06 fm lattices with smearing parameter σ ≈ 6 is
significantly reduced with σ ≈ 11. On the other hand,
estimates at different tsep start to overlap with reduced
excited-state contamination, and the 2-state fit becomes less
stable. This is most obvious in the gu−dS data on the
a06m220 ensemble. In retrospect, a more effective com-
promise balancing the two effects would have been
achieved with an intermediate value for the smearing
parameter, σ ¼ 9 (≈0.55 fm in physical units), on the
a ¼ 0.06 fm ensembles.

VII. ASSESSING THE ESTIMATION OF ERRORS

The estimation of errors in our analysis has four main
components:

(i) Statistical and excited-state contamination (SESC):
Errors from these two sources are estimated together
in the combined 2-state fit.

(ii) Uncertainty in the determination of the renormali-
zation constants ZΓ: The Z’s are estimated as a
function of q2 using the RI-sMOM scheme on the
lattice and then converted to the MS scheme at
2 GeV using perturbation theory. As discussed in
Sec. IV, there is significant spread in the data due to
breaking of rotational symmetry on the lattice.
Second, the 2-loop series for the matching factor
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FIG. 23. Comparison of the excited-state contamination in the extraction of unrenormalized isovector charges gu−dA;S;T;V from the
a06m220 ensemble. The plots on the left are with smearing parameters fσ ¼ 5.5; NGS ¼ 70g and on the right with
fσ ¼ 11; NGS ¼ 230g. Both calculations were done using the AMA method with parameters summarized in Table XVIII.
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for gu−dT does not show a convergent behavior. Third,
the data for the four charges do not uniformly show a
large enough interval, ηΛQCD ≪ q ≪ ξπ=a, over
which they are independent of q2, so we are not
able to extract a unique estimate of ZΓ. The two
methods we use give significantly different esti-
mates. We use this difference, which is larger than
the individual statistical uncertainty, to assign the
error. These error estimates are added in quadrature
to those in the bare charges obtained from the 2-state
fit to get the total error in the renormalized charges
on each ensemble.

(iii) Discretization errors due to nonzero lattice spacing
a, finite-volume effects characterized by MπL, and
uncertainty in the chiral behavior: The errors due to
these three systematics are obtained using a simul-
taneous fit. The Ansatz used for the final results,
keeping the lowest-order corrections in each varia-
ble, is given in Eqs. (13) and (14).

(iv) Uncertainty due to the number of terms retained in
the combined fit Ansatz as discussed in Sec. V.

A recapitulation of the important features observed in the
data for the isovector charges is as follows:

(i) Estimates of the isovector axial charge, gu−dA , con-
verge from below with respect to excited-state
contamination on all the ensembles. The data plotted
in Fig. 14 show no significant dependence on the
pion mass or the lattice volume. The largest variation
is the increase with the lattice spacing, and the size
of the slope is dictated by the smaller estimates on
the a ¼ 0.06 fm ensembles. Also, as discussed in
Sec. V, even though this slope is different in the fits
to renormalized charges calculated in the two ways,
the extrapolated results are consistent. Overall, the
spread in the estimates under changes in the fit
Ansatz is small, about 0.03.

(ii) The isovector scalar charge, gu−dS , also converges
from below with respect to excited-state contami-
nation. The data show a decrease with the lattice
spacing but no significant variation with the pion
mass. Our error estimate accounts for (i) the large
excited-state contamination on the two finest
ensembles, a06m310 and a06m220; (ii) the uncer-
tainty in the determination of the renormalization
constant ZS; and (iii) the larger, by a factor of 3–5,
statistical errors compared to those in gu−dA and gu−dT
on the various ensembles as summarized in Table XI.
The fits capture the variation of gu−dS ða;Mπ;MπLÞ
with respect to both the lattice spacing a and the pion
mass Mπ as shown in Figs. 14 and 17. The largest
sensitivity to the fit Ansatz comes from adding a
chiral logarithm term, which tends to increase the
estimate by about 0.12 as shown in Table XV.
However, as shown in Fig. 20, keeping just the
leading polynomial correction, OðMπÞ gives very

good fits to the data, and the AIC indicates that
adding the chiral logarithm term does not improve
the fits significantly. Nevertheless, we will take half
the change, 0.06, as an estimate of the systematic
error due to the choice of the fit Ansatz.

(iii) Our analysis of the isovector tensor charge, gu−dT ,
shows that (i) estimates converge from above for
each ensemble, and the fit using the 2-state Ansatz
given in Eqs. (9) and (10) accounts for the excited-
state contamination within the quoted errors. (ii) The
data for the renormalization constant in the RI-
sMOM scheme show a window in q2 over which the
estimates in the MS scheme at 2 GeV are constant
within errors as discussed in Sec. IV and Ref. [11].
On the other hand, the poorly behaved 2-loop series
for the matching factor suggests that this systematic
uncertainty could be as large as 0.02. We have taken
this systematic into account when estimating the
error in ZT given in Table X. (iii) The estimates from
the nine ensembles display little dependence on the
lattice spacing, pion mass, or the lattice volume, as
shown in Fig. 14. (iv) The largest change in
estimates, about 0.04, is again due to adding a
chiral logarithm term to the fit Ansatz.

Based on the data, fits, and trends observed, we propose
at an error budget from each of the sources that is
summarized in Table XXI. The entries are constructed as
follows: For the statistical uncertainty and excited-state
contamination, we consider the data shown in Figs. 8, 9, 10,
22, and 23 and the errors in the 3-point function data,
the efficacy of the 2-state fit, and the difference between
the two AMA estimates on the a06m310 and a06m220
ensembles. For estimating the uncertainty in the renorm-
alization constants, we use the errors given in Table X,
which are consistent with the size of the deviations of
ZVgu−dV from unity given in Table XIII. For assessing the
error associated with the extrapolation in the lattice

TABLE XXI. Estimates of the error budget for the three
isovector charges due to each of the five systematic effects
described in the text. The symbols ⇑ and ⇓ indicate the direction
in which a given systematic is observed to drive the central value
obtained from the 9-point fit. The second to last row gives the
errors in our best estimate given in Table XVusing the 9-point fit.
The last row gives the additional systematic uncertainty that
accounts for the variations due to the choice of the fit Ansatz.

Error from gu−dA gu−dS gu−dT

SESC 0.02⇑ 0.05⇑ 0.02⇓
Z 0.01⇓ 0.04⇑ 0.04⇓
a 0.02⇓ 0.04⇑ 0.01⇓
Chiral 0.02⇑ 0.03⇓ 0.02⇓
Finite volume 0.01⇑ 0.01⇑ 0.01⇑
Error quoted 0.033 0.12 0.046
Fit Ansatz 0.02 0.06 0.02
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spacing, we take half of the total spread in the central values
at the three lattice spacings a ¼ 0.12, 0.09, and 0.06 fm.
Similarly, for the dependence on the quark mass, we take
half of the spread in the central values at the three masses,
Mπ ≈ 135, 220, and 310MeV. The finite-volume correction
is observed to be small in all cases and the error budget is
assigned to be half the change on going from the 9-point to
the 8-point fit estimates shown in Table XV; i.e., the
direction is given by the change on removing the smallest
MπL point a12m220S. Our combined fits include these
systematics, and the error estimates given in Table XV are
consistent with the error budget summarized in Table XXI.
An error estimate due to the choice of the fit Ansatz is the

least straightforward to assess as discussed next. With nine
data points, we can explore only a limited space of lowest
order corrections given in Eqs. (11) and (12). Within this
subspace, the largest variation with respect to the fit Ansatz
is in gu−dS and gu−dT obtained with and without the chiral
logarithm term as shown in Figs. 14 and 16 and quantified
in Table XV. As pointed out in Sec. V, in fits with chiral
logarithms, the two terms proportional to c3 (or c03) and c

log
3

compete, and the errors in them are large. The Akaike
information criterion indicates that including the chiral
logarithm term does not improve the fit sufficiently to
warrant it. Nevertheless, we take half the spread (0.06 for
gu−dS and 0.02 for gu−dT ) between the two 9-point estimates
given in Table XV as a conservative estimate of the
uncertainty due to the fit Ansatz. Estimates of gu−dA are
much more stable under changes in the fit Ansatz, with the
central value varying between 1.18 and 1.21. Again, we
take a conservative value, 0.02, as an estimate of this
systematic uncertainty.

In Table XXI, we also indicate the direction in which our
analysis changes the estimate as a result of taking into
account a given systematic. For example, the slope of the fit
to gu−dA versus a shown in Fig. 14 is positive. As a result, the
central value after extrapolation to a ¼ 0 is lower than
the data points. We indicate this by attaching a ⇓ to the
estimate shown in Table XXI. For the ratios of renormal-
ization constants, we compare the estimates from methods
A and B given in Table IX. Taking estimates using method
B as the baseline, we assign a ⇓ if taking the average with
method A lowers the final estimate as shown in Table X.
The direction of the SESC estimate is taken to be the
direction of convergence with tsep.
Our final estimates for the isovector charges, including a

second error to account for the variation in the estimates
with the fit Ansatz, are given in Table XXII. Estimates of
the flavor-diagonal charges given in Table XXIII and of
guþd
T given in Table XXII are based on only the connected
diagrams. We, therefore, consider it premature to assign an
additional systematic uncertainty due to the fit Ansatz.
To summarize, the first error quoted in gu−dT is dominated

by that in ZT , and, as shown in Table XXI, all five
systematic effects are in the same direction. Since the
other four systematics are small, we are confident that our
error estimate, 0.046, covers these five systematics. Our
new result, gu−dT ¼ 0.987ð51Þð20Þ, confirms the conclusion
reached in Ref. [11] that all the systematics are under
control at a few percent level in this calculation.
The extraction of the scalar charge gu−dS ¼ 0.97ð12Þð6Þ is

less precise since the statistical errors in gu−dS on each
ensemble are still 10%–15%, that is, a factor of 3–5 larger
than those in gu−dT . Also, all sources of systematic uncer-
tainty are at the 5% level. The dominant systematic is
from including a chiral logarithm in the fit Ansatz—the
shift in the estimate is much larger than in gu−dA or gu−dT .
Considering the size and sign of the first five systematic
uncertainties, we again conclude that the first error, 0.12,
and the additional 0.06 due to the fit Ansatz are
conservative.
Our estimate gu−dA ¼ 1.195ð33Þð20Þ is smaller than the

experimental result 1.276(3) by about 7%. This difference
could be due to a combination of the observed few percent
effect in the various systematics. Thus, a higher-statistics
study on ensembles at smaller a and closer to the physical
Mπ is needed to improve the estimate.

TABLE XXII. Final estimates of the renormalized isovector
charges for the proton from the 9-point fit described in Sec. V.
The first error includes statistical and all systematic uncertainties
except that due to the extrapolation Ansatz, which is given by the
second error estimate. As explained in the text, in the connected
estimate of guþd

T we only give the first error. Estimates for the
neutron are obtained by the u ↔ d interchange.

gu−dA gu−dS gu−dT guþd;con
T

gΓ 1.195(33)(20) 0.97(12)(6) 0.987(51)(20) 0.598(33)
χ2=d:o:f: 0.28 0.67 0.44 0.30

TABLE XXIII. Final estimates of the connected part of the renormalized flavor-diagonal charges of the proton.
The χ2=d:o:f: for the 9-point fit are given in the second row. Estimates for the neutron are obtained by the u ↔ d
interchange.

guA gdA guS gdS guT gdT

gΓ 0.856(27) −0.335ð15Þ 4.94(30) 4.00(22) 0.792(42) −0.194ð14Þ
χ2=d:o:f: 0.59 0.28 1.6 2.1 0.38 0.48
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VIII. COMPARISON WITH PREVIOUS WORKS

In this section we compare our results with previous
determinations of the isovector charges gu−dA , gu−dS , and
gu−dT . In this comparison, it is important to note that we

have, for the first time, taken all the systematics into
account by uniformly using the 2-state fit with multiple
values of tsep to address excited-state contamination and by
making a combined fit in the three variables a, M2

π , and
MπL using Eqs. (13) and (14). Our error estimates from
this combined fit are larger [for example, the fits versus
only M2

π, shown in Fig. 14 as grey overlays, have a much
narrower error band and give gu−dA ¼ 1.25ð2Þ]; however, we
claim they are realistic as discussed in Sec. VII. Also, our
final results include a second error estimate: the first error
includes statistical and all systematic uncertainties except
that due to the extrapolation Ansatz, which is given by the
second error estimate.

A. gu−dA

Calculations of gu−dA are considered a test of the
lattice-QCD method to provide accurate estimates of the
properties of the nucleon. A summary of experimental and
lattice-QCD determination of gu−dA is given in Fig. 24. We
note that over time the experimental estimate has increased
steadily to its present value 1.276(3). On the other hand,
most previous lattice-QCD estimates have been in the range
1.1–1.2 [19]. A significant reason for the lattice-QCD
estimates being low has been excited-state contamination,
since it can make a large negative contribution depending
on the nucleon interpolating operator (the smearing param-
eter σ in our study) as shown in Figs. 8, 22, and 23. In this
work, we have shown that analyses using a combination of
well-tuned smeared sources for generating quark propa-
gators, performing simulations at multiple values of tsep,
and a simultaneous 2-state fit to the data at a number of
values of tsep reduces this contamination to the size of the
statistical errors which are about 2%. With Oð50; 000Þ
measurements on ensembles with MπL≳ 4 and spanning
0.12–0.06 fm in lattice spacing and 135–320 MeV in the
pion mass, the uncertainty from the chiral fit and continuum
extrapolation is also reduced to about 2% from each of

FIG. 24. (Top) A summary plot showing the current estimates
of gu−dA from lattice-QCD calculations with 2þ 1þ 1, 2þ 1, and
2 flavors. The data are taken from the following sources:
PNDME’16 (this work); LHPC’12 [44]; LHPC’10 [30]; RBC/
UKQCD’08 [45]; RQCD’14 [46]; QCDSF/UKQCD’13 [47];
ETMC’15 [48]; CLS’12 [49]; RBC’08 [50]. (Bottom) The
experimental results have been taken from the following sources:
Mund’13 [2]; Mendenhall’12 [1]; Liu’10 [51]; Abele’02 [52];
Mostovoi’01 [53]; Liaud’97 [54]; Yerozolimsky’97 [55];
Bopp’86 [56]. The blue band highlights the 2014 PDG average
value 1.2723(23) [5]. Note the change in scale between the upper
(lattice QCD) and the lower (experimental) panels. The lattice-
QCD estimates in red indicate that estimates of excited-state
contamination, or discretization errors, or chiral extrapolation
were not presented. When available, systematic errors have been
added to statistical ones as outer error bars marked with dashed
lines.

FIG. 25. Fits to Fπ (left panel) and gA=Fπ (right panel) data given in Table XXIVassuming a linear dependence on M2
π for both. The

lattice scale of these HISQ ensembles used to convertMπ and Fπ to physical units was determined using r1 [22]. Since the extrapolated
Fπ , red star, matches the experimental value at the physical point, the value of the renormalization factor independent ratio gA=Fπ

remains about 7% below the experimental result shown as a black star.
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these systematics. Our analysis of the full error budget is
presented in Sec. VII.
All but one previous lattice-QCD results underestimate

gu−dA as shown in Fig. 24. The exceptional result is from the
RQCD Collaboration [46] that finds a large slope with M2

π
in the renormalization factor independent ratio gA=Fπ .
Extrapolating this ratio to the physical pion mass gave
the estimate gA ¼ 1.280ð44Þð46Þ even though the majority
of their data for gu−dA are ≲1.2. Our data for Fπ and gA=Fπ ,
given in Table XXIV, show little dependence on the lattice
spacing and lattice volume. We, therefore, analyze them in
Fig. 25 versus just M2

π and plot the result of a fit linear in
M2

π . The fit shows that our clover-on-HISQ estimate,
gA=Fπ ¼ 12.88ð15Þ, at the physical pion mass remains
low by about 7% compared to the experimental value
13.80. This is because our Fπr1 data, where r1 is used to set
the scale of the HISQ lattices [22], extrapolate to the
physical value. On the other hand, the error in the ratio
gA=Fπ is much smaller than in gA, and therefore the
deviation is more significant. The difference between the
two calculations suggests that further analysis is needed to
quantify the various systematics in gu−dA .
To reconcile the roughly 2σ difference between our result

gu−dA ¼ 1.195ð33Þð20Þ and the experimental value gu−dA ¼
1.276ð3Þ would require all fiveOð2%Þ systematics given in
Table XXI to eventually move the result in the same
direction or one or more of the systematic effects have
been grossly underestimated. To gain a better understand-
ing of how the various sources of errors contribute and to
reduce the overall uncertainty toOð2%Þwill require at least
Oð200; 000Þ measurements on the seven ensembles at
different a and Mπ used in this study and the analysis
of one additional ensemble at a ¼ 0.06 fm and
Mπ ¼ 135 MeV. Increasing the statistics by a factor of
four will reduce the errors in the data with the largest tsep we
have analyzed and thus improve the tsep → ∞ estimates.

Adding the point at the physical quark mass and the
smallest lattice spacing a ¼ 0.06 fm, will further constrain
the chiral fit. This level of precision is achievable with the
next generation of leadership-class computing resources.

B. gu−dS

There are few estimates of gu−dS using lattice QCD. The
RQCD Collaboration reported 1.02(18)(30) [46], and the
LHPC Collaboration obtained 1.08(28) [57].3 While
these estimates are consistent with our result gu−dS ¼
0.97ð12Þð6Þ, it is clear that the errors are still large in all
lattice-QCD estimates. Our work suggests that increasing
the measurements to Oð200; 000Þ on all the ensembles (the
same program needed to reduce the overall uncertainty in
gu−dA to 2%) will also reduce the uncertainty in gu−dS to less
than 10%.
Gonzalez-Alonso et al. [58] used the conserved vector

current (CVC) relation gS=gV ¼ ðMN −MPÞQCD=
ðmd −muÞQCD to obtain gu−dS . In their analysis, the esti-
mates of the two mass differences on the right-hand side
were obtained using the global lattice-QCD data. Their
result, gu−dS ¼ 1.02ð8Þð7Þ, is consistent with our estimate
discussed above and shown in Fig. 26. These two lattice-
QCD estimates, using CVC versus our direct calculation of
the charge, have very different systematic uncertainties,
so their consistency is a nontrivial check. We, therefore,

FIG. 26. A summary plot showing estimates for gu−dS from lattice
QCD and phenomenology. The data are taken from the following
sources: PNDME’16 (this work); LHPC’12 [57]; PNDME’11 [7];
RQCD’14 [46]. The estimates based on the conserved vector
current and phenomenology are taken from Gonzalez-Alonso [58]
and Adler [59]. The rest is the same as in Fig. 24.

TABLE XXIV. Estimates of the unrenormalized gu−dA (repro-
duced from Table XI) and the bare and renormalized Fπ obtained
from the HP measurements. The dominant source of error in the
renormalized Fπ is the uncertainty in the ZA given in Table X. We
also give the renormalization factor independent ratio gu−dA =Fπ ,
calculated as a ratio of the bare quantities, and which is plotted in
Fig. 25. Ensembles marked with an asterisk denote results
obtained with the AMA method.

ID gu−dA;bare Fbare
π [MeV]Fπ [MeV] gu−dA =Fπ [GeV−1]

a12m310* 1.252(9) 107.7(1.0) 102.3(3.4) 11.62(14)
a12m220S 1.283(39) 102.4(1.0) 97.3(3.2) 12.53(40)
a12m220 1.273(30) 104.5(1.0) 99.2(3.2) 12.19(31)
a12m220L* 1.279(12) 104.2(0.9) 99.0(3.2) 12.27(15)
a09m310 1.262(30) 106.9(1.0) 101.6(3.3) 11.80(30)
a09m220 1.272(30) 102.8(0.9) 97.6(3.2) 12.38(31)
a09m130* 1.255(24) 97.2(0.8) 92.4(3.0) 12.91(26)
a06m310* 1.212(14) 107.7(0.7) 104.5(3.3) 11.25(15)
a06m220* 1.234(17) 101.3(0.7) 98.2(3.1) 12.19(19)

3The recent estimates from the European Twisted Mass
Collaboration (ETMC) [48] are not included in our comparison
since they have not been extrapolated to the continuum limit.
Their results are gu−dS ¼ 1.23ð10Þ from the 2þ 1þ 1-flavor
calculation at Mπ ¼ 373 MeV and a ¼ 0.083 fm and 2.16(34)
from their physical-mass 2-flavor calculation at a ¼ 0.093 fm.
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consider our result, gu−dS ¼ 0.97ð12Þð6Þ, from a direct
calculation as having achieved the target accuracy of about
10%–15% needed to put bounds on scalar and tensor
interactions at the TeV scale when combined with exper-
imental measurements of b and bν parameters in neutron
decay experiments with 10−3 sensitivity [7]. The current
and prospective status of these bounds is given in Sec. IX.
We can use CVC in reverse to combine our result

gS ¼ 0.97ð12Þð6Þ with the lattice QCD determination of
ðmd −muÞQCD given by the Flavor Lattice Average Group
(FLAG) [60] to predict ðMN −MPÞQCD. Using the 2þ 1-
flavor estimates md ¼ 4.68ð14Þð7Þ MeV and mu ¼
2.16ð9Þð7Þ MeV from FLAG, we get ðMN −MPÞQCD ¼
2.44ð38Þ MeV, and using the 2þ 1þ 1-flavor FLAG
estimates md ¼ 5.03ð26Þ MeV and mu ¼ 2.36ð24Þ MeV
gives ðMN −MPÞQCD ¼ 2.59ð49Þ MeV. These two esti-
mates update our old “PNDME” value quoted by
Gonzalez-Alonso et al. [58] and are now competitive with
other lattice QCD estimates given by them.

C. gu−dT

In Ref. [11], we presented a detailed discussion of all
the errors in the determination of the isovector charge gu−dT
and compared our results with those obtained by other
collaborations. Our new estimate, gu−dT ¼ 0.987ð51Þð20Þ,
improves on the value 1.020(76) reported in Ref. [11].4 It is

also consistent with the estimate gu−dT ¼ 1.038ð11Þð12Þ
from the LHPC Collaboration (Nf ¼ 2þ 1 hypercubically
nested EXP (HEX) smeared clover action [61], domain-
wall action, and domain-wall-on-asqtad actions) [57],
and gu−dT ¼ 1.005ð17Þð29Þ by the RQCD Collaboration
[Nf ¼ 2 OðaÞ-improved clover fermions] [46]. The con-
clusion reached in Ref. [11], that the error estimates from
the various sources are estimated reliably, is validated by
this higher-statistics study. In Fig. 27, we update the lattice-
QCD results and show that they are more accurate than the
sum-rule, Dyson-Schwinger, and phenomenological esti-
mates (integral over the longitudinal momentum fraction of
the experimentally measured quark transversity distribu-
tions). Given the consistency of the lattice-QCD estimates
and our better understanding of the excited-state contami-
nation and other systematic effects, we consider our error
estimate to be conservative and gu−dT ¼ 0.987ð51Þð20Þ a
reliable value to use in phenomenology.

IX. CONSTRAINING NEW PHYSICS USING
PRECISION BETA DECAY MEASUREMENTS

Our improved results for the isovector tensor charges
gu−dS and gu−dT enable more stringent tests of nonstandard
scalar and tensor charged-current interactions, parame-
trized by the dimensionless couplings ϵS;T [7,69],

LCC ¼ −
Gð0Þ

F Vudffiffiffi
2

p ½ϵSēð1 − γ5Þνl · ūd

þ ϵTēσμνð1 − γ5Þνl · ūσμνð1 − γ5Þd�: ð16Þ

These nonstandard couplings, ϵS;T , can be constrained at
low energy by precision beta-decay measurements (of the
pion, neutron, and nuclei) as well at the Large Hadron
Collider (LHC) through the reaction pp → eνþ X. The
LHC constraint is valid provided the mediator of the new
interaction is heavier than a few TeV.
In Fig. 28 (left panel), we update the analysis of

constraints on ϵT and ϵS presented in Refs. [7,69] by using
our improved estimate of the tensor charge and the LHC
data from the 2012 run at

ffiffiffi
s

p ¼ 8 TeV, for an integrated
luminosity of approximately 20 fb−1 [70,71]. The current
bound on ϵT is dominated by the radiative pion decay
π → eνγ [72,73], while the bound on ϵS is dominated by
the Fierz interference term in 0þ → 0þ nuclear beta
decays [74].
In the prospective bounds shown in Fig. 28 (right panel),

the change in low-energy constraints is due to improve-
ments in experiments: We assume future measurements of
the Fierz interference term and the neutrino asymmetry
parameter (b and bν) in neutron decay will be at the level of
10−3 [8–10,76]. A similar constraining power on ϵT can be
achieved with a 0.1%-level measurement of the Fierz term
in the pure Gamow-Teller 6He decay [77].

FIG. 27. A summary plot showing estimates for gu−dS from
lattice QCD and phenomenology. The data are taken from the
following sources: PNDME’16 (this work); PNDME’15 [11];
LHPC’12 [57]; RBC/UKQCD’10 [62]; ETMC’15 [48];
RQCD’14 [46]; and RBC’08 [50]. The phenomenological
estimates are taken from the following sources: Kang’15 [63];
Goldstein’14 [64]; Pitschmann’14 [65]; Anselmino [66]; Bac-
chetta’13 [67]; and Fuyuto [68]. The rest is the same as in Fig. 24.

4The small decrease can be traced back to the better control
over excited-state contamination in this study with the AMA
method and thus better determination of the tsep → ∞ value that
converges from above.
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Between the current and prospective constraints, the
improvement in the LHC bounds comes from both the
increase in center-of-mass energy

ffiffiffi
s

p
and the integrated

luminosity. In both panels, the impact of using our
estimates of gS;T given in Table XXII over the quark model
estimates 0.25 < gS < 1.0 and 0.6 < gT < 2.3 [75] is
large. Furthermore, the lattice-QCD reduction of uncer-
tainties in gS;T implies that the constraining power of beta
decays can actually be stronger than of the LHC for this
class of nonstandard interactions.
The current upper bounds on the effective couplings

ϵS;T ¼ ðv=ΛS;TÞ2 correspond to lower bounds for the
effective scales ΛS > 7 TeV and ΛT > 13 TeV. If future
low-energy experiments find a nonzero signal, then com-
bined with precision calculations of gS;T , we will be able to
predict the scale of new particles to be probed at the LHC or
future colliders. Even without a signal, with improved
precision, wewill be able to tighten the lower bounds on the
scale of new physics in these channels, which will help rule
out certain classes of BSM models.

X. CONCLUSIONS

We have presented a high-statistics study of the isovector
and flavor-diagonal charges of the nucleon using clover-on-
HISQ lattice QCD. By using the AMA error-reduction
technique we show that the statistical precision of the data
can be improved significantly. Also, keeping one excited
state in the analysis of data at multiple values of tsep allows
us to isolate and mitigate excited-state contamination.
Together, these two improvements allow us to demonstrate

that the excited-state contamination in the axial and the
tensor channels has been reduced to the 2% level. The high-
statistics analysis of nine ensembles covering the range
0.12–0.06 fm in the lattice spacing, Mπ ¼ 135–320 MeV
in the pion mass, and MπL ¼ 3.3–5.5 in the lattice size
allowed us to analyze the systematic errors due to lattice
discretization, dependence on the quark mass, and finite
volume. As a result, this is the first work that is able to
include the effect of these three systematic uncertainties by
making a simultaneous fit in all the three variables a, M2

π ,
and MπL. In the case of the isovector charges, we also
assign a second error estimate to account for the variation in
the results due to the choice of the extrapolation Ansatz as
discussed in Sec. VII. Our final estimates are given in
Tables XXII and XXIII.
One of the largest sources of uncertainty comes from the

calculation of the renormalization constants for the quark
bilinear operators. These are calculated nonperturbatively
in the RI-sMOM scheme over a range of values of q2.
As discussed in Sec. IV, the breaking of the rotational
symmetry gives rise to a large spread in the data. After
conversion to the MS scheme at 2 GeV using perturbation
theory, which shows poor convergence for ZT, the data,
especially for gu−dS , do not show a large scaling window in
which they are independent of q2. Our estimates of errors
take into account these uncertainties and are therefore
larger than those obtained by other collaborations.
Our estimate gu−dA ¼ 1.195ð33Þð20Þ is about 2σ (about

7%) below the experimental value gA=gV ¼ 1.276ð3Þ. In
Sec. VII we analyze five systematic effects and find that
each contributes at the 1%–2% level, with roughly equal

FIG. 28. Left panel: current 90% C.L. constraints on ðϵSÞ and ðϵTÞ from beta decays (π → eνγ and 0þ → 0þ) and the LHC
(pp → eνþ X) at

ffiffiffi
s

p ¼ 8 TeV. Right panel: prospective 90% C.L. constraints on ðϵSÞ and ðϵTÞ from beta decays and the LHC
(pp → eνþ X) at

ffiffiffi
s

p ¼ 14 TeV. The low-energy constraints correspond to 0.1% measurements of B, b in neutron decay and b in 6He
decay. In both panels we present the low-energy constraints under two different scenarios for the scalar and tensor charges gS;T : quark
model [75] (large dashed contour) and lattice QCD results given in Table XXII (smaller solid contour).
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distribution in sign. Improvement in our understanding of
these five systematic factors—residual excited-state con-
tamination, uncertainty in the determination of the renorm-
alization constants, the Ansatz used for the chiral fit, error
in the chiral fit, and the continuum extrapolation—requires
a still higher-statistics calculation. Based on the various
systematic errors discussed in Sec. VII, we claim in
Sec. VIII A that the overall uncertainty can be reduced
to 2% by increasing the statistics to Oð200; 000Þ measure-
ments on Oð2000Þ configurations on the seven ensembles
shown in Fig. 8 and an additional physical mass HISQ
ensemble at a ¼ 0.06 fm. Last, to address possible sys-
tematic effects due to using the clover-on-HISQ formu-
lation versus a unitary lattice formulation, we have started
calculations with similar statistics and methodology using
the clover-on-clover formulation [31].
For the tensor charges, we find that the dependence on

the lattice volume, lattice spacing, and the light-quark mass
is small, and a simultaneous fit in these variables, keeping
just the lowest-order corrections, gives reliable estimates of
the physical value. Our final estimate for the isovector
tensor charge, gu−dT ¼ 0.987ð51Þð20Þ, is in good agreement
with the previously reported estimate [11] and is more
accurate than phenomenological estimates as shown
in Fig. 27.
We have also updated our estimates for the connected

parts of the flavor-diagonal charges. New estimates of the
tensor charges of the proton, needed for the analysis of
the contribution of the quark EDM to the neutron EDM
[11,20], are guT ¼ 0.792ð42Þ and gdT ¼ −0.194ð14Þ.
The extraction of the scalar charge of the proton has

larger uncertainty. The statistical errors in the lattice
data for gu−dS ða;Mπ;MπLÞ are 3–5 times those in
gu−dT ða;Mπ;MπLÞ, and the data show significant depend-
ence on the lattice spacing a and a weaker dependence on
the pion mass Mπ . Our estimate, gu−dS ¼ 0.97ð12Þð6Þ, is in
very good agreement with the estimate gu−dS ¼ 1.02ð8Þð7Þ
obtained using the conserved vector current relation in
Ref. [58]. Previous lattice-QCD estimates summarized in
Fig. 26 have larger errors but are consistent with these
two estimates as discussed in Sec. VIII. Combining our
estimate gu−dS ¼ 0.97ð12Þð6Þ with the 2þ 1þ 1-flavor
estimate of the difference of light quarks masses

ðmd −muÞQCD ¼ 2.67ð35Þ MeV given by the FLAG
[60], we obtain ðMN −MPÞQCD ¼ 2.59ð49Þ MeV.
Finally, our results, gu−dS ¼ 0.97ð12Þð6Þ and gu−dT ¼

0.987ð51Þð20Þ, meet the target uncertainty of 15% required
to maximize the impact of future measurements of the
helicity-flip parts of the neutron decay distribution with
10−3 accuracy [7]. The status of current and prospective
constraints on novel scalar and tensor interactions, ϵS;T ,
using our improved estimates of gS;T are given in Sec. IX.
Our goal for the near future is to further understand and
reduce all the systematic uncertainties in the estimate of
gu−dA , a benchmark for evaluating the accuracy achievable in
lattice-QCD calculations of the matrix elements of quark
bilinear operators within nucleon states.
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