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We calculate charmonium correlators on the lattice with 2þ 1 flavors of sea quarks and charm valence
quarks, both described by the Möbius domain-wall fermion. Temporal moments of the correlators are
calculated and matched to perturbative QCD formulas to extract the charm quark mass mcðμÞ and strong
coupling constant αsðμÞ. Lattice data at three lattice spacings, 0.044, 0.055, and 0.080 fm, are extrapolated
to the continuum limit. The correlators in the vector channel are confirmed to be consistent with the
experimental data for eþe− → cc̄, while the pseudoscalar channel is used to extract mcðμÞ and αsðμÞ. We

obtain mcð3 GeVÞ ¼ 1.003ð10Þ GeV and αMSð4Þ
s ð3 GeVÞ ¼ 0.253ð13Þ. The dominant source of the error

is the truncation of perturbative expansion at α3s .
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I. INTRODUCTION

Numerical simulation of lattice QCD offers nonpertur-
bative calculation of correlation functions on the Euclidean
lattice. While one usually uses the long-distance correlators
to extract the mass and matrix elements of hadrons, the
same correlators at short distances also provide a rich
source of information. The vector current correlator, for
instance, may be used to test QCD by comparing the lattice
calculation with the experimental data available for the R
ratio σeþe−→qq̄=σeþe−→μþμ− . The correlator becomes mostly
perturbative at high energy scales, but the nonperturbative
effect is still important. Another important use of the short-
distance regime is the application of perturbation theory,
from which one can extract the fundamental parameters
such as the strong coupling constant αs and charm quark
mass mc.
The HPQCD and Karlsruhe collaborations used the

pseudoscalar charmonium correlator to achieve a precise
determination of mc and αs [1], which has further been
improved and extended to include the determination of
the bottom quark mass [2,3]. The basic idea is to use a
perturbative QCD calculation performed at the order of α3s
to express temporal moments of the charmonium correlator
calculated nonperturbatively on the lattice. Since the
perturbative expansion is given as a function of αs and
mc, one can solve the equations to determine these
parameters. The precision achieved is among the best for
these important fundamental parameters of QCD.

In this work, we utilize the same method to extract mc
and αs. Our lattice data are independent of those used by
the HPQCD Collaboration. We use the lattice ensembles
generated with 2þ 1 flavors of light sea quarks described
by the Möbius domain-wall fermion formulation [4]. The
valence charm quark is also treated by the same fermion
formulation. Discretization effects expected for relatively
large charm quark mass compared to the lattice spacing
are largely removed by extrapolating to the continuum
limit using the data at three lattice spacings, a≃ 0.080,
0.055, and 0.044 fm. The light quark masses in the
simulations are in the range corresponding to the pion
masses of 230–500 MeV, which do not cover the physical
value but their effect on the charmonium correlator
is minor.
On the perturbative side, we use the same perturbative

coefficients as those in the previous works [1–3]. We
estimate the truncation error by examining the dependence
on the renormalization scale μα to define the coupling
constant αsðμαÞ as well as that on μm that defines the
running charm quark mass mcðμmÞ appearing in the
perturbative expansion.
Our results are in reasonable agreement with those of

Refs. [1–3]. The estimated error is slightly larger, because
of different systematic effect as well as different error
estimates. We also try to validate the lattice calculation by
providing a comparison to the experimental data available
for the vector channel through the R ratio. It mainly serves
as a test of the discretization effects, which is an important
source of the systematic error for heavy quarks. We find
that the continuum extrapolation is nearly flat, confirming*katumasa@post.kek.jp
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that the discretization error for charm quark is well under
control in our setup.
This paper is organized as follows. In Sec. II, we review

the method of Refs. [1–3] as well as the formulas to
compare the temporal moments with the experimental data.
Some details of our lattice calculation are given in Sec. III.
Lattice results for the vector current correlator and the
comparison with the experimental data are given in Sec. IV,
which is followed by corresponding results for the pseu-
doscalar correlator in Sec. V. The issues in the matching to
perturbative results and its possible uncertainties are dis-
cussed in Sec. VI, and results for charm quark mass and
strong coupling constant are finally given in Sec. VII. Our
conclusions are in Sec. VIII.

II. CHARMONIUM CORRELATORS AND
THEIR TEMPORAL MOMENTS

A. Charmonium correlators

We calculate the pseudoscalar and vector charmonium
correlators with vanishing spatial momentum

GPSðtÞ ¼ a6
X
x

ðamcÞ2h0jj5ðx; tÞj5ð0; 0Þj0i; ð2:1Þ

GVðtÞ ¼ a6

3

X3
k¼1

X
x

Z2
Vh0jjkðx; tÞjkð0; 0Þj0i ð2:2Þ

on the lattice. The currents are defined as j5 ¼ iψ̄cγ5ψc and
jk ¼ ψ̄cγkψc with charm quark field ψc on the lattice.
Given the factor a6, both GPSðtÞ are GVðtÞ are dimension-
less. The pseudoscalar density operator j5 is multiplied
by a (bare) charm quark mass mc such that the correlator
becomes renormalization scale invariant, while a possible
renormalization factor ZV for the vector current jk defined
on the lattice is explicitly multiplied in Eq. (2.2).
We then construct the temporal moments as

GPS
n ¼

X
t

�
t
a

�
n
GPSðtÞ; ð2:3Þ

GV
n ¼

X
t

�
t
a

�
n
GVðtÞ; ð2:4Þ

with n an even integer equal to or larger than 4. (The
correlator h0jjðxÞjð0Þj0i diverges as 1=jxj6 in the small-
separation limit, and the lower moments contain ultraviolet
divergences.) On the lattice, the time coordinate t=a runs
between −T=2aþ 1 and T=2a with T the temporal extent
of the lattice.
Since the charmonium correlators GPSðtÞ and GVðtÞ

decay exponentially at large t by the mass of the corre-
sponding lowest energy states ηc and J=ψ , respectively, the
temporal moments (2.3) and (2.4) are sensitive only to the

relatively short-range correlations. For an exponential
function e−Mt, where M represents the mass of ηc or
J=ψ , the largest contribution to the nth moment comes
from the region of t ∼ n=M. In the presence of excited state
contributions, the dominant region is slightly shifted to
smaller t’s. Figure 1 illustrates typical examples of the
integrand ðt=aÞnGPSðtÞ to construct the nth moments.
Lattice data at a ¼ 0.044 fm are taken, and data for
n ¼ 4, 8, and 12 are shown. The lowest moment, n ¼ 4,
receives a significant contribution from the small t range,
ðt=aÞ≃ 1–2, where the discretization effect could be
substantial. For higher moments n ¼ 8 and 12, the sum
is not affected much by the small t range.
The vector correlator and its moments may be related

to those in the continuum theory and to the experimental
data. The vacuum polarization function ΠVðq2Þ is defined
through

ðqμqν − q2gμνÞΠVðq2Þ ¼ i
Z

d4xeiqxh0jjμðxÞjνð0Þj0i:

ð2:5Þ

Derivatives of ΠVðq2Þ with respect to q2,

gV2kþ2 ¼ ð2mðμÞÞ2k 12π
2Q2

f

k!

� ∂
∂q2
�

k
ðΠVðq2ÞÞjq2¼0; ð2:6Þ

may be related to the experimental data for the eþe− → cc̄
process, i.e., the R ratio RðsÞ≡ σeþe−→cc̄ðsÞ=σeþe−→μþμ−ðsÞ,
as
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FIG. 1. ðt=aÞnGðtÞ on the lattice of size 643 × 128 at
a ¼ 0.044 fm. The function is normalized by its peak. The data
for n ¼ 4 (filled circle), 8 (open circle), and 12 (square) are
shown. The long-dashed line around t=a ∼ 48 represents the
point of π=ð300 MeVÞ, which is the distance that the non-
perturbative effect dominates. Three vertical dashed lines show
the position of peak n=M (n ¼ 4, 8 and 12) for the single
exponential function e−Mt. Here, Ma ¼ 0.6656.
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12π2Q2
f

k!

� ∂
∂q2
�

k
ðΠðq2ÞÞjq2¼Q2

0

¼ Mk ≡
Z

∞

s0

ds
1

ðs −Q2
0Þkþ1

RðsÞ: ð2:7Þ

Here, Qf stands for the electromagnetic charge of the
charm quark. The lower end of the integral s0 should be set
below the J=ψ mass. The reference scaleQ2

0 is arbitrary but
is often taken at Q2

0 ¼ 0. Using this notation, we may write
the relation between the temporal moments on the lattice
and the observable as

GV
n ¼ gVn

ðamðμÞÞn−2 : ð2:8Þ

A direct comparison of the lattice results with the exper-
imental values for Mn (or their phenomenological esti-
mates) is given in Sec. IV. The phenomenological estimates
of Mn can be found in Refs. [5–8].
For the pseudoscalar density correlator

q2ΠPSðq2Þ ¼ i
Z

d4xeiqxh0jj5ðxÞj5ð0Þj0i; ð2:9Þ

there is no such experimental information available, while
the relation between the temporal moments and the
derivatives of the vacuum polarization function may be
written as

GPS
n ¼ gPSn

ðamðμÞÞn−4 ð2:10Þ

with gPSn analogously defined as in Eq. (2.6).
The continuum vacuum polarization functions can be

parametrized as

ΠPSðq2Þ ¼ 3

16π2
X∞
k¼−1

CPS
k zk; ð2:11Þ

ΠVðq2Þ ¼ 3

16π2
X∞
k¼−1

CV
k z

k; ð2:12Þ

with z ¼ q2=ð2mcðμÞÞ2. In perturbation theory, the coef-
ficients CPS

k and CV
k are expanded in terms of αsðμÞ=π:

Ck¼Cð0Þ
k þαsðμÞ

π
ðCð10Þ

k þCð11Þ
k lmÞ

þ
�
αsðμÞ
π

�
2

ðCð20Þ
k þCð21Þ

k lmþCð22Þ
k l2mÞ

þ
�
αsðμÞ
π

�
3

ðCð30Þ
k þCð31Þ

k lmþCð32Þ
k l2mþCð33Þ

k l3mÞþ��� ;

ð2:13Þ

with lm ¼ log ðm2
cðμÞ=μ2Þ. (Here, Ck and its expansion

coefficients are those of either CPS
k or CV

k .) The perturba-
tive calculation has been performed up to Oðα3sÞ [2,5,6,
8–13]. The calculation is conventionally performed in the
MS renormalization scheme, and the coupling constant
αsðμÞ and running quark mass mcðμÞ are given in that
scheme at a renormalization scale μ. The relevant
coefficients for nf ¼ 4 are summarized in Tables I and
II for pseudoscalar and vector channels, respectively.

B. Formulas for the extraction of mc and αs

For the extraction of the charm quark mass and strong
coupling constant, we impose the equality between the
lattice and perturbative moments, following the method
introduced in Refs. [1,2]. In the following, we consider the
pseudoscalar channel unless otherwise stated and suppress
the superscript PS.
To reduce the discretization effects, we define the

reduced moment Rn using the moment Gð0Þ
n evaluated at

tree level using the same lattice formulation. Namely,

Rn ¼

8>><
>>:

G4

Gð0Þ
4

for n ¼ 4;

amηc
2a ~mc

�
Gn

Gð0Þ
n

�
1=ðn−4Þ

for n ≥ 6.
ð2:14Þ

RV
n ¼ amJ=ψ

2a ~mc

�
GV

n

GVð0Þ
n

�
1=ðn−2Þ

for n ≥ 4: ð2:15Þ

TABLE I. Perturbative coefficients for the pseudoscalar correlator. The results for nf ¼ 4 are summarized from Refs. [8,9].

n k Cð0Þ
k Cð10Þ

k Cð11Þ
k Cð20Þ

k Cð21Þ
k Cð22Þ

k Cð30Þ
k Cð31Þ

k Cð32Þ
k Cð33Þ

k

4 1 1.33333 3.11111 0.00000 0.115353 −6.48148 0.00000 −1.22241 2.50084 13.5031 0.00000
6 2 0.533333 2.06420 1.06667 7.23618 1.590947 −0.0444444 7.06593 −7.58522 0.550549 0.0320988
8 3 0.304762 1.21171 1.21905 5.99920 4.33726 1.16825 14.5789 7.36258 4.25232 −0.0649030
10 4 0.203275 0.712756 1.21905 4.26701 4.80644 2.38730 13.3285 14.7645 11.0345 1.45891
12 5 0.1478 0.4013 1.1821 2.9149 4.3282 3.4971 16.0798 16.6772 4.4685
14 6 0.1137 0.1944 1.1366 1.9656 3.4173 4.4992 14.1098 19.9049 8.7485
16 7 0.0909 0.0500 1.0912 1.3353 2.2995 5.4104 10.7755 20.3500 14.1272
18 8 0.0749 −0.0545 1.0484 0.9453 1.0837 6.2466 7.2863 17.9597 20.4750
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Here,mηc (mJ=ψ ) represents the mass of the ηc (J=ψ) meson
calculated on the lattice, and ~mc is the charm quark pole
mass at the tree level on the same lattice ensemble.
For domain-wall fermions, the pole mass at tree level is
given by

a ~mc ¼ amc

�
1 −

1

6
ðamcÞ2 −

7

40
ðamcÞ4 −

5

112
ðamcÞ6

þ 53

1152
ðamcÞ8 þ � � �

�
ð2:16Þ

as a function of the input quark mass amc on the lattice.
Details are in Appendix A. The correction term starts at
ðamcÞ2, and its size is 3.9% at amc ¼ 0.4404, which
corresponds to the input charm quark mass on our coarsest
lattice. This correction is expected to partly cancel the
discretization effect in the calculation of amηc . Overall, in
the ratios of Eq. (2.14), the discretization effects cancel
between numerator and denominator at the leading order,
i.e., Oðα0sÞ, and the remaining error starts at Oðαsa2Þ for
OðaÞ-improved lattice actions.
Another definition of the reduced moment ~Rn is used in

Ref. [3]:

~Rn ¼
a

a ~mc

�
Gn

Gð0Þ
n

�
1=ðn−4Þ

for n ≥ 6: ð2:17Þ

It does not involve the meson mass amηc and thus is free
from the fitting error of the correlator using the exponential
function expð−ðamηcÞðt=aÞÞ. On the other hand, it contains
an explicit factor of the lattice spacing a, and the error
of the input for the lattice scale directly reflects in the result
of mc. The advantage of having the factor mηc= ~mc (or
mJ=ψ= ~mc) in Eq. (2.14) [or in Eq. (2.15)] is that the meson
mass mηc (or mJ=ψ ) effectively plays the role of the input

scale to determine mc. With ~Rn, the error in setting the
lattice spacing, which is about 1.7% in our case, directly
appears in the final result for mc. We analyzed the data for
both Rn and ~Rn, and it turned out that Rn gives more precise
determination. Only the results with Rn are presented in
this paper.

On the continuum side, one defines the reduced moment
rn from the derivatives of q2Πðq2Þ with respect to q2,

g2k ≡
12π2Q2

f

k!

� ∂
∂z
�

k
ðzΠðq2ÞÞjq2¼0

¼ 12π2Q2
f

ðk − 1Þ!
� ∂
∂z
�

k−1
ðΠðq2ÞÞjq2¼0; ð2:18Þ

as

rn¼
(
g4=g

ð0Þ
4 ¼C1=C

ð0Þ
1 for n¼4;

ðgn=gð0Þn Þ1=ðn−4Þ ¼ ðCn=2−1=C
ð0Þ
n=2−1Þ1=ðn−4Þ for n≥6.

ð2:19Þ

rVn ¼ ðgVn =gVð0Þn Þ1=ðn−2Þ ¼ ðCn=2−1=C
ð0Þ
n=2−1Þ1=ðn−2Þ for n≥ 4:

ð2:20Þ

The tree-level moment gð0Þn can be explicitly written
as [14]

gð0Þ2nþ2 ¼ 12π2Q2
f

3

8π2
2nðn − 1Þ!
ð2nþ 1Þ!! ; ð2:21Þ

and gVð0Þ2kþ2 can be written as

gVð0Þ2nþ2 ¼ 12π2Q2
f

1

4π2
2nðnþ 1Þðn − 1Þ!

ð2nþ 3Þ!! : ð2:22Þ

Then, the equality (2.10) may be rewritten as

Rn ¼
mexp

ηc

2mcðμÞ
rnðαsðμÞ; mcðμÞÞ: ð2:23Þ

Here, rn is a function of αsðμÞ and mcðμÞ, and the equation
is understood as a condition to be satisfied by the
parameters αsðμÞ and mcðμÞ when a numerical value for
Rn is nonperturbatively calculated on the lattice. We can
also use a ratio of the reduced moments,

TABLE II. Perturbative coefficients for the vector correlator. The results for nf ¼ 4 are summarized from Refs. [8,9,11].

n k Cð0Þ
k Cð10Þ

k Cð11Þ
k Cð20Þ

k Cð21Þ
k Cð22Þ

k Cð30Þ
k Cð31Þ

k Cð32Þ
k Cð33Þ

k

4 1 1.06667 2.55473 2.13333 2.49671 3.31303 −0.0888889−5.64043 4.06686 0.959031 0.0641975
6 2 0.457142 1.10956 1.82857 2.77702 5.14888 1.75238 −3.49373 6.72161 6.49161 −0.0973544
8 3 0.270899 0.519396 1.62540 1.63882 4.72072 3.18307 −2.83951 7.57355 13.1654 1.94521
10 4 0.1847 0.2031 1.4776 0.7956 3.6440 4.3713 −3.349 4.9487 17.4612 5.5856
12 5 0.1364 0.0106 1.3640 0.2781 2.3385 5.3990 0.9026 18.7458 10.4981
14 6 0.1061 −0.1158 1.2730 0.0070 0.9553 6.3121 −3.1990 16.9759 16.4817
16 7 0.0856 −0.2033 1.1982 −0.0860 −0.4423 7.1390 −6.5399 12.2613 23.4000
18 8 0.0709 −0.2660 1.1351 −0.0496 −1.8261 7.8984 −8.6310 4.7480 31.1546
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Rn

Rnþ2

¼ rnðαsðμÞ; mcðμÞÞ
rnþ2ðαsðμÞ; mcðμÞÞ

; ð2:24Þ

which may play a complementary role to Eq. (2.23), since
the truncation error of its perturbative expansion is different
from that of individual rn.
In QCD, the perturbation theory is reliable only in the

relatively short-distance regime compared to the hadronic
scale 1=ΛQCD. To avoid the nonperturbative regime, n has
to be small to satisfy a condition n=M ≪ π=ΛQCD, which
implies an upper limit for n, i.e., n ≪ πM=ΛQCD. For the
charmonium of m≃ 3 GeV, this means that n has to be of
order of 10 or smaller. As shown in Sec. VI B, the leading
nonperturbative effect in the operator product expansion
appears as a contribution of the gluon condensate. Its
coefficient an=2 in Eq. (6.4) rapidly grows for larger n.
Combined with the lower limit for n to avoid the large

discretization effect, as discussed earlier in this section,
there is a limited window of n for this method to be useful.
In our analyses, we chose n ¼ 6, 8, and 10. There is a
practical limitation for n ≥ 12; i.e., the Oðα3sÞ coefficients
in the perturbative expansion of rn are not available.

III. LATTICE DETAILS

We have performed a set of lattice QCD simulations with
2þ 1 flavors of dynamical quarks. The gauge action is that
of tree-level Symanzik improved, and the fermion formu-
lation is the Möbius domain-wall fermions [4]. The gauge
links are smeared by applying the stout smearing [15] three
times. With this choice, the residual mass, which quantifies
the violation of the Ginsparg-Wilson relation, is under good
control; i.e., the residual mass is of Oð1MeVÞ on our
coarsest lattice and much smaller on finer lattices. The
effect of such a small violation can be neglected for the
charmonium correlators. Light sea quark masses are

extrapolated to the physical value such that the physical
pion and kaon masses are reproduced. Since the sea quark
mass dependence of Rn is minor, this is not a major source
of uncertainty.
There are 15 ensembles of different lattice spacings

and quark masses as listed in Table III. Lattice spacings
are a ¼ 0.080, 0.055, and 0.044 fm. The spatial size of
these lattices is L=a ¼ 32, 48, and 64, respectively, to keep
the physical lattice size L approximately constant,
∼2.6–2.8 fm. The temporal size T=a is always twice longer
than L=a. Each ensemble consists of 10,000 molecular
dynamics trajectories, out of which we chose 50–100 gauge
configurations equally separated and calculated the char-
monium correlators 8 or 12 times starting from different
time slices on each configuration with a Z2 noise. The
number of measurement “#meas” is thus 400–800 depend-
ing on the ensemble as listed in the table.
The Z2 noise is introduced to improve the statistical

signal. Namely, the Z2 (�1) noise is scattered over a time
slice as a source to calculate the charm quark propagator;
only the local Z2-invariant contribution survives after
averaging over the noise so that the desired contraction
of charm and anticharm propagators survives and other
gauge noninvariant contributions vanish. In spite of the
noise introduced, the signal is improved by averaging over
the source points.
Each ensemble has an “id” name, which distinguishes

coarse (C), medium (M), and fine (F) lattices, as well as the
mass of ud and s quark masses. In the main ensembles (C
and M), two values of strange quark mass are chosen to
sandwich the physical value from above (a) or from below
(b). On the coarse lattice at the lightest ud quark mass, there
is an ensemble of larger volume of size 483 × 96, which is
indicated by “-L.” The difference between C-ud2-sa and
C-ud2-sa-L is used to estimate the possible finite-volume
effect, as they have the smallest ud quark mass and the

TABLE III. Lattice ensembles used in this study.

β a−1 (GeV) L3 × Tð×L5Þ Nsrc #meas amud ams mπ (MeV) mπL id

4.17 2.453(4) 323 × 64ð×12Þ 8 800 0.0035 0.040 230(1) 3.0 C-ud2-sa
0.007 0.030 310(1) 4.0 C-ud3-sb
0.007 0.040 309(1) 4.0 C-ud3-sa
0.012 0.030 397(1) 5.2 C-ud4-sb
0.012 0.040 399(1) 5.2 C-ud4-sa
0.019 0.030 498(1) 6.5 C-ud5-sb
0.019 0.040 499(1) 6.5 C-ud5-sa

483 × 96ð×12Þ 8 800 0.0035 0.040 226(1) 4.4 C-ud2-sa-L

4.35 3.610(9) 483 × 96ð×8Þ 12 600 0.0042 0.0180 296(1) 3.9 M-ud3-sb
0.0042 0.0250 300(1) 3.9 M-ud3-sa
0.0080 0.0180 407(1) 5.4 M-ud4-sb
0.0080 0.0250 408(1) 5.4 M-ud4-sa
0.0120 0.0180 499(1) 6.6 M-ud5-sb
0.0120 0.0250 501(1) 6.6 M-ud5-sa

4.47 4.496(9) 643 × 128ð×8Þ 8 400 0.0030 0.015 284(1) 4.0 F-ud3-sa
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effect of the finite spatial volume is expected to be most
significant in our ensembles.
The lattice spacing is set through the Wilson-flow

scale t0 [16]. For its physical value, we input t1=20 ¼
0.1465ð21Þð13Þ fm [17]. The resulting values of a−1 are
listed in Table III. The table lists the central values and the
statistical error in our measurement of t0. The error in this
input value is to be added for each value of a−1.
Some details of the ensemble generation are available in

Refs. [18,19]. The same gauge ensembles have so far been
used for a calculation of the η0 meson mass [20], an analysis
of short-distance current correlator [21], and a calculation
of heavy-light meson decay constants [22]. The numerical
calculations are performed using the IroIroþþ code set
for lattice QCD [23].
For the vector current, we multiply the renormalization

constant ZV obtained from the analysis of the short-distance
current correlator of light quarks [24]. The numerical
values are 0.9553(92) at β ¼ 4.17, 0.9636(58) at
β ¼ 4.35, and 0.9699(47) at β ¼ 4.47, where errors include
statistical and systematic ones added in quadrature.
On each ensemble, we calculate the charmonium corre-

lator at a bare charm quarkmass 0.4404, 0.2723, or 0.2105 at
β ¼ 4.17, 4.35, or 4.47, respectively. They are slightly
mistuned to the physical charm quark mass, which we set
by the spin-averaged mass of the 1S charmonium states
ðmηc þ 3mJ=ψÞ=4. We correct this minor shift by using the
supplemental data set taken at three values of bare charm
quark mass sandwiching the physical value. The supple-
mental data are obtained with a local source and are therefore
less precise, but are only used for a small interpolation of the
main data to the physical charm quark mass.
In the calculation of the charmonium correlator, we do

not take account of the contribution of disconnected quark-
loop diagrams, which may exist in the nature for the flavor-
singlet operators like j5 ¼ ψ̄cγ5ψc. For the correspondence
between the lattice and perturbative calculations, this does
not cause any problem because one can omit the corre-
sponding diagrams also in perturbation theory. For the
input to tune the charm quark mass on the lattice, this could
lead to some bias, as the physical input parameter, a mass
of ηc or J=ψ, includes such an effect. Furthermore, the
electromagnetic correction which is neglected in our lattice
calculation could also be a source of systematic error. These
sources of uncertainties are discussed in some detail in
Sec. VII.

IV. TEMPORAL MOMENTS OF VECTOR
CURRENT CORRELATOR

As described in Sec. II, the temporal moments of the
charmonium vector-current correlator can be compared
with the experimental value.
Analogous to the reduced moments defined for the

pseudoscalar channel (2.14), we define the reduced

moments RV
n for the vector moments (2.14). We can then

write the correspondence between the lattice and con-
tinuum as

RV
2kþ2 ¼ mJ=ψ

 
Mk

gVð0Þ2kþ2

! 1
2k

; ð4:1Þ

which is obtained from Eq. (2.8).

Numerical results for Z
− 2
n−2

V RV
n are summarized in

Table IV for nð¼ 2kþ 2Þ ¼ 6, 8, 10, and 12. For each
ensemble, the results are interpolated to the physical charm
quark mass; the statistical error is propagated by the
bootstrap method.
The results are linearly extrapolated to the physical light

quark mass and plotted as a function of a2 in Fig. 2. The
lattice results are nearly constant in a2, and the continuum
extrapolation as discussed below is also shown.
We extrapolate RV

n assuming the form

RV
n ¼ RV

n ð0Þð1þ c1ðamcÞ2Þ ×
�
1þ f1

mu þmd þms

mc

�
;

ð4:2Þ

with free parameters RV
n ð0Þ, c1, and f1. The error of Oða2Þ

is eliminated by an extrapolation with this form, while the
effect of Oða4Þ still needs to be estimated. We attempt two
continuum extrapolations assuming a linear dependence on
a2 with and without the point of the coarsest lattice. The
three-point fit yields a χ2=dof ¼ 0.17 (0.40) for n ¼ 6 (8).
The value of χ2=dof is slightly underestimated since the
correlated systematic error for ZV among different β values
is not taken into account. We take the mean value of these
two extrapolations as a central value and estimate the

TABLE IV. Reduced moment Z
− 2
n−2

V RV
n for each ensemble.

Z
− 2
n−2

V RV
6 Z

− 2
n−2

V RV
8 Z

− 2
n−2

V RV
10 Z

− 2
n−2

V RV
12

C-ud2-sa 1.3563(5) 1.3101(5) 1.2722(5) 1.2429(5)
C-ud3-sb 1.3562(5) 1.3101(5) 1.2721(5) 1.2428(5)
C-ud3-sa 1.3563(5) 1.3102(5) 1.2722(5) 1.2430(5)
C-ud4-sb 1.3564(5) 1.3103(5) 1.2723(5) 1.2430(5)
C-ud4-sa 1.3576(5) 1.3112(5) 1.2731(5) 1.2437(5)
C-ud5-sb 1.3589(5) 1.3125(5) 1.2742(5) 1.2448(5)
C-ud5-sa 1.3594(5) 1.3130(5) 1.2747(5) 1.2452(5)
C-ud2-sa-L 1.3559(5) 1.3099(4) 1.2721(4) 1.2432(4)

M-ud3-sb 1.3461(7) 1.2919(6) 1.2553(6) 1.2285(6)
M-ud3-sa 1.3475(6) 1.2932(6) 1.2564(6) 1.2296(5)
M-ud4-sb 1.3483(7) 1.2939(6) 1.2571(6) 1.2302(6)
M-ud4-sa 1.3489(6) 1.2944(6) 1.2575(6) 1.2306(6)
M-ud5-sb 1.3499(7) 1.2953(6) 1.2583(6) 1.2312(6)
M-ud5-sa 1.3511(6) 1.2964(6) 1.2594(6) 1.2323(6)

F-ud3-sa 1.3435(7) 1.2892(6) 1.2536(6) 1.2275(6)
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remaining discretization error using the deviation from the
mean value.
The quark mass dependence of nonperturbative origin,

which is assumed to be linear in mu þmd þms, turned out
to be tiny (f1 ∼ 0), and we do not consider its higher-order
effects.
Since the lattice calculation is performed with three

light flavors (nf ¼ 3), we estimate the effect of the charm
quark loop by perturbative theory. Namely, we correct the
lattice result of nf ¼ 3 to that of nf ¼ 4, by multiplying
rVn ðnf ¼ 4Þ=rVn ðnf ¼ 3Þ. The perturbative coefficients are

calculated to Oðα2sÞ [9] and partly to Oðα3sÞ [8]. We set the
number of heavy flavors nh ¼ 1 (or 0) for nf ¼ 4 (or 3) to
calculate the ratio rVn ðnf ¼ 4Þ=rVn ðnf ¼ 3Þ. We also take

account of the small difference of α
nf¼4
s ðμÞ and αnf¼3

s ðμÞ as
well as that of mcðμÞ. The correction is numerically small;
i.e., the factor is 0.9992(26), 1.0026(68), and 1.0156(342)
for n ¼ 6, 8, and 10, respectively.
Table V summarizes the results for RV

n ð0Þ. The pertur-
bative error is estimated by taking a range of the scale
μ ¼ 2–4 GeV. The large error for n ¼ 10 is due to the lack
of theOðα3sÞ formula. The results in the continuum limit are
compared with the phenomenological estimates [7,25–28].
The agreement of the lattice data and the phenomenological
estimates is remarkable. In particular, our data are con-
sistent with the updated estimates with reduced error of
Refs. [7,25], and the size of total error is comparable.

V. TEMPORAL MOMENTS OF PSEUDOSCALAR
CURRENT CORRELATOR

The reduced moments Rn (n ¼ 6, 8, 10, and 12) for the
pseudoscalar channel obtained at each ensemble are listed
in Table VI, and their ratios Rn=Rnþ2 are in Table VII.
By comparing the data at two different volumes, which

are available for the coarse lattice with the lightest sea
quarks (β ¼ 4.17, amud ¼ 0.0035), we observe that the
results on the larger volume 483 × 96 (C-ud2-sa-L) are
lower than those on 323 × 64 (C-ud2-sa) by about two
standard deviations for R4 and R6. For R8, R10, and R12, on
the other hand, the data at different volumes coincide within
the statistical error. We estimate the systematic error due
to the finite-volume effect by taking these differences and
applying them for all the other ensembles assuming similar
values for each. This should give a conservative estimate
because the finite-volume effect is expected to be signifi-
cantly less for heavier sea quarks. We note that the value of
mπL is small (∼3.0) only for this ensemble (C-ud2-sa);
others satisfy mπL > 3.9. As listed in the table of system-
atic errors in final results (Table IX), the estimated error
from this source is an order of magnitude smaller than other

1.20

1.30

1.40

0.00 0.05 0.10 0.15

R
n/

(1
+

f 1
(m

u+
m

d+
m

s)
/m

c)

a 2 [GeV -2]

n = 6

n = 8

FIG. 2. Continuum extrapolation of the reduced moments for
the vector current RV

n [n ¼ 6 (pluses) and 8 (squares)]. Data are
plotted after correcting for the finite light quark mass effects by
multiplying 1=ð1þ f1ðmu þmd þmsÞ=mcÞ. Lattice data are
corrected for the missing charm quark loop effect, estimated
by perturbation theory, rVn ðnf ¼ 4Þ=rVn ðnf ¼ 3Þ. The error of the
individual lattice data includes that from the renormalization
factor ZV, which is the dominant source of error. The points at
a2 ¼ 0 are our estimate of the continuum limit based on two
methods of continuum extrapolation. Its error includes that due to
the input for a−1 as well. Phenomenological estimates of
corresponding quantities are plotted on the left: Dehnadi et al.
[25] (filled circle), Kuhn et al. [7] (open circle), Kuhn et al. [26]
(filled square), and Hoang et al. [27] (open square).

TABLE V. Reduced moments RV
n ð0Þ extrapolated to the continuum limit at physical light quark masses. The errors in ‘This work” are

from statistical, discretization, finite-volume, and the input values of t1=20 , respectively. The numbers for nf ¼ 3 are the lattice data with
2þ 1 flavors of dynamical quarks, while those for nf ¼ 4 are after the correction by rnðnf ¼ 4Þ=rnðnf ¼ 3Þ. The last error for “nf ¼ 4”
is from this perturbative correction factor. Phenomenological estimates from Refs. [7,25–27] are shown with the estimated error in these
references.

This work Phenomenological estimates

nf ¼ 3 nf ¼ 4 [25] [7] [26] [27]

RV
6 ð0Þ 1.3191(33)(12)(4)(34) 1.3181(33)(13)(4)(33)(34) 1.3143(61) 1.3185(59) 1.2994(184) 1.2978(176)

RV
8 ð0Þ 1.2680(22)(7)(2)(28) 1.2714(22)(8)(2)(28)(86) 1.2732(44) 1.2749(44) 1.2620(135) 1.2596(120)

RV
10ð0Þ 1.2365(16)(13)(0)(22) 1.2558(16)(13)(0)(22)(423) 1.2439(35) 1.2447(34) 1.2352(104) 1.2330(91)
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sources, and any combined error of the finite-volume effect
with other sources is negligible.
We interpolate Rn in mc to the physical point by tuning

until the spin-averaged mass ðmηc þ 3mJ=ψÞ=4 reproduces
the experimental value, 3.0687 GeV. Figure 3 shows an
extrapolation of below. the spin-averaged mass to the
physical pion mass. A fit is done assuming that the slope
in m2

π is independent on β, which seems reasonable as the
plot shows. The χ2=dof of this fit is 1.9.
Our lattice results extrapolated to the physical pion mass

are slightly lower than the experimental data by about
0.1%–0.3% depending on β because of a slight mistuning
of the input mc. We correct for them by using the
supplemental data taken at three different mc’s for each
β as discussed.

Figure 4 is an example of the mc dependence of R6

obtained at β ¼ 4.47. Our main data point (filled square)
is slightly off the target physical value of the physical
ðmηc þ 3mJ=ψÞ=4 shown by a dashed line. We correct the
data using a slope obtained from the supplemental data at
three values of mc shown in Fig. 4. The supplemental data
have significantly larger statistical error but are sufficiently
precise to determine the slope needed for the correction.
(The fit to obtain the slope is uncorrelated. The effect of
ignoring the correlation among three data points should

TABLE VI. Reduced moment Rn in each ensemble. The errors
shown are statistical.

R6 R8 R10 R12

C-ud2-sa 1.4689(6) 1.3681(5) 1.3087(4) 1.2679(4)
C-ud3-sb 1.4696(5) 1.3686(5) 1.3090(4) 1.2682(4)
C-ud3-sa 1.4692(5) 1.3683(5) 1.3089(4) 1.2681(4)
C-ud4-sb 1.4696(6) 1.3687(5) 1.3091(4) 1.2683(4)
C-ud4-sa 1.4706(5) 1.3693(5) 1.3097(4) 1.2687(4)
C-ud5-sb 1.4720(5) 1.3705(5) 1.3107(4) 1.2696(4)
C-ud5-sa 1.4722(6) 1.3708(5) 1.3109(4) 1.2699(4)
C-ud2-sa-L 1.4693(5) 1.3684(4) 1.3091(4) 1.2685(4)

M-ud3-sb 1.4869(6) 1.3598(5) 1.2977(5) 1.2582(4)
M-ud3-sa 1.4882(6) 1.3609(5) 1.2986(5) 1.2590(4)
M-ud4-sb 1.4888(7) 1.3611(6) 1.2987(5) 1.2590(5)
M-ud4-sa 1.4896(6) 1.3618(5) 1.2994(5) 1.2596(4)
M-ud5-sb 1.4899(7) 1.3621(5) 1.2996(5) 1.2598(5)
M-ud5-sa 1.4912(6) 1.3631(5) 1.3005(4) 1.2605(4)

F-ud3-sa 1.4961(6) 1.3616(5) 1.2987(5) 1.2590(4)

TABLE VII. Ratios of the reduced moment Rn=Rnþ2 for each
ensemble. The errors shown are themeasured statistical uncertainty.

R6=R8 R8=R10 R10=R12

C-ud2-sa 1.07365(8) 1.04540(3) 1.03216(2)
C-ud3-sb 1.07381(7) 1.04548(3) 1.03220(2)
C-ud3-sa 1.07368(7) 1.04542(3) 1.03217(2)
C-ud4-sb 1.07377(7) 1.04547(3) 1.03221(2)
C-ud4-sa 1.07396(7) 1.04555(3) 1.03226(2)
C-ud5-sb 1.07406(7) 1.04563(3) 1.03234(2)
C-ud5-sa 1.07400(8) 1.04563(3) 1.03235(2)
C-ud2-sa-L 1.07369(5) 1.04529(2) 1.03204(1)

M-ud3-sb 1.09346(11) 1.04783(5) 1.03144(3)
M-ud3-sa 1.09360(9) 1.04792(4) 1.03151(2)
M-ud4-sb 1.09380(12) 1.04801(5) 1.03157(3)
M-ud4-sa 1.09384(12) 1.04802(5) 1.03158(3)
M-ud5-sb 1.09388(12) 1.04808(5) 1.03162(3)
M-ud5-sa 1.09401(9) 1.04814(4) 1.03167(2)

F-ud3-sa 1.09882(10) 1.04839(4) 1.03150(3)
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FIG. 3. Spin-averaged mass ðmηc þ 3mJ=ψ Þ=4 as a function of
m2

π . The experimental value, 3.072 GeV, is shown by a filled
circle. Data at β ¼ 4.17 (square), β ¼ 4.35 (circle), and β ¼ 4.47
(triangle) are plotted. At each β, the extrapolation to the physical
pion mass slightly misses the experimental value since the input
mc is not exactly tuned. This tiny difference is corrected when we
analyze the temporal moments.
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FIG. 4. R6 as a function of the spin-averaged mass aðmηc þ
3mJ=ψ Þ=4 from different mc. Data at β ¼ 4.47 are shown. The
dashed line represents the physical spin-averaged mass. Three
data points shown by open square are from the supplemental data
set obtained without using the Z2 noise source. The filled square
is our main data point calculated with the Z2 noise source.
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have little impact on the final result, since the correction
itself is very small.) The correction factor on this ensemble
is tiny, i.e., ∼0.03%.
When we interpolate to the physical point ofmc, we need

to incorporate the uncertainty of the lattice spacing origi-
nating from the input value of t1=20 . This error is propagated
to the following analysis by repeating the same analysis
with the lattice spacing a set to the upper and lower limits
of its uncertainty.
We extrapolate Rn to the continuum limit assuming the

form similar to (4.2):

Rn ¼ Rnð0Þð1þ c1ðamcÞ2Þ ×
�
1þ f1

mu þmd þms

mc

�
:

ð5:1Þ

This continuum extrapolation is shown in Fig. 5.
The remaining discretization error is estimated as in

the vector channel by taking the difference between the
extrapolations with two and three data points. The lattice
data at different values of a and sea quark masses are
statistically independent. We use the standard χ2 fitting; the
value of χ2=dof is 2.1, 4.1, 5.1, 4.6, and 3.9 for R6, R8, R10,
R12, and R14, respectively.
Table VIII summarizes the results for Rnð0Þ. The

systematic error due to the finite volume is estimated as
described above.
Again, we correct the lattice result of nf ¼ 3 to that of

nf ¼ 4, by multiplying by rnðnf ¼ 4Þ=rnðnf ¼ 3Þ. This
numerical factor is 1.0031, 1.0014, and 1.0026 for n ¼ 6, 8,
and 10, respectively. Table VIII lists the data before and
after this correction.

VI. SYSTEMATIC ERRORS ON THE
CONTINUUM SIDE

As summarized in Sec. II, one may use Eqs. (2.23) and
(2.24) to extract αsðμÞ and mcðμÞ with the lattice inputs for
Rn obtained in the previous section. Several sources of
systematic errors mainly on the perturbative side are
discussed in this section.

A. Truncation of perturbative series

Perturbative coefficients for rn are available up to Oðα3sÞ
as listed in Table I, and the remaining error is Oðα4sÞ. Since
the left-hand side of Eq. (2.23) is independent of the
renormalization scale μ, we estimate the truncation error
from the residual μ dependence of the combination
rnðαsðμÞ; mcðμÞÞ=mcðμÞ on the right-hand side. We take
μ ¼ 3 GeV for a central value and consider the variation in
the range of �1 GeV for the estimate of the truncation
error. Figure 6 shows an example for n ¼ 8. The μ
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FIG. 5. Continuum extrapolation of RnðaÞ. Data points corre-
spond to R6, R8, R10, R12, and R14 from top to bottom. The
continuum extrapolation assuming the form (5.1) is shown by
lines. The points at a ¼ 0 represent our estimate obtained from a
mean of the extrapolated values with and without the coarsest
lattice data.

TABLE VIII. Reduced moments Rn and their ratios extrapo-
lated to the continuum limit at physical light quark masses. The
numbers for nf ¼ 3 show our original calculation with nf ¼
2þ 1 on the lattice, and those for nf ¼ 4 are after the correction
using a factor rnðnf ¼ 4Þ=rnðnf ¼ 3Þ for Rn or ðrnðnf ¼
4Þ=rnðnf ¼ 3ÞÞ=ðrnþ2ðnf ¼ 4Þ=rnþ2ðnf ¼ 3ÞÞ for Rn=Rnþ2.
The four errors on each value in the table are from the measured
statistical variance, discretization effects, finite-volume effects,
and the uncertainty from the input value of t1=20 , respectively.

nf ¼ 3 nf ¼ 4

R6ð0Þ 1.5048(5)(5)(4)(66) 1.5094(5)(5)(4)(66)
R8ð0Þ 1.3570(4)(22)(3)(39) 1.3589(4)(22)(3)(39)
R10ð0Þ 1.2931(4)(27)(5)(27) 1.2965(4)(27)(5)(27)

R6ð0Þ=R8ð0Þ 1.1089(1)(13)(0)(17) 1.1108(1)(13)(0)(17)
R8ð0Þ=R10ð0Þ 1.0494(0)(5)(1)(8) 1.0481(0)(5)(1)(8)
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FIG. 6. Residual scale dependence of the ratio rnðμÞ=mcðμÞ.
The case for n ¼ 8 is plotted as a typical example.

SHORT-DISTANCE CHARMONIUM CORRELATOR ON THE … PHYSICAL REVIEW D 94, 054507 (2016)

054507-9



dependence of rnðαsðμÞ; mcðμÞÞ is almost canceled by the
dependence ofmcðμÞ, and the remnant μ dependence is tiny
but nonzero, which we take as the truncation error.
We generalize this argument by taking the scale to

define αsðμÞ and mcðμÞ differently. Namely, we reorganize
the perturbative series in terms of αsðμαÞ and mcðμmÞ with
μα ≠ μm [25,28]. This can be done by inserting an
expansion of αsðμ ¼ μmÞ in terms of αsðμαÞ into the
formula of rnðαsðμÞ; mcðμÞÞ and rearranging the perturba-
tive series. The terms of Oðα4sðμαÞÞ are then truncated.
After this extension, we estimate the truncation error

by taking a variation in the range μα ¼ μm � 1 GeV with
2 GeV ≤ minfμα; μmg and maxfμα; μmg ≤ 4GeV. This
provides a more conservative estimate of the truncation
error than simply taking 2 GeV ≤ μα ¼ μm ≤ 4 GeV.
Because of this choice, our estimate for the truncation
error is larger than those in the previous works.

B. Nonperturbative corrections

The perturbative expansion is supplemented by non-
perturbative power corrections in the operator product
expansion. Such power corrections should be carefully
examined before applying the perturbative expansion for
the current correlators.
At the lowest nontrivial order, which is of the order of

1=m4
c, the gluon condensate hðαs=πÞG2

μνi appears [29]. At
the two-loop order, that is written as

∂
∂q2 ðzΠðq

2ÞGGÞ¼ ∂
∂q2

�hðαs=πÞG2
μνi

ð2mOSÞ4
X
l

�
alþ

αs
π
cl

�
zl
�
;

ð6:1Þ

where mOS is an on-shell heavy quark mass and al and cl
are numerical coefficients. The lowest-order coefficients al
for the pseudoscalar (PS) and vector (V) correlators are

aPSl ¼−
l−4

12

ð2Þl
ð3=2Þl

; aVl ¼−
2l−2

15

ð4Þl
ð7=2Þl

; ð6:2Þ

with ðpÞl ¼ Γðpþ lÞ=ΓðlÞ. The higher-order coefficients
cl may be found in Ref. [29]. The on-shell mass
mOS appearing in Eq. (6.1) is related to mcðμÞ as
mOS ¼ mcðμÞ½1þ αs=πð4=3 − logmcðμÞ=μÞ� up to Oðα2sÞ
corrections.
The contribution of this term to the moment gGG2l is

simply written as

gGG2l ¼ hðαs=πÞG2
μνi

ð2mOSÞ4
�
al þ

αs
π
cl

�
; ð6:3Þ

and the reduced moment rn is modified as

rn−4n ¼ 1

Cð0Þ
n=2−1

�
Cn=2−1 þ

16π2

3

hðαs=πÞG2
μνi

ð2mOSÞ4

×

�
an=2 þ

αs
π
cn=2

��
: ð6:4Þ

The numerical coefficients an=2 are 0.179, 0.0, −0.208,
−0.449 for n ¼ 6, 8, 10, 12, respectively.
The uncertainty for the condensate hðαs=πÞG2

μνi is
large, i.e., hðαs=πÞG2

μνi ¼ 0.006� 0.012 GeV4 based on
τ decay analysis [30], or from charmonium moments
hðαs=πÞG2

μνi ¼ 0.005� 0.004 GeV4 [31,32], 0.022�
0.004 GeV4 [33]. In our analysis, we treat hðαs=πÞG2

μνi
as a free parameter and determine from the charmonium
temporal moments together with mcðμÞ and αsðμÞ. Thus,
we avoid further uncertainty from this source.

C. Effect of charm sea quark

Our lattice simulations do not contain a dynamical charm
quark, which is expected to be small since the leading
contribution from this effect is Oðα2sÞ and further sup-
pressed by a factor of 1=m2

c. As already discussed, we
estimate this contribution from perturbative calculation of
rnðnf ¼ 4Þ=rnðnf ¼ 3Þ. We correct our lattice calculation
Rnðnf ¼ 3Þ by multiplying this correction evaluated per-
turbatively at Oðα3sÞ with mcðμ ¼ 3 GeVÞ ¼ 0.9791 GeV
and αsðμ ¼ 3 GeVÞ ¼ 0.2567, which are taken from the
Particle Data Group (PDG). The numerical factor is 1.0031,
1.0014, and 1.0026 for n ¼ 6, 8, and 10, respectively, for
the pseudoscalar.

VII. DETERMINATION OF mcðμÞ AND αsðμÞ
We combine the nonperturbative calculation of Rn with

the perturbative expansion discussed in the previous
sections.
An important issue in the precise determination is that

the lattice calculation does not exactly correspond to the
experimentally observable ηc and J=ψ mesons. This is
because the electromagnetic interaction and the discon-
nected diagram contributions are missing. Their masses
are used to tune the charm quark mass in the lattice
calculation, and the mismatch is a potential source of
systematic error.
Instead of including the effects of disconnect diagrams

and the electromagnetic force in the lattice calculation,
we correct the meson masses for these effects. Namely, for
the value of mexp

ηc in Eq. (2.23), we input the experimental
value 2,983.6(7) MeV after subtracting the corrections due
to disconnected and electromagnetic effects. The effect
of disconnected diagrams reduces the ηc mass by 2.4
(8) MeV according to a lattice study [34]. The electromag-
netic force is also expected to reduce the ηc mass by
2.6(1.3) MeV [35].
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Including these potential systematic effects for the
ηc meson mass, we use an input value mexp

ηc ¼
2983.6ð0.7Þ þ 2.4ð0.8ÞDisc þ 2.6ð1.3ÞEM MeV.
The discretization effect may also affect the charmonium

mass spectrum calculated on the lattice. The hyperfine
splitting ΔJ=ψ−ηc ¼ mJ=ψ −mηc is known to be sensitive to
this source of error. Figure 7 shows ΔJ=ψ−ηc as a function
of a2. A significant a2 dependence is visible on the lattice
data especially for the coarsest lattice, for which the value
of ΔJ=ψ−ηc is about 12% lower than those at two finer
lattices. We attempt a continuum extrapolation assuming
a linear dependence on a2. The extrapolation yields

111.4(1.8) MeV, which is consistent with the experimental
value, 110.9(2.1) MeV. It provides another evidence that
the discretization effect for the charmonium correlator is
under good control after the extrapolation by a linear
extrapolation in a2.
Finally, we extract the charm quark mass mcðμÞ,

strong coupling constant αsðμÞ, and the gluon condensate
hðα=πÞG2i=m4

OS, using Eq. (2.23) with three temporal
moments R6, R8, and R10 as inputs. We also use the ratio
of the moments R6=R8 as in Eq. (2.24), which is not
independent from the individual moments but provides a
consistency check as the truncation of perturbative expan-
sion is different.
Figure 8 shows the constraints onmcðμÞ and αsðμÞ at μ ¼

3 GeV given by R6, R8, R10, and R6=R8. The value of the
gluon condensate is tuned such that the combination R6=R8,
R8, and R10 gives a simultaneous solution. The plot demon-
strates that each moment Rn has a sensitivity to a certain
combination of mcðμÞ and αsðμÞ. The ratio R6=R8, on the
other hand, is sensitive only to αsðμÞ, because by definition
(2.24) the ratio depends on mcðμÞ only logarithmically.
Table IX lists the numerical results for the three

parameters including the breakdown of estimated errors.
The included errors are from the truncation of the pertur-
bative expansion, statistical uncertainty, the discretization
error of Oða4Þ, finite-volume effects, experimental uncer-
tainty for mexp

ηc , disconnected contributions, and electro-
magnetic effects. The estimation of these individual errors
has already been described in previous sections.
Clearly, the truncation of the perturbative expansion is

the dominant source of error for all three of these quantities.
As described in the previous section, this source of error is

0.07
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0.12
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Δ J
/ψ

-η
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]
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FIG. 7. Hyperfine splitting ΔJ=ψ−ηc calculated on the lattice and
its continuum extrapolation. The error of lattice scale a from t1=2

is added for each data point.

TABLE IX. Numerical results for mcðμÞ (top panel), αsðμÞ (mid panel) and hðαs=πÞG2i
m4 (bottom panel). The scale dependent quantities,

mcðμÞ and αsðμÞ, are renormalized at μ ¼ 3 GeV. The results are listed for different choices of three input quantities out of R6, R8, R10

and R6=R8. In addition to the central values with combined errors, the breakdown of the error is presented. They are the estimated errors
from the truncation of perturbative expansion, the input value of t1=20 , statistical, discretization error of Oða4Þ (or Oðαsa2Þ), finite
volume, experimental data formexp

ηc , disconnected contribution, electromagnetic effect, in the order given. The total error is estimated by
adding the individual errors in quadrature.

Inputs mcðμÞ (GeV) Pert t1=20 Stat Oða4Þ Vol mexp
ηc Disc EM

R6, R8, R10 1.0032(98) (82) (51) (5) (16) (4) (3) (4) (6)
R6, R6=R8, R10 1.0031(194) (176) (78) (6) (18) (5) (4) (4) (7)
R6=R8, R8, R10 1.0033(96) (77) (49) (4) (30) (4) (3) (4) (6)

Inputs αsðμÞ Pert t1=20 Stat Oða4Þ Vol mexp
ηc Disc EM

R6, R8, R10 0.2530(256) (213) (134) (12) (38) (10) (9) (10) (16)
R6, R6=R8, R10 0.2528(127) (120) (33) (2) (25) (1) (0) (0) (1)
R6=R8, R8, R10 0.2528(127) (120) (32) (2) (26) (1) (0) (0) (1)

Inputs hðαs=πÞG2i
m4 Pert t1=20 Stat Oða4Þ Vol mexp

ηc Disc EM

R6, R8, R10 −0.0005ð99Þ (85) (45) (4) (23) (4) (3) (4) (6)
R6, R6=R8, R10 −0.0006ð144Þ (133) (49) (4) (23) (4) (3) (3) (5)
R6=R8, R8, R10 −0.0006ð78Þ (68) (29) (3) (22) (3) (2) (3) (5)

SHORT-DISTANCE CHARMONIUM CORRELATOR ON THE … PHYSICAL REVIEW D 94, 054507 (2016)

054507-11



estimated conservatively by varying the scale μm and μα in
the range between 2 and 4 GeV excluding the region that
μm=μα is far away from 1. The next-largest error comes
from the discretization effect estimated by taking two or
three data points in the continuum extrapolation. The
significance of other sources is not substantial or even
negligible when the errors are added in quadrature.
The gluon condensate cannot be determined precisely. In

fact, our results are consistent with zero within estimated
errors. This is not surprising because this quantity is
obtained as a small difference between the perturbative
and nonperturbative calculations. It would strongly depend
on the order of purturbative expansion. Still, it shows a
reasonable agreement with previous phenomenological
estimates [30–33].
One may also use the vector channel to extractmcðμÞ and

αsðμÞ by performing the same analysis. Unfortunately, it
was not very successful in our case. As one can see in
Fig. 9, the constraints on the fmcðμÞ; αsðμÞg plane given by
different moments R6, R8, and R10 are similar to each other,
and we are not able to disentangle mcðμÞ and αsðμÞ. (The
situation may be different if one can include R4, but it
contains too large a discretization effect, as we discussed.)
Therefore, unless we use an input for αsðμÞ for instance, we
are not able to use it to determine mcðμÞ. The statistical
error is also three to four times larger for the vector channel.
Therefore, instead of using the vector channel to extract

mcðμÞ and αsðμÞ, we attempt to determine ZV in Eq. (2.2)
with inputs for mcðμÞ and αsðμÞ obtained from the
pseudoscalar channel. We obtain 0.925(19), 0.937(22),
and 0.942(31) for β ¼ 4.17, 4.35, and 4.47, respectively.
These results are to be compared with the determination
using the light quark hadron correlators: 0.955(9), 0.964(6),
and 0.970(5) [24]. The determination with the charm
correlator is slightly lower and has larger errors. The ratio

between the two determinations is consistent with 1, after
taking the continuum limit.

VIII. CONCLUSION

In this work, we extract the charm quark massmcðμÞ and
the strong coupling constant αsðμÞ through the temporal
moments of charmonium correlator calculated on lattice
ensembles with 2þ 1 flavors of sea light quarks described
by the Möbius domain-wall fermion. The method was
originally introduced and developed by the HPQCD and
Karlsruhe collaborations [1–3], and we apply it for the
lattice data obtained with a different lattice formulation.
The temporal moments in the vector channel can be

related to the experimentally available moments of the
spectral function and provide the means to validate or to
calibrate the lattice calculations. For the determination of
mcðμÞ and αsðμÞ, we use the pseudoscalar channel, since
the vector channel does not show enough sensitivity to
determine mcðμÞ and αsðμÞ separately.
For charm quark, the discretization effect could be

sizable. Our lattice simulations are carried out at suffi-
ciently small lattice spacings in the range 0.044–0.080 fm,

FIG. 9. Constraint from the vector-current moments RV
n on the

ðmcðμÞ; αsðμÞÞ plane. Dotted, dashed, long-dashed, and solid
curves correspond to that of R6, R8, R10, and R6=R8, respectively.

FIG. 8. Constraints on mcðμÞ and αsðμÞ from the moments R6

(dotted curve), R8 (dashed curve), R10 (long dashed curve), and
R6=R8 (solid curve). For each curve, the band represents the error
due to the truncation of perturbative expansion.

TABLE X. Comparison of our results with the values in the
Review of Particle Properties [36]. All the quantities are under-
stood to be given in the MS scheme.

This work PDG (2014)

mcðμ ¼ 3 GeVÞ 1.0033(96) GeV
mcðμ ¼ mcÞ 1.2871(123) GeV 1.275(25) GeV
αsðμ ¼ 3 GeVÞ 0.2528(127) 0.2567(34)
αsðμ ¼ MZÞ 0.1177(26) 0.1185(6)

Λ
nf¼4

MS
286(37) MeV 297(8) MeV

Λ
nf¼5

MS
205(32) MeV 214(7) MeV
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and the continuum extrapolation of the temporal moments
is under good control.
Our final results are compared with the PDG numbers

[36] in Table X, and a comparison with other collaborations
is shown in Fig. 10. For our results, we take the values of
the smallest total uncertainties from Table IX. The charm
quark mass mcðμ ¼ 3GeVÞ is converted to mcðμ ¼ mcÞ,
and the strong coupling constant αsð3 GeVÞ is converted to
the value at the Z boson mass using four-loop running
formulas. The threshold effect at the bottom quark mass is
incorporated at one loop. The resulting value of αsðMZÞ is
consistent with the PDG.
The result of the HPQCDCollaboration [3] for the charm

quark mass is mcð3 GeVÞ ¼ 0.9851ð63Þ GeV. Our result
is 1.8� 1.2% higher. Since the perturbative part of the
method is common, a part of the error may be correlated
among us.
Among various sources of the systematic error, the

dominant one is the truncation of perturbative expansion,
which is currently known up to Oðα3sÞ. To improve the

precision on mcðμÞ, therefore, higher-order perturbative
calculation has primary importance, as well as the reduction
of the scale uncertainty, which is common for all dimen-
sionful parameters.
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APPENDIX: TREE-LEVEL POLE MASS OF
DOMAIN-WALL FERMION

At the tree level, the propagator of domain-wall fermion
formulation on the lattice is written as [44]

hqð−pÞqðpÞi ¼ −iγμ sinpμ þmð1 −We−αÞ
−ð1 −WeαÞ þm2ð1 −We−αÞ ; ðA1Þ

where the Wilson term WðpÞ is

WðpÞ ¼ 1 −M − r
X
μ

ð1 − cospμÞ: ðA2Þ

We take the parameters M ¼ 1 and r ¼ −1, according to
the choice adopted in our simulations.
We obtain the pole mass at the tree level ~m1 by finding a

pole of hqð−pÞqðpÞi. For zero spatial momentum, we solve
the equation to define the pole with p0 ¼ i ~m1. The result is

~m1 ¼ cosh−1
�
1 −Qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3QþQ2

p
2

�
ðA3Þ

with Q ¼ ðð1þm2Þ=ð1 −m2ÞÞ2.
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