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We examine meson correlation functions over a large range of lattice spacing and quark mass in
simulations with the standard staggered action. We find that the distribution of meson correlation functions
is non-Gaussian, with long tails. We modify the statistical analysis to take care of the non-Gaussianity.
Current day improvements in the statistical quality of data on hadron correlations further allow us to
simplify certain aspects of the analysis of masses. We examine these changes through the analysis of pions
and apply them to the vector meson. We also remark on the relation between the vector mass and flow
scales.
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I. INTRODUCTION

In any lattice computation, one needs to specify the
lattice scale. The earliest approach to this was to determine
a hadron mass on the lattice and use this to set the scale.
The difficulty of determining hadron masses with small
systematic uncertainties has gradually led to the develop-
ment of other techniques. Currently the simplest seems to
be the flow scale w0 [1]. Since this is a theory scale, not
measurable in experiments, it is useful to compare it with
other scales and with the same scale determined using
different lattice actions. Such comparisons quantify the
approach to the continuum limit.
In a previous work we examined the flow scale with two

flavors of rooted naive staggered quarks over a large range
of lattice spacing and quark masses [2]. By comparing the
flow scale with the QCD scale in the MS-bar scheme,
ΛMS, determined using the Lepage-Mackenzie scheme, we
found that w0 ¼ 0.13þ0.01

−0.02 fm. This flow scale is smaller
than those obtained using other discretizations of the
Dirac operator. However, there may be UV corrections in
comparing the flow scale with the QCD scale so deter-
mined, which have not been examined yet. So we examine
here the ensembles generated in the earlier study to
determine the vector meson mass.
This leads us to reexamine the extraction of meson

masses from naive staggered quarks. The last such mea-
surements were performed 25 years ago, when the current
technology of using covariance matrices in fits was just a
few years old [3]. However, computational hardware has

scaled from a few hundred megaflops to a few hundred
teraflops in the intervening years. As a result, one can beat
down autocorrelations between configurations tremen-
dously even with the old algorithms. With a set of almost
uncorrelated configurations one may use simpler statisti-
cal tools.
Consider one of the changes possible if the sampling of

lattice gauge configurations became cheap. Measurements
of correlation functions could be done using completely
different sets of a very large number of configurations
at each distance, each drawn from a thermalized configu-
ration. Since the measurements of correlators at each
separation would then be statistically independent, the
covariance between them would vanish, and it would be
easier to fit masses to them. While this ideal is still out of
reach, it is worth considering analyses which make it
simple to transit from statistics-limited to large-statistics
studies.
Our basic tool is the widely used nonparametric method

called bootstrap or resampling [4]. For any statistic obtained
from a configuration, we estimate its distribution nonpara-
metrically by bootstrap. This versatile construction replaces
the assumption that the statistic is Gaussian distributed.
The median and the 34% limits above and below it are taken
as the nonparametric estimate of the average and error. The
sample median has the nice property that its distribution
tends to a Gaussian. This is an old theorem, whose proof
we present in the Appendix, since it seems to be relatively
poorly known in lattice gauge theory [5]. Some limits on
the use of bootstraps were explored in [6]. Using this for
multidimensional resampling, or by nesting bootstraps, one
can generate a variety of analysis tools.
We report hadron masses determined in simulations with

two flavors of staggered quarks using the configurations
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described in [2]. Measurements of the mass of the pseudo-
Goldstone pion were reported earlier using techniques
similar to those described in [3]. We revisit that measure-
ment and also report our estimates of the masses of vector
mesons.
In the next section we report on an exploration of various

statistical methods using staggered pseudo-Goldstone pion
correlators. In the section after that we report measurements
of vector meson masses. We compare the setting of scale
using mρ and w0 and give an estimate of w0 from mρ.
Our main conclusions are collected in the fourth section.
In an Appendix we describe a theorem on the distribution
of sample medians which is useful for bootstrap estimates
of random variates which are not Gaussian distributed.

II. PIONS

The staggered pseudo-Goldstone pion is a good test bed
for exploring statistical techniques for two reasons. First,
because masses are typically small, the relative uncertainty
in the correlation function is small. Second, unlike other
staggered hadrons, there is no opposite parity channel to
complicate the analysis, and it is often sufficient to use a
fitting form

CPSðtÞ ¼ A cosh

�
m

�
aNt

2
− t

��
; ð1Þ

where a is the lattice spacing and A and ma are fit
parameters, and PS denotes the pseudo-scalar meson.
We begin by examining the distribution of the

measurements of the PS correlation function at fixed
separation t. Two representative histograms of the mea-
surements of the PS correlator are shown for each of
t ¼ 0 and t ¼ 4 in Fig. 1. They are highly skewed. We
found that the set of configurations which give rise to
measurements in the tail of the distribution of the
correlator at t ¼ 0 are generically those which populate
the tail at other t. Such long-tailed and skewed ensembles
of the correlators are generic, in the sense that we saw
such distributions for all 22 cutoffs and quark masses
which we examined.
This is not an artifact of a lack of thermalization. The

sequence of configurations which we used were thermal-
ized according to global measurements like average pla-
quette or quark condensate. Moreover, the measurements
which lie at the tails of the distribution are distributed
throughout the runs and not clustered together.
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FIG. 1. The distribution of measurements of the PS correlator at distance zero for two representative run IDs 6 (left) and 14 (right). The
ID numbers associated with runs are given in Table I. Such highly skewed distributions are seen to be generic.
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Non-Gaussian distributions of correlation functions
have been sporadically reported in the literature [7].
Unlike those, the distributions which we see are not
log-normal. In fact, in this case even the logarithms of
correlation functions have long-tailed distributions. An
extreme example is for ID number 14 (see Table I for the
association of ID numbers with run parameters). For this
set the distribution of logCPSð4Þ, shown in the last panel
in Fig. 1, has skewness −2.5 and kurtosis 25. Systematic
reports of distributions of correlators is not part of the
standard analysis suite of lattice gauge theory. As a
result, we do not know whether our observation is of
greater generality.
We investigated the configurations which give mea-

surements in the long tail of the distribution. Pion
correlation functions measured on these configurations
with different source locations do not have large values
of the correlator for all locations of the source. In order
to understand this, it is useful to think in terms of the
eigenvalue decomposition of the correlators.
Suppose that λi is an eigenvalue of the staggered Dirac

operator, and the component of the eigenvector at site x is
jλiðxÞi; then

DxyjλiðyÞi ¼ λijλiðxÞi and D−1
xy ¼

X
i

1

λi
jλiðxÞihλiðyÞj:

ð2Þ
As a result, any local mesonic correlation function is
given by

Cðx; yÞ ¼
X
ij

1

λiλj
hλiðxÞjγjλjðxÞihλjðyÞjγjλiðyÞi; ð3Þ

where γ is the spin-flavor matrix which enters the source for
the meson under consideration. If a configuration has one
or more eigenvalues λi which are very small compared
to the minimum eigenvalue in a generic configuration, then
the correlation function becomes large. If, at the same time,
the corresponding eigenvectors are localized, then Cðx; yÞ
may not be equally large for all x and y. This would imply
that on these configurations some sources give much larger
values of the correlator than others. Previous investigations
have shown that the eigenvalues and eigenvectors have
exactly this kind of behavior in the presence of topological
structures [8]. This leads us to believe that topology is
generally the reason for the skewed distributions which
we see [9].
Since the tail of the distribution of measurements of the

correlators is so long, it is not clear whether the central limit
theorem applies. As a result, justification for the use of
Gaussian statistics (labeled G), through the use of means,
variances, and covariance matrices, is lacking. On the other
hand, it is safe to use a nonparametric bootstrap analysis
(labeled NP). This does have an effect on the determination
of the mass, as we show in Fig. 2. There is a tendency for
NP to lead to a higher mass, although, as the figure shows,
the discrepancy between the two methods is generally less
than a 1-σ effect.
The molecular dynamics time separation between suc-

cessive stored configurations which we used are larger than

TABLE I. Comparison of pion masses extracted by the two methods labeled NP and IS, whose explanations are given in the text.

ID L=a β amq S amπðNPÞ amπðISÞ
1 16 5.2875 0.1 50 0.7899 (27) 0.7904 (23)
2 16 5.2875 0.05 50 0.5753 (23) 0.5756 (27)
3 16 5.2875 0.025 70 0.4159 (26) 0.4161 (27)
4 16 5.2875 0.015 50 0.3241 (24) 0.3240 (34)
5 16 5.4 0.05 75 0.6033 (47) 0.6030 (54)
6 16 5.4 0.025 51 0.4376 (61) 0.4376 (71)
7 24 5.4 0.015 51 0.3500 (18) 0.3504 (21)
8 32 5.4 0.01 40 0.2922 (17) 0.2925 (12)
9 16 5.5 0.05 50 0.6184 (91) 0.6177 (93)
10 24 5.5 0.025 101 0.4463 (22) 0.4459 (22)
11 28 5.5 0.015 120 0.3542 (19) 0.3541 (21)
12 32 5.5 0.01 40 0.2896 (21) 0.2894 (30)
13 32 5.5 0.005 50 0.2129 (39) 0.2124 (43)
14 24 5.6 0.05 55 0.5938 (29) 0.5935 (27)
15 24 5.6 0.025 103 0.4255 (66) 0.4246 (78)
16 28 5.6 0.015 120 0.3299 (49) 0.3302 (56)
17 32 5.6 0.01 40 0.2682 (42) 0.2685 (44)
18 32 5.6 0.005 50 0.1973 (45) 0.1965 (30)
19 32 5.6 0.003 105 0.1506 (25) 0.1513 (24)
20 24 5.7 0.025 59 0.3954 (73) 0.3956 (59)
21 32 5.7 0.005 50 0.1751 (57) 0.1738 (55)
22 32 5.7 0.003 50 0.134 (13) 0.134 (19)
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those used before for naive staggered quark simulations
[3,10–12] and are typical of those used today. Additive
increase of the MD time separation decreases autocorre-
lations exponentially. So it is worthwhile performing the
analysis in which the correlation function at each distance
is resampled independently.
Such a comparison is shown in the first panel in Fig. 3

for the PS correlator in one of our simulations. The ratio
of the correlation function obtained through independent
sampling (labeled IS) and that obtained using our usual
sampling (labeled NP as before) is completely consistent
with unity at all separations. This conclusion is true for all
sets of simulations we have made. A comparison of the
masses obtained by the two methods is shown in Fig. 3
through the ratio of the masses. As expected from the

behavior shown in the first panel, the masses are not
changed by the sampling of the correlator. The pion masses
estimated using these two methods are collected in Table I.
From the table one also sees that our exploration of
statistical methods covered a very wide range of pion
masses in lattice units.
Finite volume corrections for pions are larger than for

other hadrons. They have been investigated in detail before
[13,14]. We tried to estimate corrections using configura-
tions generated at smaller volumes with fixed lattice
spacing and quark masses. In agreement with previous
results, we found that finite volume effects are not visible
above statistical uncertainties when Lmπ ≥ 5. The case of
ID 22 deserves special mention, since Lmπ ¼ 4.2, and one
might expect as large as a 1% finite volume effect [13].
However, as shown in Table I, the statistical uncertainty
in this measurement is about 10%. So finite volume
effects can be uniformly neglected for all the sets of
measurements.

III. THE VECTOR

On examining the distributions of other meson correla-
tion functions, we found that they are skewed in general.
We show examples for the vector correlator in Fig. 4. The
tails of these distributions generally come from the same
configurations as for the pion. As before, we take account
of this skewness by using the methods NP and IS, explored
in the previous section.
The analysis of these correlation functions is more

complex than that of the pseudo-Goldstone pion because
the correlator contains an oscillating staggered piece

CVðtÞ ¼ A cosh

�
m

�
aNt

2
− t

��

þ ð−1Þt=aA0 cosh
�
m0

�
aNt

2
− t

��
; ð4Þ
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FIG. 2. The ratio of pion masses extracted with nonparametric
bootstrap estimators of the correlator (labeled NP) and with
Gaussian estimators (labeled G). The uncertainty in the ratio are
obtained by repeating the bootstrap resampling and generating
the distribution of the ratio. The ID numbers on the ordinate are
associated with run parameters in Table I.
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FIG. 3. The first panel shows the ratio of pion correlators extracted with independent bootstrap estimators of the correlator at each t
(labeled IS) and using the same bootstrap configurations at all t (labeled NP, as before) at a representative run ID 6. The second panel
shows the comparison of masses extracted from the two different estimators of the correlators.
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where a is the lattice spacing. We extract effective masses
by using four successive values of t to extract the four
parameters. We looked for plateaus in such effective masses
and fitted the correlation function above within the range of
the plateau. The statistical uncertainty in the fitted mass,
ma, was obtained using a pair of nested bootstraps. For
each set of resamplings of the correlation function, the fit
returned a value of the parameters being fitted. A further
bootstrap over this process gave a distribution of the
parameters. This was used to estimate parameter uncer-
tainty in the usual way.
As one can see from the local masses in Fig. 5, the region

over which a fit can be performed is significantly shorter for
the vector meson than for the pion. The lack of perfect
overlap with the ground state limits the smallest values of t
which we can use in the fit. As is visible in the figures, this
is not necessarily a more stringent cutoff for vectors than
for pions. However, since the vector mass is larger, the
correlator falls faster, and the signal to noise ratio deteri-
orates, limiting the largest t which we can use. This large-t
problem can be beaten only with statistics and therefore
represents a hard CPU limitation. Instead, as is common
in the literature, we try to use the small-t information.
Since the correlator couples to a tower of states, it gets a
contribution in the form in Eq. (4) from each state.
Techniques for extracting ground and excited states simul-
taneously have been explored since the 1990s [15]. Notable
developments are the use of variational methods with many
different forms of the source [16] and Bayesian fitting [17].
Here we use the technically simpler alternative method

which uses a fit of two (four, with staggering) masses to the
effective masses. Since the number of fit parameters
doubles, one has to take a sufficiently large interval in t
to obtain a statistical test of the goodness of fit. We found
that the full range of t could be fitted with two states.
However, there are two sources of systematic uncertainties:
first in choosing the t with which to associate the effective

mass which is being fitted and second in the range over
which the fit is performed. We vary the fit interval by one
unit at each end point. We also let the effective mass be
associated with every separation which was used to
determine it. The maximum variation in ma obtained with
these changes is quoted as a systematic uncertainty in this
method.
Measures of systematic uncertainties are arbitrary, but

one can check that different measures are close to each
other. The simplest check which we have performed is that
changing the end point by two lattice spacings does not
change this estimate. A quite different check was to
perform a fit using Bayesian priors for several of the
higher masses and the full range of lattice spacings
available, as suggested in [17]. Consistent with our finding
that two states suffice for the usual fit, we find that two
states remain well constrained. In particular, for a range of
priors we find that the smallest mass is stable and equal to
the values obtained by the standard fit. At the edge of this
range, changing the priors induces changes in the best fit
values by an amount which can be taken to be a systematic
uncertainty. We observed that systematic uncertainties
obtained in this way are comparable with those which
we quote. The case of ID 20 (displayed in Fig. 5) deserves
special mention, since the lattice size is a little too small to
cleanly separate out the lowest and next state in the vector
channel. In this case the Bayesian fit yields a systematic
uncertainty which is about a third of that reported in
Table II. The reason is that the last value of t is crucial
for the mass determination. Only in such extreme cases do
different measures of systematic uncertainty differ.
Run IDs 3, 15 and 20 of Tables I and II can be

compared with previous measurements of masses
reported in the literature [10–12]. In all three cases
we find good agreement of previously quoted values of
amπ with the results we report in Table I. We also find
that the previously reported results on amρ are in
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FIG. 4. The distribution of measurements of the local vector correlators at distance zero for the representative run IDs 6 and 14 seem to
be non-Gaussian. The configurations which give rise to the measurements at the tail of these distributions are generally those which
populate the tail of the PS correlator.
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reasonable agreement with the vector masses we extract
with single mass fits Table II.
When trying to set the lattice scale for staggered quarks,

taste symmetry breaking is an issue, not only for the
standard action used here but also for improved actions. A
measure of taste symmetry breaking in a particle mass is

r ¼ maxðjmt −mojÞ
mo

; ð5Þ

i.e., the ratio of the spread of the masses of the taste partners
of a particle, mt, to the mass obtained from the local
operator, mo. The maximization is over all tastes. At a
lattice spacing of a≃ 0.1 fm, it was found that r≃ 0.3 for
the pion [18,19] and about 0.2 for the vector [19]. Since
these ambiguities are correlated, we will take the larger
value as an indicative number for the uncertainty in hadron
mass scales. While it is easy to quantify taste symmetry
breaking effects on masses, there is no easy measure for
taste symmetry breaking effects in the measurement of w0.
Further investigation of taste symmetry ambiguities on the

lattice scale is clearly required, but it lies outside the scope
of this paper.
Since we have previously determined the Wilson flow

scale w0=a, we can examine our results for amρ also in
terms of mρw0. In Fig. 6 we plot data on mρw0 as a
function of mπw0 for the four smallest pion masses we
used at the finest lattices possible. The coarsest lattice
spacing among these corresponds to a < w0=1.7. Since
m2

π is proportional to a renormalized quark mass, when
this is small enough, mρ should be linear in this.
Although the uncertainties at the smallest quark masses
are rather large, the data seem to fall in the range where
the linear extrapolation seems reasonable. In view of
this, we fitted an extrapolation function for mρw0 linear
in terms of ðmπw0Þ2. The 68% uncertainty band on this
extrapolation are also shown in Fig. 6.
The slope of the extrapolation may be captured in the

quantity

Sρ ¼ 2
mρw0ðmπw0 ¼ 0.4Þ −mρw0ðmπw0 ¼ 0.3Þ
mρw0ðmπw0 ¼ 0.4Þ þmρw0ðmπw0 ¼ 0.3Þ : ð6Þ
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FIG. 5. Local masses for pions and vector mesons in some representative runs. The best fit masses are shown along with the local
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The fit shown in Fig. 6 gives Sρ ¼ 0.14� 0.08. With our
set of simulations we are unable to remark on the possible
lattice spacing dependence of this slope. A previous
estimate of the ratio w0=

ffiffiffiffi
t0

p
with this set of simulations

showed that a smooth limit is reached at a≃ w0=2 [2].
While this could be taken as an indication that the slope
parameter we have determined is close to its continuum
value, it would be useful to check this in future.
With this fit we can extrapolate self-consistently to the

physical mπ and there use the physical value of mρ to
extract w0 in physical units. We quote a statistical uncer-
tainty in the extrapolation; this arises from the statistical
uncertainty in the mass measurements. We also quote a

systematic uncertainty which is the maximum difference
between this extrapolation and the two obtained by leaving
out of the fits either the measurement at the smallest
or the largest mπ . This gives w0 ¼ 0.14� 0.02� 0.01
�0.04 fm, where the first uncertainty is statistical, the
second is from the extrapolation to physical quark masses,
and the third is from extrapolation to the continuum limit,
assuming that this is dominated by taste symmetry breaking
effects. This extraction of the scale w0 is subject to the same
caveats as the computations of the slope parameter Sρ.

IV. CONCLUSIONS

In Sec. II we have reported extensively on the statistical
analysis of masses. We observed that the distributions of
correlation functions are strongly skewed, and a Gaussian
analysis of the sample cannot be justified. We found that
bootstrap estimates, which do not assume any particular
form of the distribution function, of the correlation func-
tions and their uncertainties give sensible results. We are
not aware of earlier systematic reports on the distribution of
measurements of correlation functions. We found that the
masses obtained through independent bootstrap sampling
of the correlator at each t (called IS here) give results in
complete agreement with sampling at all t together (which
we called NP). This is shown by the detailed compilation of
results in Tables I and II.
The basic results we report in this paper are collected in

Table III. The measurements of w0 were reported in [2];
they are included here for completeness. The pion and rho
masses reported here are obtained using the IS sampling
technique. Where older results [3,10–12] are available, they
agree with ours within statistical uncertainties. Our results

TABLE II. Comparison of vector masses extracted by the methods NP and IS, for various ID numbers. The IDs and the labels on
masses have the same meanings as in Table I. In several cases the plateau in the local masses was too short to trust the single mass
staggered fits, and the first excited state (and its staggered partner) was added to the fit. Data sets excluded from the table are too noisy
for a stable fit.

Single mass fit Two masses fit
ID β amq amρðNPÞ amρðISÞ amρðNPÞ amρðISÞ
1 5.2875 0.1 1.464 (7) 1.462 (8)
2 5.2875 0.05 1.336 (16) 1.340 (12)
3 5.2875 0.025 1.289 (6) 1.288 (6)
5 5.4 0.05 1.286 (4) 1.286 (3)
6 5.4 0.025 1.177 (9) 1.177 (12)
7 5.4 0.015 1.118 (6) 1.117 (6)
9 5.5 0.05 1.046 (9) 1.044 (9)
10 5.5 0.025 0.904 (4) 0.904 (4)
14 5.6 0.05 0.844 (4) 0.844 (5) 0.820 (19) (4) 0.819 (17) (6)
15 5.6 0.025 0.638 (2) 0.639 (4) 0.572 (16) (71) 0.565 (28) (79)
16 5.6 0.015 0.595 (4) 0.595 (4) 0.577 (15) (14) 0.571 (11) (26)
17 5.6 0.01 0.475 (14) 0.476 (13)
18 5.6 0.005 0.420 (18) 0.415 (18) 0.277 (39) (24) 0.291 (53) (24)
20 5.7 0.025 0.568 (3) 0.569 (5) 0.482 (28) (53) 0.480 (26) (55)
22 5.7 0.003 0.418 (11) 0.417 (8) 0.306 (36) (53) 0.304 (28) (72)
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cover a wider range of lattice spacing and renormalized
quark mass than was available for Nf ¼ 2 naive staggered
quarks earlier. Our best estimate of the slope of the rho
mass with the pion mass is

Sρ ¼ 0.14� 0.08; ð7Þ

where Sρ is defined in Eq. (6).
Since we have earlier determined the scale w0=a at these

bare parameters, we can now use these mass measurements
to estimate the scale w0 from the vector meson mass.
Extrapolation to the physical pion mass yields the value

w0 ¼ 0.14� 0.02� 0.01� 0.04 fm; ð8Þ

where the first uncertainty is due to statistical uncertainties
in the extraction of masses, the second is from an estimate
of the uncertainty in the extrapolation to physical pion mass
and the third is an estimate of the uncertainty in the
extrapolation to the continuum limit, which is dominated
by taste symmetry breaking effects in the staggered pion
mass. We note that systematic uncertainties from taste
symmetry breaking effects may introduce further system-
atic uncertainties. This value for Nf ¼ 2 naive staggered
quarks should be compared to the value w0 ¼ 0.13þ0.01

−0.02 fm,
obtained earlier by a comparison with scale setting using
the Lepage-Mackenzie method for the extraction of ΛMS

(errors are statistical) [2]. Since the earlier extraction could
require better control of UV artifacts than available at
present, the current extraction, using a long-distance
measurement, is an useful alternative method, although
at present it suffers from various remaining uncertainties. It
would be interesting to verify this estimate using other
scales in future.
We also point out that an extraction of w0 for Nf ¼ 2

clover quarks using fK to set the scale yields a larger value,
namely w0 ¼ 0.1757� 0.0013 fm, where the uncertainty is
statistical [20]. While the difference is not large or sta-
tistically very significant, it is intriguing. Tracing the source
of this difference will certainly allow us to understand the
continuum limits of various fermion measurements better.

APPENDIX: DISTRIBUTION OF SAMPLE
MEDIANS

Suppose r is a real random variate with distribution fðrÞ,
and let μ be the population median. The cumulative
distribution of r is

FðrÞ ¼
Z

r

−∞
fðtÞdt; ðA1Þ

where Fð∞Þ ¼ 1, Fð−∞Þ ¼ 0, and FðμÞ ¼ 1=2. If we
draw 2nþ 1 samples from the population and find that the

TABLE III. A summary of our scale setting measurements. The scale setting by w0 was reported in [2]. We have updated the pion
masses presented in that study by reporting here the results of the analysis technique IS. Formρ the statistical uncertainty is given before
the systematic uncertainty.

Ns Traj Statistics
β ma L=a Machine (MD) T0 þ T × N w0=a amπ amρ mπw0 mρw0

5.2875 0.1 16 V 1 400þ 10 × 50 0.6112 (4) 0.790 (2) 1.462 (8) (7) 0.483 (1) 0.894 (5) (4)
0.05 16 V 1 780þ 10 × 50 0.6354 (6) 0.576 (3) 1.340 (12) (7) 0.366 (2) 0.851 (8) (4)
0.025 16 V 1 200þ 15 × 70 0.6539 (1) 0.416 (3) 1.288 (6) 0.2714 (13) 0.842 (4)
0.015 16 V 1 400þ 10 × 50 0.6608 (5) 0.324 (3) � � � 0.214 (2) � � �

5.4 0.05 16 V 2 200þ 20 × 75 0.8418 (14) 0.603 (5) 1.286 (3) (2) 0.508 (4) 1.082 (3) (2)
0.025 16 V 1 400þ 10 × 51 0.9264 (21) 0.438 (7) 1.177 (12) (23) 0.406 (6) 1.09 (1) (2)
0.015 24 V 2 400þ 10 × 50 0.9600 (9) 0.354 (2) 1.117 (6) (10) 0.340 (2) 1.072 (6) (10)
0.01 32 G 2 200þ 20 × 40 0.9922 (7) 0.292 (1) � � � 0.290 (1) � � �

5.5 0.05 16 V 1 200þ 20 × 50 1.1689 (40) 0.618 (9) 1.044 (9) (88) 0.72 (1) 1.22 (1) (10)
0.025 24 V 1 1680þ 10 × 101 1.2651 (18) 0.446 (2) 0.904 (4) (11) 0.564 (3) 1.144 (5) (14)
0.015 28 G 2 400þ 10 × 120 1.3302 (13) 0.354 (2) � � � 0.471 (3) � � �
0.01 32 G 2 200þ 20 × 40 1.3771 (16) 0.289 (3) � � � 0.398 (4) � � �
0.005 32 BG 1 250þ 10 × 50 1.4254 (37) 0.212 (4) � � � 0.302 (6) � � �

5.6 0.05 24 V 1 400þ 10 × 55 1.4850 (26) 0.594 (3) 0.819 (17) (6) 0.882 (5) 1.22 (2) (1)
0.025 24 V 1 1700þ 10 × 48 1.6007 (33) 0.425 (8) 0.565 (28) (79) 0.68 (1) 0.90 (4) (13)
0.015 28 G 2 400þ 10 × 120 1.7087 (25) 0.330 (6) 0.571 (11) (26) 0.56 (1) 0.97 (2) (4)
0.01 32 G 2 200þ 20 × 40 1.7814 (36) 0.268 (4) 0.476 (13) (26) 0.477 (7) 0.85 (2) (5)
0.005 32 BG 1 300þ 10 × 50 1.8547 (71) 0.196 (3) 0.291 (53) (24) 0.363 (6) 0.54 (10) (4)
0.003 32 BG 1 600þ 5 × 105 1.8824 (32) 0.151 (2) � � � 0.284 (4) � � �

5.7 0.025 24 V 1 530þ 10 × 59 1.9645 (48) 0.396 (5) 0.480 (26) (55) 0.78 (1) 0.94 (5) (11)
0.005 32 BG 1 370þ 10 × 50 2.1470 (73) 0.174 (5) � � � 0.37 (1) � � �
0.003 32 BG 1 300þ 10 × 50 2.2103 (162) 0.13 (2) 0.304 (28) (72) 0.30 (4) 0.67 (6) (16)
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median of the sample is z, then the probability of this being
so is

gðzÞ ¼
�
2nþ 1

n

�
fFðzÞ½1 − FðzÞ�gnfðzÞ: ðA2Þ

When n is large enough, we expect z to be close enough to
μ so that the Taylor expansion

FðzÞ ¼ 1

2
þ fðμÞðz − μÞ þ 1

2
f0ðμÞðz − μÞ2 þ… ðA3Þ

converges sufficiently quickly. Then, using Stirling’s
approximation in the binomial coefficient, we find
that

log gðzÞ≃ −4n½fðμÞ�2ðz − μÞ2 þ…: ðA4Þ

This proves that gðzÞ is Gaussian with mean μ and a variance
of 1=ð8n½fðμÞ�2Þ. The uncertainty in the estimate of μ
therefore decreases as 1=

ffiffiffi
n

p
. This result is attributed to

Laplace [21]. The proof given here is an adaptation of one
from [22].
This construction fails when fðμÞ ¼ 0. Then, retaining

the next term in the expansion, one can prove that gðzÞ is
even narrower. Such constructions fail completely when
fðrÞ vanishes identically in a region around r ¼ μ, so that a
Taylor expansion of Eq. (A3) is impossible. However, this
class of probability densities is different than that for which
the central limit theorem fails. An instructive example with
such a pathology is

fðrÞ ¼ 1

2
½δðrÞ þ δðr − 1Þ�: ðA5Þ

[1] For reviews, see R. Sommer, Proc. Sci., LATTICE2013
(2014) 015 [arXiv:1401.3270]; R. Sommer and U. Wolff,
Nucl. Part. Phys. Proc. 261–262, 155 (2015).

[2] S. Datta, S. Gupta, A. Lahiri, A. Lytle, and P. Majumdar,
Phys. Rev. D 92, 094509 (2015).

[3] T. A. DeGrand and C. E. DeTar, Phys. Rev. D 34, 2469
(1986).

[4] B. Efron, The Jackknife, the Bootstrap and Other Resam-
pling Plans, SIAM Monograph on Applied Mathematics
(Society for Industrial and Applied Mathematics,
Philadelphia, 1982).

[5] Among the exceptions is A. Borici, Nucl. Phys. B, Proc.
Suppl. 129–130, 817 (2004).

[6] S. Gupta, N. Karthik, and P. Majumdar, Phys. Rev. D 90,
034001 (2014).

[7] M. G. Endres et al., Proc. Sci., LATTICE2011 (2011) 017
[arXiv:1112.4023]; E. B. Gregory, A. C. Irving, C. M.
Richards, and C. McNeile, Phys. Rev. D 86, 014504
(2012); T. DeGrand, Phys. Rev. D 86, 014512 (2012).

[8] R. V. Gavai, S. Gupta, and R. Lacaze, Phys. Rev. D 77,
114506 (2008); T. G. Kovacs and F. Pittier, Phys. Rev. Lett.
105, 192001 (2010); V. Dick, F. Karsch, E. Laermann, S.
Mukherjee, and S. Sharma, Phys. Rev. D 91, 094504 (2015).

[9] One other interesting conclusion from Eq. (3) is worth
mentioning. Interchanging x and y in the meson correlator
while simultaneously interchanging the dummy indices i
and j shows that in each configuration Cðx; yÞ ¼ Cðy; xÞ.
Truncation of the summation due to incomplete conver-
gence of the Dirac operator does not spoil this property
nor does loss of arithmetic precision in one or more
eigenvectors.

[10] S. Gottlieb, W. Liu, R. L. Renken, R. L. Sugar, and D.
Toussaint, Phys. Rev. D 38, 2245 (1988).

[11] K. M. Bitar et al., Phys. Rev. D 42, 3794 (1990).
[12] F. R. Brown, F. P. Butler, H. Chen, N. H. Christ, Z. Dong, W.

Schaffer, L. I. Unger, and A. Vaccarino, Phys. Rev. Lett. 67,
1062 (1991).

[13] G. Colangelo, S. Dürr, and C. Haefeli, Nucl. Phys. B721,
136 (2005).

[14] M. Guagnelli, K. Jansen, F. Palombi, R. Petronzio, A.
Shindler, and I. Wetzorke (Zeuthen–Rome (ZeRo)
Collaboration), Phys. Lett. B 597, 216 (2004).

[15] Y. Iwasaki et al., Nucl. Phys. B, Proc. Suppl. 30, 397 (1993);
S. M. Catterall, F. R. Devlin, I. T. Drummond, and R. R.
Horgan, Phys. Lett. B 321, 246 (1994); D. Chen et al.,
Nucl. Phys. Proc. Suppl. 47, 382 (1996).

[16] C. Michael, Nucl. Phys. B 259, 58 (1985); M. Luscher and
U. Wolff, Nucl. Phys. B 339, 222 (1990).

[17] D. Makovoz, Nucl. Phys. B, Proc. Suppl. 53, 246 (1997);
G. P. Lepage, B. Clark, C. T. H. Davies, K. Hornbostel, P. B.
Mackenzie, C. Morningstar, and H. Trottier, Nucl. Phys. B,
Proc. Suppl. 106–107, 12 (2002); C. Morningstar, Nucl.
Phys. B, Proc. Suppl. 109A, 185 (2002).

[18] T. Bae, D. H. Adams, C. Jung, H.-J. Kim, J. Kim, K. Kim,
W. Lee, and S. R. Sharpe, Phys. Rev. D 77, 094508 (2008).

[19] N. Karthik (private communication).
[20] M. Bruno and R. Sommer, Proc. Sci., LATTICE2013

(2014) 321 [arXiv:1311.5585].
[21] S. M. Stigler, Biometrika 60, 439 (1973).
[22] A. Merberg and S. J. Miller, in https://web.williams.

edu/Mathematics/sjmiller/public_html/BrownClasses/162/
Handouts/MedianThm04.pdf.

STATISTICAL TWEAKS AND MESON MASSES PHYSICAL REVIEW D 94, 054506 (2016)

054506-9

http://arXiv.org/abs/1401.3270
http://dx.doi.org/10.1103/PhysRevD.92.094509
http://dx.doi.org/10.1103/PhysRevD.34.2469
http://dx.doi.org/10.1103/PhysRevD.34.2469
http://dx.doi.org/10.1016/S0920-5632(03)02722-1
http://dx.doi.org/10.1016/S0920-5632(03)02722-1
http://dx.doi.org/10.1103/PhysRevD.90.034001
http://dx.doi.org/10.1103/PhysRevD.90.034001
http://arXiv.org/abs/1112.4023
http://dx.doi.org/10.1103/PhysRevD.86.014504
http://dx.doi.org/10.1103/PhysRevD.86.014504
http://dx.doi.org/10.1103/PhysRevD.86.014512
http://dx.doi.org/10.1103/PhysRevD.77.114506
http://dx.doi.org/10.1103/PhysRevD.77.114506
http://dx.doi.org/10.1103/PhysRevLett.105.192001
http://dx.doi.org/10.1103/PhysRevLett.105.192001
http://dx.doi.org/10.1103/PhysRevD.91.094504
http://dx.doi.org/10.1103/PhysRevD.38.2245
http://dx.doi.org/10.1103/PhysRevD.42.3794
http://dx.doi.org/10.1103/PhysRevLett.67.1062
http://dx.doi.org/10.1103/PhysRevLett.67.1062
http://dx.doi.org/10.1016/j.nuclphysb.2005.05.015
http://dx.doi.org/10.1016/j.nuclphysb.2005.05.015
http://dx.doi.org/10.1016/j.physletb.2004.07.020
http://dx.doi.org/10.1016/0920-5632(93)90236-Y
http://dx.doi.org/10.1016/0370-2693(94)90472-3
http://dx.doi.org/10.1016/0920-5632(96)00079-5
http://dx.doi.org/10.1016/0550-3213(85)90297-4
http://dx.doi.org/10.1016/0550-3213(90)90540-T
http://dx.doi.org/10.1016/S0920-5632(96)00627-5
http://dx.doi.org/10.1016/S0920-5632(01)01638-3
http://dx.doi.org/10.1016/S0920-5632(01)01638-3
http://dx.doi.org/10.1016/S0920-5632(02)01413-5
http://dx.doi.org/10.1016/S0920-5632(02)01413-5
http://dx.doi.org/10.1103/PhysRevD.77.094508
http://arXiv.org/abs/1311.5585
http://dx.doi.org/10.1093/biomet/60.3.439
https://web.williams.edu/Mathematics/sjmiller/public_html/BrownClasses/162/Handouts/MedianThm04.pdf
https://web.williams.edu/Mathematics/sjmiller/public_html/BrownClasses/162/Handouts/MedianThm04.pdf
https://web.williams.edu/Mathematics/sjmiller/public_html/BrownClasses/162/Handouts/MedianThm04.pdf
https://web.williams.edu/Mathematics/sjmiller/public_html/BrownClasses/162/Handouts/MedianThm04.pdf
https://web.williams.edu/Mathematics/sjmiller/public_html/BrownClasses/162/Handouts/MedianThm04.pdf
https://web.williams.edu/Mathematics/sjmiller/public_html/BrownClasses/162/Handouts/MedianThm04.pdf

