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We employ leading-order covariant chiral perturbation theory to compute the nucleon-pion-state
contribution to the 3-point correlation functions one typically measures in lattice QCD to extract the
isovector nucleon charges gA, gT and gS. We estimate the impact of the nucleon-pion-state contribution on
both the plateau and the summation method for lattice simulations with physical pion masses. The nucleon-
pion-state contribution results in an overestimation of all charges with both methods. The overestimation is
roughly equal for the axial and the tensor charge, and about 50% larger for the scalar charge.
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I. INTRODUCTION

Lattice QCD has made enormous progress in recent
years due to computational advances and algorithmic
improvements [1]. This has led many lattice QCD collab-
orations to pursue numerical lattice simulations with pion
masses close to or at their physical values [2–5]. Such
“physical point simulations” require no or only a short
chiral extrapolation, so uncertainties associated with this
step are essentially eliminated. This benefit is worth the
high numerical costs these kind of simulations involve.
As advantageous as physical point simulations are, some

complications become more severe with smaller pion
masses. The signal-to-noise problem [6] gets worse and
prevents large Euclidean time separations in many corre-
lation functions. In addition, the smaller the pion mass, the
more pronounced is the contamination due to multiparticle
states in correlation functions one measures in lattice
simulations. For example, the lattice simulations carried
out so far strongly suggest that many nucleon structure
observables suffer severely from excited-state contamina-
tions.1 The associated systematic uncertainty may signifi-
cantly compromise the huge numerical effort that goes into
physical point simulations.
It has been pointed out in Refs. [10,11] that chiral

perturbation theory (ChPT) can be employed to compute
multiparticle-state contributions involving light pions.
Following Refs. [12,13] we apply this idea here to the
nucleon 3-point (pt) functions used to measure the non-
singlet axial, tensor and scalar charge of the nucleon.
We compute the nucleon-pion-state (Nπ) contributions to
these observables in covariant ChPT to leading order (LO)
in the chiral expansion. The low-energy coefficients (LECs)
entering at this order are known very well from phenom-
enology, so we obtain definite results for the Nπ contri-
bution to all three charges, estimated either by the plateau

or by the summation method. Even if higher-order correc-
tions and contributions from resonances will be substantial,
we obtain quantitative estimates for the impact of the
nucleon-pion states on the determination of the various
nucleon charges.

II. NUCLEON 3-PT CORRELATORS
IN CHPT

A. Basic definitions

In the following we consider QCDwith degenerate quark
masses for the light up and down quark. The spatial volume
is assumed to be finite with spatial extent L, and periodic
boundary conditions are imposed. We work in Euclidean
space-time and the time extent is taken infinite.
We are interested in the 3-pt functions

G3pt;Xðt; t0Þ

¼
Z

d3x
Z

d3yΓ0
X;αβhNβð~x; tÞOXð~y; t0ÞN̄αð~0; 0Þi:

ð2:1Þ

Here N, N̄ are interpolating fields for the nucleon and
Γ0
X denotes a spin projection matrix specified below. OX

denotes the vector current (X ¼ V), the axial vector current
(A), the tensor (T) or the scalar density (S). We consider the
flavor nonsinglet case only, so OX carries an open flavor
index which is suppressed in (2.1). More precisely, we
choose the nucleon to be the proton which implies

OX ¼ q̄ΓXσ
3q; ð2:2Þ

with the quark doublets q ¼ ðu; dÞT , q̄ ¼ ðū; d̄Þ, the third
Pauli matrix σ3, and the usual gamma matrix combinations
ΓX ¼ γμ, γμγ5, σμν, 1 for X ¼ V, A, T, S. In the following
we will be interested only in the spatial components in case
of the axial vector current and the tensor, and in the zero1See the recent reviews [7–9] and references therein.
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component in case of the vector current. The projection
matrices Γ0

X for these operators are collected in Table I. For
the axial vector current and the tensor we consider the
averaged correlation function where the average is taken
over the spatial components.2 Since we consider equal
up- and down-type quark masses the vector current is
conserved. Thus, the 3-pt function involving its zero
component is simply the 2-pt function times the conserved
charge and not very interesting. However, charge conser-
vation provides a nontrivial check on the calculation in
Sec. II C.
In addition to (2.1) we will also need the 2-pt function

G2ptðtÞ ¼
Z

d3xΓαβhNβð~x; tÞN̄αð~0; 0Þi; ð2:3Þ

with Γ ¼ ð1þ γ0Þ=2, and the ratio of the two correlation
functions,

RXðt; t0Þ ¼
G3pt;Xðt; t0Þ
G2ptðtÞ

: ð2:4Þ

Performing the standard spectral decomposition of the two
correlation functions and taking all times t, t0 and t − t0 to
be large, it is straightforward to show that the ratio RX goes
to a constant. This constant is the forward matrix element
hNð~p ¼ 0ÞjOXjNð~p ¼ 0Þi=2MN called the nucleon charge
gX. In addition there are exponentially suppressed correc-
tions from resonances and multihadron states that have the
same quantum numbers as the nucleon. For sufficiently
small pion masses the dominant multihadron states are two-
particle nucleon-pion states with the nucleon and the pion
having opposite momenta. Taking into account only these
corrections the asymptotic behavior of the ratio reads

RXðt; t0Þ ¼ gX

�
1þ

X
~pn

ðbX;ne−ΔEnðt−t0Þ þ ~bX;ne−ΔEnt0

þ ~cX;ne−ΔEntÞ
�
: ð2:5Þ

According to our assumptions about the finite spatial
volume the momenta are discrete and the sum runs over

all momenta allowed by the boundary conditions. ΔEn ¼
ENπ;n −MN is the energy gap between the nucleon-pion
state and the ground state. For weakly interacting pions
ENπ;n equals approximately the sum EN;n þ Eπ;n of the
nucleon and pion energy. The coefficients bX;n, ~bX;n and
~cX;n in (2.5) are dimensionless ratios of various matrix
elements involving the nucleon interpolating fields and the
operator OX.

3 The projection matrices Γ0
X in Table I are

chosen such that the leading constant in RX is simply the
nucleon charge. Other conventions differing from ours by a
factor of 2 and/or a factor i can be also be found in the
literature. Such a choice modifies the overall constant in a
trivial way, but it has no effect on the coefficients in (2.5).

B. The chiral effective theory

The correlation functions defined in the previous section
and their ratio can be computed in chiral perturbation
theory. In fact, the 2-pt function has already been computed
in Ref. [12]; here we present the results for the 3-pt
functions and the ratio RX. We carry over the setup used
for computing the 2-pt function and summarize only very
briefly a few formulas. For details the reader is referred
to Ref. [12].
The calculations are performed to leading order in the

chiral expansion in the covariant formulation of baryon
ChPT [14,15]. To that order the chiral effective Lagrangian

consists of two parts only, Leff ¼ Lð1Þ
Nπ þ Lð2Þ

ππ . Expanding
this Lagrangian in powers of pion fields and keeping
interaction terms with one pion field only we obtain

Leff ¼ Ψ̄ðγμ∂μ þMNÞΨþ 1

2
πað−∂μ∂μ þM2

πÞπa

þ igA
2f

Ψ̄γμγ5σ
aΨ∂μπ

a: ð2:6Þ

The nucleon fieldsΨ ¼ ðp; nÞT and Ψ̄ ¼ ðp̄; n̄Þ contain the
Dirac fields for the proton p and the neutron n. MN , Mπ

denote the nucleon and pion masses, while gA and f are the
axial charge and the pion decay constant. To be precise
these are the chiral limit values, but to LO they can be
replaced by their values at the physical pion mass.
The expressions for the nucleon interpolating fields in

ChPT are also known [16]. To LO and up to one power in
pion fields one finds

NðxÞ ¼ ~α

�
ΨðxÞ þ i

2f
πaðxÞσaγ5ΨðxÞ

�
; ð2:7Þ

TABLE I. The projection matrices Γ0
X entering the definition

(2.1), with Γ ¼ ð1þ γ0Þ=2 and k, l, m ¼ 1, 2, 3 (spatial indices
only).

X V0 Ak Tkl S

Γ0
X Γ Γγkγ5 iϵklmΓγ5γm Γ

2The results in Sec. II C assume a slightly simpler form for the
averaged correlator than for the one with fixed spatial compo-
nents. However, the final results for the nucleon-pion-state
contribution are the same in both cases.

3The coefficient ~cX;n in the ratio (2.5) is proportional to
the excited-to-excited-state matrix element hNð~pnÞπð−~pnÞjOXj
Nð~pnÞπð−~pnÞi. Contributions involving such matrix elements
with different momenta in the initial and final nucleon-pion state
will be ignored throughout this paper.
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N̄ð0Þ ¼ ~β�
�
Ψ̄ð0Þ þ i

2f
Ψ̄ð0Þγ5σaπað0Þ

�
: ð2:8Þ

These are the effective fields for local nucleon interpolating
fields composed of three quarks without derivatives
[17,18]. The interpolating fields do not necessarily need
to be pointlike; “smeared” fields map to the same chiral
expressions provided two conditions are met: (i) the
smearing procedure is compatible with chiral symmetry
and (ii) the extension of the smeared fields (“smearing
radius”) is small compared to the Compton wavelength of
the pion. In that case smeared fields can be mapped onto
point like fields in ChPT just like their pointlike counter-
parts at the quark level [12,19]. However, the LECs ~α, ~β
entering the chiral expression in (2.7) are different. If the
same interpolating fields are used at both source and sink
we have ~α ¼ ~β.
For the computation of the 3-pt functions we need the

expressions for the vector and axial vector currents, the
scalar density and the tensor. The first three are obtained
from the known effective Lagrangian in the presence of
external source fields for the currents and densities [14].
Taking derivatives with respect to the external fields
for vector and axial vector current we obtain from the

Lagrangian Leff ¼ Lð1Þ
Nπ þ Lð2Þ

ππ the expressions

Va
μ ¼ Ψ̄γμσ

aΨ −
gA
f
ϵabcπbΨ̄γμγ5σ

cΨ − 2iϵabc∂μπ
bπc;

ð2:9Þ

Aa
μ¼gAΨ̄γμγ5σ

aΨ−
1

f
ϵabcπbΨ̄γμσ

cΨ−2if∂μπ
a: ð2:10Þ

The first two terms in each expression on the right-hand

side stem from Lð1Þ
Nπ , and the remaining one from Lð2Þ

ππ . For
the scalar density Sa we obtain a vanishing contribution:

Lð1Þ
Nπ does not depend on the scalar source field and the

contribution from Lð2Þ
ππ vanishes identically in SU(2) ChPT.

The leading nonvanishing term stems from the higher-order

Lagrangian Lð2Þ
Nπ . Following the notation in Ref. [20] we

obtain

Sa ¼ −4Bc5ψ̄σaψ : ð2:11Þ

The prefactor is a product of two LECs: B is the familiar
LEC proportional to the quark condensate that enters also

Lð2Þ
ππ . The coefficient c5 is a LEC in Lð2Þ

Nπ and has mass
dimension −1 such that Bc5 is dimensionless. To the order
we are working here we will find gS ¼ −4Bc5, see below.
Mesonic ChPT with a tensor source field has been

constructed in Ref. [21], but the generalization to covariant
baryon ChPT is, to our knowledge, missing. However,
following the construction steps in Ref. [20] it is

straightforward to obtain the tensor in baryon ChPT.
Some details are summarized in the Appendix; here we
just quote the final result. To leading chiral dimension we
find only one term for the nonsinglet tensor in ChPT,

Ta
μν ¼ −4Bc8ψ̄σμνσaψ : ð2:12Þ

In analogy to the scalar density we have chosen to
write the LEC as the product of 4B and an unknown
LEC c8 associated with the tensor field. The product is
dimensionless and will be identified with the tensor charge
in the next section. Obviously, the expression in (2.12)
transforms as a tensor field. However, it is important that
this is the only tensor contributing to leading chiral
dimension.

C. The 3-pt functions in ChPT

With the expressions (2.6)–(2.12) it is straightforward
to compute the 3-pt functions perturbatively in ChPT. To
leading order only the diagram depicted in Fig. 1 leads to
the single-nucleon-state contribution GN

3pt;X, and we obtain

GN
3pt;X ¼ gXGN

2pt: ð2:13Þ

GN
2pt ¼ 2αβ� exp ð−MNtÞ denotes the leading single-

nucleon-state contribution in the 2-pt function [12], and
we made the identification gS ¼ −4c5B and gT ¼ −4c8B as
mentioned before.
Figure 2 shows the diagrams with a nonzero

nucleon-pion-state contribution to the 3-pt functions.
Figures 2(a)–2(h) contribute to all four correlators
(X ¼ V, A, T, S). Figures 2(i)–2(l) contribute to both the
vector and axial vector current, and the remaining four
diagrams [Figs. 2(m)–2(p)] contribute to the vector current
only. It will be convenient to write the nucleon-pion-state
contribution GNπ

3pt;X in the form (we drop the subscript n on
the coefficients in this section)

GNπ
3pt;X ¼ GN

3pt;X

X
~pn

ðbXe−ΔEnðt−t0Þ þ ~bXe−ΔEnt0 þ cXe−ΔEntÞ:

ð2:14Þ

As already mentioned, vector current conservation implies
that the 3-pt function is given by the conserved charge
times the 2-pt function. In terms of the coefficients in (2.14)
this statement reads

FIG. 1. Leading Feynman diagram for the 3-pt function.
Squares represent the nucleon interpolating fields at times t
and 0, the diamond stands for the operator insertion at time t0.
Solid lines represent nucleon propagators.
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bV0
¼ ~bV0

¼ 0; cV0
¼ c2pt: ð2:15Þ

We have checked this result explicitly, and it provided a
nontrivial test on the programs we have written to compute
the diagrams for general fields OX and Γ0

X.
To quote the results for X ¼ A, T, S we introduce some

shorthand notation. Since some overall factors are common
to all coefficients we write the coefficients according to

bX ¼ 1

16ðfLÞ2EπL

�
1 −

MN

EN

�
BX; ð2:16Þ

cX ¼ 1

16ðfLÞ2EπL

�
1 −

MN

EN

�
CX: ð2:17Þ

In our calculation we explicitly found

~bX ¼ bX ð2:18Þ

for all correlators, so we need to quote only bX. Note that
the coefficients vanish if the momentum of the nucleon
(and the pion) is zero. This has to be the case since the
nucleon-pion state with both particles at rest does not
contribute to the correlators for symmetry reasons.
For the “reduced” coefficients CX we find the following

results:

CA ¼ ðḡA − 1Þ2 2
3

�
MN

EN
−
1

2

�
; ð2:19Þ

CT ¼ ðḡA − 1Þ2 1
3

�
2 −

MN

EN

�
; ð2:20Þ

CS ¼ ðḡA − 1Þ2
�
−
MN

EN

�
: ð2:21Þ

For notational simplicity only we have introduced the
combination

ḡA ¼ gA
ENπ þMN

ENπ −MN
; ENπ ¼ EN þ Eπ; ð2:22Þ

which appears also in the results for the coefficients BX,

BA ¼ 8

3
ðḡA − 1Þ

�
ḡA −

1

2
gA

M2
π

2EπMN −M2
π

�

− 4

�
ENπ þMN

ENπ −MN
−

1

gA

�
; ð2:23Þ

BT ¼ 8

3
ðḡA − 1Þ

�
ḡA þ 1

4
gA

M2
π

2EπMN −M2
π

�
; ð2:24Þ

BS ¼ 4ðḡA − 1Þ
�
ḡA þ 1

2
gA

M2
π

2EπMN −M2
π

�
: ð2:25Þ

The axial vector correlation function was also calculated in
Ref. [13] using heavy baryon (HB) ChPT. If we expand
EN ∼MN þ p2=2MN in our result for the axial vector
current and drop all but the dominant terms we reproduce
the result in Ref. [13].
Taking the ratio of the 3-pt and 2-pt function we find RX

given by the form anticipated in (2.5), with the coefficients

~cX ¼ cX − c2pt: ð2:26Þ

FIG. 2. Feynman diagrams for the LO nucleon-pion contribution in the 3-pt functions. Circles represent a vertex insertion at an
intermediate space time point, and an integration over this point is implicitly assumed. The dashed lines represent pion propagators.
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The coefficient stemming from the 2-pt function reads [12]

c2pt ¼
1

16ðfLÞ2EπL

�
1 −

MN

EN

�
C2pt;

C2pt ¼ 3ðḡA − 1Þ2: ð2:27Þ

The coefficients bX, ~cX depend on two LECs only, f and
gA, the coefficients BX, ~CX depend only on gA. The LECs
associated with the interpolating field, on the other hand,
cancel in the ratio. Thus, the LO result we have found
here is universal and applies to pointlike and smeared
interpolating fields. However, at the next order in the chiral
expansion this universality property will be lost.
The ratios bX=bX0 and ~cX=~cX0 are related and depend

only on gA. Since gA is known rather well from phenom-
enology our LO calculation makes concrete predictions for
the relative size of the nucleon-pion-state contributions.
These relations are particularly simple in the HB limit,
where we find the equality

bHB
A ¼ −~cHB

A ð2:28Þ

for the coefficients in the axial vector case and, in addition,

bHB
A ¼ bHB

T ¼ 2

3
bHB
S ; ~cHB

A ¼ ~cHB
T ¼ 2

3
~cHB
S ; ð2:29Þ

relating them to the coefficients for the tensor and scalar.
We would thus conclude that the nucleon-pion-state con-
tributions are equal for the axial vector and the tensor, and
50% larger for the scalar. Away from the heavy baryon limit
the simple relations (2.29) will be modified; see the next
section.
A final comment concerns the summation over the lattice

momenta in (2.5). Momenta that are related by the
symmetries of the spatial lattice lead to the same contri-
bution; hence it is convenient to sum over the absolute
value pn ¼ j~pnj. Imposing periodic boundary conditions,
the absolute value can assume the values pn ¼ ð2π=LÞ ffiffiffi

n
p

,
n≡ n21 þ n22 þ n23, with the nk being integers. Therefore, in
the ratio we can perform the replacement

X
~p

→
X
pn

mn; ð2:30Þ

where the multiplicities mn count the number of vectors ~pn
with the same pn. Multiplicities for n ≤ 20 are given in

Ref. [22] (for convenience we summarize the first eight in
Table II).

III. IMPACT ON LATTICE CALCULATIONS
OF THE NUCLEON CHARGES

A. Preliminaries

In the following we want to estimate the impact of the
nucleon-pion-state contribution on the determination of the
various charges in lattice QCD simulations. Two methods
are widely used, the plateau and the summation method.
Before considering them in the next two sections a few
preliminary remarks need to be made.
Our result for the ratio RX can be written as

RXðt; t0Þ ¼ gX

�
1þ

X
n≤nmax

bX;nðe−ΔEnðt−t0Þ þ e−ΔEnt0 Þ

þ ~cX;ne−ΔEnt

�
; ð3:1Þ

where we used Eq. (2.18). The coefficients bX;n, ~cX;n are
dimensionless and depend on four independent dimension-
less parameters: gA, f=MN , Mπ=MN and MπL. To leading
order in the chiral expansion we can use the physical
values for the two LO LECs, i.e. we set gA ¼ 1.27 and
f ¼ fπ ¼ 93 MeV. Since we are mainly interested in RX
for physical pion masses we fix the pion and nucleon mass
to their physical values; thus, we take Mπ=MN ¼ 140=940
and f=MN ¼ 93=940 if not stated otherwise.
The ratio RX also depends on nmax, the upper limit for the

number of states taken into account in the ratio. In ChPT
nmax is essentially determined by insisting on a sufficiently
small expansion parameter pn=Λχ in (finite volume) ChPT,
with Λχ typically identified with 4πfπ [22]. In Ref. [12]
the condition pnmax

=Λχ ¼ 0.3 was imposed for a reasonably
well behaved chiral expansion, and we adopt this choice in
the following as well. This bound translates into nmax ¼ 2
and 5 for MπL ¼ 4 and 6, respectively. A second reason
for this particular bound is that the energy ENπ;nmax

of the
nucleon-pion states satisfying it is sufficiently well below
the energy of the first resonance state with an expected
energy of about 1.5MN . In that case we may ignore mixing
effects with this resonance state that is not included as a
degree of freedom in the chiral effective theory.
Obviously there is some arbitrariness in imposing a

bound on the momenta and the values for nmax following
from it. In the end nmax must be large enough such that the
contribution from the states omitted in the ratio RX is small
enough that it can be ignored. This depends essentially on
the times t and t0 that govern the exponential suppression
in RX. In Table III we have collected three examples for
bounds on the momentum and the associated values nmax.
Two of the bounds imply energies ENπ;nmax

above the
energy of the first resonance state. Going to such high

TABLE II. Multiplicities mn in Eq. (2.30) for n ≤ 8 (see
Ref. [22]).

n 0 1 2 3 4 5 6 7 8

mn 1 6 12 8 6 24 24 0 12
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energies will give some indication about the impact of the
nucleon-pion states; still, as long as the resonance is not
included in the effective theory the results should be
interpreted with care.

B. Impact on the plateau method

The excited-state contribution in RX is minimal for the
operator insertion time in the middle between source and
sink. Thus we may take the “midpoint” value RXðt; t=2Þ
as an estimate for the nucleon charge gX. This midpoint
method is essentially equivalent to what is called “plateau
method,” so we will use this terminology here as well.
Figure 3 shows RXðt; t=2Þ=gX, the plateau method

estimate divided by the charge. Without the Nπ contribu-
tion this ratio would be equal to 1, and the deviation from
this value is the relative error in percent caused by the Nπ
contribution. Plotted are the results for all three charges
(X ¼ A, T, S) for two values of MπL (4 and 6). The
following observations can be made:

(i) The differences between the results for MπL ¼ 4
andMπL ¼ 6 are very small. These differences stem

from the fact that the energy interval of the nucleon
pion states that we consider, ½MN þMπ; ENπ;nmax

�,
contains only 2 and 5 states for MπL ¼ 4 and 6,
respectively. In infinite volume there will be states
to any energy, so some finite-volume effect in the
nucleon-pion-state contribution is expected. Still, it
is perhaps somewhat surprising that the differences
between MπL ¼ 4 and MπL ¼ 6 are so small.

(ii) The results for the axial vector and the tensor charge
are very close, and the result for the scalar charge is
about 50% larger. This is in good agreement with the
expectation (2.29) for the coefficients in the heavy
baryon limit.

(iii) All three curves in Fig. 3 are above 1, so the
nucleon-pion-state contribution leads to an overesti-
mation of the three charges.

As an illustration of the pion-mass dependence Fig. 4
shows the results for the pion mass Mπ ¼ 200 MeV and
MπL ¼ 4. In this case the bound pnmax

=Λχ ¼ 0.3 on the
momenta leads to nmax ¼ 1, so only the nucleon-pion state
with the smallest nonzero momentum is taken into account.
While the nucleon-pion-state contribution for the axial and
the tensor charge are still roughly the same and smaller
compared to the scalar, the absolute size is about a factor
of 1=2 smaller compared with the results for the physical
pion mass.
Figure 5 shows the dependency of the results on nmax for

the axial vector ratio. The results are shown for the three
nmax values specified in Table III and for MπL ¼ 4 (the
counterparts for MπL ¼ 6 lie essentially on top of the
curves in Fig. 5). The result for the lowest nmax starts to be
the dominant part of the Nπ contribution at about 2 fm.
Recall that the smallest nmax corresponds to the lower tail of

TABLE III. nmax and ENπ;nmax
as a function of pnmax

=Λχ ; see
main text.

nmax
pnmax
Λχ

MπL ¼ 4 MπL ¼ 6 ENπ;nmax
MN

0.3 2 5 ≈1.35
0.45 5 12 ≈1.6
0.6 10 22 ≈1.9

1.0 1.5 2.0 2.5
1.00

1.02

1.04

1.06

1.08

1.10

1.12

FIG. 3. The plateau estimate RXðt; t=2Þ normalized by gX for all
three charges (X ¼ A in black, T in blue, S in red). Results for
Mπ ¼ 140 MeV and MπL ¼ 4 (solid lines) and MπL ¼ 6
(dashed lines). nmax is according to the first row in Table III.

1.0 1.5 2.0 2.5
1.00

1.02

1.04

1.06

1.08

1.10

1.12

FIG. 4. The plateau estimate RXðt; t=2Þ normalized by gX for all
three charges (X ¼ A, T, S, same color code as in Fig. 3). Results
for Mπ ¼ 200 MeV, MπL ¼ 4 and nmax ¼ 1.
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the nucleon-pion states that ends below the first resonance.
Apparently, this lower tail does not capture properly the Nπ
contribution at and below 1.5 fm where it only makes about
one half or even less of the Nπ contribution with the
largest nmax.
Figure 5 tells an important message: Unless the source-

sink separation is larger than about 1.5 fm the nucleon-pion
stateswith energies above the first resonance state contribute
significantly to the ratio. Therefore, the impact of this
resonance needs to be included before definite conclusions
about the overall excited-state contamination in the ratio can

be drawn. Still, unless there are large cancellations caused by
the resonance state, we may estimate theNπ contribution to
gA to be at the þ5% to þ10% level.
Figure 6 is the analogous plot for the ratio RS. It looks

qualitatively the same as Figure 5, but the size of the
corrections is about twice as large compared to the axial
vector case. TheNπ contribution to RT (not shown) is about
25% larger than the corresponding one to RA.

C. Impact on the summation method

Suggested originally in Ref. [23], the summation method
was first applied in Ref. [24] in the determination of gA. The
main observation underlying this method is that the ratio
RXðt; t0Þ apparently has a stronger exponential suppression
once the sum over all insertion times t0 is taken. The
asymptotic behavior anticipated in [24] reads4

SAðtÞ≡
Xt

t0¼0

RAðt; t0Þ → gA½1þ Oðe−ΔEtÞ�t

þ constþ Oðe−ΔEtÞ: ð3:2Þ

Here ΔE denotes the energy gap between the ground and
first excited state. Without the excited-state contribution
the sum shows a simple linear t dependence with the slope
given by the charge. The presence of excited states results
in exponentially suppressed corrections. In practice the
slope is obtained by fitting a linear function to lattice data
for various sink times t.
With the results for the Nπ contribution to the ratio

RXðt; t0Þ we can study their impact on the summation
method. Since our underlying space time manifold here is
continuous the sum in (3.2) is replaced by the integral and
the slope can be computed directly by taking the time
derivative. However, one caveat needs to be kept in mind:
SXðtÞ involves the 3-pt function at short time differences
t − t0 and t0, and these are not properly captured by the
chiral effective theory. Even though we can compute the
nucleon-pion-state contribution to SXðtÞ it is unclear how
much their contribution is distorted by the short-distance
contributions to SXðtÞ.
That being said, we consider the generalized sum

SXðt; tmÞ introduced in Ref. [25], where the sum (integral)
over t0 is taken over the interval ½tm; t − tm�, with tm ≤ t=2.
For tm sufficiently large the nucleon-pion-state contribution
is expected to give the dominant excited-state correction
to SXðt; tmÞ, and it can be computed within ChPT. In the
end we can send tm to zero bearing in mind the caveat
mentioned before.
With the result for the ratio RX in (3.1) the integral

SXðt; tmÞ ¼
R t−tm
tm dt0RXðt; t0Þ reads
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FIG. 6. The plateau estimates RSðt; t=2Þ normalized by gS for
Mπ ¼ 140 MeV, MπL ¼ 4 and the three different nmax values
specified in Table III (same color code as in fig. 5).
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FIG. 5. The plateau estimates RAðt; t=2Þ normalized by gA for
Mπ ¼ 140 MeV, MπL ¼ 4 and the three different nmax values
specified in Table III (nmax ¼ 2 in black, nmax ¼ 5 in blue and
nmax ¼ 10 in red).

4This is a lattice QCD formula. The summation is over the
discrete operator insertion times and gA denotes the bare axial
charge.
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SXðt; tmÞ ¼ gX

��
1þ

X
n≤nmax

~cne−ΔEnt

�
ðt − 2tmÞ

þ
X
n≤nmax

2bn
ΔEn

ðe−ΔEntm − e−ΔEnðt−tmÞÞ
�
: ð3:3Þ

Setting tm equal to zero we recover the t dependence in
(3.2). As a function of t (keeping tm fixed) the slope
sXðt; tmÞ≡ dSXðt; tmÞ=dt is given by

sXðt; tmÞ ¼ gX

�
1þ

X
n≤nmax

~cnf1 − ΔEnðt − 2tmÞge−ΔEnt

þ
X
n≤nmax

2bne−ΔEnðt−tmÞ
�
: ð3:4Þ

Note that the dependence of sXðt; tmÞ on tm decreases the
larger t is, and it vanishes in the infinite t limit, as expected.
Figure 7 shows sAðt; tmÞ=gA for tm ¼ 0.5 fm and

t > 2tm. We have chosen this value to admit a comparison
with the plateau method result, which is also plotted in
Fig. 7. Note that for tm ¼ t=2 both methods agree
since sAðt; t=2Þ ¼ RAðt; t=2Þ. For t > tm, however, the
Nπ contribution decreases more rapidly for the summation
method due to the suppression caused by the exponen-
tials exp½−ΔEnðt − tmÞ�.
The results look qualitatively the same if tm is changed.

The result for tm → 0 is also shown in Fig. 7, and the curves
corresponding to tm between 0 and 0.5 fm lie between the
two curves shown in the figure. Two main conclusions can
be drawn from these results:

(i) The Nπ contribution leads to an overestimation of
the axial charge since sAðt; tmÞ=gA is larger than one.
The larger tm the larger the overestimation, even
though the dependence on tm vanishes rapidly.

(ii) The Nπ contribution to the summation method is
smaller compared to the plateau method. How much
smaller depends on t, but for the range covered in
Fig. 7 the summation method estimate is about 30%
to 60% smaller than the plateau estimate.

Figure 8 shows the dependence on nmax. Not surpris-
ingly, we find the same qualitative behavior as for the
plateau method, cf. Fig. 5. However, the lower tail of the
Nπ contribution (nmax ¼ 2) forms the dominant part of
the entire contribution at significantly smaller sink times.
The same observations can be made for the tensor and

scalar charges. The results are qualitatively the same as in
Figs. 7 and 8, but the size of the Nπ correction is slightly
larger for the tensor and about 50% larger for the scalar.
One needs to be careful in drawing conclusions from the

results found here to actual lattice QCD data. As mentioned
before, in practice the derivative with respect to sink time is
obtained by a linear fit to data for sink times with finite
differences. In addition, the statistical errors are usually
much smaller for the data at small sink times. Thus, the fit
can be significantly weighted by the data for the smallest
source-sink separation [26] and may match the slope at the
smallest sink time used in the fit.
Moreover, knowing the nucleon-pion-state contribution

to the slope for vanishing tm might be of limited use since
the short-distance contributions to the 3-pt function may
have a significant impact on the slope. An observation in
support of this is the following: Eq. (3.3) seems to suggest
that the dominant Nπ contribution to the slope stems from
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FIG. 7. The summation method estimate sAðt; tmÞ normalized
by gA forMπ ¼ 140 MeV,MπL ¼ 4 and tm ¼ 0 (solid blue line)
and tm ¼ 0.5 fm (dashed blue line). For comparison the plateau
method estimate RAðt; t=2Þ=gA is also shown (black solid line).
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FIG. 8. The summation method estimate sAðt; 0Þ normalized by
gA for Mπ ¼ 140 MeV, MπL ¼ 4 and the three different nmax
values specified in Table III (nmax ¼ 2 in black, nmax ¼ 5 in blue
and nmax ¼ 10 in red).
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the ~cX;n correction, since this contribution modifies directly
the prefactor of (t − 2tm). This, however, is not the case.
The bX;n contribution in (3.4) dominates the slope, but this
is also the contribution that will be affected by the short-
distance contribution not included in ChPT.

IV. CONCLUDING REMARKS

Some collaborations have already performed lattice sim-
ulations of the various nucleon charges on ensembles with a
pion mass at or near the physical value [2,25,27,28].
Applying the conclusions found here to these numerical
results is hampered mainly by the small source-sink sepa-
rations t in these simulations. In most cases the maximal
source-sink separation tmax is about 1.2 fm, sometimes even
smaller, but in all cases not much above 1.5 fm.
As we have seen, for such small source-sink separations

nucleon-pion states with energies up to about twice the
nucleon mass contribute significantly to the ratios RX. This
uncomfortably high value is way above the energy of the
first resonance states. These were not included as degrees of
freedom in our chiral effective theory, but presumably these
states have a non-negligible contribution to the ratios at small
t. Some qualitative features of our results may still survive
the omission of the resonances (overestimation of all charges
by both the plateau and the summation method, a larger Nπ
contribution in the scalar charge), but this is not guaranteed.
On the other hand, the calculation presented here can be

improved to remedy its limitations. A way to include the
Roper resonance in the chiral effective theory has been
known for some time [29]. The Δ resonance too can be
incorporated in the effective theory [30–32]. With these
additional dynamical degrees of freedom in the theory one
may expect to be able to assess the excited-state contribu-
tions to the nucleon charges at much smaller source-sink
separations with smaller and controllable errors. Whether
contact with present-day lattice simulations can be made
remains to be seen though. Obviously, lattice simulations
with larger source-sink separations than used today would
help in this respect.
Compilations of the numerous lattice calculations of gA

for larger than physical pion masses can be found in various
recent reviews [7–9]. In almost all cases the lattice estimate
is smaller than the experimental value. This underestima-
tion is more pronounced for heavier pion masses and seems
to ease for Mπ approaching its physical value. Whether the
Nπ contribution plays some role in this cannot be said for
sure. Still, the possibility that a diminishing discrepancy
with the experimental value is caused by more than one
source of error that partially cancel each other for a
decreasing pion mass should not be discarded right away.
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APPENDIX: THE TENSOR FIELD
IN BARYON CHPT

Mesonic chiral perturbation theory with a tensor source
field has been constructed in Ref. [21]. Generalizing the
familiar procedure employed by Gasser and Leutwyler in
Ref. [33] a source term for the tensor field is added to the
massless QCD Lagrangian. This source term is mapped to
ChPT taking into account its transformation properties
under chiral symmetry, parity and charge conjugation.
In terms of chiral fields the source term has the form5

Ltensor ¼ ψ̄RtμνσμνψL þ ψ̄Lt
†
μνσμνψR ðA1Þ

with the matrix valued source field tμν. It couples left- and
right-handed fields like the source term χ involving the scalar
and pseudoscalar densities. Under chiral transformations R,
L the source term is invariant if the source field transforms
according to tμν → RtμνL†, t†μν → Lt†μνR†. Similarly, the
tensor source field needs to be even under parity and odd
under charge conjugation for (A1) to be invariant under these
transformations as well. Based on these symmetry properties
the source term can be mapped to ChPT. Postulating the
power counting tμν ∼ Oðp2Þ the leading terms start at Oðp4Þ
since at least two derivatives are needed to form a Lorentz
scalar with the tensor source. The complete Lagrangian
through Oðp6Þ can be found in [21].
For the construction of the chiral Lagrangian in baryon

ChPT following Ref. [20] it is useful to introduce the
combinations

tμν;� ¼ u†tμνu† � ut†μνu; ðA2Þ

with u being the standard chiral field containing the pion
fields. The reason for this definition is that these fields
transform as all the other external source fields under chiral
symmetry, namely tμν;� → htμν;�h−1, where h denotes the
compensator field associated with the nonlinear realization
of chiral symmetry [34,35].
Invariants under chiral symmetry are therefore easily

constructed. Following Sec. 2.2 of Ref. [20] any invariant
monomial in the effective Nπ Lagrangian is of the generic
form

ψ̄Aμν…Θμν…ψ þ H:c: ðA3Þ

5In this appendix we assume the Minkowski space-time metric
in order to match the conventions in Refs. [20,21].
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Here Aμν… is a product of pion and/or external fields and
their covariant derivatives, while Θμν… is a product of a
Clifford algebra element and a totally symmetrized product
of covariant derivatives acting on the nucleon fields. These
objects obey various restrictions stemming from chiral
symmetry. In addition, equations of motion can be used
to remove terms in the chiral Lagrangian that are redundant.
Here we are interested only in the leading terms involving

the tensor source field only once. The simplest terms with
lowest chiral dimension are obtained with Aμν ¼ tμνþ . Since
the tensor source is antisymmetric in the Lorentz indices
there is only one independent term Θμν ¼ σμν one can
contract Aμν with. Therefore, to leading chiral dimension the
external source term (A1) is mapped onto

Lð2Þ
tensor ¼ c8ψ̄t

μν
þ σμνψ þ c9ψ̄htμνþ iσμνψ : ðA4Þ

Taking the derivative with respect to the tensor source field
and expanding in powers of pion fields it is straightforward
to derive the expression (2.12) for the tensor field.
The power counting for the tensor source term deserves a

comment. We assumed the source term to be of Oðp2Þ.
Consequently, (A4) has chiral dimension 2 as indicated by

the superscript. In the mesonic chiral Lagrangian the source
term starts to contribute at chiral dimension 4. Therefore,
the leading tensor field proportional to ϵabc∂μπ

b∂νπ
c

stemming from it can be ignored for our purposes.
As already stated in [21], the power counting for the

tensor is not motivated by physical arguments. In contrast
to the counting rules for the scalar and pseudoscalar
densities there is no physical realization of the symmetry
breaking by a tensor in the QCD Lagrangian that can be
invoked to motivate the power counting tμν ∼ Oðp2Þ.
Other choices are possible, and any choice will affect
the way operators with a different number of tensor
sources are organized in the chiral expansion [21]. Still,
irrespective of any particular counting rule the Nπ
Lagrangian in (A4) will still be of smaller chiral
dimension than the mesonic part. The reason is simple:
The two Lorentz indices of the tensor source can be
contracted with σμν in the Nπ Lagrangian, while two
covariant derivatives of the pion field are necessary in the
mesonic Lagrangian. The latter is therefore of chiral
dimension 2 higher. Essentially the same argument has
been given in Ref. [36] where an external symmetric
tensor field was coupled to the QCD Lagrangian.
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