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We develop methods to calculate the electroweak gauge boson contribution to the effective Higgs
potential in the context of composite Higgs models, using lattice gauge theory. The calculation is analogous
to that of the electromagnetic mass splitting of the pion multiplet in QCD. We discuss technical details
of carrying out this calculation, including modeling of the momentum and fermion-mass dependence
of the underlying current-current correlation function, direct integration of the correlation function over
momentum, and fits based on the minimal-hadron approximation. We show results of a numerical study
using valence overlap fermions, carried out in an SU(4) gauge theory with two flavors of Dirac fermions in
the two-index antisymmetric representation.
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I. INTRODUCTION

Composite Higgs theories [1,2] have often been written
down as effective field theories, typically nonlinear sigma
models [3–5]. In one approach, the sigma model describes a
set of exactly massless Nambu-Goldstone bosons that live
in a coset manifold G=H. This set contains the Higgs
multiplet of the Standard Model (SM). The Higgs potential
then comes mainly from coupling to the electroweak gauge
bosons and to the top quark; this potential should induce
the Higgs phenomenon of the SM. If the SM’s gauge
symmetries are a subgroup of the unbroken symmetry H,
then the coupling to the SM’s gauge bosons will induce a
positive curvature at the origin of the Higgs potential, a
phenomenon known as vacuum alignment [6]. A negative
curvature, required in order to induce electroweak sym-
metry breaking, can then arise only from the top quark’s
contribution.
The sigma model is only an effective low-energy

description with the correct symmetry properties. A fuller
understanding of the dynamics requires an underlying,
ultraviolet-complete theory that gives rise to the nonlinear
sigma model at low energies. Several such proposals now
exist in the literature [7–10], including an effort to catalog
ultraviolet completions [11,12] that accommodate both a
composite Higgs and a partially composite top quark [13].
Within such an ultraviolet completion, lattice simula-

tions [14] can be used to determine low-energy constants
of the theory, including the radiative contributions of the
SM to the Higgs potential. In this paper, we present a lattice

calculation for the gauge bosons’ part of the Higgs
potential. This is given by1 [3,15,16]

Veff ¼ CLR

X
Q

trðQΣQ�Σ�Þ; ð1:1Þ

where Σ is the nonlinear field representing the multiplet
of pseudo-Nambu-Goldstone bosons that contains the
composite Higgs boson. The sum over Q runs over the
SUð2ÞL generators gTa

L and the hypercharge generator g0Y,
with g and g0 the corresponding coupling constants. In
accordance with vacuum alignment, the low-energy con-
stant CLR is positive [16,17], and the minimum of Veff ,
given by −CLRð3g2 þ g02Þ, is attained at hΣi ¼ 1.
In principle, CLR can be determined in a lattice calcu-

lation where the gauge bosons of both the new strong
interaction and of the electroweak interactions are present
as dynamical degrees of freedom. A more economical
approach, which avoids the introduction of electroweak
gauge bosons into the lattice simulation, is to obtain CLR in
terms of a correlation function of the ultraviolet theory,

CLR ¼
Z

∞

0

dq2q2ΠLRðq2Þ: ð1:2Þ

1This is the expression in the case of a coset of the form
SUðNÞ=SOðNÞ, which is relevant to the model considered here.
For other cosets, the general form is similar. The top-sector
contribution to the effective potential for the model of Ref. [8]
was worked out in Ref. [15]. A lattice calculation of this
contribution is more challenging.
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Here, ΠLRðq2Þ is the transverse part of the current-current
correlation function,

1

2
δabΠμνðqÞ ¼ −

Z
d4xeiqxhJLμaðxÞJRνbð0Þi; ð1:3Þ

ΠμνðqÞ ¼ ðq2δμν − qμqνÞΠLRðq2Þ þ qμqνΠ0ðq2Þ: ð1:4Þ

The chiral currents are

JLμa ¼ ψ̄γμð1 − γ5ÞTaψ ¼ Vμa − Aμa;

JRμa ¼ ψ̄γμð1þ γ5ÞTaψ ¼ Vμa þ Aμa; ð1:5Þ

where Ta are the isospin generators. In the chiral limit,
where the low-energy constant in Eq. (1.1) is defined, the
current correlator (1.3) is automatically transverse.
Our task is related to a classic problem in hadronic

physics. In quantum chromodynamics with two flavors,
the pions are pseudo-Nambu-Goldstone bosons, massless
in the chiral limit. The entire isotriplet gets most of its mass
from chiral symmetry breaking by the quark masses; the
charged pion gets an additional contribution from coupling
to electromagnetism, lifting it above the neutral pion.
DefiningΔm2

π ≡m2
π� −m2

π0
, we quote the sum rule derived

long ago by Das et al. [18],

Δm2
π ¼ −

3α

4πf2π

Z
∞

0

dq2q2ΠLRðq2Þjmq¼0: ð1:6Þ

This has served as the basis of lattice calculations of the
pion mass difference that have been quite successful
[19,20].2

We present here a lattice calculation of the quantity CLR
in the context of composite Higgs theories. We study an
SU(4) gauge theory with Nf ¼ 2 Dirac fermions in the
sextet representation of SU(4), which is the antisymmetric
two-index representation—a real representation. We have
studied this theory before [22], focusing on the phase
diagram of the lattice theory and its particle spectrum. This
theory is the first step toward a lattice simulation of the
UV-complete composite Higgs model proposed in Ref. [8],
in which five flavors of Majorana fermions in the sextet
representation of SU(4) give rise to a composite Higgs
within an SUð5Þ=SOð5Þ coset. The 5-Majorana theory can
be studied on the lattice, but it requires the use of methods
such as rational hybrid Monte Carlo (RHMC), which
increase the computational cost compared to the theory
with two Dirac fermions.3

As noted above, we require CLR in the massless limit. In
fact, ΠLRðq2Þ is an order parameter for the spontaneous
breaking of chiral symmetry. Since we use Wilson-clover
fermions in the action that generates gauge field configu-
rations, chiral symmetry is not restored in the limit where
the pion4 becomes massless (as long as the lattice spacing is
nonzero). Thus, we are led to use overlap fermions [23,24],
with exact chiral symmetry, to define correlation functions
calculated on the gauge field ensembles. In this mixed-
action theory, we can vary the valence (overlap) quark mass
while keeping the dynamical (Wilson-clover) mass fixed
and approach a chiral limit in the former.5

ΠLRðq2Þ may be modeled by retaining only the pion and
a1 poles in the axial channel and the ρ meson’s pole in the
vector channel. This is the minimal-hadron approximation6

(MHA),

ΠLRðq2Þ ≈
f2π
q2

þ f2a1
q2 þm2

a1

−
f2ρ

q2 þm2
ρ
: ð1:7Þ

In the chiral limit, one can use the Weinberg sum rules [27]
to eliminate fρ and fa1 , giving

ΠLRðq2Þ ≈
f2π
q2

m2
a1m

2
ρ

ðq2 þm2
a1Þðq2 þm2

ρÞ
; ð1:8Þ

and thus

CLR ≈ f2π
m2

a1m
2
ρ

m2
a1 −m2

ρ
log

�
m2

a1

m2
ρ

�
: ð1:9Þ

In the QCD case, the MHA misses the experimental value
of Δm2

π by 25%. Our numerical calculation of ΠLR enables
us to test the approximation (1.7) directly in the present
theory.
This paper deals more with technique than with results.

Hence, while we present numerical data for two different
lattice actions, we do not take either the continuum limit or
the chiral limit for the dynamical (“sea”) fermions. Indeed,
the two ensembles that we study produce values of CLR that
are in disagreement. As we have stated above, the theory
studied here is not quite an actual model for a composite
Higgs boson. This is why we stop short of an extrapolation
to the continuum limit, which would involve considerable
additional computation for a theory that is, after all, not of
direct physical interest.
Our paper is organized as follows. In Sec. II, we present

the technical aspects of our lattice simulations. We specify
2For an early lattice discussion, see Ref. [21].
3To construct SU(4) baryons that can couple linearly to the top

quark, one must also add Dirac fermions in the fundamental
(quartet) representation of SU(4). There are three flavors of them,
making the baryons into an antitriplet of ordinary color. The
properties of this model have been studied at length in
Refs. [8,15]. We do not consider these in the present paper.

4We use henceforth QCD terminology for the meson spectrum
of our SU(4) gauge theory.

5Previous calculations of ΠLRðqÞ in QCD and beyond
[19,25,26] have also used overlap (or domain-wall) fermions.

6We note that the location of the pole at q2 ¼ 0 does not
depend on the chiral limit; see Appendix B.
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the lattice action with which we generated configurations,
and we describe the measurement of ΠLRðq2Þ, defined via
overlap valence fermions, on these configurations. We then
proceed to our numerical work. We generated two ensem-
bles with different lattice actions; we present the ensembles
and their particle spectra in Sec. III. Once ΠLRðq2Þ is in
hand, the integration in Eq. (1.2) is straightforward, except
for handling the pole in ΠLR at q ¼ 0. We show one way to
do this in Sec. IV. In Sec. V, we demonstrate an alternative
method for calculation of CLR, fitting ΠLRðq2Þ to a rational
function inspired by the MHA. We find that the two
methods for extracting CLR produce results that agree well,
for each ensemble. Our conclusions are in Sec. VI.
We give some details about the lattice action in

Appendix A and review some current algebra in
Appendix B. In Appendix C, we describe an attempt to
reconcile our two ensembles using chiral perturbation theory.

II. LATTICE ACTION AND OVERLAP
VALENCE FERMIONS

A. Wilson-clover action with dislocation suppression

We generate ensembles of gauge configurations with the
lattice action,

S ¼ Splaq þ Sf þ SNDS: ð2:1Þ

Here, Splaq is the usual plaquette action for the fundamental
gauge fieldsUxμ. The fermion action Sf is comprised of the
conventional Wilson hopping term and a clover term [28],
where the gauge connection in both terms is constructed
from Uxμ in two steps: normalized hypercubic (nHYP)
smearing [29–31] followed by promotion to the sextet
representation. Finally, the term SNDS is a pure gauge term
designed to suppress dislocations in the dynamical gauge
field, in order to help eliminate spikes in the fermion force
and to ease the calculation of the overlap operator (see
Appendix A and Ref. [32]).
The action is identical to that used in our earlier study

[22], except for the introduction of the nHYP-dislocation
suppression (NDS) term. The gauge coupling is set by the
coefficients β and γ of the plaquette and NDS terms: at tree
level,

1

g20
¼ β

2Nc
þ γ

Nc

�
α1
3
þ α2 þ α3

�
; ð2:2Þ

where αi are the smearing parameters and we have adopted
a common γ for the three levels of smearing. Our smearing
parameters took the values ðα1; α2; α3Þ ¼ ð0.75; 0.6; 0.3Þ.
The theory contains two degenerate flavors of sea

quarks, the common bare mass of which is introduced
via the hopping parameter κ ¼ ð2m0aþ 8Þ−1. As is appro-
priate for nHYP smearing [33], the clover coefficient is set
to its tree-level value, cSW ¼ 1. Since the sextet is a real

representation of the gauge group, the global symmetry of
the continuum theory is SU(4), which breaks spontane-
ously to SO(4); in the lattice theory, on the other hand, the
Wilson term breaks the SU(4) explicitly to SO(4). As noted
in Ref. [22], the nHYP smearing procedure introduces
a small violation of the reality of the sextet gauge links.
This is a lattice artifact which breaks the degeneracies
expected by virtue of the SO(4) symmetry. We leave this
uncorrected in the generation of gauge configurations, but
we do apply a correction when we use the gauge configu-
rations to calculate fermionic observables. Thus, the
correlation functions of fermionic operators indeed satisfy
the SO(4) symmetry. Like other differences between sea
quarks and valence quarks, the effects of this correction will
disappear with the lattice spacing.

B. Overlap operator

For the valence quarks and their currents, we use an
overlap operator. Our implementation is as described in
Refs. [34–38]. The massless overlap operator is defined as

Dð0Þ ¼ R0

�
1þ dð−R0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d†ð−R0Þdð−R0Þ
p

�
: ð2:3Þ

Here, dðmÞ ¼ dþm, where d is a massless Wilson-Dirac
operator on the lattice. We choose one with nearest- and
next-nearest-neighbor interactions, plus a clover term; we
set R0 ¼ 1.2. Adding a valence fermion mass mv gives the
operator

DðmvÞ ¼
�
1 −

mv

2R0

�
Dð0Þ þmv: ð2:4Þ

We evaluate the correlation function inΠLR using improved
currents. The vector current is

Vμa ¼ q̄γμTa

�
1 −

aDð0Þ
2R0

�
q; ð2:5Þ

while the axial current is

Aμa ¼ q̄γμγ5Ta

�
1 −

aDð0Þ
2R0

�
q: ð2:6Þ

These currents are not conserved, and so the correlator of
each current has a quadratically divergent contact term.
Thanks to a chiral Ward identity, the quadratic divergence
cancels in the vector-axial difference.
In the actual computation of the correlator, we move

the overlap operator out of the currents and into the quark
propagator. We replace the currents (2.5)–(2.6) by point
currents and the quark propagator D−1 by the “shifted”
propagator [39,40]
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D̂−1ðmvÞ ¼
1

1 −mv=ð2R0Þ
�
D−1ðmvÞ −

1

2R0

�
: ð2:7Þ

We compute eigenvalues of the squared Hermitian Dirac
operator D†D with the Primme package [41]; these are
used to precondition the calculation of propagators.

C. Extraction of ΠLR

As noted in the Introduction, ΠLRðq2Þ is an order
parameter for chiral symmetry. Thanks to our use of
overlap fermions, this remains true on the lattice, with
the currents defined in the preceding subsection. In analogy
with Eq. (1.3), we define the lattice vacuum polarization via

1

2
δabΠlat

μνðqÞ ¼ −
X
x

eiqxhJLμaðxÞJRνbð0Þi: ð2:8Þ

We would like to decompose this as in Eq. (1.4). Lattice
artifacts, however, make the structure of Πlat

μνðqÞ more
complex,

Πlat
μνðqÞ ¼ PT

μνðqÞΠLRðqÞ þ PL
μνðqÞΠ0ðqÞ þ � � � ; ð2:9Þ

where PTðqÞ and PLðqÞ are lattice analogs of the transverse
and longitudinal projectors (see below). The dots represent
additional terms that are proportional to higher powers of
qμ (and of the lattice spacing) and that break rotational
invariance [42].
We deal with these lattice artifacts empirically, following

the method of Refs. [19,43]. For each lattice momentum q,
we do a fit to Πlat

μνðqÞ, treating ΠLR and Π0 as fit parameters.
This means that we form the χ2 function for each individual
momentum mode q,

χ2q ¼
X
μν

½Πlat
μνðqÞ − PT

μνðqÞΠLRðqÞ − PL
μνðqÞΠ0ðqÞ�2;

ð2:10Þ

taking the 16 Πlat
μν correlators as the quantities to be fit.

Here,

PT
μνðqÞ ¼ q̂2δμν − q̂μq̂ν;

PL
μνðqÞ ¼ q̂μq̂ν ð2:11Þ

are the transverse and longitudinal lattice projectors. In a
slight variation on the method of Ref. [19], we use q̂μ ¼
ð2=aÞ sinðqμa=2Þ in Eq. (2.11). As usual, qμ ¼ ð2π=LμÞnμ
for periodic boundary conditions with period Lμ.
The minimization of χ2q with respect to ΠLR and Π0

reduces to the simple weighted averages,

ΠLRðqÞ ¼
P

μνP
T
μνðqÞΠlat

μνðqÞ
3ðq̂2Þ2 ; ð2:12Þ

Π0ðqÞ ¼
P

μνP
L
μνðqÞΠlat

μνðqÞ
ðq̂2Þ2 : ð2:13Þ

The success of the decomposition is quantified by calcu-
lating

ΔðqÞ ¼
X
μν

q̂μq̂ν

�
1

q̂2
−

q̂νP
λq̂

3
λ

�
Πlat

μνðqÞ: ð2:14Þ

If Πlat
μν is truly a superposition of pure longitudinal and

transverse terms [with lattice projectors (2.11)], then Δ ¼ 0.
We find that the projection works well in our numerical
results, observing that Δ ≪ ΠLRðqÞ up to q2 ∼ 20. For qμ

oriented along the axes of the lattice, the projection is
satisfied exactly, that is, Δ ¼ 0 as expected.
Because of the transverse projector, ΠLRðqÞ is not

defined at q ¼ 0. For a finite volume, however, when
momenta are discrete, the momentum region around q ¼ 0
can give a significant contribution to the integral (1.2). We
handle this region by extrapolation from finite q, as will be
seen below.

III. ENSEMBLES AND SPECTRA

One aim of our study was to compare results for different
lattice approximations, and so we created ensembles of
configurations for two different values of the NDS coef-
ficient γ, with values of ðβ; κÞ chosen to give approximately
equal physical scales. We chose the gauge couplings
ðβ; γÞ ¼ ð7.8; 0.125Þ and (6.0, 0.25) and a lattice size of
123 × 24 sites. For each coupling, we performed a scan of
sea quark κ values. We measured the usual unquenched
(i.e., Wilson-clover) spectroscopic quantities—meson
masses and decay constants—as well as the Sommer
parameter r1 from the static potential. We then selected
one value of κ for each gauge coupling to use in the
calculation of ΠμνðqÞ.
We list the two ensembles in Table I and the measured

observables in Table II. As in our earlier work [22], the
quark massmq given in Table II is defined through the axial
Ward identity, which relates the divergence of the axial
current Aa

μ ¼ ψ̄γμγ5ðτa=2Þψ to the pseudoscalar density
Pa ¼ ψ̄γ5ðτa=2Þψ . At zero 3-momentum, we have

∂t

X
x

hAa
0ðx; tÞOai ¼ 2mq

X
x

hPaðx; tÞOai; t > 0;

ð3:1Þ

where Oa is a source at t ¼ 0, here taken to be a smeared
“Gaussian shell.” The critical value κc is determined
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through the vanishing of the quark mass mq. The decay
constant fπ has the continuum definition

h0jAa
μðxÞjπbðpÞi ¼ ipμfπδabeipx: ð3:2Þ

In the lattice calculation, it is extracted from the “raw”
value frawπ via [44]

fπ ¼ ð1–0.75κ=κcÞfrawπ : ð3:3Þ

The values of r1 are the same in the two ensembles,
indicating that the physical lattice size is the same; also, the
value of r1 shows that the spatial volumes are large enough
that confinement physics is undisturbed. Ensemble 2 is
somewhat closer to the massless limit than ensemble 1. The
chosen values of κ represent the lightest sea-quark masses
for which the hadronic observables do not show strong
effects of finite volume. Since we take the chiral limit,
below, by varying valence masses, we do not venture
toward lighter sea quarks. We omit further discussion of the
selection of κ values—the analysis is fairly standard, and
this is not the focus of our work.

We then computed ΠμνðqÞ using valence overlap fer-
mions on the two ensembles, for eight values of the valence
quark mass ranging from mv ¼ 0.01 to 0.10. We also
supplemented the Wilson-clover observables of Table II
with overlap spectra for these masses. The spectral calcu-
lations were separate from the calculations of ΠμνðqÞ since
the inversions used a Coulomb-gauge Gaussian source
rather than a point source. These mixed-action data are
collected in Tables III and IV.
We vary the valence quark mass into a regime much

lighter than the sea quark, and hence it gives us a handle for
checking for chiral logarithms and finite-volume effects. A
plot of m2

π=mv (see Fig. 1) shows a common plateau in this
ratio for mv ≳ 0.05 for the two ensembles, which have a
common scale r1. We note that in each ensemble the sea
pion lies comfortably in the plateau furnished by the
valence pion.
We can account for the deviations from this plateau using

next-to-leading-order (NLO) mixed-action chiral perturba-
tion theory (χPT). The steps needed to obtain the NLO
correction for the mass of the valence pion are similar to
those discussed in Appendix C for the case of the valence
pion’s decay constant. A fit to the data in Fig. 1 with free
parameters gives a valid description of the data.
The p-regime NLO χPT formula is comprised of an

infinite-volume chiral logarithm and a finite-volume

TABLE I. Parameters of the two ensembles we analyzed: gauge
coupling β, NDS coupling γ, hopping parameter κ (and κc for
comparison), lattice volume, and the number of saved configu-
rations. In both ensembles, configurations were separated by
four trajectories of unit length. In the runs of ensemble 1, the
acceptance was 90%, while in those of ensemble 2, it was 80%.
We determined κc by linear extrapolation of mq (see Table II) to
zero.

Ensemble 1 Ensemble 2

β 6.0 7.8
γ 1=4 1=8
κ 0.128 0.130
κc 0.1312 0.1314
Volume 123 × 24 123 × 24
Configurations 600 400

TABLE II. Measured observables for the two ensembles
described in Table I: Quark mass mq from the axial Ward
identity, meson masses mi, decay constant fπ , and Sommer
parameter r1. The spectra and fπ are constructed from the same
Wilson-clover fermions used in generating the ensembles.

Ensemble 1 Ensemble 2

mq 0.102(1) 0.048(1)
mπ 0.575(2) 0.392(3)
mρ 0.750(3) 0.617(8)
ma1 1.018(5) 0.831(13)
fπ 0.190(1) 0.140(3)
r1 3.09(5) 3.08(6)

TABLE IV. Valence overlap spectra for ensemble 2.

mv mπ mρ ma1 fπ

0.100 0.569(2) 0.763(3) 0.957(9) 0.173(1)
0.075 0.487(3) 0.701(5) 0.888(0) 0.159(1)
0.050 0.396(4) 0.651(6) 0.817(3) 0.142(1)
0.035 0.343(3) 0.620(9) 0.775(6) 0.130(1)
0.025 0.290(4) 0.615(12) 0.790(16) 0.120(2)
0.020 0.270(4) 0.613(11) 0.734(23) 0.113(2)
0.015 0.233(5) 0.601(18) 0.764(20) 0.107(2)
0.010 0.206(7) 0.600(17) 0.678(35) 0.099(3)

TABLE III. Valence overlap spectra for ensemble 1. mv is the
valence quark mass. Note that the order of the lines, here and
below, is from heavy to light valence quarks, toward the chiral
limit. We do not show results for mq, extracted from Eq. (3.1),
because it is equal to mv to the precision shown.

mv mπ mρ ma1 fπ

0.100 0.560(2) 0.745(4) 1.027(7) 0.175(1)
0.075 0.479(2) 0.690(5) 0.975(7) 0.162(1)
0.050 0.388(3) 0.636(7) 0.921(9) 0.149(1)
0.035 0.325(4) 0.608(10) 0.886(10) 0.140(2)
0.025 0.284(3) 0.617(11) 0.879(15) 0.135(2)
0.020 0.257(3) 0.621(9) 0.846(13) 0.128(2)
0.015 0.227(5) 0.629(33) 0.853(18) 0.127(2)
0.010 0.195(6) 0.617(12) 0.818(16) 0.120(3)
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correction. Because the parameters of the fit are poorly
determined, we do not know the relative size of these
pieces, nor indeed can we tell whether we are in fact in the
p-regime. If we rewrite the χPT formulas in terms of the
valence pion’s mass and decay constant, and then estimate
them using the spectroscopic data, the result suggests that
an appreciable part of the increase in the pion mass seen in
Fig. 1 at smallmv originates in finite-volume effects. Future
studies will require larger volumes to accommodate light
sea pions as well as to reduce the squeezing of the
valence pions.

IV. CLR VIA DIRECT INTEGRATION

A. Ultraviolet cutoff

As a preliminary step, let us determine the expected
dependence of CLR on an ultraviolet cutoff M. In infinite
volume, the value of CLR depends on the dynamical
infrared scale Λ of the theory,7 on the fermion mass m,
and on M. We consider the operator product expansion for
the two-current correlator, which is, schematically,

ΠXXðq2;mÞ ∼ 1þm2

q2
þ g2hGμνGμνi þmhψ̄ψi

q4

þ Λ6

q6
þ � � � ; ð4:1Þ

where XX ¼ VV or AA. Each term is to be multiplied by a
coefficient function that depends logarithmically on q2.
Note that the first two terms have a perturbative origin.
The 1=q6 term comes from several dimension-6 operators.
In the difference VV − AA, the identity term drops out, as
do all purely gluonic condensates, and we have

ΠLRðq2;mÞ ∼m2

q2
þmΛ3

q4
þ Λ6

q6
þ � � � ; ð4:2Þ

where, for each power of 1=q2, we show only the leading
dependence on the fermion mass: in particular,
hψ̄ψi ∼ Λ3 þOðmÞ.
Introducing the ultraviolet cutoff via

CLRðm;MÞ ¼
Z

M2

0

dq2q2ΠLRðq2;mÞ; ð4:3Þ

we have

∂CLR

∂M2
¼ M2ΠLRðM2;mÞ: ð4:4Þ

Upon using Eq. (4.2) and integrating Eq. (4.4), we find after
taking the chiral limit that

CLRð0;MÞ ¼ lim
m→0

CLRðm;MÞ ∼ Λ4 þ Λ6

M2
; ð4:5Þ

where Λ4 is the integration constant. This shows that the
dependence of CLR ¼ limM→∞CLRð0;MÞ on the ultraviolet
cutoff vanishes. This result could have been anticipated by
noting that CLR is an order parameter for the spontaneous
breaking of chiral symmetry.
In our numerical calculation, we use a discretized version

of Eq. (4.3). Since we use chiral valence fermions, the
above conclusion applies also on the lattice. We impose an
upper limit M in the summation over momenta, along the
lines of Eq. (4.3), with M < π=a. For nonzero (valence)
mass, one expects the dependence of CLRðm;MÞ on M to
follow from Eqs. (4.2) and (4.4) and hence to contain a
quadratically divergent term ∼m2M2. In practice, we have
seen very little variation of CLR with M once M is
sufficiently large. We offer an explanation of this state
of affairs in Sec. V D below.

B. Summing ΠLRðqÞ over the lattice momentum

The calculation of current-current correlators described
above gives us ΠLRðqμÞ at all 4-momenta (except for
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Ensemble 2 sea pion
Ensemble 2 valence pion

FIG. 1. PCAC ratio m2
π=m for valence and sea pions in the two

ensembles. For the valence pions, m≡mv, the valence quark
mass, while for the sea pions m≡mq, the quark mass measured
from the axial Ward identity. Error bars are suppressed if smaller
than the plotted symbols.

7Here, we are concerned with the dependence of CLR on the
ultraviolet cutoff, for which it suffices to have a rough idea of the
dynamical infrared scale. For a detailed discussion, see Sec. IV C
below.
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qμ ¼ 0) for a finite lattice, at a given valence mass mv,
where we now consider ΠLR as a function of qμ, rather than
q2. We write Eq. (1.2) in infinite volume as

CLR ¼ 16π2
Z

d4q
ð2πÞ4ΠLRðqμÞ ð4:6Þ

and integrate directly in four dimensions. Having in mind a
space-time lattice of dimensions V ¼ L3

s × Lt, we define
the cells in q space such that the side μ of a cell has length
2π=Lμ. We break the integral (4.6) into a sum of cell
integrals,

CLR ¼ 16π2

V

X
qμ

Πd
LRðqμÞ: ð4:7Þ

In Eq. (4.7), Πd
LRðqμÞ is a discrete quantity, the average of

the continuum quantity over the cell in momentum space
centered on qμ:

Πd
LRðqμÞ ¼

Y
ν

�
Lν

2π

Z
qνþπ=Lν

qν−π=Lν

dq0ν

�
ΠLRðq0μÞ: ð4:8Þ

Where ΠLR is smooth, Eq. (4.8) can be approximated by
replacing Πd

LRðq0μÞ → ΠLRðqμÞ. That is, we proceed just to
sum in Eq. (4.7) the values ofΠLR at the centers of the cells,
which are the given lattice data.
The exception is the cell centered on qμ ¼ 0, where

Eq. (1.7) tells us that ΠLR has a pole. We approximate the
integrand in Eq. (4.8) by its pole plus a constant pedestal,

ΠLRðqμÞ≃ pþ f2π
q2

; ð4:9Þ

where we take the value of fπ from the spectroscopic data,
Tables III and IV. For this cell, then,

Πd
LRð0Þ≃ pþ Af2π

16π2
L2
s ; ð4:10Þ

where

A ¼
Z

1

−1
d4x

1

x2 þ ðx0=bÞ2
; ð4:11Þ

and we define b ¼ Lt=Ls. The integral for A is readily
evaluated for our lattice shape,

Aðb ¼ 2Þ ≗ 22.5095963 � � � : ð4:12Þ

Inserting into Eq. (4.10) and thence into Eq. (4.7), the
contribution of the pole to CLR comes to

L2
s

V
× Af2π: ð4:13Þ

While other cells’ contributions to CLR go as 1=V, the pole
at q ¼ 0 gives a term ∝ L2

s=V, which grows in relative
importance as Ls grows.
The contribution of the pedestal to CLR is ð16π2=VÞp.

The pedestal p can be estimated from the average over
some set of cells surrounding the q ¼ 0 cell. Collecting m
cells at momenta fqaμ; a ¼ 1;…; mg, we approximate from
Eq. (4.9)

X
a

Πd
LRðqaÞ ¼ mpþ f2π

X
a

1

ðqaÞ2 ; ð4:14Þ

and thus

p ¼ 1

m

Xm
a¼1

�
Πd

LRðqaÞ − f2π
1

ðqaÞ2
�
: ð4:15Þ

That is, p is the average of the discrete Πd
LR in the

neighboring cells, minus the pole term on those cells.
For this analysis, we made use of six of the eight valence

masses, not including the mv ¼ 0.015 and 0.025 data,
which were added only later for use with the fitting method
discussed in the next section. The extrapolations to mv ¼ 0
are well constrained without the additional valence masses.
Our results are listed in Table V and plotted in Fig. 2.
The contribution to CLR of the cell at q ¼ 0 ranges from

about 8% of the total for the largest mv to 20% for the
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FIG. 2. CLRðmvÞ for the two ensembles as listed in Table V.
The extrapolations tomv ¼ 0 are cubic fits. The fit for ensemble 2
drops the point at mv ¼ 0.1.
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smallest, in both ensembles. The error bars stand in the
same proportion, so the error in Eq. (4.10) is not significant
in the overall error in CLR. This of course may change when
the lattice dimensions are changed.
In reaching the results shown in Table V, we included in

the pedestal (4.15) only the nearest neighbors of q ¼ 0,
namely, the cells displaced by �1 on the time axis, which
are at q4 ¼ �2π=24. To vary this procedure, we included
next-nearest neighbors as well. This means adding the
nearest neighbors in the �x, �y, and �z directions, as well
as the next-nearest neighbors in the time direction (all of
these have jqj ¼ 2π=12). Comparing the two pedestal
recipes shows a shift of a few percent in CLRðmvÞ at small
masses, causing an upward shift of 4% and 7% in the chiral
extrapolations of ensemble 1 and ensemble 2, respectively.
In all cases, these are smaller than the statistical error, so we
cannot estimate the systematic error due to this part of the
algorithm.

C. Chiral extrapolation

CLR is a quantity that involves an integral over all
momenta. Moreover, in QCD, it is experimentally known
that the spectral functions are dominated by momenta on the
order of the ρ and a1 masses. It is therefore not straightfor-
ward to use χPT to perform the extrapolation in mv to
mv ¼ 0. At a practical level, while chiral logarithms may be
present (originating from the low-q2 part of the integral), we
find that we are not sensitive to these within our statistics.
Thus, instead, we adopt a simple power-law fit,

CLRðmvÞ ¼ c0 þ c1mv þ c2m2
v þ c3m3

v þ � � � ; ð4:16Þ

giving c0 as the chiral limit. In practice, we see no advantage
to going beyond a cubic. The result is indicated in Table V
and in Fig. 2.

Strictly speaking, the form of Eq. (4.16) is not adequate
for a calculation involving chiral valence propagators
evaluated on a Wilson-clover sea. Zero modes in the
valence sector are not suppressed by the Wilson-clover
determinant, and hence correlation functions such as ΠLR
will contain inverse powers of mv.

8 Because all exact zero
modes in any configuration have the same chirality, the
structure of ΠLR [Eq. (1.3)] implies that only one propa-
gator at a time can be saturated by a valence zero mode.
This should lead to a 1=ðmv

ffiffiffiffi
V

p Þ divergence at small mv,
where the dependence on the volume V reflects the density
of exact zero modes. We observe that all our valence chiral
extrapolations have good χ2 without an added 1=mv term.
We conclude that this effect will show up only at smaller
valence masses than the ones used in this study and/or with
improved statistics.
The values of CLR in the chiral limit for the two

ensembles differ by a factor of 2, which amounts to more
than 6σ, as measured by the statistical errors. Presumably,
the origin of this discrepancy is in the difference in lattice
actions. Of all the hadronic observables measurable on the
ensembles, the value of fπ has entered directly into our
determination of CLR, and indeed the MHA, Eq. (1.9),
gives a direct proportionality between CLR and f2π . We see
in Tables III and IV that fπðmvÞ of the valence quarks in the
two ensembles agrees for large quark masses but diverges
for light masses. We therefore attempt to reconcile the
ensembles in their chiral limits by rescaling CLR by a factor
of f2π . Figure 3 shows the rescaled quantityCLR=f2π for each
ensemble.
Equation (1.9) indicates that the ratio CLR=f2π is given by

some scale Λ2 that stems from the non-Nambu-Goldstone
spectrum, that is, from the infrared physics associated
with confinement. As a stand in for this scale, we can take
1=r1, since r1 characterizes the confinement distance of the
heavy-quark potential. Referring to Table II and Fig. 3, the
extrapolations to mv ¼ 0 give the dimensionless ratios

r21CLR

f2π
¼

�
2.37ð24Þ Ensemble 1

2.21ð28Þ Ensemble 2
ð4:17Þ

so that perhaps the discrepancy in fπ captures the departure
of our ensembles from the continuum limit as mv → 0 (we
recall that r1 is the same in the two ensembles). If this is the
case, then the path to reconciling the two ensembles might
be found in fitting the dependence of the valence fπ on the
valence mass mv, for both ensembles together, through
chiral perturbation theory. An attempt to do this is detailed
in Appendix C.
Theories with fermions in two-index representations

have been studied in a 1=Nc framework [48], as an

TABLE V. CLR calculated for the two ensembles, at six values
of the valence mass mv, followed by the extrapolation to mv ¼ 0
via a cubic [cf. Eq. (4.16), and see Fig. 2]. The fit of ensemble 1
gives χ2=d:o:f: ¼ 1.0=2. For ensemble 2, the cubic fit to all the
data points gave χ2=d:o:f: ¼ 7.4=2. The last line is the result of a
fit that drops the highest-mass point, mv ¼ 0.100, giving a
satisfactory χ2=d:o:f: ¼ 1.2=1.

CLRðmvÞ
mv Ensemble 1 Ensemble 2

0.100 0.02998(31) 0.03100(61)
0.075 0.02145(25) 0.02179(55)
0.050 0.01391(20) 0.01350(47)
0.035 0.00998(17) 0.00913(41)
0.020 0.00658(17) 0.00534(33)
0.010 0.00460(17) 0.00325(26)
extrapolated CLRð0Þ 0.00293(15) 0.00151(18)
restricted fit 0.00140(19)

8This effect was studied in the quenched approximation in
Ref. [45]. For a discussion in the context of mixed action, see for
example Refs. [46,47].
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alternative to the original 1=Nc expansion that deals
with fermions in the fundamental representations. Either
expansion can in principle be applied to QCD, because
for Nc ¼ 3 the fundamental and two-index antisymmetric
representations are the same. It is therefore interesting to
compare the value of the ratio (4.17) with the QCD value.
Using Eqs. (1.2) and (1.6), mþ

π −m0
π ¼ 4.6 MeV, and

r1 ¼ 0.32 fm, we have in QCD

r21CLR

f2π
¼ 1.9 ðQCDÞ: ð4:18Þ

The comparison to Eq. (4.17) may bespeak the validity of
large-N arguments.

V. CLR VIA FITTING ΠLRðq2Þ
A. Modeling ΠLRðq2Þ and the MHA

An alternative approach to the evaluation of the integral
(1.2) is to fit the integrand q2ΠLRðq2Þ to a smooth function
of q2. If the fit function is extended down to q2 ¼ 0, then its
integral will automatically incorporate the contribution to
CLR from the q2 ≃ 0 region. We find that a model function
inspired by the MHA, Eq. (1.7), describes our data well
when mv is small enough. Our fits thus provide a useful
cross-check of our direct integration result for CLR and at
the same time testify to the applicability of the MHA.
Equation (1.7) has two poles at q2 < 0 and one at

q2 ¼ 0, so that the function q2ΠLRðq2Þ in this approxi-
mation is finite as q2 → 0 and smooth at positive q2. We

can rewrite it as a rational function of q2 with five
parameters,

xΠLRðxÞ ¼ a0

�
a1xþ 1

a2x2 þ a3xþ 1

�
þ b; ð5:1Þ

where x≡ q2. By comparing Eq. (5.1) to Eq. (1.7), we
can identify the values of the parameters predicted by the
MHA:

a0 ¼ f2ρ − f2a1 ;

a1 ¼
f2ρm2

ρ − f2a1m
2
a1

m2
ρm2

a1ðf2ρ − f2a1Þ
;

a2 ¼
1

m2
ρm2

a1

;

a3 ¼
1

m2
ρ
þ 1

m2
a1

;

b ¼ f2a1 þ f2π − f2ρ: ð5:2Þ

As a test of the MHA, we use these relations and our fit
results to derive the masses and decay constants from
ΠLRðq2Þ. These may then be compared to results for the
same quantities from spectroscopy. We note, however, that
there is no a priori reason that the fit parameters of the
rational function have to agree with the spectroscopic
quantities. The 3-pole form may be a poor approximation
to the multiparticle cuts that characterize the physical
current correlation function [49].
The Weinberg sum rules [27] follow in the chiral limit

from the requirement that ΠLR ∼ q−6 as q2 → ∞
[cf. Eq. (4.2)]. Combined with the MHA, the sum rules
imply the relations

f2π ¼ f2ρ − f2a1 ð5:3Þ

and

f2a1m
2
a1 ¼ f2ρm2

ρ: ð5:4Þ

In terms of our MHA-inspired fit function (5.1), the first
condition implies that a0 ¼ f2π and b ¼ 0, while the second
condition gives a1 ¼ 0. At finite mass, we find that our fits
to q2ΠLRðq2Þ require us to keep all five parameters non-
zero, but the coefficients a1 and b do appear to be
consistent with zero in the chiral limit (see Sec. V C below).

B. Fitting details

For each ensemble and at each value of the valence
fermion mass mv, we carry out fully correlated, uncon-
strained least-squares fits to the data for q2ΠLRðq2Þ, making
use of the standard lsqfit nonlinear fitting package
[50,51]. A blocking analysis of our raw data shows
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FIG. 3. CLRðmvÞ rescaled by f2πðmvÞ. The extrapolations to
mv ¼ 0 are cubic fits; the extrapolated points are displaced
horizontally for clarity.
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evidence for autocorrelations up to a blocking length of 10.
In our full analysis, we use this blocking length, sub-
sequently treating the blocked data as uncorrelated in
Monte Carlo time.
We define ΠLRðq2Þ to begin with as an average of

ΠLRðqμÞ over all lattice momenta qμ with given length. We
find extremely strong correlations between ΠLRðq2Þ values
obtained at nearby values of q2. In order to estimate the data
covariance matrix reliably, we reduce the number of ΠLR
data points included in the fit. General arguments show that
reliable estimation of an N × N covariance matrix requires
OðN2Þ independent measurements [52]. After blocking
to remove autocorrelations, our ensembles consist of 60
(ensemble 1) and 40 (ensemble 2) independent configura-
tions, allowing for estimation of covariance matrices of
dimensions

ffiffiffiffiffi
60

p
and

ffiffiffiffiffi
40

p
, respectively. We therefore limit

the number of points in our fits to 6 or 8.9 Due to the strong
correlations in the data, this thinning procedure results in
minimal loss of statistical information.
In order to thin the data, we choose a ray in momentum

space (see Table VI and Fig. 4) and use it to select the
values of q2. A ray is defined as an integer multiple
qμ ¼ naμ of a generator vector aμ, which in turn has one or
more nonzero components with the minimal value 2π=Lμ.
Each momentum vector qμ yields a measurement ΠLRðq2Þ
which is an average of ΠLRðqRμ Þ over lattice rotations and
reflections denoted by R; the transformations fRg form the
subgroup that does not mix time and space axes. qμ ¼ 0 is
always excluded.
Since our lattices have dimension 123 × 24, any ray qμ ¼

naμ that has a spatial component can reach at most n ¼ 6

without leaving the first Brillouin zone centered on q ¼ 0.
Thus, we have automatically six values of ΠLRðq2Þ to fit
once the ray is chosen. If aμ is chosen along the time axis,
then larger values of n are possible, and here we allow n to
reach either 6 or 8 to see whether the results are sensitive
to this choice. Each ray with its maximal n defines a
maximum momentum q2max, listed in Table VI. Varying the
ray furnishes an estimate of the systematic error associated
with this thinning of the data.
Another source of systematics lies in choosing the

definition of the lattice momentum. In effect, this means
choosing between x ¼ q2 and x ¼ q̂2 (see Sec. II C) in
defining the fit function (5.1). Section V D below summa-
rizes the variation in our results for CLR across these
choices.
We take the time-axis fit with a q2 cutoff at six points as

our central fit for each ensemble. We show the effect of
variations on this scheme below. Even with these thinning
schemes, our fits to Eq. (5.1) fail for mv > 0.035. We thus
report fit results only for mv ≤ 0.035, for each ensemble.
We are interested after all in the chiral limit mv → 0.

C. Testing the validity of the MHA

On the qualitative level, the MHA is a successful
formula. All our fits to Eq. (1.7) [via Eq. (5.1)] describe
the data well up to mv ¼ 0.035, with χ2=d:o:f:≲ 1 in all
cases (see Fig. 5 for the case of the central fit). On the
quantitative level, the MHA is less successful. Table VII
compares the central-fit results for masses and decay
constants to their spectroscopic values. Figure 6 presents
the same information for fπ and mρ. The MHA fits are
found to reproduce fπ beautifully, yielding numbers and
uncertainties comparable to direct measurement.10 The
model’s other parameters enjoy markedly less success.
In particular, our central-fit results for mρ and fρ are
inconsistent with the measured spectrum. The axial-vector

FIG. 4. A schematic view of the rays defined in Table VI for a
three-dimensional lattice.

TABLE VI. Summary of different rays used for thinning in
momentum space. We differentiate between spatial and temporal
axes because of the 123 × 24 geometry. See Fig. 4.

Ray name Generator aμ
a q2max ≡P

μð6aμÞ2

Time axis (0, 0, 0; 1) 2.47
1 spatial axis (1, 0, 0; 0) 9.87
2 spatial axes (1, 1, 0; 0) 19.8
3 spatial axes (1, 1, 1; 0) 29.6
2 mixed axes (1, 0, 0; 1) 12.3
3 mixed axes (1, 1, 0; 1) 22.2
4 mixed axes (1, 1, 1; 1) 32.1

aMultiply each component by ð2π=LμÞ.

9The fit function (5.1) has five parameters, so six points still
leave us with 1 degree of freedom.

10This lends confidence to our use of the spectroscopic value of
fπ in the direct integration method for estimating CLR.
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mass is poorly constrained by the MHA, so that it generally
agrees with spectroscopy within large uncertainties.
A complementary test within the MHA is to ask how

well the Weinberg sum rules are satisfied by the fit
parameters; we expect them to hold strictly only in the
chiral limit. Figure 7 displays the values of Weinberg
sum rules (WSR), WSR1≡ f2π − f2ρ þ f2a1 and WSR2≡
f2ρm2

ρ − f2a1m
2
a1 , as functions of valence quark mass; both

quantities should be zero in the chiral limit, and this is
indeed what we find. What is more, the central fit gives

WSR1 and WSR2 that are consistent with zero (with large
error) for all values of mv up to 0.035.

D. CLR integral

With the fits to Eq. (5.1) in hand, we proceed to the one-
dimensional integral (1.2) for CLRðmvÞ. We employ trap-
ezoidal integration directly on the lattice data above q2max

and on the sampled fit function below q2max; carrying out the
integral of the fit function analytically yields identical
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FIG. 5. Fits to q2ΠLRðq2Þ with qμ oriented in the temporal
direction (“time-axis” ray), on ensemble 1 data at several values
of the valence fermion mass mv. The data and the fit curves are
ordered from heaviest to lightest mass, starting at the top of the
figure.
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FIG. 6. The pion decay constant fπ and vector meson mass mρ

from spectroscopy and from the fits of q2ΠLRðq2Þ to the MHA
formula vs valence quark mass mv. The two determinations of fπ
are indistinguishable.

TABLE VII. Comparison of MHA best-fit parameters to spectroscopy. The MHAvalue of fπ fits well with spectroscopy, while the ρ-
meson parameters disagree. The axial-vector mass is generally consistent within large uncertainties.

Ensemble 1

mv fπ MHA mρ MHA fρ MHA ma1 MHA

0.035 0.140(1) 0.140(2) 0.608(10) 0.526(20) 0.319(13) 0.160(10) 0.886(10) 0.97(14)
0.025 0.135(2) 0.133(2) 0.617(11) 0.480(22) 0.360(15) 0.148(7) 0.879(15) 1.03(20)
0.020 0.128(2) 0.129(2) 0.621(9) 0.456(21) 0.348(3) 0.143(5) 0.846(13) 1.09(16)
0.015 0.127(2) 0.125(3) 0.629(33) 0.425(34) 0.351(5) 0.136(8) 0.853(18) 1.18(46)
0.010 0.120(2) 0.118(3) 0.617(12) 0.420(23) 0.347(4) 0.129(5) 0.818(16) 1.15(22)

Ensemble 2

mv fπ MHA mρ MHA fρ MHA ma1 MHA

0.035 0.128(1) 0.126(2) 0.620(9) 0.560(67) 0.336(3) 0.147(24) 0.775(16) 0.82(13)
0.025 0.120(2) 0.114(2) 0.615(12) 0.529(70) 0.344(4) 0.130(38) 0.790(16) 0.79(15)
0.020 0.112(2) 0.106(2) 0.613(11) 0.521(59) 0.340(4) 0.119(35) 0.734(23) 0.71(18)
0.015 0.107(2) 0.099(2) 0.601(18) 0.477(80) 0.341(5) 0.111(33) 0.764(20) 0.79(20)
0.010 0.100(3) 0.090(3) 0.600(17) 0.449(80) 0.339(4) 0.098(29) 0.678(35) 0.73(33)
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results. To estimate our statistical errors (for given choice
of thinning ray and q2max), we enclose our analysis inside a
bootstrap with 500 resamplings.
To determine CLR in the chiral limit, we must extrapolate

from our results at finite fermion mass. As mentioned

above, we were able to carry out the MHA fits only for
mv ≤ 0.035. We again carry out a fully correlated fit, using
the bootstrap analysis at each fermion mass mv with a
common set of gauge configuration resamplings to propa-
gate correlations. A quadratic polynomial in mv is found
to describe the data well; we also carry out a cubic
polynomial fit as a consistency check. As a further test
for systematic effects, we repeat the chiral fits while
omitting the lightest mass (mv ¼ 0.010) and omitting the
heaviest mass (mv ¼ 0.035).
Figure 8 shows the results of the chiral extrapolations

with the quadratic fits. For comparison, this figure also
shows the extrapolated values of CLR from the direct four-
dimensional (4D) integration described in Sec. IV. The two
methods give results that agree within 1σ.
Figure 9 illustrates the stability of our results for CLR in

the chiral limit across the many systematic variations
discussed above. All in all, we considered the following
options:
(1) various thinning rays (Table VI) and a quadratic

extrapolation;
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FIG. 7. Test of the first and second Weinberg sum rules, based
on the quantities WSR1 ¼ f2π − f2ρ þ f2a1 (blue circles) and
WSR2 ¼ f2ρm2

ρ − f2a1m
2
a1 (green squares). Both quantities are

expected to vanish in the limit mv → 0.
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FIG. 8. CLRðmvÞ determined with the MHA fits for both
ensembles (solid points) and the chiral extrapolations with
quadratic polynomials (open points at mv ¼ 0). The extrapolated
results show good agreement with those obtained from direct 4D
integration (hashed points, displaced horizontally; see Fig. 2.)
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FIG. 9. Error stability plot for CLRðmv ¼ 0Þ obtained from
ensemble 1 (left) and ensemble 2 (right), comparing the central
result to other systematic variations as described in the text. From
top to bottom, the variations considered are increased q2max to fit
to eight points rather than six; thinning along a spatial axis;
thinning along two mixed axes; using q̂2 instead of q2 to define
the lattice momentum; including a cubic term in the chiral
extrapolation; and omitting the lightest and heaviest mass points
from the chiral extrapolation. The bottom point is the result of
direct integration from Sec. IV. All variations are in agreement
with the central fit at roughly 1σ.
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(2) various thinning rays and a cubic extrapolation;
(3) time-axis thinning with a q2 cutoff at six or eight

points using a quadratic extrapolation;
(4) time-axis thinning with a q2 cutoff at six or eight

points using a cubic extrapolation;
(5) time-axis thinning with fixed q2 cutoff and a

quadratic extrapolation, omitting the heaviest or
lightest mass;

(6) all of the above, but using q̂2 instead of q2 in the fit.
Overall, our results are found to be quite stable, with no
significant systematic effects observed. Most importantly,
the results present statistically consistent values for CLR
which agree with our original 4D direct integration.
We believe that the physical reason underlying the

stability of our results across the different analysis methods
is the rapid falloff of ΠLR with momentum. As an
illustration, we show in Fig. 10 the fit results for
q2ΠLRðq2Þ along the 2-spatial-axes ray (see Table VI),
for mv ¼ 0.035. This ray reaches a much larger q2 than the
time-axis ray used in Fig. 5. One can see that the value
drops by more than 3 orders of magnitude as q2 grows
toward q2max.
As noted in Sec. IVA [Eq. (4.2)], the leading term in the

OPE of ΠLR is ∼m2
v=q2, up to logarithms. The large-x

behavior of the MHA fit (5.1) allows us to estimate this
quantity as b=q2. Defining c ¼ b=m2

v, the fit shown in
Fig. 10 gives c ¼ 0.029ð3Þ. Up to a geometrical factor
coming from the shape of the Brillouin zone, c is also the
coefficient of the quadratic divergence m2M2 discussed in
Sec. IVA. Using the above estimate for c, we find that the
anticipated variation with the cutoffM is indeed of roughly

the same size as our statistical uncertainties for the entire
range of mv we have explored. This explains the insensi-
tivity of CLR to the ultraviolet cutoff M that we noted in
Sec. IVA.
Our final results for CLR from the MHA fitting method

are thus

CLR ¼
�
0.00270ð24Þ Ensemble 1

0.00115ð25Þ Ensemble 2:
ð5:5Þ

The errors quoted here are the statistical errors on the
central fit. These results are in good agreement with the
direct integration results reported in Table V, although
not with each other; we refer back to the discussion of
Sec. IV C where rescaling by fπ and comparison to QCD
are considered.

VI. CONCLUSIONS

We have carried out a pilot study for the calculation of a
radiative contribution to the composite Higgs potential
using lattice gauge theory. We obtained numerical results
for an SU(4) gauge theory with two Dirac fermions in the
sextet representation. The electroweak gauge contribution
to the potential is determined by the low-energy constant
CLR, which can be formulated as an integral over the
vacuum polarization function ΠLRðq2Þ, calculated straight-
forwardly on the lattice.
We have demonstrated two approaches to the calculation

of the integral: a “direct integration” technique, which sums
overΠLRðqμÞ in 4Dmomentum space, using the value of fπ
from spectroscopy to account for the pole at q2 ¼ 0, and a
“rational fit” technique, which uses a functional form
motivated by the minimal hadron approximation to fit
ΠLRðq2Þ at low q2. The q2 → 0 behavior of the MHA fit
gives an alternative determination of fπ which is in good
agreement with the spectroscopic value and has similar
precision. The direct integration and the rational fit yield
consistent results for CLR.
We have investigated the systematics induced by a

number of variations in method, particularly in the context
of the MHA fit, including thinning of the data along
particular rays in qμ space and variations in the chiral
extrapolation. As discussed, these variations show
differences of order 1σ or smaller with the central fit.
Other sources of systematic error, however, have not been
studied in this work. No continuum extrapolation is
attempted; neither is the chiral limit of the sea fermions.
Moreover, we are not able to estimate possible finite-
volume corrections to our results, even though the squeez-
ing of the valence spectra shows that they must be present.
Within these limitations, we obtain for the rescaled quantity
r21CLR=f2π ∼ 2.3, consistent between the two ensembles
and with the value of CLR in QCD inferred from the
mπþ −mπ0 mass difference.
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FIG. 10. Logarithmic plot of q2ΠLRðq2Þ with qμ oriented along
the “2-spatial-axes” ray, on ensemble 1 data with valence fermion
mass mv ¼ 0.035.
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The next step in our program is a calculation of CLR in an
SU(4) gauge theory with both fundamental and sextet
fermions, for application to the composite Higgs model of
Refs. [8,11]. Simulation with two Dirac fermions in each
representation would be a deviation from the full model,
which requires five species of Majorana fermions in the
sextet representation and three Dirac fermions in the
fundamental; nonetheless, it should furnish a reasonable
approximation while allowing the use of the standard
hybrid Monte Carlo method. Calculation of the phase
diagram and spectrum of this theory is now underway [53].
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APPENDIX A: THE NDS TERM IN THE ACTION

We describe briefly the NDS term [32] and the reason for
its inclusion in the action.
nHYP smearing [29] is a three-step process. In the first

step, we average a link Uxρ with two staples in one of the
planes containing the link, giving

Ω ¼ ð1 − α3ÞUxρ þ
α3
2
ðUxξUxþξ̂;ρU

†
xþρ̂;ξ

þ U†
x−ξ̂;ξ

Ux−ξ̂;ρUx−ξ̂þρ̂;ξÞ: ðA1Þ

We then project Ω back to U(4) via

V̄x;ρ;ξ ¼ ΩQ̄−1=2; ðA2Þ

where

Q̄ ¼ Ω†Ω: ðA3Þ

The following two steps in the smearing average V̄ in
the other two planes successively, projecting again each
time; we write schematically U → V̄ → ~V → V, where-
upon the fermion action is constructed from the final
V links.
Let us focus on the first step. Since the fermion action

contains smeared links V, the molecular-dynamics force
on the thin link Uxρ is calculated through a chain rule [30]
that contains derivatives ∂V̄=∂U. If one of the plaquettes
containing the staples in Eq. (A1) contains a large field
strength (i.e., a dislocation), then Ω may be far from
unitary, and Q̄ may possess a small eigenvalue. Then,
the derivative of Eq. (A2) can be very large. Using this
force in the time step will introduce a large error in the
integration and lead inevitably to rejection of the trajectory.
Since the dislocation is a property of the initial gauge field,
it can be very hard for the system to find its way to an
acceptable trajectory.
The NDS prescription is designed to keep the system

away from regions of phase space where Q̄ has small
eigenvalues. Naturally, it does this for all three steps of
the smearing. The new term in the action takes the simple
form,

SNDS¼
1

2Nc

X
x

tr

�
γ1
X
μ

Q−1
x;μþγ2

X
μ≠ν

~Q−1
x;μ;νþγ3

X
ρ≠ξ

Q̄−1
x;ρ;ξ

�
;

ðA4Þ

where ~Q and Q are the counterparts of Q̄ for the two later
smearing steps. In practice, we take γ1 ¼ γ2 ¼ γ3 ≡ γ. This
is a pure-gauge term; in weak coupling, it shifts the bare
coupling according to Eq. (2.2).

APPENDIX B: THE POLE AT q2 = 0

We rederive here the pion pole contribution to the axial-
current two-point function. Consider first the massless case.
From the definition of the pion decay constant, one might
write

hAμAνiðqÞ ¼ −f2π
qμqν
q2

ðincompleteÞ: ðB1Þ

Here, Aμ is the axial current, hAμAνiðqÞ is the four-
dimensional Fourier transform, and we have neglected
the contribution of all other resonances. It was noted long
ago by Brout and Englert [55] that current conservation
requires the presence of a contact term in order for the right-
hand side of Eq. (B1) to be transverse. With the contact
term added, the result is
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hAμAνiðqÞ ¼ f2πðδμν − qμqν=q2Þ ¼ f2πP⊥
μν: ðB2Þ

Proceeding to the case of a massive pion, we find that the
contact term remains unchanged, while the location of the
pole moves,

hAμAνiðqÞ ¼ f2π

�
δμν −

qμqν
q2 þm2

π

�

¼ f2π

�
δμν −

qμqν
q2

�
þ f2πqμqν

�
1

q2
−

1

q2 þm2
π

�

¼ P⊥
μνf2π þ P∥

μν
f2πm2

π

q2 þm2
π
; ðB3Þ

where P∥
μν ¼ qμqν=q2. The coefficient of the transverse

projector P⊥ is always f2π , irrespective of mπ—the depend-
ence on the pion mass is entirely in the longitudinal part.
This result can be traced back to the derivative coupling of
the pion field to the axial current. It follows that the pion’s
contribution to ΠLRðq2Þ is f2π=q2, for both massless and
massive pions. The decay constant fπ depends, of course, on
the quark mass, as does the asymptotic large-q2 behavior.

APPENDIX C: MIXED ACTION CHIRAL
PERTURBATION THEORY FOR THE

VALENCE DECAY CONSTANT

We saw in Sec. IV C that there is good agreement
between the values of r21CLRðmvÞ=f2πðmvÞ for the two
ensembles when we extrapolate to the valence chiral limit
mv → 0. In this Appendix, we attempt to take this one step
further. We study the measured valence decay constants
using mixed-action chiral perturbation theory, to see if we
can obtain a prediction for the continuum limit of the decay
constant. Combined with Eq. (4.17), this would allow us to
make a prediction for the continuum limit of CLR itself. As
it turns out, we cannot obtain a reliable limit for the decay
constant from our data. We discuss the possible reasons for
this state of affairs.

1. f vv as a function of mv

Following the conventions of χPT, in this Appendix, we
refer to the valence pion mass and decay constant as
MvvðmvÞ and fvvðmvÞ, respectively. Since r1 is practically
the same for both ensembles, instead of working with the
dimensionless quantity r1fvv we might as well use directly
the results reported in lattice units in Tables III and IV.
In Nf ¼ 2 QCD with Wilson sea quarks and chiral

valence quarks, the valence decay constant fvv is given at
the NLO by [56–63]11

fvv;NLO
f

¼ 1 −
M2

0;vs

8π2f2
log

�
M2

0;vs

μ2

�

þ 8

f2
ðL5M2

0;vv þ 2L4M2
0;ssÞ þ â2D: ðC1Þ

The leading-order (LO) pion masses are

M2
0;vv ¼ 2Bmv; ðC2Þ

M2
0;ss ¼ 2ðBZms þ â2DssÞ; ðC3Þ

M2
0;vs ¼

1

2
ðM2

0;vv þM2
0;ssÞ þ â2Dvs: ðC4Þ

Here, f and B are the usual parameters of the LO
continuum chiral Lagrangian, f being the decay constant
in the chiral limit. L4 and L5 are NLO parameters of
continuum χPT [56]. The parameters D, Dss, and Dvs are
linear combinations of the LO low-energy constants of
mixed-action χPT. â is a rescaled version of the lattice
spacing a, roughly, â ∼ Λ3a, where Λ is the confinement
scale [59,60]. The extra Z factor in Eq. (C3) arises because
our sea quark’s axial current is not properly normalized,
and this renormalization factor has to be removed from
the measured Wilson sea quark’s mass. In other words, the
correct sea-quark mass is Zms.
In principle, we need to adapt Eq. (C1) to Nf ¼ 2 Dirac

fermions in a real representation, for which the coset
structure is SUð2NfÞ=SOð2NfÞ rather than the familiar
½SUðNfÞL × SUðNfÞR�=SUðNfÞ for QCD. It turns out that
the coefficient of the logarithm is unchanged. Also, while
NLO mixed-action results for a real representation are not
available, one can argue that the Oða2Þ terms present in
Eqs. (C1), (C3), and (C4) are the most general possible, and
thus this part of Eq. (C1) is fine, too.
We will be comparing ensembles with different lattice

actions, as well as different sea masses. We lump these
differences together by rewriting Eq. (C4) as

M2
0;vs ¼ Bmv þ A; ðC5Þ

where

A ¼ 1

2
M2

0;ss þ â2Dvs ¼ BZms þ â2ðDss þDvsÞ: ðC6Þ

Similarly,

C ¼ 32L4ðBZms þ â2DssÞ=f2 þ â2D; ðC7Þ

D ¼ 16L5B=f2: ðC8Þ

11Most of the χPT literature uses the convention
h0jAa

μðxÞjπbðpÞi ¼ i
ffiffiffi
2

p
pμfπδabeipx. In order to adapt to our

convention, Eq. (3.2), we make the replacement fπ → fπ=
ffiffiffi
2

p
in

the relevant χPT formulas.
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Taking the renormalization scale to be μ ¼ ffiffiffi
8

p
πf, Eq. (C1)

takes the form12

fvv;NLO ¼ f

�
1 −

�
Aþ Bmv

8π2f2

�
log

�
Aþ Bmv

8π2f2

�

þ CþDmv

�
: ðC9Þ

In fact, this parametrization suffers from a redundancy.
Equation (C9) is invariant under the reparametrization

f → xf;

A → xA;

B → xB;

C → x−1ð1 − xþ CÞ − ð8π2f2xÞ−1A logðxÞ;
D → x−1D − ð8π2f2xÞ−1B logðxÞ; ðC10Þ

showing that one parameter in Eq. (C9) can be eliminated.
Indeed, we can write Eq. (C9) in the form

fvv;NLO ¼ −ð ~Aþ ~BmvÞ logð ~Aþ ~BmvÞ þ ~Cþ ~Dmv;

ðC11Þ

by defining

~A ¼ A=ð8π2fÞ;
~B ¼ B=ð8π2fÞ;
~C ¼ fð1þ CÞ þ ~A logðfÞ;
~D ¼ fDþ ~B logðfÞ: ðC12Þ

The fit parameters ~B and ~D depend only on the low-
energy constants of continuum χPT, so they are universal.
The parameters ~A and ~C depend on the details of the lattice
action, as well as on the sea mass, so they are different for
the two ensembles. We reserve ~A and ~C for ensemble 1 and
denote the corresponding parameter of ensemble 2 by ~A0

and ~C0. This makes a total of six parameters.
The result of the fit is shown in Table VIII. While the

quality of the fit is good, the reparametrization freedom

prevents us from determining f. Several comments are
in order.
First, what we are calculating is fvv;NLO ¼ fvv;NLO

ðms;mv; âÞ. The fit (C11) allows us in principle to
determine fvv;NLOðms; 0; âÞ from the valence chiral
extrapolation. However, this extrapolation is mathemati-
cally inconsistent if ~A or ~A0 is negative, because the
argument of the logarithm becomes ill defined. We return
to this issue below.
Second, additional data at different values of the sea

mass ms and the lattice spacing â would in principle allow
us to do also the sea-chiral extrapolation and the continuum
extrapolation, obtaining fvv;NLOð0; 0; 0Þ ¼ f, the (con-
tinuum) decay constant in the chiral limit. In other words,
the fit does know about f in spite of the reparametrization
freedom, but only through its dependence on all three
parameters—ms, mv, and â.
Third, if we include finite-volume corrections in the

χPT formulas, the reparametrization freedom disappears.
In principle, this allows us to determine f. In practice,
however, the finite-volume NLO correction to fvv is
small, and as a result, f is poorly determined. This
correction is small because the pion that runs in the loop
is a mixed pion [see Eq. (C1)]. As a result, the finite-
volume correction is not sensitive to the valence pion’s
massMvv but only to the mixed pion’s massMvs, which is
significantly larger.
Finally, we note that the reparametrization freedom is

quite generic in Wilson χPT. For example, it is also
found in the NLO formula for the dependence of
M2

vv;NLO on mv.

2. f vv as a function of Mvv

As an alternative strategy, we may fit fvv as a function
of the valence pseudoscalar mass. Thanks to the absence
of B at the order in which we are working, there is no
reparametrization freedom, and it is possible to determine
f. The fit form is obtained by replacing 2Bmv by M2

0;vv in
Eq. (C9), and then replacing M2

0;vv by the actual measured
mass of the valence pion, Mvv. Explicitly,

fvv;NLO ¼ f½1 − ðÂþ M̂2
vvÞ logðÂþ M̂2

vvÞ þ Ĉþ D̂M2
vv�;

ðC13Þ

where

TABLE VIII. Fit parameters for Eq. (C11).

~B ~A ~A0 ~D ~C ~C0 χ2=d:o:f:

0.358(62) 0.010(6) −0.001ð3Þ −0.324ð72Þ 0.065(21) 0.089(15) 3.1=6

12We assume that L4;5 have been defined with the same
renormalization scale.
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M̂2
vv ¼ M2

vv=ð16π2f2Þ;
Â ¼ A=ð8π2f2Þ;
Ĉ ¼ C;

D̂ ¼ D=ð2BÞ: ðC14Þ

Since we are now fitting data with errors as a function of
data with errors, the χ2 function takes the form13

χ2 ¼
Xn
i¼1

�ðfi − fðxi;αpÞÞ2
δf2i

þ ðmi − xiÞ2
δm2

i

�
: ðC15Þ

Here, ðfi; δfiÞ are the measured values and errors of
the valence decay constant, while ðmi; δmiÞ are the
corresponding data for the valence pion mass (see
Tables III and IV). The fit parameters include
αp ¼ ff; Â; Â0; D̂; Ĉ; Ĉ0g, as well as the xi, which are
the true values of the valence pion’s mass. Notice that the
number of degrees of freedom in Eq. (C15) is the same as
for the fit (C9).
Fit results are displayed in Table IX. In all cases,

the fit’s predictions for the true valence pion’s mass, xi,
are consistent with the data, and so we do not display
them. While the fit quality is very good, the errors
are rather large. However, there is a more serious
problem.
Mixed-action QCD satisfies the mass inequality [64]14

Mvs ≥ minðMss;MvvÞ: ðC16Þ

Inequality (C16) must be respected at each order in mixed-
action χPT and for any choice of the quark masses (as long
as the masses are not so large that χPT breaks down).

Constraints on the low-energy constants can be derived by
examining particular limits of the quark masses. First, we
tune the quark masses such that the sea and valence pions
have equal tree-level masses, M0;ss ¼ M0;vv. Using
Eq. (C4), it follows that we must have

Dvs ≥ 0: ðC17Þ

A second inequality follows by considering the double
chiral limit, ðms;mvÞ → 0. Then, M0;vs → â2ðDss þDvsÞ,
and in order for M2

0;vs to not become negative [in clear
violation of Eq. (C16)], we must have

Dss þDvs ≥ 0: ðC18Þ

What is important for us is that, using Eq. (C6), the
inequality (C17) translates into

A ≥ M2
0;ss=2 ðC19Þ

or, equivalently,

Â ≥ M2
0;ss=ð16π2f2Þ: ðC20Þ

Using the result for f from Table IX (without the Ê term in
the fit), the ballpark values of this bound are about 0.4 for
ensemble 1 (i.e., Â), and 0.2 for ensemble 2 (i.e., Â0). The fit
results for Â and Â0 are in bad disagreement with these
bounds.
At a technical level, these difficulties have to do with the

large curvature in the plots of the data for fvvðM2
vvÞ.

Ensemble 2 has the larger curvature, and, mathematically,
the fit makes up for it by demanding a negative Â0. The
bound (C20) is far from satisfied. Moreover, as the argu-
ment of the logarithm is Âþ M̂2

vv=2, the chiral valence
extrapolation is mathematically impossible. In order to
avoid this large curvature, we would have to work at
smaller (valence and sea) masses, which, in turn, would
require larger lattices to accommodate the pions.

TABLE IX. Fit parameters for Eq. (C13). Each fit uses four values ofmv. For set 1, we used data from ensembles 1
and 2 for the masses 0.02, 0.035, 0.05, and 0.075; for set 2, 0.075 was replaced by 0.1. The first two lines are six-
parameter fits. The last line uses set 2 again but has an added next-to-next-to-leading-order analytic term ÊM4

vv, for a
total of seven parameters.

Data set f Â Â0 D̂ Ĉ Ĉ0 Ê χ2=d:o:f:

1 0.07(2) 0.03(7) −0.07ð3Þ 2.2(16) 0.5(5) 0.4(3) – 0.16=2
2 0.07(2) 0.03(6) −0.07ð3Þ 2.0(12) 0.4(3) 0.3(2) – 0.16=2
2 0.0346(7) 0.13(7) −0.13ð5Þ 8.3(6) 1.8(1) 1.3(1) 6.5(12) 0.014=1

13For simplicity, we display the χ2 function for uncorrelated
data. In the actual fit, we have taken the cross-correlations into
account.

14See also Ref. [65].
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