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We study the ρπ and b1π decay modes of the 1−þ light hybrid state within the framework of light-cone

QCD sum rules. We use both the tensor current ψσμνψ and the derivative current ψD
↔

μγ5ψ as interpolating
currents to calculate the partial decay width of the b1π decay mode. Comparing the sum rules obtained by
using different currents, we obtain Γðπ1 → b1πÞ ¼ 8–23, 32–86 and 52–151 MeV for m1−þ ¼ 1.6, 1.8 and
2.0 GeV respectively, which favor the results from the flux tube models and lattice simulations. We also use
the tensor current to study the ρπ decay mode, and although an extended stability criterion is needed, our
results suggest a small partial decay width.
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I. INTRODUCTION

The 1−þ light hybrid mesons have attracted particular
attention in hadronic physics. The reason is not only such a
state can be distinguished from ordinary qq mesons for its
beyond-quark-model exotic quantum number but also it is
expected to be one of the lowest-lying hybrid states. To
date, accumulated experimental data have shown the
existence of 1−þ isovector states, i.e. π1ð1400Þ, identified
in ηπ and η0π channels and π1ð1600Þ seen to decay into
b1π, f1π and η0π1 [1]. Moreover, there is another 1−þ state,
π1ð2015Þ, quoted in the extended version of the Particle
Data Group [1], which is only observed by E852 in f1π and
b1π final states and needs further confirmation.
Computations on the light hybrid spectrum have been

conducted with lattice QCD and different phenomenologi-
cal models (for a review, see [2]). In the bag model, the
predicted mass of the low lying 1−þ hybrid nonet is around
1.5 GeV [3,4]. The earliest quenched lattice calculations
predicted the 1−þ light hybrid mass lies in the region
1.8–2.1 GeV [5–8], while the more recent dynamical
calculations predicted the mass is around 2.2 GeV
[9,10]. Isgur and Paton estimated in the flux tube model
the 1−þ light hybrid mass to be 1.9 GeV [11,12] while in
the constituent gluon models, the exotic light hybrid mass
is found to lie in the region 1.8–2.2 GeV [13–15].
In the framework of QCD sum rules [16], the earliest

leading-order results obtained by different authors show
the 1−þ light hybrid mass lies in the range 1.6–2.1 GeV

[17–23]. Over the past 15 years, different groups extended
and improved the sum rule calculation. The radiative
corrections were calculated in [24,25] for the perturbative
terms and in [26] for the operator product expansion (OPE).
The short distance tachyonic gluon mass effects were also
included in [24], and Narison gave a systematical re-
examination of the 1−þ mass with inclusion of all the
previous calculated effects and estimated the mass to be
1.81 GeV [27]. Furthermore, the authors of this paper
further complemented the sum rule analysis of the 1−þ

mass: instanton effects were studied in Zhang’s Ph.D. thesis
[28], and a Monte-Carlo based uncertainty analysis was
performed in [29]. Both of these efforts show little change
in the mass prediction. Moreover, recently we included the
higher power corrections of OPE with consideration of
operator renormalization [30]. We considered violation of
factorization of higher dimensional condensates and
updated the QCD input parameters. We obtained a quite
conservative range of the 1−þ light hybrid mass, i.e. 1.72–
2.60 GeV, which only covers π1ð2015Þ and does not
support π1ð1600Þ as a pure hybrid. Given that the analysis
in [30] has involved all effects that seem to have consid-
erable influence in the sum rule mass extraction, the mass
range can be considered as a general conclusion from QCD
sum rules.
From the theoretical mass predictions we can see that

π1ð1400Þ is not supported to be a hybrid by various
theoretical schemes. Even the mass of π1ð1600Þ is lower
than many of the theoretical predictions, although this
resonance has long been considered as a good hybrid
candidate. Some people have argued that π1ð1600Þ can
involve a four-quark state, and a mixing of molecular state
and four-quark state has been proposed in [27] based on the

1The situation is uncertain for the ρπ decay mode: VES and
Compass have not claimed the existence of the ρπ decay while
some people have argued that the phase motion results observed
by E852 can be resulted from the leakage of π2ð1670Þ [1,2].
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discussions in [31,32] about 1−þ tetraquark and molecular
states. The unconfirmed π1ð2015Þ has been suggested in
[27,30] to be a good hybrid candidate. To shed further light
on the nature of these states needs both theoretical and
experimental study of the 1−þ decay modes.
The UKQCD collaboration examined the decay of the

1−þ hybrid with two dynamical quarks in the lattice
simulation, and obtained the partial decay widths
Γðπ1 → b1πÞ ¼ 400� 120 MeV and Γðπ1→f1πÞ¼
90�60MeV [10]. Later in [33], Burns and Close found
these results agree quite well with the predictions near
threshold in the flux tube model, thus they reduced the
partial widths to Γðπ1→b1πÞ≈80MeV and Γðπ1 → f1πÞ≈
25 MeV, whereas the results in the Isgur-Kokoski-Paton
model [34,35] and the Page-Swanson-Szczepaniak model
[36,37] are Γðπ1 → b1πÞ ¼ 51 MeV, Γðπ1 → f1πÞ ¼
14 MeV and Γðπ1→b1πÞ¼40–78MeV, Γðπ1 → f1πÞ ¼
10–18 MeV respectively. The decay modes of the 1−þ light
hybrid state have also been studied within the framework of
QCD sum rules. The earliest three-point function sum rule
studies can be seen in [21,38], while a recent study can be
seen in [39] where the pion mass terms in the denominator
were ignored and only the 1=q2 terms divergent in the limit
q2 → 0 were kept. The authors in [39] also studied the 1−þ
decay [40] using the light-cone QCD sum rules (LCSR)
[41–44], of which the basic idea is to expand the correlation
function near the light cone. However, the predicted partial
decay width of π1 → b1π is somewhat confusing. The
suggestion of very tiny decay width of b1π implies both
π1ð1600Þ and π1ð2015Þ may not have much of a hybrid
constituent, and also does not agree with the predictions
from various models mentioned above. Considering the
important role of b1π decay mode in identifying the 1−þ
hybrid state, it is worthwhile to reexamine this decay mode
within the same theoretical framework.
In this work, we study the b1π decay mode using the b1

derivative current ψD
↔

μγ5ψ instead of the current ψ ∂↔μγ5ψ
adopted in [40]. We also use the tensor current ψσμνψ ,
which not only couples to b1 but also the 1−− ρmeson, thus
an analysis of the ρπ decay mode can be provided
simultaneously. Usually, the ρ meson is studied using
the simpler vector interpolating current ψγμψ , as was done
in [16,45] for the mass and in [46,47] for the decay
constant. In addition, attempts to study the ρ meson using
the tensor current have also been made previously in both
sum rule [48,49] and lattice calculations [47]. Studies
using the tensor current can provide a useful reexamine
of the results obtained by using the vector current. Previous
sum rule studies using the vector current ψγμψ predict
large partial decay width of the ρπ channel [39,40]
while this channel is forbidden in the original flux tube
model [35] and the partial decay width is still small
in its modified versions [36,37,50], therefore, it is also
worth reexamining this channel by using the tensor current.

We arrange the article as follows: In Sec. II we illustrate
the formalism of the light-cone QCD sum rules for deriving
the coupling constants in the 1−þ decay amplitudes. In
Sec. III we present our results of the light-cone expansion
of the correlation function of both the tensor current ψσμνψ

and the derivative current ψD
↔

μγ5ψ . In Sec. IV we illustrate
the method of calculating the integrals of the spectral
densities, from which the contribution from excited states
and continuum can be subtracted. In Sec. V, we present the
numerical analysis of b1π and ρπ decay modes with both
currents. In Sec. VI we present the summary and
conclusions.

II. LIGHT-CONE QCD SUM RULES FOR THE
1−þ LIGHT HYBRID STATE

We begin with the following correlation function to
study the decay modes π1 → b1π and π1 → ρπ:

ΠT;Dðk;pÞ¼ i
Z

d4xeik·xhπðqÞjTfJT;DðxÞJH†ð0Þgj0i; ð1Þ

where p, k and q are respectively the momentum for π1, b1
or ρ and π, which satisfy the four-momentum conservation
p ¼ kþ q. JH ¼ JHμ ¼ ψGμνγνψ couples to the 1−þ light

hybrid, JT ¼ JTμν ¼ ψσμνψ couples to b1 and ρ, and JD ¼
JDμ ¼ ψD

↔

μγ5ψ also couples to b1.
In the practical calculation, we use JHμ ¼

ffiffi
2

p
2
ðuGμνγνu−

dGμνγνdÞ, JTμν ¼ dσμνu and JDμ ¼ dD
↔

μγ5u to study the
partial decay widths of decay modes π01 → bþ1 π

− and
π01 → ρþπ−, of which the results also hold for π01 →
b−1 π

þ and π01 → ρ−πþ. We define the decay constants
through the following formulas:

h0jJHμ ð0Þjπ1i ¼ fπ1m
3
π1ημ;

h0jJTμνð0Þjb1i ¼ ifTb1εμνρσϵ
ρkσ;

h0jJTμνð0Þjρi ¼ ifTρ ðkμϵν − kνϵμÞ;
h0jJDμ ð0Þjb1i ¼ fb1ϵμ; ð2Þ

where ϵμ and ημ are polarization vectors, and the decay
amplitudes can be written as

Mðπ1 → ρπÞ ¼ igρεαβρσϵ�αηβkρpσ;

Mðπ1 → b1πÞ ¼ ig1b1ðη · ϵ�Þ þ ig2b1ðη · kÞðϵ� · pÞ: ð3Þ

The correlation function can be expanded in the light-
cone distribution amplitudes which play the similar role as
the condensates of local operators in the SVZ operator
product expansion. The light-cone expansions can be
compared to the phenomenological expressions of the
correlation function so as to estimate the coupling constants
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in (3) and then to obtain the partial decay widths. After
interpolating the intermediate hadronic states into (1) and
using the definitions in (2) and (3), we arrive at the
phenomenological sides:

ΠT
b1
ðk;pÞ¼ i

Z
d4xeik·xhπ−ðqÞjTfJTμνðxÞJH†

α ð0Þgj0i

→
fπ1f

T
b1

ðp2−m2
π1Þðk2−m2

b1
Þϵμνρσ

�
g1b1k

ρ

�
−
pαpσ

p2
þgσα

�

þg2b1k
ρ

�
−
k ·p
p2

pαpσþkαpσ

��
þ��� ; ð4Þ

ΠT
ρ ðk; pÞ ¼ i

Z
d4xeik·xhπ−ðqÞjTfJTμνðxÞJH†

α ð0Þgj0i

→ gρ
fπ1f

T
ρ

ðp2 −m2
π1Þðk2 −m2

ρÞ
ð−ϵρσναkρpσkμ

þ ϵρσμαkρpσkνÞ þ � � � ; ð5Þ

ΠD
b1
ðk;pÞ ¼ i

Z
d4xeik·xhπ−ðqÞjTfJDμ ðxÞJH†

ν ð0Þgj0i

→
ifπ1fb1

ðp2 −m2
π1Þðk2 −m2

b1
Þ
�
g1b1

�
k ·pkμpν

k2p2
−
kμkν
k2

−
pμpν

p2
þ gμν

�
þ g2b1

�ðk ·pÞ2kμpν

k2p2
−
k ·p
k2

kμkν

−
k ·p
p2

pμpν þpμkν

��
þ � � � ; ð6Þ

where the ellipses denote the contribution from excited
states and continuum.
On the QCD side, the correlation function (1) can be

expanded near the light-cone x2 ¼ 0 in terms of meson
distribution amplitudes of different twists. After picking out
characteristic tensor structures we get invariant parts of
correlation functions corresponding to different coupling
constants in (4)–(6). Sometimes this process involves some

technical complications as different tensor structures entan-
gle with each other at first sight. We will discuss these
details in the next section.
In order to subtract the contribution from excited states

and continuum in the invariants of correlation functions, the
double dispersion relation can be used:

Πðk2; p2Þ ¼
Z

∞

0

ds1

Z
∞

0

ds2
ρðs1; s2Þ

ðs1 − k2 − iϵÞðs2 − p2 − iϵÞ
þ subtractions; ð7Þ

where the subtractions eliminate the infinities from the
dispersion integral. After taking Borel transformation,
which is defined as

BM2

k2 ½fðk2Þ� ¼ lim
n→∞

ð−k2Þnþ1

n!

�
d
dk2

�
n
fðk2Þjk2¼−nM2 ; ð8Þ

the subtraction terms can be removed and then we get

B
1
σ1

k2
B

1
σ2

p2Πðk2; p2Þ ¼
Z

∞

0

ds1

Z
∞

0

ds2e−s1σ1e−s2σ2ρðs1; s2Þ;

ð9Þ

from which we can subtract continuum by cutting the
integral at continuum thresholds s01 and s02. The spectral
density ρðk2; p2Þ can be obtained by taking another double
Borel transformations on (9):

ρðs1; s2Þ ¼ B
1
s1
−σ1B

1
s2
−σ2B

1
σ1

k2
B

1
σ2

p2Πðk2; p2Þ: ð10Þ

After invoking the double Borel transformations to the
phenomenological representations (4)–(6), and compare
them with the QCD side (9) using (10), we get the master
equations of light-cone QCD sum rules:

fTb1fπ1m
3
π1g

1
b1
e−m

2
b1
σ1−m2

π1
σ2 ¼

Z
s01

0

ds1

Z
s02

0

ds2e−s1σ1e−s2σ2B
1
s1
−σ1B

1
s2
−σ2B

1
σ1

k2
B

1
σ2

p2ΠT
b1;1ðk2; p2Þ; ð11Þ

fTb1fπ1m
3
π1g

2
b1
e−m

2
b1
σ1−m2

π1
σ2 ¼

Z
s01

0

ds1

Z
s02

0

ds2e−s1σ1e−s2σ2B
1
s1
−σ1B

1
s2
−σ2B

1
σ1

k2
B

1
σ2

p2ΠT
b1;2ðk2; p2Þ; ð12Þ

fTρfπ1m
3
π1gρe

−m2
ρσ1−m2

π1
σ2 ¼

Z
s01

0

ds1

Z
s02

0

ds2e−s1σ1e−s2σ2B
1
s1
−σ1B

1
s2
−σ2B

1
σ1

k2
B

1
σ2

p2ΠT
ρ ðk2; p2Þ; ð13Þ

ifb1fπ1m
3
π1g

1
b1
e−m

2
b1
σ1−m2

π1
σ2 ¼

Z
s01

0

ds1

Z
s02

0

ds2e−s1σ1e−s2σ2B
1
s1
−σ1B

1
s2
−σ2B

1
σ1

k2
B

1
σ2

p2ΠD
b1;1ðk2; p2Þ; ð14Þ

ifb1fπ1m
3
π1g

2
b1
e−m

2
b1
σ1−m2

π1
σ2 ¼

Z
s01

0

ds1

Z
s02

0

ds2e−s1σ1e−s2σ2B
1
s1
−σ1B

1
s2
−σ2B

1
σ1

k2
B

1
σ2

p2ΠD
b1;2ðk2; p2Þ; ð15Þ
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where contributions from excited states and continuum
have been subtracted from both phenomenological and
QCD sides.

III. LIGHT-CONE EXPANSION OF THE
CORRELATION FUNCTIONS

We expand the correlation function near the light cone in
distribution amplitudes calculated in [51]. Contributions of
different decay modes mix in the final results. Depending
on the certain current used in the correlation function, it is
sometimes not quite straightforward to pick out the
particular tensor structures corresponding to certain decay
modes, which in our case holds for the tensor current.
Before presenting our results of light-cone expansion, we
show how to separate the tensor structures in the light-cone
expansion of correlation functions.
For the tensor current correlation function, the tensors

that appear in the final results involve Levi-Civita tensors.
Generally we can form six tensor structures with a Levi-
Civita tensor and two independent momentums with three
independent Lorentz indices μ, ν and α (μ, ν are antisym-
metric). They are

T1 ¼ ϵμνραpρ;

T2 ¼ ϵμαρσkρpσpν − ϵναρσkρpσpμ;

T3 ¼ ϵμνραkρ;

T4 ¼ ϵμνρσkρpσkα;

T5 ¼ ϵμνρσkρpσpα;

T6 ¼ ϵμαρσkρpσkν − ϵναρσkρpσkμ: ð16Þ

Actually, only four of the above tensors are independent.
One can prove the formula below:

T5 − T2 ¼ p2T3 − p · kT1: ð17Þ

By exchanging p and k, we get

T4 − T6 ¼ −k2T1 þ p · kT3: ð18Þ

By using (17) and (18), T1 and T2 that appear in the final
results of the light-cone expansion can be expressed in
terms of T3–T6. On the phenomenological side of the
correlation function of the tensor current, tensor structures
corresponding to different decay modes are as below:

π1→b1π∶g1b1ϵμνρσk
ρ

�
−
pσpα

p2
þgασ

�
∼−

1

p2
T5þT3

þg2b1ϵμνρσk
ρ

�
−
k ·p
p2

pσpαþpσkα

�
∼−

p ·k
p2

T5þT4

π1→ρπ∶gρðϵρσμαkρpσkν−ϵρσναkρpσkμÞ ∼T6

0þþ→b1π∶g0b1ϵμνρσk
ρpσpα ∼T5: ð19Þ

From (19) we can see that T3, T4 and T6 are the
characteristic tensors for b1π and ρπ decay modes, of
which the corresponding terms on the QCD side can be
extracted to compare with the phenomenological side. After
doing this, we obtain the QCD side of the tensor current
correlation function with light-cone expansion.
The tensor structure for the correlation function of the

derivative current is much simpler; we can see from (6) that
gμν and pμkν can be the characteristic tensors (the 0þþ

decay mode has a tensor structure parallel to pν due
to h0jJHν ð0Þj0þþi ∼ pν).
Using the method above, we are able to disentangle the

tensor structures and get the following results of light-cone
expansion:

B
1
σ1

k2
B

1
σ2

p2ΠT
b1;1ðk2; p2Þ ¼ −

ffiffiffi
2

p
πfπm2

π

108ðmu þmdÞ
hαsG2i

�
1

2
½ϕ0

σðu0Þ − ϕ0
σðu0Þ� þ 3½ϕpðu0Þ þ ϕpðu0Þ� þ 3ðϕ½u�

p þ ϕ½u�
p Þ

�
; ð20Þ

B
1
σ1

k2B
1
σ2

p2ΠT
b1;2ðk2; p2Þ ¼ −

ffiffiffi
2

p
fπm2

π

ðmu þmdÞ
ðT ½α1� þ T ½α2�Þ 1

σ

þ
ffiffiffi
2

p
πfπm2

π

108ðmu þmdÞ
hαsG2if½ϕσðu0Þ þ ϕσðu0Þ�ðσ1 − σ2Þ þ 6ðϕ½u�

p þ ϕ½u�
p Þσ2g; ð21Þ

B
1
σ1

k2
B

1
σ2

p2ΠT
ρ ðk2; p2Þ ¼

ffiffiffi
2

p
πfπm2

π

108ðmu þmdÞ
hαsG2if½ϕσðu0Þ þ ϕσðu0Þ�σ − 6ðϕ½u�

p þ ϕ½u�
p Þσ2g; ð22Þ

B
1
σ1

k2
B

1
σ2

p2ΠD
b1;1

ðk2; p2Þ ¼ i
ffiffiffi
2

p
πfπm2

π

108ðmu þmdÞ
�
1

2
½ϕ0

σðu0Þ − ϕ0
σðu0Þ� − 3½ϕpðu0Þ þ ϕpðu0Þ�

�
1

σ
hαsG2i; ð23Þ
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B
1
σ1

k2
B

1
σ2

p2ΠD
b1;2

ðk2; p2Þ ¼ i
ffiffiffi
2

p
πfπm2

π

54ðmu þmdÞ
��

1 − 3u0 −
u0
u0

�
½ϕσðu0Þ þ ϕσðu0Þ� þ u0u0½ϕ0

σðu0Þ − ϕ0
σðu0Þ�

þ 3u0ð1 − u0Þ½ϕpðu0Þ þ ϕpðu0Þ�
�
hαsG2i

þ i
ffiffiffi
2

p
fπm2

π

ðmu þmdÞ
�
u0T ðu0; u0; 0Þ þ u0T ðu0; u0; 0Þ þ u0

�∂T
∂α3 −

∂T
∂α2

�½α1�

þ u0

�∂T
∂α3 −

∂T
∂α1

�½α2�
− T ½α1� − T ½α2�

�
1

σ2
; ð24Þ

where the Borel variable σ ¼ σ1 þ σ2. We have adopted the
vacuum saturation approximation and the definitions of
the notations can be found in the Appendix. We have used
the same definitions of the pion distribution amplitudes of
those used in [40], which have been calculated in [51]. We

also use the current JDμ ¼ dD
↔

μγ5u instead of d∂↔μγ5u used
in [40], which lead to discrepancies in the final results of
light-cone expansion and contradictory results in the
numerical analysis. We have also compared our results
from the noncovariant derivative current with those ob-
tained in [40], only finding a misprint: there are extra u0
factors in the T ½α1� and T ½α2� terms of the light-cone sum
rules for g2b1 in [40].

IV. INTEGRALS OF THE SPECTRAL DENSITIES

After substituting the pion distribution amplitudes with

the expressions in the Appendix, B
1
σ1

k2
B

1
σ2

p2ΠT;Dðk2; p2Þ in

(11)–(15) are of three types: σm
2

ðσ1þσ2Þn, ln
σ2

σ1þσ2
and σ2 ln

σ2
σ1þσ2

,

where m ≥ 0 and n > 0.
For the first type, the general form of the spectral density

integral can be calculated in the following procedure:

Z
s01

0

ds1

Z
s02

0

ds2e−s1σ1e−s2σ2B
1
s1
−σ1B

1
s2
−σ2

σm2
ðσ1 þ σ2Þn

¼
Z

s01

0

ds1

Z
s02

0

ds2e−s1σ1e−s2σ2
1

ΓðnÞ
∂m

∂sm2 ½δðs1 − s2Þsn−12 �

¼
Z

s01

0

ds1

Z
s02

0

ds2e−s1σ1e−s2σ2
1

ΓðnÞ
∂mδðs2 − s1Þ

∂sm2 sn−11 ;

ð25Þ

where s01 < s02 is a reasonable assumption according to
mb1;ρ < mπ1 . The power of ∂

∂s2 in the last equation of (25)
can be reduced using integration by parts. Doing this one
time, we get the surface term as below:

△ ¼ ð−1Þm
ΓðnÞ

Z
s01

0

ds1e−s1σ1
∂m−1δðs1Þ
∂sm−1

1

sn−11 ; ð26Þ

which is well defined and vanishing only if n > m. To
avoid the ambiguity arising from the surface term, we shift
the lower limit of the integral (25) by a small constant and
get

Z
s01

0þ
ds1

Z
s02

0

ds2e−s1σ1e−s2σ2
1

ΓðnÞ
∂mδðs2 − s1Þ

∂sm2 sn−11

¼ σm2
ΓðnÞ

Z
s01

0

ds1e−s1ðσ1þσ2Þsn−11

¼ σm2 ðσ1 þ σ2Þ−n
�
1 −

Γ½n; ðσ1 þ σ2Þs01�
ΓðnÞ

�

¼ σm2 ðσ1 þ σ2Þ−nfn−1½ðσ1 þ σ2Þs01�; ð27Þ

where fnðxÞ ¼ 1 − e−x
P

n
i¼0

xi
i!, Γ½x� is the Eular

Gamma function, and Γ½x; y� is the incomplete Gamma
function.
For the second type of the spectral density integrals, we

have

Z
s01

0

ds1

Z
s02

0

ds2e−s1σ1e−s2σ2B
1
s1
−σ1B

1
s2
−σ2 ln

σ2
σ1 þ σ2

¼ ln
σ2

σ1 þ σ2
−
Z

∞

s01

ds1

Z
∞

s02

ds2e−s1σ1e−s2σ2

× B
1
s1
−σ1B

1
s2
−σ2 ln

σ2
σ1 þ σ2

¼ ln
σ2

σ1 þ σ2
−
Z

∞

s01

ds1

Z
∞

s02

ds2e−s1σ1e−s2σ2
1

s2
δðs1 − s2Þ

¼ ln
σ2

σ1 þ σ2
− Γ½0; s02ðσ1 þ σ2Þ�: ð28Þ

Similarly, we get the third type of the spectral density
integrals:
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Z
s01

0

ds1

Z
s02

0

ds2e−s1σ1e−s2σ2B
1
s1
−σ1B

1
s2
−σ2σ2 ln

σ2
σ1þσ2

¼σ2 ln
σ2

σ1þσ2
−
Z

∞

s01

ds1

Z
∞

s02

ds2e−s1σ1e−s2σ2

×B
1
s1
−σ1B

1
s2
−σ2 ln

σ2
σ1þσ2

¼σ2 ln
σ2

σ1þσ2
−
Z

∞

s01

ds1

Z
∞

s02

ds2e−s1σ1e−s2σ2
1

s1

d
ds2

δðs1−s2Þ

¼σ2 ln
σ2

σ1þσ2
þe−s02ðσ1þσ2Þ 1

s02
−σ2Γ½0;s02ðσ1þσ2Þ�:

ð29Þ

Using these integral formulas, we can transform the
master equations (11)–(15) into forms of

g1b1 ¼ ΠT
b1;1

ðσ; s01; s02Þ=ðfTb1fπ1m3
π1e

−2m2
b1
m2

π1
=ðm2

b1
þm2

π1
Þ·σÞ;
ð30Þ

g2b1 ¼ ΠT
b1;2

ðσ; s01; s02Þ=ðfTb1fπ1m3
π1e

−2m2
b1
m2

π1
=ðm2

b1
þm2

π1
Þ·σÞ;
ð31Þ

gρ ¼ ΠT
ρ ðσ; s01; s02Þ=ðfTρfπ1m3

π1e
−2m2

ρm2
π1
=ðm2

ρþm2
π1
Þ·σÞ; ð32Þ

g1b1 ¼ΠD
b1;1

ðσ;s01Þ=ðifb1fπ1m3
π1e

−2m2
b1
m2

π1
=ðm2

b1
þm2

π1
Þ·σÞ; ð33Þ

g2b1 ¼ΠD
b1;2

ðσ;s01Þ=ðifb1fπ1m3
π1e

−2m2
b1
m2

π1
=ðm2

b1
þm2

π1
Þ·σÞ ð34Þ

respectively, where σ ¼ σ1 þ σ2, and we assume σ2
σ1
¼ m2

b1 ;ρ

m2
π1

.

V. RESULTS AND DISCUSSIONS

To obtain predictions for g1b1, g
2
b1
and gρ from the master

equations (30)–(34), we vary the continuum thresholds s01
and s02 within the physically acceptable ranges to find the
stable regions for the couplings, in which the dependence
of the couplings on σ is weak, which allows theoretical
predictions. Since there are still different possibilities for

the mass of the 1−þ hybrid, we consider three different
values of the hybrid mass, i.e.,mπ1 ¼ 1.6, 1.8 and 2.0 GeV,
and we use the decay constant fπ1 ¼ 0.025 GeV deduced
from QCD sum rules [27,30].

A. Numerical analysis for g1b1
We first consider the master equation (30). Numerically

we use mb1 ¼ 1.235 GeV and fTb1ð2 GeVÞ ¼ 0.18 GeV in
[52]. There are two continuum thresholds s01 and s02 in
this sum rule, which seems tricky to deal with. However,
we find under s02 > s01 (given mπ1 > mb1;ρ), g

1
b1

depends
weakly on s02 (see Fig. 1), which enter the sum rules with
the incomplete Gamma function. Thus for simplicity, we
will set s02 ¼ s01 þ 1.0 GeV2 in this sum rule. By varying
the value of s01, we can observe how the g1b1 − σ curves
change. In principle, we expect gb1 depends weakly on
the external parameters (σ,s01), which has been emphasized
in traditional QCD sum rules [53]. In practice, we find gb1
shows stability in σ (by the extreme values in Fig. 2), but no
stability in s01. In fact, gb1 increases gradually with s01,
which means s01 cannot be fixed from the stability
criterion. Therefore it is appropriate to consider a con-
servative range of gb1 by varying s01 within its physically
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FIG. 1. g1b1 − σ curves from the master equation (30) for mπ1 ¼ 1.6 GeV, mπ1 ¼ 1.8 GeV, mπ1 ¼ 2.0 GeV. The dotted line, the
dashed line, dot-dashed line and the dot-dot-dashed line denote fs01; s02g ¼ f3 GeV2; 4 GeV2g, f3 GeV2; 5 GeV2g,
f3 GeV2; 6 GeV2g and f3 GeV2; 7 GeV2g respectively.
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FIG. 2. g1b1 − σ curves from the master equation (30). The
dotted lines, the dashed lines and the dot-dashed lines
denote mπ1 ¼ 1.6, 1.8 and 2.0 GeV respectively. All thick
lines denote fs01; s02g ¼ f5 GeV2; 6 GeV2g while the other
lines denote fs01; s02g ¼ f3 GeV2; 4 GeV2g.
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acceptable range (where σ stability should also be
ensured). In Fig. 2, we plot the optimal results obtained
in the region s01 ¼ 3–5 GeV2. By reading the extremum
values for g1b1 from the curves, we can obtain estimated
values for g1b1. For mπ1 ¼ 1.6 GeV, we find g1b1 ¼
−0.12– − 0.09 GeV. If the mass of the 1−þ hybrid is larger

than 1.6 GeV, wewill obtain different values of g1b1 . We find
g1b1 ¼ −0.20– − 0.15 GeV for mπ1 ¼ 1.8 GeV and g1b1 ¼
−0.22– − 0.17 GeV for mπ1 ¼ 2.0 GeV.
The sum rule for the derivative current (33) provides a

second way to estimate the value of g1b1 , for which we use
fb1ð2 GeVÞ ¼ 0.18 GeV from [54]. In this sum rule, there
is only one continuum threshold s01. However, this sum
rule does not reach stability in σ unless we use large values
of s01. In Fig. 3, we plot curves where stability in σ is
initially reached as we increase s01, from which we can read
the extreme values of g1b1 , i.e., g1b1 ¼ −0.8, −0.58 and
−0.42 GeV for mπ1 ¼ 1.6, 1.8 and 2.0 GeV respectively.
Given that the related s01 here lies too far away from the
square of the ground state mass, we consider values
of g1b1 from the tensor current LCSR as more reliable
predictions.

B. Numerical analysis for g2b1
To obtain the prediction for g2b1, we first consider the sum

rules for the tensor current. By varying s01 and s02, we find
g2b1 is almost insensitive to the value of s02. As can be seen
in Fig. 4, curves corresponding to the same s01 and different
s02 almost overlap with each other. Thus we can still set
s02 ¼ s01 þ 1.0 GeV2 in this sum rule.
In Fig. 5, we can observe how the shape of curves

changes when we increase the value of s01. The curves are
monotonous at low s01. If we increase s01, the curves will
reach stability in σ. But even as the stability is initially
reached, the corresponding s01 (¼ 7; 8; 10 GeV2 respec-
tively for mπ1 ¼ 1.6, 1.8 and 2.0 GeV) seems too large for
the b1 meson. Therefore we do not intend to extract specific
predictions for g2b1 from LCSR with the tensor current.
However, the extreme values of the curves will not

increase if the value of s01 has reached a “huge value,”
e.g., 14 GeV2 for mπ1 ¼ 1.6 GeV. which means we can
obtain an upper bound of g2b1 . In Fig. 5, we obtain
g2b1 < −6.5 GeV−1, < −4.5 GeV−1 and < −3 GeV−1 for
mπ1 ¼ 1.6, 1.8 and 2.0 GeV respectively.
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FIG. 3. g1b1 − σ curve from master equation (33). The
dotted line, the dashed line and the dot-dashed line denote
fs01; mπ1g ¼ f7 GeV2; 1.6 GeVg; f9 GeV2; 1.8 GeVg and
f11 GeV2; 2.0 GeVg respectively.
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FIG. 4. g2b1 − σ curves from master equation (31) for
mπ1 ¼ 1.6 GeV. The dotted line, the dashed line, dot-dashed
line and the dot-dot-dashed line denote fs01; s02g ¼ f5 GeV2;
6 GeV2g, f5 GeV2; 7 GeV2g, f5 GeV2; 8 GeV2g and f5 GeV2;
9 GeV2g respectively.
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FIG. 5. g2b1 − σ curves from master equation (31) with mπ1 ¼ 1.6, 1.8 and 2.0 GeV. The dotted line, the dashed line, the dot-dashed
line and the dot-dot-dashed line denote fs01; s02g ¼ f5 GeV2; 6 GeV2g, f8 GeV2; 9 GeV2g, f11 GeV2; 12 GeV2g and
f14 GeV2; 15 GeV2g respectively.
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The upper bounds above can be compared with the
predictions of g2b1 from using the derivative current, which
are obtained from the stability criterion in the region
s01 ¼ 3–5 GeV2. We plot all curves in Fig. 6, from
which we read g2b1 ¼ −12.8– − 22.4 GeV−1, −8.9– −
14.7 GeV−1 and −5.7– − 9.8 GeV−1 for mπ1 ¼ 1.6, 1.8
and 2.0 GeV respectively.

C. Numerical analysis for gρ
By using the sum rule for tensor current, we can also try

to obtain the prediction for gρ. Numerically we adopt mρ ¼
0.77 GeV and fTρ ð2 GeVÞ ¼ 0.159 GeV [47,48]. Again
the coupling is insensitive to the variation of s02 when s01 is
fixed, and we still assume s02 ¼ s01 þ 1.0 GeV2. As shown
in Fig. 7, although the sum rules for (32) do not reach exact
stability in σ, in the region where the curves are close to
stabilizing, there are intersection points for curves with
different (s01,s02). Near these intersection points, gρ
depends weakly on the variation of (s01,s02), which fulfills
the s0 stability criterion of which the importance has been
emphasized in traditional QCD sum rules [53]. Taking
the value of gρ at the intersection points, we obtain
gρ ¼ −0.06;−0.05 and −0.06 GeV−1 respectively for
1.6, 1.8 and 2.0 GeV, which suggest gρ to be small.

D. Decay widths for π1 → b1π and π1 → ρπ

In the previous subsections, we have obtained values and
ranges of g1b1 and g2b1 , from both the tensor current LCSR
and derivative current LCSR, and we have also obtained
estimates of gρ from tensor current LCSR.
Using these values of g1b1 , g2b1 and gρ as our input

parameters, we can calculate the decay widths for
π1 → b1π and π1 → ρπ by using

Γðπ1 → bþ1 π
− þ b−1 π

þÞ ¼ 1

12πm2
π1

·

�
ðg1b1Þ2

�
3þ k2b1

m2
b1

�
kb1 þ 2g1b1g

2
b1

mπ1

m2
b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

b1
þ k2b1

q
k3b1 þ ðg2b1Þ2

m2
π1

m2
b1

k5b1

�
; ð35Þ

and

Γðπ1 → ρþπ− þ ρ−πþÞ ¼ g2ρ
6π

k3ρ; ð36Þ

respectively, where kb1=ρ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðmb1=ρ −mπ1Þ2 −m2

π� · ½ðmb1=ρ þmπ1Þ2 −m2
π�

q
=ð2mπ1Þ.

From these expressions, we obtain possible values and

lower bounds of Γðπ1 → b1πÞ, which are listed in Table I,
from which we can see the predictions from jD LCSR
differs from the very small results obtained in [40]. This
discrepancy is mainly due to our addition of the distribution
amplitudes (DAs) contribution from the covariant deriva-

tive of the current ψD
↔

μγ5ψ . Since the light-cone expansion
is only known to lower twist, inclusion of any contribution
is possible to influence the sum rules to a large extent. From
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FIG. 7. gρ − σ curve for mπ1 ¼ 1.6, 1.8 and 2.0 GeV, from master equation (32). The dotted line, the dashed line, the dot-dashed line
and the dot-dot-dashed line denote fs01; s02g ¼ f2 GeV2; 3 GeV2g, f3 GeV2; 4 GeV2g, f4 GeV2; 5 GeV2g and f5 GeV2; 6 GeV2g
respectively.
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FIG. 6. g2b1 − σ curves from master equation (34). The
dotted lines, the dashed lines and the dot-dashed lines denote
mπ1 ¼ 1.6 GeV, 1.8 GeV and 2.0 GeV respectively. All
thick lines denote s01 ¼ 5 GeV2 while the other lines denote
s01 ¼ 3 GeV2.
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the past few subsections, we know that some of the sum
rules may suffer from lack of higher twist DAs and are not
stable enough within physically acceptable ranges of
continuum thresholds, which cause uncertainties in the
predictions. From previous analyses, the best sum rules are
g1b1 from jT LCSR and g2b1 from jD LCSR. Therefore we
consider the predictions from these sum rules as the most
reliable in our calculation. The decay widths are then
Γðπ1 → b1πÞ ¼ 8–23, 32–86 MeV and 52–151 for
mπ1 ¼ 1.6, 1.8 and 2.0 GeV, which to some extent support
the findings from the flux tube model [34–37] and the
modified lattice result [33].
Using the gρ obtained in the last subsection, we obtain

Γðπ1 → ρπÞ ¼ 0.021, 0.037 and 0.040 MeV formπ1 ¼ 1.6,
1.8, 2.0 GeV, suggesting a small ρπ decay width.

VI. SUMMARY AND CONCLUSIONS

We have studied the partial decay widths for decay
modes π1 → b1π and π1 → ρπ using the light-cone QCD
sum rules. We use both the tensor current ψσμνψ and the

derivative current ψD
↔

μγ5ψ as interpolating currents in our
calculation.
For the b1π decay mode, we find consistent numerical

results (within the errors) of the coupling constants from the
sum rules with different interpolating currents. We obtain
the partial decay width Γðπ1 → b1πÞ ¼ 8–23, 32–86 and

52–151 MeV for m1−þ ¼ 1.6, 1.8 and 2.0 GeV respectively
from the most reliable sum rules, which provide support for
the flux tube model predictions [34–37] and the modified
lattice predictions [33]. These results support the hybrid
explanations for π1ð1600Þ and π1ð2015Þ, both of which
have been observed in the b1π channels.
For the ρπ decay mode, we have obtained tiny values of

the decay widths, which is quite different from the sum
rules obtained by using the vector current ψγμψ . A similar
situation also occurs in the sum rules for ρ mass [49]. The
authors of [49] attribute this difference to two possible
reasons: violation of factorization in estimate of four-quark
condensate or weak coupling of the tensor current to the ρ
meson. Since the value of the ρ meson decay constant for
tensor current obtained from lattice calculation [47] is in a
reasonable region, we are inclined towards the first reason.
Our results go in line with the predictions obtained from the
flux tube model [35–37,50]. Since the existence of the ρπ
decay mode is also uncertain for both π1ð1600Þ and
π1ð2015Þ in the experiments [1,2], follow-up studies of
this decay mode will be of great help for understanding the
nature of these exotic states.
As shown from our calculation, higher twist (in our case,

twist-5) DA contributions may play an important role in
stabilizing the sum rules. However, these high twist
distribution amplitudes have not been calculated yet.
More solid conclusions await the inclusion of contributions
from higher twist DAs in the correlation functions.

ACKNOWLEDGMENTS

This work is supported by NSFC under Grants
No. 11175153, No. 11205093 and No. 11347020, and
supported by K. C. Wong Magna Fund in Ningbo
University. T. G. S. is supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC).
Z. R. Huang thanks the University of Saskatchewan for its
hospitality.

APPENDIX: DEFINITIONS OF PION
DISTRIBUTION AMPLITUDES
AND OTHER NOTATIONS

The twist-3 light-cone distribution amplitudes of pion
ϕpðuÞ, ϕσðuÞ and T ðαd;αu; αgÞ calculated in [51] are listed
below:

h0juðzÞiγ5dð−zÞjπðPÞi ¼
fπm2

π

mu þmd

Z
1

0

du eið2u−1ÞpzϕpðuÞ; ðA1Þ

h0juðzÞσαβγ5dð−zÞjπðPÞi ¼ −
i
3

fπm2
π

mu þmd
ðpαzβ − pβzαÞ

Z
1

0

du eið2u−1ÞpzϕσðuÞ; ðA2Þ

h0juðzÞσμνγ5gsGαβðvzÞdð−zÞjπ−ðPÞi ¼ i
fπm2

π

mu þmd
ðpαpμg⊥νβ − pαpνg⊥μβ − pβpμg⊥να þ pβpνg⊥αμÞ

×
Z

Dαe−ipzðαu−αdþvαgÞT ðαd; αu; αgÞ; ðA3Þ

TABLE I. Decay widths for π1 → b1π.

mπ1 ¼1.6GeV mπ1 ¼ 1.8 GeV mπ1 ¼ 2.0 GeV

Γðπ1 → b1πÞ=MeV

g1b1 ; g
2
b1

from
jT LCSR

>2 >9 >16

g1b1 ; g
2
b1

from
jD LCSR

20–40 46–103 62–163

g1b1 from jT

LCSR, g2b1
from jD LCSR

8–23 32–86 52–151

g1b1 from jD

LCSR, g2b1
from jT LCSR

>12 >18 >22
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where the first two DAs are normalized to unity:R
1
0 duϕðp;σÞðuÞ ¼ 1, and the projector onto the directions
orthogonal to p and x is defined as

g⊥μν ¼ gμν −
1

pz
ðpμzν þ pνzμÞ; ðA4Þ

the integration measure is defined as

Z
Dα ¼

Z
1

0

dαddαudαgδð1 − αu − αd − αgÞ: ðA5Þ

The explicit expressions for the DAs calculated in [51]
are

ϕpðuÞ ¼ 1þ
�
30η3 −

5

2
ρ2π

�
C1=2
2 ðξÞ

þ
�
−3η3ω3 −

27

20
ρ2π −

81

10
ρ2πa2

�
C1=2
4 ðξÞ; ðA6Þ

ϕσðuÞ ¼ 6uð1 − uÞ
�
1þ

�
5η3 −

1

2
η3ω3 −

7

20
ρ2π

−
3

5
ρ2πa2

�
C3=2
2 ðξÞ

�
; ðA7Þ

T ðαÞ ¼ 360η3αuαdα
2
g

�
1þ ω3

1

2
ð7αg − 3Þ

�
; ðA8Þ

where ξ ¼ 2u − 1 and Cm
n ðξÞ are Gegenbauer polynomials.

Numerically, We use the following values of the light
quark masses and the input parameters involved in the
light-cone expansion (at μ ¼ 1 GeV) [51,55]:

m2
π=ðmu þmdÞ ¼ ð1.6� 0.2Þ GeV;

mπ ¼ 0.134 GeV;

ρ2π ≡ ðmu þmdÞ2=m2
π ∼Oðm2

πÞ;
fπ ¼ 0.131 GeV;

a2 ¼ 0.44;

η3 ¼ 0.015;

ω3 ¼ −3;

hαsG2i ¼ 0.07 GeV4:

Some other notations that enter in (20)–(24) are defined
as follows:

u0 ¼
σ2

σ1 þ σ2
;

σ ¼ σ1 þ σ2;

u0 ¼ 1 − u0;

u ¼ 1 − u; ðA9Þ

ϕ½u� ¼
Z

1

u0

ϕðuÞ 1
u
du;

ϕ½u� ¼
Z

1

u0

ϕðuÞ 1
u
du;

T ½α1� ¼
Z

u0

0

T ðα1; u0; u0 − α1Þdα1;

T ½α2� ¼
Z

u0

0

T ðu0; α2; u0 − α2Þdα2: ðA10Þ
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