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Construction of the pion scalar isoscalar form factor ΓπðtÞ in the elastic region, with an emphasis on the
values of the S-wave isoscalar ππ scattering length a00 and the quadratic pion scalar radius hr2iπs to be in
conformity with predictions of the chiral perturbation theory, is presented. It is based on a precise S-wave
isoscalar ππ scattering phase shift generated by dispersive analysis of experimental data with and imposed
crossing symmetry condition. The final result for values of the f0ð500Þ scalar meson mass and width is
mσ ¼ ð487� 31Þ MeV; Γσ ¼ ð542� 60Þ MeV and for values of the f0ð980Þ scalar meson mass and
width is mfð980Þ ¼ ð988� 78Þ MeV; Γfð980Þ ¼ ð97� 29Þ MeV. The f0ð500Þ scalar meson parameters are
compatible with the results from dispersive analyses of the BERN and MADRID/CRACOW groups to be
considered now as the most reliable values of the f0ð500Þ scalar meson parameters, though in presented
analysis another, unusual way has been applied. The f0ð980Þ meson parameters agree well with values
given by the Particle Data Group.
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I. INTRODUCTION

The lightest hadronic resonance with vacuum quantum
numbers 0þþ, f0ð500Þ, is the most controversial particle
from the whole spectrum of existing scalar mesons [1].
From the first identification of this particle in 1974 a lot of
work has been done and many papers concerned with this
scalar meson have been published up to now. However,
only recently a clarification of this controversial situation
with f0ð500Þ has been achieved in the papers of the BERN
[2] and of the MADRID/CRACOW group [3], which are
now considered to be the most reliable determinations of
the f0ð500Þ scalar meson parameters.
In the paper [4] another method for a determination of the

f0ð500Þ scalar meson parameters bymeans of the pion scalar
form factor (FF) analysis in the elastic region has been
elaborated.However, therewas nopretension on the precision
of the obtained results as the published inaccurate, and in
some region even contradicting, experimental data on the S-
wave isoscalar ππ-scattering phase shift have been exploited.
So, the obtained mass and width of the f0ð500Þ scalar meson
in [4] can be maximally considered as an indication for an
existence of f0ð500Þ, however to be far away from the true
parameters of this particle. The same can be said for the
f0ð980Þmesonwhoseparameters have been determined to be
far from those given by the Particle Data Group [1].
In this paper analysis of the pion scalar FF at the elastic

region is carried out with true S-wave isoscalar ππ
scattering phase shift data with theoretical errors, which
have been generated by the Garcia-Martin-Kamiński-
Pela’ez-Yndurain (MADRID/CRACOW group) [3]

Roy-like equations. Moreover, a more simple method of
a calculation of the integral under consideration, in com-
parison with that in [4], is applied for finding an explicit
form of the pion scalar form factor at the elastic region.
Nevertheless, in a fitting procedure of such S-wave

isoscalar ππ scattering phase shift data with five free
parameters the obtained value of the S-wave isoscalar
ππ scattering length a00 and the quadratic pion scalar radius,
following from the explicit form of the obtained in such a
way the pion scalar isoscalar FF, is not in agreement with
predictions of the chiral perturbation theory (χPT) [5],
which is revealed to be a precision theory of the low energy
hadron physics. Therefore we have repeated the analysis
with a fixed value a00 ¼ 0.220� 0.005 of the S-wave
isoscalar ππ scattering length and also by a strict require-
ment of the quadratic pion scalar radius to be hr2iπs ¼
ð0.63–0.65Þ fm2 in accordance with predictions of the χPT.
As a result we have found that no more minimum of

χ2=ndf is achieved with five free parameters, but only with
seven parameters, which have resulted in appearance of two
additional complex conjugate and very near to the real axis
zeros on the first sheet of the Riemann surface in t-variable.
In this way the result of the paper [6] is reproduced, in a
completely different way.
In the next section all known properties of the pion scalar

FF ΓπðtÞ are summarized and an explicit form of the pion
scalar FF phase representation with one subtraction is
presented, which leads to a quadratic pion scalar radius
as the rapidly convergent integral also through the phase δΓ
of the pion scalar FF.
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Section III contains a detailed derivation of the tan δΓ
parametrization in order to demonstrate that its further
application is not due to its simplicity, but it is a rigorous
consequence of the analyticity, unitarity and the reality
condition of the pion scalar FF.
In Sec. IV the true S-wave isoscalar ππ scattering phase

shift data with theoretical errors to be generated by the
MADRID/CRACOW group Roy-like equations without
any restriction on the values of a00 and hr2iπs are analyzed.
In Sec. Va more simple calculation of the corresponding

integrals than in the previous analysis [4] are carried out.
Section VI is devoted to the repeated analysis of the true

S-wave isoscalar ππ scattering phase shift data, however
with strict restriction on the values of the S-wave isoscalar
ππ scattering length a00 and the quadratic pion scalar radius
hr2iπs , which follow from the χPT. Here also the resultant
behavior of the pion scalar FF in the elastic region is
presented graphically and compared with the pion scalar FF
from [7] to be drawn by a dashed line.
Conclusions are given in the last section.

II. PION SCALAR FORM FACTOR AND ITS
PHASE REPRESENTATION

The pion scalar FF ΓπðtÞ is defined by the parametriza-
tion of the matrix element of the scalar quark density

hπiðp2Þjm̂ðuuþ ddÞjπjðp1Þi ¼ δijΓπðtÞ; ð1Þ

where t ¼ ðp2 − p1Þ2 and m̂ ¼ 1
2
ðmu þmdÞ.

It possesses all known properties of the pion electro-
magnetic FF FπðtÞ like

(i) analyticity in the t-plane besides cuts on the positive
real axis from two-pion threshold t ¼ 4m2

π to þ∞;
(ii) elastic unitarity condition ImΓπðtÞ¼ΓπðtÞe−iδ00 sinδ00,

where δ00ðtÞ is the S-wave isoscalar ππ scattering
phase shift;

(iii) asymptotic behavior ΓπðtÞjtj→∞ ∼ 1
t;

(iv) reality condition Γ�
πðtÞ ¼ Γπðt�Þ;

(v) normalization, however, now to the pion sigma term
value Γπð0Þ ¼ ð0.99� 0.02Þm2

π to be predicted by
the χPT [8].

The analyticity of the pion scalar FF ΓπðtÞ in the t-plane
together with its asymptotic behavior allow one to derive
(through the Cauchy formula) a dispersion relation with
one subtraction at the pion sigma term value Γπð0Þ ¼ m2

π

(further we take mπ ¼ 1), which in combination with the
elastic pion scalar FF unitarity condition leads to the pion
scalar FF phase representation with one subtraction,

ΓπðtÞ ¼ PnðtÞ exp
�
t
π

Z
∞

4m2
π

δΓðt0Þ
t0ðt0 − tÞ dt

0
�
; ð2Þ

to be the starting point for our further investigations.

The one-subtracted pion scalar FF phase representation
(2) ensures that the dominant contribution to ΓπðtÞ gives the
low-energy part of the integral and the same integral is
convergent independently if the pion scalar FF phase takes
asymptotically nonzero real value or it is zero at ∞.
The rapidly convergent representation for the quadratic

pion scalar radius,

hr2iπs ¼
6

π

Z
∞

4m2
π

δΓðt0Þ
t02

dt0; ð3Þ

follows directly from the relation (2).

III. PARAMETRIZATION OF THE PION
SCALAR FORM FACTOR PHASE δΓ

The pion scalar FF ΓπðtÞ on the positive real axis in the
t-plane for t > 4m2

π is a complex function and its phase δΓ
is determined by behaviors of the ImΓπðtÞ and the ReΓπðtÞ
through the relation

tan δΓðtÞ ¼
ImΓπðtÞ
ReΓπðtÞ

: ð4Þ

But the pion scalar FF ΓπðtÞ is an analytic function in
the whole complex t-plane besides branch points on the
positive real axis, where the lowest one at t ¼ 4m2

π ,
corresponding to the opening of two-pion channel, is a
square-root type. The latter can be demonstrated by the
analytic continuation of ΓπðtÞ through upper and lower
boundaries of the two-pion cut to the second Riemann
sheet, utilizing the pion scalar FF elastic unitarity con-
dition, and obtaining the identical functional expressions.
Then by an application of the relation for the absolute value
of the pion c.m. three-momentum

q ¼ ½ðt − 4Þ=4�1=2; mπ ¼ 1; ð5Þ

the two-sheeted Riemann surface of ΓπðtÞ, generated by the
branch point t ¼ 4m2

π , is mapped into one q-plane and the
elastic cut 4m2

π < t < 16m2
π disappears. If we take into

account results of the phenomenological analysis of the ππ
reactions [9] that final states containing more than two
particles start playing a significant role only well above
t ¼ 4m2

K, where the inelastic two-body channel ππ → KK
opens, the latter elastic region can be extended up
to t ≈ 1 GeV2.
Noticing the conformal mapping (5) in more detail, the

first sheet in the t-variable, containing only branch points
and zeros of ΓπðtÞ, is mapped into the upper half of the
q-plane, whereby the branch point t ¼ 4m2

π and the
normalization point t ¼ 0 are mapped into q ¼ 0 and
q ¼ þi, respectively, and the real axis from −∞ up to
t ¼ 4m2

π, on which ΓπðtÞ is a real function, is mapped into
the positive imaginary axis of the q-plane.
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The second Riemann sheet in the t-variable, containing
branch points, zeros and also complex conjugate pairs of
poles, which control the shape of ΓπðtÞ, is mapped into the
lower half of the q-plane.
If we restrict ourselves just to the elastic region and

neglect contributions to ΓπðtÞ of all branch points beyond
1 GeV2, then there are only zeros in the q-plane and poles
exclusively in the lower-half plane, which can be taken into
account as roots of the polynomials in the numerator
and the denominator of ΓπðtÞ. As a result ΓπðtÞ can be
represented in the form of the following rational function:

ΓπðtÞ ¼
P

M
n¼0 anq

nP
N
r¼0 brq

r : ð6Þ

Multiplying the numerator and denominator by the
complex conjugate denominator Eq. (6) is changed to
the form

ΓπðtÞ ¼
PMþN

s¼0 csqs

ðPN
r¼0 brq

rÞðPN
r¼0 brq

rÞ� : ð7Þ

The reality condition Γπðt�Þ ¼ Γ�
πðtÞ results in the reality

of (7) on the positive imaginary axis of the q-plane. One
can see immediately that the expression

ΓπðtÞ

¼ ðc0 þ c2q2 þ c4q4 þ � � �Þ þ iðc1qþ c3q3 þ c5q5 � � �Þ
ðPN

r¼0 brq
rÞðPN

r¼0 brq
rÞ�

ð8Þ

fulfils the latter claim, which leads through (4) to the
following parametrization of the pion scalar FF phase δΓðtÞ,

tan δΓðtÞ ¼
A1qþ A3q3 þ A5q5 þ A7q7 þ � � �
1þ A2q2 þ A4q4 þ A6q6 þ � � � ; ð9Þ

with all coefficients to be real.
Now, utilizing the equality between the phase of ΓπðtÞ

and the S-wave isoscalar ππ scattering phase shift δ00ðtÞ,

δΓðtÞ≡ δ00ðtÞ; ð10Þ

following directly from the elastic unitarity condition of
the pion scalar FF, one obtains from (9) very effective
parametrization of δ00ðtÞ at the elastic region

δ00ðtÞ ¼ arctan
A1qþ A3q3 þ A5q5 þ A7q7 þ � � �
1þ A2q2 þ A4q4 þ A6q6 þ � � � ; ð11Þ

where the parameter A1 is identical with the S-wave
isoscalar ππ-scattering length a00.

IV. TRUE S-WAVE ISOSCALAR ππ SCATTERING
PHASE SHIFT DATA

In order to find an explicit form of the correct pion scalar
FF at the elastic region by means of the relation (2) one is in
need of the true S-wave isoscalar ππ scattering phase
shift data.
These have been obtained in dispersive data analysis of

the MADRID/CRACOW group [10] in which amplitudes
for the S and P waves were fitted simultaneously to
experimental data and to dispersion relations constrained
by the crossing symmetry condition with one subtraction
(so-called GKPY equations).
In another dispersive data analysis of the BERN group

[11], very elegant from a mathematical point of view,
analytical solutions for the S and P amplitudes between
the ππ threshold and 800 MeV were presented. The authors
used Roy’s equations [12], which need two subtractions one
of which is a linear function of squared energy. It leads to
larger uncertainties of the output amplitudes (i.e. phase shifts
in the elastic region) than those from the GKPY equations.
Therefore, in order to minimize, in our analysis, the

uncertainties of the calculated form factor, we decided to
use results of the GKPY equations presented in [10]. The
authors of this analysis parametrized all important ampli-
tudes (i.e. for the S, P, D and F waves), in the phenom-
enological region below 1420 MeV where available are
data for the phase shifts and inelasticities. Parametrizations
were model independent i.e. purely mathematical without
any physical bias. In case of quite complex scalar isoscalar
amplitude, the whole region below 1420 MeV was divided
into three parts (below 850 MeV, up to KK threshold
and above) and was described by three parametrizations
matched smoothly at 850 MeVand at theKK threshold (i.e.
values of the phase shifts and their first derivatives).
In the first step of analysis in [10], such constructed

amplitudes for all S-F partial waves were fitted separately
to the corresponding experimental data sets. Obtained
amplitudes were subsequently used in the GKPYequations
as input. In the second step the output amplitudes for
the S and P waves from these equations were used in a
simultaneous fit to the experimental data and to GKPY
equations. In the minimization procedure the χ2 function,
which was used in the first step, was supplemented by
squared differences between input and output amplitudes
for the S and P waves (strictly saying between their real
parts) with appropriate weights (see [10]).
In results, those fits delivered a set of all important ππ

partial wave amplitudes well describing experimental data
including S and P wave amplitudes fulfilling also crossing
symmetry. It is also important to notice that although only
these two amplitudes were directly fitted to the GKPY
equations, the amplitudes for all other waves were also fitted
to them in an indirect way. As was proved in [10], the phase
shifts calculated in this way have much smaller errors than
those obtained in experimental analyses [15] and then those
constrained by the twice subtracted Roy’s equations. At, for
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example 800 MeV, uncertainties of the experimental data
(including also systematic differences between various data
sets) are about 6 times larger that those from GKPY
dispersive analysis [13].
In the preliminary work [4] determination of parameters

A1–A5 and position of the σ and f0ð980Þ poles has been
performed using fits to dispersed experimental data pre-
sented in Fig. 1. It resulted in positions of these poles
considerably different from presented in the Particle Data
tables [1]. In this paper we use precise phase shifts from
[10] fully representing (in elastic region) amplitudes ful-
filling crossing symmetry, in order to obtain a true behavior
of the δ00 phase shift and consequently also more reliable
values of f0ð500Þ and f0ð980Þ parameters.
In the analysis of the output phase shifts we used

72 points at every 10 MeV between 280 and 990 MeV.
They are presented in Fig. 2.
These data have been analyzed by the relation (11) up to

the moment, when the minimum of χ2=ndf was achieved.
The latter has been found, as in [4], with first five nonzero
coefficients Ai, which, however, now take the following
values:

A1 ¼ 0.2219� 0.0029

A2 ¼ −0.0764� 0.0423

A3 ¼ 0.1390� 0.0251

A4 ¼ −0.0062� 0.0053

A5 ¼ −0.0135� 0.0020

and the roots of the corresponding polynomials in the
numerator and denominator of equivalent form

δ00ðtÞ¼
1

2i
ln

�ð1þA2q2þA4q4Þþ iðA1qþA3q3þA5q5Þ
ð1þA2q2þA4q4Þ− iðA1qþA3q3þA5q5Þ

�

ð12Þ

to (11) are

q1 ¼ 0.00 − i2.0430� 0.2029

q2 ¼ 3.3827� 0.0115 þ i0.1744� 0.0340

q3 ¼ −3.3827� 0.0115 þ i0.1744� 0.0340

q4 ¼ 1.41470� 0.0579 þ i1.0749� 0.0162

q5 ¼ −1.4147� 0.0579 þ i1.0749� 0.0162

q�1 ¼ −q1
q�2 ¼ −q3
q�3 ¼ −q2
q�4 ¼ −q5
q�5 ¼ −q4:

V. SIMPLE CALCULATION OF THE
CORRESPONDING INTEGRALS

The substitution of δ00ðtÞ of the form (11) into (2), with
the numerical values of the coefficients A1;…A5, leads to
the expression which does not allow one to calculate the
corresponding integral explicitly. Therefore we have used
the equivalent form (12) to (11).

FIG. 1. Existing unprecise data on S-wave isoscalar ππ scatter-
ing phase shift [15].

FIG. 2. The data on δ00ðtÞ from [10] with theoretical errors to be
generated by parametrization of the GKPY equations for the
S-wave isoscalar ππ scattering amplitude in [10]. The solid line
represents our fit with (11).

DUBNICKA, DUBNICKOVA, KAMIŃSKI, and LIPTAJ PHYSICAL REVIEW D 94, 054036 (2016)

054036-4



Then

ΓπðtÞ ¼ PnðtÞ exp

2
64ðq2 þ 1Þ

2πi

×
Z

∞

−∞

q0 ln ð1þA2q02þA4q04ÞþiðA1q0þA3q03þA5q05Þ
ð1þA2q02þA4q04Þ−iðA1q0þA3q03þA5q05Þ

ðq02 þ 1Þðq02 − q2Þ dq0

3
75;

ð13Þ

and the integral

I ¼
Z

∞

−∞

q0 ln ðq0−q1Þðq0−q2Þðq0−q3Þðq0−q4Þðq0−q5Þ
ðq0−q�

1
Þðq0−q�

2
Þðq0−q�

3
Þðq0−q�

4
Þðq0−q�

5
Þ

ðq0 þ iÞðq0 − iÞðq0 þ ibÞðq0 − ibÞ dq
0

q2 < 0 i:e: q ¼ i

ffiffiffiffiffiffiffiffiffiffi
4 − t
4

r
≡ ib ð14Þ

now can be calculated in the framework of the theory of
residua explicitly.
In order to carry it out practically, it is convenient to

decompose the integral into a sum of two integrals,

I ¼ I1 þ I2 ¼
Z

∞

−∞

q0 ln ðq0−q2Þðq0−q3Þðq0−q4Þðq0−q5Þ
ðq0−q�

1
Þ

ðq0 þ iÞðq0 − iÞðq0 þ ibÞðq0 − ibÞ dq
0

þ
Z

∞

−∞

q0 ln ðq0−q1Þ
ðq0−q�

2
Þðq0−q�

3
Þðq0−q�

4
Þðq0−q�

5
Þ

ðq0 þ iÞðq0 − iÞðq0 þ ibÞðq0 − ibÞ dq
0; ð15Þ

according to singularities to be placed in the upper or lower
half q-plane, as it is sketched in Fig. 3.

Then the explicit form of

I ¼ 2πi
ðq2 þ 1Þ ln

� ðq − q�1Þ
ðq − q�2Þðq − q�3Þðq − q�4Þðq − q�5Þ

×
ði − q�2Þði − q�3Þði − q�4Þði − q�5Þ

ði − q�1Þ
�

ð16Þ

is obtained in the straightforward way, if in the case of the
first integral

I
ϕ1ðq0Þdq0 ¼ 2πi

X2
n¼1

Resn ð17Þ

the contour of integration is closed in the lower half q-plane
and in the second integral

I
ϕ2ðq0Þdq0 ¼ 2πi

X2
n¼1

Resn ð18Þ

the contour of integration is closed in the upper half q-plane
(see Fig. 3).
In a such way one avoids complicated calculations of

the cut contributions to be carried out in [4], which are
automatically generated by branch points under logarithms.
The substitution of (16) into (13) leads to the explicit

form of the pion scalar FF,

ΓπðtÞ ¼ PnðtÞ
ðq − q�1Þ

ðq − q�2Þðq − q�3Þðq − q�4Þðq − q�5Þ

×
ði − q�2Þði − q�3Þði − q�4Þði − q�5Þ

ði − q�1Þ
; ð19Þ

where PnðtÞ is any polynomial normalized at t ¼ 0 to one,
however, it has not violated the asymptotic behavior of the
pion scalar FF.
In a similar way by means of the theory of residua one

finds from (3) also an explicit form of the quadratic pion
scalar radius

hr2iπs ¼
3

4

�
i

i−q�2
þ i
i−q�3

þ i
i−q�4

þ i
i−q�5

−
i

i−q1

�
; ð20Þ

which gives the value hr2iπs ¼ 0.77 fm2.
All positions of the poles are in pion mass ¼

139.57 MeV and the errors correspond to maximal devia-
tions of all Ai parameters from their central values.
The pole q ¼ q�3 on the second Riemann sheet in the

t-variable corresponds to the f0ð500Þ meson resonance,
now with the mass and the width, mσ ¼ ð459� 29Þ MeV
and Γσ ¼ ð517� 77Þ MeV, respectively, which are
compatible with the parameters obtained in [2,3]. The
pole q ¼ q�2 represents f0ð980Þ with parameters
mf980 ¼ ð985� 82Þ MeV and Γf980 ¼ ð93� 34Þ MeV,
respectively.

FIG. 3. Poles (times) and branch points (filled circle) of the
integrands ϕ1ðq0Þ and ϕ2ðq0Þ with contours of integrations in the
upper and the lower half q-planes, respectively.

PION SCALAR FORM FACTOR WITH CORRECT MASS AND … PHYSICAL REVIEW D 94, 054036 (2016)

054036-5



A behavior of the ΓπðtÞ (19) at the interval −3 GeV2 <
t < 3 GeV2 is presented in Fig. 4.
Clearly seen are contributions of both the f0ð500Þ and

f0ð980Þ poles and normalization to 1 at t ¼ 0. Of course, as
construction of the form factor was based on amplitudes
(i.e. phase shifts) only from the elastic region, physical
interpretation of the energy distribution of this form factor
is also limited to this region.
There is a question if the pion scalar FF in Fig. 4 is the

true FF. One cannot believe it as in its construction the
S-wave isoscalar ππ-scattering length value a00 has been
found not to be in conformity with the prediction of χPT
and the same can be said also about the obtained value
hr2iπs ¼ 0.77 fm2 of the quadratic pion scalar radius.
Therefore, in order to find a true pion scalar FF behavior

in the elastic region, in the next section an analysis is
repeated, however, now with fixed a00 and hr2iπs at the
values following from χPT.

VI. REPEATED ANALYSIS OF TRUE δ00ðtÞ
WITH STRICT RESTRICTION ON THE

VALUES OF a00 AND hr2iπs
The precision theory of the low energy hadron physics

[5], the χPT, predicts the values a00 ¼ 0.220� 0.005
and hr2iπs ¼ ð0.63–0.65Þ fm2.
If in (11) the coefficient A1 is fixed at the value A1 ¼

a00 ¼ 0.2200 and the value of hr2iπs in a fitting procedure of
the data on δ00 is required to be hr2iπs ¼ ð0.63–0.65Þ fm2,
then no more the minimum of χ2=ndf is achieved with five
free parameters, but only with six free parameters A2;…A7

and the result is

A1 ¼ 0.2200

A2 ¼ −0.1447� 0.0096

A3 ¼ 0.0955� 0.0081

A4 ¼ 0.0015� 0.0017

A5 ¼ −0.0148� 0.0012

A6 ¼ 0.0001� 0.0001

A7 ¼ 0.0004� 0.0001

q1 ¼ 0.00 − i2.3111� 0.0581

q2 ¼ 3.3946� 0.0070 þ i0.1804� 0.0102

q3 ¼ −3.3946� 0.0070 þ i0.1804� 0.0102

q4 ¼ 1.5286� 0.0257 þ i1.1093� 0.0074

q5 ¼ −1.5286� 0.0257 þ i1.1093� 0.0074

q6 ¼ 4.9338� 0.0723 − i0.0033� 0.0446

q7 ¼ −4.9338� 0.0723 − i0.0033� 0.0446

q�1 ¼ −q1
q�2 ¼ −q3
q�3 ¼ −q2
q�4 ¼ −q5
q�5 ¼ −q4
q�6 ¼ −q7
q�7 ¼ −q6:

Then the explicit form of the pion scalar FF is

ΓπðtÞ ¼ PnðtÞ
ðq − q�1Þðq − q�6Þðq − q�7Þ

ðq − q�2Þðq − q�3Þðq − q�4Þðq − q�5Þ

×
ði − q�2Þði − q�3Þði − q�4Þði − q�5Þ

ði − q�1Þði − q�6Þði − q�7Þ
ð21Þ

and the result for the quadratic pion scalar radius reads

hr2iπs ¼
3

4

�
i

i − q�2
þ i
i − q�3

þ i
i − q�4

þ i
i − q�5

−
i

i − q1
−

i
i − q6

−
i

i − q7

�
; ð22Þ

which gives the value hr2iπs ¼ 0.63 fm2.
The pole q ¼ q�3 on the second Riemann sheet in the

t-variable corresponds to the f0ð500Þ meson resonance,
now with the mass and the width, mσ ¼ ð487� 31Þ MeV
and Γσ ¼ ð542� 60Þ MeV, respectively, which are com-
patible with the parameters obtained in [2,3]. The pole

FIG. 4. Behavior of the pion scalar form factor (19) with one zero
and four poles in the region −3 GeV2 < t < 3 GeV2. Results
correspond to fit to the output phase shifts from [10] by five
free parameters. Physically may be interpreted region only
below 990 MeV (t ≈ 0.98 GeV2), which corresponds to the elastic
region.
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q ¼ q�2 represents f0ð980Þ with parameters mf980 ¼
ð988� 78Þ MeV and Γf980 ¼ð97�29ÞMeV, respectively.
The true behavior of the pion scalar FF is graphically

presented in Fig. 5, where also a comparison with the pion
scalar FF from [7] is carried out by the dashed line.
The phases of the FFs in Figs. 4 and 5 are compared in

Fig. 6 by dashed and full lines, respectively. One can see
from Fig. 6 that strong requirement of the values of a00 and
hr2iπs in construction of the true pion scalar FF to be in
conformity with the predictions of the χPT, leads to
appearance of two conjugate zeros of the FF [see (21)]
and the phase of such FF falls down beyond 2 GeV2. So,
finally the results of the papers [6] and [14] are reproduced,
however, by means of the completely different way.

VII. CONCLUSIONS

The construction of the true pion scalar isoscalar
FF ΓπðtÞ in the elastic region, with an emphasis on the
values of the S-wave isoscalar ππ scattering length a00 and
the quadratic pion scalar radius hr2iπs to be in conformity
with predictions of the chiral perturbation theory, is
presented.
It has been based on true S-wave isoscalar ππ scattering

phase shift data at the elastic region with theoretical
errors, which have been generated in dispersive analysis
of existing experimental points with an imposed crossing
symmetry condition by the Garcia-Martin-Kamiński-
Pela’ez-Yndurain (MADRID/CRACOW group) [10]
Roy-like equations.

For an explicit form fully solvable mathematical scheme
has been exploited, however, now a more simple calcu-
lation of the corresponding integrals than in the previous
analysis [4] has been found, avoiding rather complicated
calculations of the cut contributions. As a result the pion
scalar FF takes the form of a rational function in the
absolute value of the pion c.m. three-momentum q-variable
with three zeros and four poles in the lower half plane,
which corresponds to the second Riemann sheet in the
t-variable.
Positions of two lowest scalar mesons, f0ð500Þ and

f0ð980Þ, have been quite precisely determined from the
four poles in (21). Together with three zeros, one on the
imaginary axis and two conjugate according to the imagi-
nary axis, in the absolute value of the pion c.m. three-
momentum q-variable, they completely describe energy
dependence of the pion scalar form factor in the full elastic
region as it is demonstrated in Fig. 5.
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FIG. 6. Behavior of phases of the pion scalar form factors in
Figs. 4 and 5. The phase of the pion scalar FF in Fig. 5, in the
construction of which the values of a00 and hr2iπs are strictly
required to be in conformity with the predictions of χPT is
represented by a full line. The dashed line corresponds to the FF
in Fig. 4, the construction of which is carried out without any
restrictions.

FIG. 5. Behavior of the pion scalar form factor (21) with three
zeros and four poles in the region −3 GeV2 < t < 3 GeV2.
Results correspond to fit to the output phase shifts from [10]
by six free parameters A2;…A7 if the parameter A1 is fixed at the
value of a00 ¼ 0.22. Physically may be interpreted region only
below 990 MeV (t ≈ 0.98 GeV2). The dashed line represents the
pion scalar FF from [7].
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