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The η0 transition form factor is reanalyzed in view of the recent first observation by BESIII of the Dalitz
decay η0 → γeþe− in both space- and timelike regions at low and intermediate energies using the Padé
approximants method. The present analysis provides a suitable parametrization for reproducing the
measured form factor in the whole energy region and allows one to extract the corresponding low-energy
parameters together with a prediction of their values at the origin, related to Γη0→γγ , and the asymptotic
limit. The η–η0 mixing is reassessed within a mixing scheme compatible with the large-Nc chiral
perturbation theory at next-to-leading order, with particular attention to the Okubo-Zweig-Iizuka-rule-
violating parameters. The J=ψ , Z → ηð0Þγ decays are also considered and predictions are reported.
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I. INTRODUCTION

Padé approximants (PAs) have been shown recently to be
very useful for describing meson transition form factors
from the analysis of space-like (SL) experimental data
[1–5].1 Such parametrizations based on the measurement of
SL data have been used to extrapolate our knowledge of the
form factors down to the low-energy limit (Q2 → 0) [thus
extracting the low-energy parameters (LEPs)] and up to the
high-energy limit (Q2 → ∞), and then predict the asymp-
totic behavior. Moreover, they have been employed to
reconstruct the double-virtual transition form factor [7,8].
PAs are now regarded as a valuable tool for incorporating
available data into problems requiring a precise error
estimation. They conform a data-driven approach that
can be considered as simple, systematic, and model
independent, the latter because one can provide a system-
atic error which can be reduced as soon as more exper-
imental data is included. These PAs applied to the
pseudoscalar transition form factors (TFFs) are utilized
in the evaluation of the lightest pseudoscalar meson
contributions to the hadronic light-by-light piece of the
anomalous magnetic moment of the muon [1,2,4,5,9], the
calculation of the π0 → eþe− [7] and η, η0 → lþl− rare
decays [10], the extraction of the η–η0 mixing parameters
[2,11], the analysis of π0, η, and η0 single and double Dalitz

decays [8], and in the quest for dark photons [12]. In all
cases, they provide an excellent laboratory for synergic
studies between theory and experiment.
The PAs PL

MðQ2Þ to a given function fðQ2Þ are ratios
of two polynomials (with degree L and M, respectively),
constructed such that their Taylor expansion around
the origin exactly coincides with that of the function up
to the highest possible order, i.e., fðQ2Þ − PL

MðQ2Þ ¼
OðQ2ÞLþMþ1 [13,14]. They often provide a means of
obtaining information about the function outside its circle
of convergence, and more rapidly evaluating the function
within it. However, in spite of being flexible and user
friendly, PAs reconstructed from their power series at the
origin are rational functions with a simple analytical
structure given by a set of poles. Therefore, they do not
possess branch cuts and cannot be used to predict the
position of resonance poles, which are hidden in the second
Riemann sheet of the complex energy plane. Similarly, PAs
reconstructed using information on the branch cut—which
allow for a precise determination of the resonance pole
parameters [15–17]—are not suitable for the extraction of
the LEPs, i.e., PAs in their simplest form considered here
cannot access different Riemann sheets. Nonetheless, for
special kinds of functions—such as Stieltjes [18,19] or non-
Stieltjes but meromorphic functions [20]—convergence
theorems for PAs are known. To apply these theorems,
an understanding of the analytical properties of the func-
tions is required in advanced. When this knowledge is
missing, the practitioner would explore a sequence of
PAs and expect a pattern of convergence. Even when
convergence is guaranteed in advance, this will be restricted
by the limits of the theorem’s applicability. The question is
whether by observing convergence beyond these limits one
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could infer (within some uncertainties) the approximate
analytical structure of the function under consideration.
In this work, we will explore this last insight, taking the

η0 TFF as a proof of concept. Within certain approxima-
tions, the authors of Ref. [21] proved the TFF to be a
Stieltjes function for which the PA convergence is guar-
anteed in the SL and timelike (TL) regions below the
production threshold [13]. In addition, its rate of conver-
gence is also known [13,18,19]. Nevertheless, convergence
along the branch cut is not a priori ensured by the
mathematical theorem. As we will see later, the particu-
larities of the TFF along the branch cut will determine the
success of our approximation.
We will try to learn and extract from the employed

sequence of PAs details on the analytical properties of
this TFF in the energy regime covered by experimental
data. In our previous analyses of the TFFs from SL data,
we have always carefully expressed the limits on the
range of applicability of PAs [1,2]. Initially, PAs could be
analytically continued from the SL region to the TL one,
but only up to the first singularity—usually a branch cut
in the form of a production threshold. For instance, in the
case of the single Dalitz decay π0 → eþe−γ PAs can be
safely extended into the TL region up to the pion mass
since no branch cuts are present. On the contrary, for the
η → lþl−γ decays, with l ¼ e, μ, the presence of the ππ
branch cut could in principle limit the application of PAs
in the TL region. However, the η → eþe−γ decay and its
associated TFF in the TL region was recently measured
with great accuracy by the A2 Collaboration [22]. The
authors compared their measurement with several theo-
retical predictions (among them ours) based on SL
parametrizations of the TFF in terms of PAs [2], and
found that these PAs show the best agreement with data
for the full range of eþe− invariant masses reached in the
experiment. This nice result challenged our understand-
ing of the PAs method and triggered, for the first time, a
combined analysis of the η TFF from both SL and TL
experimental data [11]. The reason for that agreement can
be understood by the fact that the branch cut in this decay
(ππ unitary cut) is not resonant inside the available phase-
space region since the ρ resonance is well beyond the η
mass. The PAs will certainly fail at the first pole
encountered on the real axis, or, to be more precise, will
start failing at some point near the pole.2 In any case, for
the η TFF, this pole on the real axis is found to be atffiffiffi
s

p ≃ 720 MeV for the single-pole parametrization used
frequently by the experimental collaborations [11].
Therefore, for the η → lþl−γ decays the PAs can also
be extended into the TL region up to the η mass with
excellent accuracy.

The case of the η0 → lþl−γ Dalitz decays is more
cumbersome since the available phase space this time
includes the resonant region. However, the analysis per-
formed in Ref. [2] on the η0 TFF using only SL data
revealed that the pole on the real axis for the single-pole
parametrization is located at

ffiffiffi
s

p ≃ 830 MeV. In order to
estimate the region of influence of this pole one can make
use of the half-width rule [23]. In this case, the ρ and ω
resonances are within the phase-space region and the ϕ is
not far from its end point. Taking the values of their masses
and widths from the Particle Data Group (PDG) [24], the
application of this rule gives Meff � Γeff=2 ¼ 822�
58 MeV [2]. This value of the effective pole is compatible
with the result obtained before from the single-pole para-
metrization, thus showing that the pole found at 830MeV is
a kind of weighted average of the three existing resonance
poles. The range given by the half-width rule above implies
that the region of influence of the former pole is from 764 to
880 MeV. Consequently, for the η0 TFF the PAs can also be
used in a safe manner up to around 760 MeV in the TL
region.3

Recently, the BESIII Collaboration reported the first
measurement of the eþe− invariant mass distribution for the
η0 → eþe−γ decay up to 750 MeV [25]. As discussed, our
prediction for the TL region of the η0 TFF based solely on
SL data should be able to describe this new measurement.
In Fig. 1, the BESIII experimental extraction of the
modulus square of the η0 TFF as a function of the eþe−

invariant mass (
ffiffiffi
s

p
) is compared with our theoretical

prediction. It is worth remarking that this is not a fit but
a prediction and the agreement is seen to be excellent.
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FIG. 1. Our prediction for the η0 transition form factor in the
timelike region obtained from the P6

1ð
ffiffiffi
s

p Þ fit to space-like data
performed in Ref. [2]. Experimental points are from the BESIII
measurement in Ref. [25].

2The question is how close the PAs can approach the pole
without failing. A detailed discussion on this issue for the case of
η0 Dalitz decays can be found in Ref. [8].

3In Ref. [8], we were more conservative and the half-width rule
was applied taking only the ρ resonance into account. As a result,
we obtained that the lowest value of the region of influence in that
case was around 700 MeV.
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The main purpose of the present work is therefore to
further improve our determination of the η0 TFF by taking
into consideration not only the existing SL experimental
data but also the new set of TL data from the recent BESIII
measurement. This combined analysis will allow us to
better determine the LEPs of the TFF, its normalization, and
the asymptotic limit. Such an enhancement allows us to
reconsider the η–η0 mixing, with special emphasis on the
Okubo-Zweig-Iizuka (OZI)-rule-violating parameters and
the J=ψðZÞ → ηð0Þγ decays. In Sec. II, we comment on the
reasons we believe justify the success of PAs when applied
to the TL region. In Sec. III, we include the TL data in
the analysis, present the new results, and comment on the
improvements achieved. Section IV is devoted to the
reassessment of the η–η0 mixing parameters within a mixing
scheme compatible with the large-Nc chiral perturbation
theory at next-to-leading order, with particular attention to
the OZI-rule-violating parameters. The consequences of
these results for the J=ψ and Z radiative decays are also
investigated. Finally, in Sec. V we conclude and mention
the future prospects.

II. PADÉ APPROXIMANTS
IN THE TIMELIKE REGION

Within certain approximations, the authors of Ref. [21]
proved the isovector contribution to the TFF to be a
Stieltjes function, namely, that this contribution to the
TFF can be represented by an integral form defined as [13]

fðq2Þ ¼
Z

1=R

0

dϕðuÞ
1 − uq2

; ð1Þ

where ϕðuÞ is any bounded and nondecreasing function
[13]. By defining R ¼ 4m2

π , identifying dϕðuÞ ¼
const × q2

π
ImFð1=uÞ

u , and making the change of variables
u ¼ 1=s, Eq. (1) returns the once-subtracted dispersive
representation of the isovector contribution discussed
in Ref. [21], and also exploited in Refs. [26,27].
Since ImFðsÞ ¼ σ3ðsÞPðsÞjFVðsÞj2 [21] [where σðsÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

π=s
p

, PðsÞ is a linear polynomial with positive
slope, and FVðsÞ is the pion vector FF], ImFðsÞ is a positive
function, the requirement that ϕðuÞ is nondecreasing is
fulfilled, and the convergence of PAs to the TFF is
guaranteed.4

Padé theory provides not only a convergence theorem
for a sequence of PAs to Stieltjes functions, i.e.,
limN;M→∞PN

MðsÞ − fðsÞ ¼ 0, but also its rate of conver-
gence [13,18,19], given by the difference of two consecu-
tive elements in the PA sequence. As we will see later, this
error prescription will return very small theoretical uncer-
tainties. To be more conservative, in Refs. [1,2,6,11] we

designed a different method to extract such uncertainty
which yields errors at the level of the statistical ones.
Still, even though the ππ unitary cut driving the decay is

of Stieltjes nature, there is no a priori reason why the PA
should work above the branch cut. The cumbersome
situation is, however, that at least the PL

1 ðsÞ sequence does
work well above the cut (cf. Fig. 1). And the unanswered
question is, then, whether one could have anticipated this
success and how general it is for any arbitrary situation. A
fair statement would be to say that, approximately, the TFF
is a meromorphic function which has nothing but a set of
single and isolated poles within the data range. In this
scenario, PAs are an excellent approximation tool [20].
Moreover, they tell us about the underlying physical
phenomena driving the decay without the need to assume
any model.
To better understand this situation from a qualitative

point of view, let us discuss the following. As we have said,
in the zero-width approximation, the TFF becomes a
meromorphic function. If the TFF contains a single and
isolated pole, the PL

1 ðsÞ sequence reproduces the pole of the
TFF with infinite precision. As soon as the width is
switched on again, the ππ threshold opens a branch cut
responsible for that width. Then, at first, no mathematical
theorem will guarantee convergence in this scenario. On the
contrary, if the convergence theorem is to be satisfied, one
would expect the single pole of the PL

1 ðsÞ to be located
closer and closer to the threshold point as soon as L → ∞,
since this is the first singular point the PA is going to find.
A closer inspection at the threshold expansion of the TFF

reveals a different pattern for real and imaginary parts in
terms of the variable q2, the center-of-mass momentum in
the ππ rest frame. At low energies, one can model the P →
γ�γ TFF as a convolution between the P → ππγ amplitude
with the ππ → γ� pion electromagnetic form factor
FVðsÞ [26].
The behavior of the ππ branch cut at threshold then has

two different components, both of which are well known.
The knowledge of the ππ threshold for FVðsÞ comes from
the P-wave ππ scattering amplitude (the opened cut yields
vector states) together with the Fermi-Watson theorem
that relates the phase of the scattering amplitude with
the phase of the form factor below the first inelastic
threshold. The ππ P-wave scattering amplitude t11ðsÞ at
threshold behaves like [28]

Im½t11ðsÞ� ¼ q4
ffiffiffiffiffi
q2

q �
a2

mπ
þ 4abm2

π − a2

2m3
π

q2 þOðq2Þ3
�
;

Re½t11ðsÞ� ¼ q2ðaþ bq2 þOðq2Þ2Þ; ð2Þ

with 4q2 ¼ s − 4m2
π , and where for the imaginary part we

used the unitary relation Im½t11ðsÞ−1� ¼ −σðsÞ. The absolute
value of the threshold expansion of the amplitude t11ðsÞ is
basically a polynomial in (s − 4m2

π) with the influence of its
4If the function fðzÞ is a Stieltjes function, its nth-subtracted

version is a Stieltjes function as well [13].
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imaginary part starting only at ðs − 4m2
πÞ4. Following the

previous equation, if the threshold parameters a and b are
of order 1 (with the appropriate units) [28], then the real
part dominates near threshold and the absolute value is
given basically by the real part. By virtue of the unitary
relation for FVðsÞ, ImFVðsÞ ¼ σðsÞFVðsÞt11ðsÞ�, and the
expansion in Eq. (2), one concludes that while the real
part of the threshold expansion of FVðsÞ starts at order
ðs − 4m2

πÞ0, its imaginary part coming from σðsÞRe½t11ðsÞ�
only starts showing up at order ðs − 4m2

πÞ3=2.
In summary, since Im[TFF] ∼σðsÞ3jFVðsÞj2 and FVðsÞ at

threshold is basically real, near the ππ threshold the
imaginary part of the TFF (and thereby the expected
discontinuity) will behave as ðs − 4m2

πÞ3=2, while its real
part behaves as ðs − 4m2

πÞ0. If this is the case and the offset of
the threshold is that smooth, the PL

1 ðsÞ sequence will be an
excellent tool to reproduce the TFF near and above the
threshold. Actually, taking the definition of aPL

1 ðsÞ given by

PL
1 ðsÞ ¼

XL−1
k¼0

aksk þ
aLsL

1 − aLþ1

aL
s
; ð3Þ

the polynomial part will reproduce the modulus of the ππ
discontinuity, and the PA pole part will account in an
effective manner for the pole of the TFF far away from
the threshold.
The last question, then, is up to what energy one can go

above the threshold before failing. The threshold expansion
itself must fail at some point because it breaks unitarity by
powers of ðs − 4m2

πÞ. A quantitative answer to this question
would demand studying this problem using a particular
model. To make a general, model-independent, and quali-
tative statement, we notice that the threshold expansion
should break down when the presence of the resonance pole
is large enough and cannot be approximated by a poly-
nomial in ðs − 4m2

πÞ. This happens basically at a pole
distance given by the half-width rule [23] which, as argued
in the Introduction, provides a simple estimate of the
PA range.
The previous discussion already excludes the generali-

zation of our results for any arbitrary Stieltjes function
since the key feature is the behavior around the threshold
point. While for vector and tensor form factors we foresee
good performance of our PA method, for a scalar form
factor with an abrupt threshold offset the range of appli-
cability within the timelike region will be more limited.
Parametrizations existent in the literature which would be
suitable for comparison with our method can be found in
Refs. [26,27,29–38].

III. INCORPORATION OF THE LOW-ENERGY
TIMELIKE DATA

Since our goal is to provide a parametrization of the TFF
that is as accurate as possible and we have shown in the

previous section that the TL experimental data up to
0.75 GeV can be well described with our old parametriza-
tion based on SL data, in this section we will include the TL
data as a new data set to be fitted, following Ref. [11]. At
low momentum transfer, the TFF can be described by the
expansion

Fη0γ�γðQ2Þ ¼Fη0γγð0Þ
�
1−bη0

Q2

m2
η0
þ cη0

Q4

m4
η0
−dη0

Q6

m6
η0
þ…

�
;

ð4Þ

where Fη0γγð0Þ is the normalization (the TFF at zero
momentum transfer), while the LEP parameters bη0 , cη0 ,
and dη0 are, respectively, the slope, the curvature, and the
third derivative of the TFF. By reassessing our SL fits [2]
through including TL data, we will update the results for
the LEPs of the η0 TFF. The χ2 function minimized in our fit
is given by [ ~Fð ffiffiffi

s
p Þ ¼ Fð ffiffiffi

s
p Þ=Fð0Þ]5

χ2 ¼
X50
i¼1

�jPL
MðQ2Þji −Q2jFexp

η0γ�γðQ2Þj
i

σQ2jFexp

η0γ�γðQ
2Þj

i

�2

þ
X8
i¼1

�j ~PL
Mð

ffiffiffi
s

p Þj2i − j ~Fexp
η0γ�γð

ffiffiffi
s

p Þj2
i

σj ~Fexp

η0γ�γð
ffiffi
s

p Þj2
i

�2

þ
�PL−1

M ð0Þ − jFexp
η0γγð0Þj

σjFexp

η0γγð0Þj

�2

; ð5Þ

where the first and second terms correspond to SL [39–42]
and TL [25] data, respectively, while the last term encodes
information from the TFF at zero momentum transfer and
introduces an additional restriction. For the experimental
value we use Fexp

η0γγð0Þ ¼ 0.3437ð55Þ GeV−1, inferred from
the partial width to two photons, Γη0→γγ ¼ 4.35ð14Þ keV
[24], through the relation

jFη0γγð0Þj2 ¼
64π

ð4παÞ2
Γðη0 → γγÞ

m3
η0

: ð6Þ

The value Γη0→γγ ¼ 4.35ð14Þ keV cited in Ref. [24] is not a
measured quantity, but rather a fit inferred from the
branching ratio and using the current η0 total width. The
average experimental determination for such decay is 4.28
(19) keV. It will be interesting to see whether this 0.3σ
difference will affect our results at the precision we are
working.
We start fitting with a Padé approximants sequence of

the type PL
1 ðQ2Þ, and current data allow us to reach L ¼ 7.

We provide a graphical account of our fits as compared to
both SL and TL data in Fig. 2, where one can see that the

5Padé sequences refer to Q2Fη0γ�γ , not to Fη0γ�γ .
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one-sigma error band associated to the timelike η0 TFF has
considerably decreased as compared to Fig. 1. The LEPs
obtained from the fit are collected in Table I, and their
corresponding convergence patterns in Figs. 3 and 4 (red
circles) reflect the impact of the inclusion of TL data
compared with the old results. In the table we also provide
the pole of the PA. The coefficients of our best fit are
gathered in the Appendix.
Comments on these results are in order:
(1) The precision gained on the LEPs determination is

remarkable as compared to our previous results (blue
triangles) when only SL data were fitted [2].

(2) We enlarge our PA sequence by one element (thus
reducing the systematic uncertainty).

(3) The new LEPs sequence reaches the stability value
faster, manifesting the excellent performance of the
method as new experimental data is included.

(4) Including Fexp
η0γγð0Þ as an additional datum in the fit

significantly reduces the uncertainty associated to

this quantity. Regarding this constraint, it is noticed
that while LEPs obtained from the PL

1 ðQ2Þ sequence
are basically insensitive to this effect, the LEPs
obtained from the P1

1ðQ2Þ element are not and suffer
small distortions.

After the first combined analysis of both SL and TL data,
our central-value results for Fη0γγð0Þ and LEPs are

Fη0γγð0Þ ¼ 0.344ð5Þð0Þ GeV−1; bη0 ¼ 1.31ð4Þð1Þ;
cη0 ¼ 1.74ð9Þð3Þ; dη0 ¼ 2.30ð19Þð21Þ; ð7Þ

where the first error is statistic and the second is systematic,
the latter being 0% for the value at the origin, and 1%, 2%,
and 9% for the slope, curvature, and third derivative,
respectively [2]. The systematic error can be evaluated
as well from the difference between two consecutive
elements in the PA sequence [13,19]. However, as illus-
trated in Figs. 3 and 4, this difference is basically negligible
for the value at the origin and all the derivatives shown, and
we prefer to consider the larger systematic errors reported
in Ref. [2] which were obtained after applying the PA
method to a set of selected models. The results above can be
compared with the ones obtained by the PN

NðQ2Þ sequence
in Table I. Since this second sequence stops at its first
element [which is actually the first element of the PL

1 ðQ2Þ
sequence as well], we do not consider its results for a
combined weighted average.
The systematic error is at the level of the statistical one.

To reduce it, we would need more precise high-energy data,
and to enlarge the PN

NðQ2Þ sequence which is limited in this
analysis to its first element. Notice that the PN

NðQ2Þ has
systematic errors that are dramatically smaller than the ones
considered here (see the Appendix in Ref. [11] for details).
It turns out that the η0 TFF is very much dominated by a
single hadronic scale that gives the TFF its characteristic
vector-meson dominance (VMD)-like shape. A P2

2ðQ2Þ fit
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FIG. 2. η0 TFF in the SL (left) and TL (right) regions after a joint fit to the SL and TL sets of experimental data. The dotted, dashed, and
solid black lines represent the fits using P1

1ðQ2Þ, P6
1ðQ2Þ, and P7

1ðQ2Þ, respectively, in the left panel, while the red solid line represents
~P7
1ð

ffiffiffi
s

p Þ in the right panel.

TABLE I. Low-energy parameters as obtained after a joint fit to
both space- and timelike data with and without the measured two-
photon partial width as a restriction in the χ2 function of Eq. (5),
second/third and fourth/fifth columns, respectively. The leading
coefficient of the TFF asymptotic limit, the pole of the PA, and
the χ2dof are also shown.

Constraining Fη0γγð0Þ Predicting Fη0γγð0Þ
P7
1 P1

1 P6
1 P1

1

bη0 1.31(4) 1.25(3) 1.30(4) 1.27(4)
cη0 1.74(9) 1.56(6) 1.73(9) 1.62(11)
dη0 2.30(19) 1.94(12) 2.29(19) 2.06(22)
Fη0γγð0Þ 0.344(5) 0.345(5) 0.342(13) 0.351(10)
Q2Fasym

η0γ�γðQ2Þ � � � 0.254(3) � � � 0.253(3)ffiffiffiffiffispp (GeV) 0.833(14) 0.857(9) 0.831(13) 0.849(15)
χ2dof 0.65 0.67 0.66 0.68
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cannot be accommodated at the current level, and we
hope that more data from BESIII, MAMI, and Belle-II will
help to improve the present values (see the discussion
at the end of this section). These results can be compared
with Fη0γγð0Þ ¼ 0.344ð4Þð0Þ GeV−1, bη0 ¼ 1.30ð15Þð7Þ,
and cη0 ¼ 1.72ð47Þð34Þ, obtained using SL data only [2].
Clearly, the statistical uncertainty of the LEPs has consid-
erably diminished as a consequence of including TL data in
the analysis, which is one of the main results of this work.
Our slope, bη0 ¼ 1.31ð4Þ, can be compared with the values
1.46(23), 1.24(8), and 1.6(4), quoted by the CELLO [39],
CLEO [40] and Lepton-G (cited in Ref. [36]), respectively.
One should notice that all the previous collaborations used
a single-pole model (VMD) to extract the slope, which is
nothing but the simplest P1

1ðQ2Þ element from our
approach (which we neglected). Other theoretical predic-
tions existent in the literature are bη0 ¼ 1.47 predicted by
chiral perturbation theory for sin θP ¼ −1=3 (where θP is
the η–η0 mixing angle), bη0 ¼ 1.30 from constituent-quark
loops (both values are taken from Ref. [37]), bη0 ¼ 1.33
from VMD [43], and bη0 ¼ 2.11 from the Brodsky-Lepage
interpolation formula [44]. More recently, one can find
bη0 ¼ 1.323ð4Þ from resonance chiral theory [38], bη0 ¼
1.45þ0.17

−0.12 using dispersive techniques [26], and bη0 ¼ 1.06
or 1.16 from anomaly sum rules [33].

The main difference between Fig. 1 and the left panel of
Fig. 2 is the width of the uncertainty band, especially at
large

ffiffiffi
s

p
, which is the region where we expect the PA to

eventually fail. To control the quality of the fits at this largeffiffiffi
s

p
, we have repeated the fits by first artificially enlarging

the errors of the last energy points, and then subsequently
eliminating the last data points. We have observed a
completely stable fit even under these manipulations which
only slightly enlarge the slope error but always keep the
same χ2dof (degrees of freedom). We conclude, then, that our
final results in Eq. (7) are robust enough and independent of
an eventual failure of the PA method at the highest TL
energy point.
We use our results Fη0γγð0Þ ¼ 0.344ð5Þ GeV−1 and

Fη0γγð0Þ ¼ 0.342ð13Þ GeV−1 (constrained and uncon-
strained cases, respectively) to predict the η0 partial decay
width to two photons. For the constrained fit, i.e., including
the value at the origin in our data set, the fit returns
Γη0→γγ ¼ 4.35ð13Þ keV, which is slightly better than the
PDG fitted value and 0.3 standard deviations from its
averaged result. For the unconstrained case, we find
Γη0→γγ ¼ 4.30ð33Þ keV, which lies 0.1 standard deviations
from the experimental value. Regarding the asymptotic
behavior of the TFF, we have considered the PN

NðQ2Þ
sequence since it has the right asymptotic falloff 1=Q2 built

FIG. 3. Convergence pattern of the PL
1 sequence for Fη0γγð0Þ, bη0 , cη0 , and dη0 as obtained from fitting experimental SL and TL data

together with Fη0γγð0Þ from the PDG [24].
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in. We reached N ¼ 1 and then predicted the leading
coefficient,

lim
Q2→∞

Q2Fη0γ�γðQ2Þ ¼ 0.254ð3Þ GeV; ð8Þ

which is in very good agreement with the value 0.254
(21) GeV6 measured at q2 ¼ −112 GeV2 by the BABAR
Collaboration [45] and assuming that the space- and
timelike asymptotic duality already holds at that q2. This
prediction is basically the same one obtained in Ref. [2]
when only the SL data were considered. Therefore, the
effect of including the TL data is negligible in this respect.
Ideally, it would be desirable to extract such a value from
the N ¼ 2 element, which allows for diminishing the
intrinsic systematic error (not yet evaluated) as well as
for checking convergence. This should be possible in the
future if new precise Belle-II data becomes available.
Thus, the result in Eq. (8) needs to be upgraded to

include a theoretical error. Such an error can be obtained in
the same way as the systematic error for the TFF’s LEPs
[1,2,6]. By comparing the asymptotic value of the model
used in Refs. [1,11] [the holographic confining model

defined in Appendix B of Ref. [11], rescaled to yield the
same asymptotic value as in Eq. (8)] with the expansion at
Q2 → ∞ of the PA fits to pseudodata, we extract the
theoretical uncertainty as a percentage, which we display in
Table II.
Table II shows that the theoretical uncertainty associated

to the extraction of the TFF’s asymptotic value using the
simplest P1

1ðQ2Þ is about 25%. This result seems to
disagree with the fit shown in the left panel of Fig. 2,
where the interpolation of the P1

1ðQ2Þ at around Q2 ¼
20–35 GeV2 is very good—much better than 25% (the
error at Q2 → ∞ and at Q2 ¼ 20–35 GeV2 is basically the
same). This disagreement comes from a peculiarity of the
η0-TFF. We have already discussed the impossibility of
fitting with a P2

2ðQ2Þ. This is not an anecdote since it is

FIG. 4. Convergence pattern as in Fig. 3 without including information on the Γη0→γγ .

TABLE II. Theoretical error for the first asymptotic coefficient
of the PN

NðQ2Þ sequence. The first line corresponds to the actual
coefficient limQ2→∞P

N
NðQ2Þ. The second line collects its relative

error with respect to limQ2→∞Q
2Fη0γγðQ2Þ. See the text for

details.

Q2Fη0γγðQ2Þ P1
1ðQ2Þ P2

2ðQ2Þ P3
3ðQ2Þ P4

4ðQ2Þ
0.254 0.348 0.247 0.254 0.254

27.0% 2.8% 0.1% 0.0%
6Such a value is obtained from the BABAR result 0.251(19)

(8) GeV after taking into account kinematical corrections [2].
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telling us that a P1
1ðQ2Þ is already an excellent description

of the TFF.
Since the difference P1

1ðQ2Þ − P2
2ðQ2Þ is basically zero,

the difference at Q2 → ∞ is also zero, which implies that
the systematic error we have from extracting the asymptotic
value with the P1

1ðQ2Þ is basically the same as if we had
used the P2

2ðQ2Þ. To be a bit more specific, if we consider
the asymptotic value obtained with our fits using the
P1
1ðQ2Þ and reconstruct the P2

2ðQ2Þ using the LEPs
obtained with the fit of the P7

1ðQ2Þ, the relative error
between both predictions amounts to 4%. From Table II,
the P2

2ðQ2Þ induces a theoretical error for the asymptotic
coefficient of 3%. We can then conclude that in our case of
study, the theoretical error induced by using the P1

1ðQ2Þ to
extract the asymptotic coefficient is the combination in
quadrature of both sources of error, i.e., a final 5%, much
smaller than the generic 25% quoted in Table II. Let us
remark that this 5% is valid only for the present case of the
η0 TFF.
We should also add a theoretical error to the asymptotic

value of the η TFF of about 3% which, combined with the
statistical error obtained in Ref. [11], turns out to be
0.177(16) GeV.

IV. A REASSESSMENT OF THE η–η0 MIXING

In this section we reanalyze the η–η0 mixing as we did
in Refs. [2,11], and consider the so-called octet-singlet
basis, where the η and η0 pseudoscalar decay constants are
defined in terms of the axial currents Ja5μ ¼ q̄γμγ5

λaffiffi
2

p q as

h0jJa5μjPi ¼ i
ffiffiffi
2

p
Fa
Ppμ, where a ¼ ð0; 8Þ refers to its sin-

glet and octet components, respectively. The decay con-
stants in terms of the two angles θ0 and θ8 read

ðF80
P Þ≡

 
F8
η F0

η

F8
η0 F0

η0

!
¼
 
F8 cos θ8 −F0 sin θ0
F8 sin θ8 F0 cos θ0

!
: ð9Þ

In this basis, large-Nc chiral perturbation theory (ChPT) at
next-to-leading order (NLO) predicts [46,47]

F2
8 ¼

4F2
K − F2

π

3
; F2

0 ¼
2F2

K þ F2
π

3
þ F2

πΛ1; ð10Þ

F8F0 sinðθ8 − θ0Þ ¼ −
2
ffiffiffi
2

p

3
ðF2

K − F2
πÞ; ð11Þ

where FK ≃ 1.20Fπ is the kaon decay constant.
At this point we call attention to the fact that F0 is

renormalization group (RG) dependent [F0 ¼ F0ðμÞ]. This
is connected to the J05μ anomalous dimension, implying
[35,48]

μ
dF0

dμ
¼ −NF

�
αsðμÞ
π

�
2

F0 þOðα3sÞ; ð12Þ

where NF is the number of active flavors at the scale μ.
Solving this equation up to order αsðμÞ, the singlet decay
constant at a different scale can be expressed as

F0ðμÞ ¼ F0ðμ0Þ
�
1þ 2NF

β0

�
αsðμÞ
π

−
αsðμ0Þ

π

��
≡ F0ð1þ δÞ; ð13Þ

with β0 ¼ 11 − 2NF=3. The parameters δ and Λ1 are
interrelated since [48]

μ
d
dμ

F0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ1

p ¼ 0 ð14Þ

at NLO in large-Nc ChPT. This equation also implies that if
Λ1 ¼ 0, then δ ¼ 0.
In the octet-singlet basis, the different limiting

behaviors of the TFF, FPγγ ≡ FPγ�γð0Þ and P∞≡
limQ2→∞Q

2FPγ�γðQ2Þ, take the simple form

Fηγγ ¼
1

4π2
ĉ8F0

η0 − ĉ0F8
η0

F0
η0F

8
η − F8

η0F
0
η
; ð15Þ

Fη0γγ ¼
1

4π2
ĉ8F0

η − ĉ0F8
η

F0
ηF8

η0 − F8
ηF0

η0
; ð16Þ

η∞ ¼ 2ðĉ8F8
η þ ĉ0ð1þ δ∞ÞF0

ηÞ; ð17Þ

η0∞ ¼ 2ðĉ8F8
η0 þ ĉ0ð1þ δ∞ÞF0

η0 Þ; ð18Þ

where ĉ8 and ĉ0 are charge factors and δ∞ ¼ −0.10ð1Þ [11]
accounts for the F0 running from μ0 ¼ 1 GeV up to μ → ∞
[35]. The error quoted for the δ∞ parameter comes from the
uncertainty of αsðMzÞ ¼ 0.1182ð16Þ [24].
In addition, we want to include in the previous set of

equations the OZI-rule-violating parameter Λ3, which was
neglected in our previous studies, since it is the first
correction to the FPγγ in large-Nc ChPT, even though it
belongs formally to the next-to-next-to-leading order
(NNLO). To be consistent with the counting, if we include
OZI-rule-violating parameters, we should also take into
account mass corrections to the pseudoscalar-into-two-
photons decay widths. Such corrections can be directly
calculated from the corresponding Lagrangian [48]:

LPγγ ¼−
αNc

4π

�
hQ2ϕiþΛ3

3
hQ2ihϕiþK2hQ2χϕi

�
Fμν

~Fμν;

ð19Þ

with χ ¼ 2BM, M¼ diagðm̂; m̂;msÞ, and m̂¼ 1
2
ðmuþmdÞ,

where Q2 is the electric charge of the quarks and ϕ is the
3 × 3 matrix representing the nine pseudoscalar fields
ϕ0ðxÞ;…;ϕ8ðxÞ. For π0 → γγ,
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Fπ0γγð0; 0Þ ¼
1

4π2Fπ
ð1þ K2M2

πÞ;

Γπ0γγ ¼
α2emM3

π

64π3F2
π
ð1þ K2M2

πÞ2:

The value Γπ0→γγ ¼ ð7.63� 0.16Þ × 10−9 GeV [24]
translates into K2 ¼ −0.45� 0.57, which is compatible
with zero but with a large central value. This suggests that a
better experimental resolution for π0 → γγ will have an
impact on the η–η0 mixing, even when neglecting isospin
corrections, since Eq. (19) implies

ĉ8 ¼
1ffiffiffi
3

p
�
1þ 1

3
K2ð7M2

π − 4M2
KÞ
�
;

ĉ0 ¼
ffiffiffi
8

3

r �
1þ Λ3 þ

1

3
K2ð2M2

π þM2
KÞ
�
:

The set of equations (15)–(18) form a system of four
equations with five unknowns (Fð8;0Þ

ηð0Þ
, Λ3). Then it may

seem that, at least when taking Λ3 ¼ 0, we may solve the
system. However, as explained in Ref. [2], such a system is
underdetermined as the relation

η∞Fηγγ þ η0∞Fη0γγ ¼
3

2π2

�
1þ 8

9
ðδ∞ þ Λ3 þ δ∞Λ3Þ

�

þ 3

2π2
K2

27
ð4M2

Kð1þ 2δ∞Þ
þM2

πð23þ 16δ∞ÞÞ ð20Þ

is free of mixing parameters. Indeed, Eq. (20) fixes Λ3 once
its left-hand side is (experimentally) known. However, we
still have to face the fact that our system is underdeter-
mined. In order to overcome this problem, we notice that at
NLO in large-Nc ChPT, Eqs. (10) and (11) provide a clean
prediction for both F8 and (θ8 − θ0) in terms of the well-
known value for FK=Fπ [24]. Taking either Eq. (10) or
Eq. (11) as a constraint, one would add an additional
equation to the previous system, which would provide a
unique solution. Taking both would lead to an overdeter-
mined system, which in general has no solution. For this
reason, we adopt a democratic procedure in which we
perform a χ2 fit including both constraints [Eqs. (10) and
(11)], together with Eqs. (15), (16), (17), (18), and (20).

We obtain the mixing parameters collected in the first
column of Table III by using the following parameters as
inputs for the χ2 function:

Fexp
ηγγ ¼ 0.2738ð47Þ GeV−1; Fexp

η0γγ ¼ 0.3437ð55Þ GeV−1

ηexp∞ ¼ 0.177ð16Þ GeV; η0exp∞ ¼ 0.254ð13Þ GeV
FK=Fπ ¼ 1.198ð5Þ

K2 ¼−0.45ð57Þ; δ∞ ¼−0.10ð1Þ:

The total χ2 ¼ 3.45 has a p-value ¼ 0.18 which is accept-
able with two degrees of freedom.
By observing the different terms contributing to the χ2

function, we realize that the piece related to the determi-
nation of the η TFF at Q2 → ∞ is the one most disfavored
(contributing with 1.97 to the χ2), with a theoretical
prediction of 0.155(19) GeV, compared to the experimental
value of 0.177(16) GeV. Such a discrepancy of about 0.9σ
can be attributed to a rather small value of θ0. The
smallness of θ0 comes ultimately from the experimental
value of η0 exp∞ . This is so because in this observable the
angle θ0 comes with cos θ0 ∼ 1, and then η0 exp∞ determines
the value of F0, which in turn [and through Eq. (20)]
determines θ0. To test this correspondence, we could
imagine a η0 exp∞ 10% higher than what we found from
the fits. This new value would be in agreement with the
BABAR measurement at q2 ¼ −112 GeV2, transferred to
the space-like region including a 10% effect on the
violation of the space- and timelike duality as suggested
in Ref. [11]. With such an enhancement, the value of F0

will also be proportionally enhanced. Then, the fit will
return a θ0 that is 10% larger, a χ2 result of about 1.9,
and a prediction for η∞ 5% larger. As we argued
before, experimental data for the η0 TFF at large momentum
transfer comes exclusively from the BABAR Collaboration
and a second set of experimental data would be highly
welcome to settle these issues.
Alternatively, we can ascribe the smallness of η∞ to an

underestimation of a theoretical error without the need to
touch any number coming from experimental determina-
tion. Up to now, we have assumed that the expressions for
F0;8 and θ0;8 calculated at NLO in large-Nc ChPT contain
no theoretical error coming from neglecting higher orders
in that expansion. This is a hypothesis that can be tested by

TABLE III. Predictions for the mixing parameters. θ8;0 are expressed in degrees. The first row is our basic
scenario, while the second row (our preferred scenario) includes (on top) a theoretical error for FK=Fπ. The third
row corresponds to setting K2 ¼ 0 and δ∞ ¼ 0 in the fit function. See the main text for details.

F8=Fπ F0=Fπ θ8 θ0 Λ3 Λ1 χ2dof

1.26(1) 1.15(5) −21.9ð1.7Þ −5.6ð2.0Þ −0.04ð7Þ 0.04(13) 1.73
1.27ð2Þ 1.14ð5Þ −21.2ð1.9Þ −6.9ð2.4Þ −0.02ð7Þ 0.01ð13Þ 1.00
1.28(2) 1.04(3) −22.3ð0.8Þ −7.1ð2.0Þ −0.13ð3Þ −0.21ð9Þ 1.04
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allowing higher-order effects in the definition of FK=Fπ .
We assumed that the departure of that ratio from 1 came
from the NLO alone. We can extend this argument by
saying that FK=Fπ − 1 ¼ ϵþ ϵ2 ¼ 0.198, which implies
ϵ ¼ 0.17 and ϵ2 ¼ 0.03. ϵ is the small quantity representing
the NLO and ϵ2 represents the NNLO of about 2.4% of
FK=Fπ . This hypothesis is confirmed both from SUð3Þ
ChPT [49] and from SUð3Þ ChPT in the large-Nc limit [50].
With such a new error for FK=Fπ we can repeat the fit to
obtain the mixing parameters. The new χ2 ¼ 2.01 repre-
sents a p-value ¼ 0.37 and χ2dof ¼ 1.00. The results of the
mixing are collected in the second row of Table III and are
the main result of this section. The net effect of including an
extra source of theoretical error for FK=Fπ turns out to be a
θ0 that is larger by 25%, which in turn comes from a
better prediction of η∞ which now reads 0.164(33) GeV.
The χ2dof value is excellent, which indicates a good agree-
ment with large-Nc ChPT but with non-negligible NNLO
corrections. In addition, we can use Eq. (10) to predict the
value Λ1 ¼ 0.01ð13Þ.
The outcome of our fit shows us that Λ1;3 are compatible

with zero and one is tempted to eliminate them from our
system of equations. This is actually the avenue followed
by the FKS scheme [51] (i.e., Λ1;3 ¼ 0, K2 ¼ 0, δ∞ ¼ 0)
and at first sight it may seem we are confirming their
findings. Notice, however, that Λ1 and δ∞ are interrelated
[Eq. (14)] and by repeating the fit imposing δ∞ ¼ 0,
K2 ¼ 0, but Λ1;3 ≠ 0, our fit returns non-negligible values
for Λ1;3 and a set of mixing parameters (collected in the last
row of Table III) that are still compatible with our previous
findings. Thus, our results represent an update of the FKS
scheme including all NLO corrections together with an
estimate of NNLO effects, which cannot be neglected in

order to obtain a good χ2 (cf. the first row vs the second row
in Table III).
In Fig. 5 we collect our main results (orange crosses)

from the second row of Table III and compare them to
different predictions in the literature [46,48,51,52] (red
dots) as well with our previous results [11] (blue empty
squares). We see that the main difference with respect to our
previous work [11] (where we did not use the η0 TFF
asymptotic value) appears in θ0. This is to be expected as
the inclusion of Λ1 and Λ3 affects the singlet part
exclusively. In addition, we have reduced our errors thanks
to the constraints from large-Nc ChPT. Our prediction
for Λ3 may be compared with the one in Ref. [52],
Λ3 ¼ −0.03ð2Þ. Both of them point towards a small value
for this parameter, and agree with its sign. We find that Λ3

actually plays an important role not only in fulfilling the
degeneracy condition (20), but in the ηðη0Þ → γγ decays as
well. In addition, the Λ1 term is rather important; in
particular, it affects the η0 results where deviations of order
10% appear if Λ1 is omitted. Finally, we stress that the use
of the RG equation for F0 is fundamental, whereas most of
the theoretical and experimental analyses do not account
for this effect, which—to the best of our knowledge—was
included for the first time in Ref. [35]. This effect increases
η∞ and diminishes η0∞, bringing experiment and theory into
agreement.
Our results may be translated to the quark-flavor basis

where the decay constants are defined as

ðFqs
P Þ≡

 
Fq
η Fs

η

Fq
η0 Fs

η0

!
¼
 
Fq cosϕq −Fs sinϕs

Fq sinϕq Fs cosϕs

!
:

ð21Þ

FIG. 5. η–η0 mixing parameters in the octet-singlet basis from L [48], FKS [51], BDO [52], EF [46], EMS(14) [2], and EMS(15) [11].
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Using the rotation matrix [51]

UðθidealÞ ¼
1ffiffiffi
3

p
�

1 −
ffiffiffi
2

p
ffiffiffi
2

p
1

�
;

we find that

ðFqs
P Þ ¼ ðF80

P ÞUðθidealÞ:

From the above equation, together with the values from
the second row of Table III, we obtain

Fq ¼ 1.03ð4ÞFπ; Fs ¼ 1.36ð4ÞFπ;

ϕq ¼ 39.6ð2.3Þ°; ϕs ¼ 40.8ð1.8Þ°: ð22Þ

In addition, we can predict the ratio RJ=ψ ≡
ΓJ=ψ→η0γ=ΓJ=ψ→ηγ , which is given in terms of ϕq alone
[46] as

RJ=ψ ¼ tan2ϕq

�
mη0

mη

�
4
�M2

J=ψ −m2
η0

M2
J=ψ −m2

η

�3

: ð23Þ

With Eq. (22), RJ=ψ ¼ 5.2ð9Þ, which is just 0.5σ from the
experimental value RJ=ψ ¼ 4.7ð2Þ [24]. It may be that as
precision improves the deviation will grow, which would be
a hint of novel phenomena in the η–η0 system, such as a
gluonium component, which has long been debated, but not
found so far [53]. We recall in this sense that large-Nc
ChPT implicitly assumes that such a component is not
present in the η0. Moreover, the three-gluon annihilation
amplitude (not included in our framework) may need to be
included to account for this 10% discrepancy [54].
Alternatively, we could use the experimental RJ=ψ together
with Eq. (23) to obtain ϕq ¼ 38.2ð6Þ° in agreement with
our fit determination. With respect to the VPγ couplings
calculated in our previous work [11], the new results yield
more precise errors and very similar central values, with the
exception of the ϕ cases, which get slightly closer to the
experimental results.
With the set of parameters in Table III, and together with

Eq. (9), we can also predict the ratio RZ ≡ ΓZ→η0γ=ΓZ→ηγ,
which is given by [55]

RZ ¼
����Fη0γZ

FηγZ

����2
�M2

Z −m2
η0

M2
Z −m2

η

�3

; ð24Þ

where, assuming the asymptotic behavior, M2
ZFPγZðM2

ZÞ¼
6
ffiffiffi
2

p ðC8γZF8
PþC1γZF0

Pð1þδ∞ÞÞ with C8γZ¼ð1−4sin2θWÞ=
6
ffiffiffi
6

p
, C1γZ ¼ð2−4sin2 θWÞ=3

ffiffiffi
3

p
and θW is the Weinberg

angle at M2
Z [24]. Since C8γZ ≪ C1γZ, one may expect

RZ ≃ cot2 θ0 ∼ 68ð1Þ [55], and thus this is an observable

that is quite sensitive to the singlet angle. However, since
F8
η ≫ F0

η, the denominator of Eq. (24) should not be
approximated and all the terms should be retained. In this
respect, we find RZ ¼ 11ð3Þ, indicating still a large singlet
component in RZ.
To close this section, we comment on possible venues to

improve our errors. On the one hand, it would be desirable
not only to improve on η∞, which now is the input with the
largest error, but also to obtain η0∞ from a P2

2ðQ2Þ, which
would reassess both the central value and the error of this
parameter. This would be possible from future Belle-II
data. Curiously enough, the Γπ0→γγ measurement is impor-
tant to study NLO effects and the role of SU(3) breaking in
the mixing scheme. On the other hand, it would be
interesting to have a more precise OðαsÞ2 calculation for
δ∞ although its impact may be marginal. NNLO predic-
tions for the mixing parameters and ηðη0Þ → γγ decays will
allow us to check the stability and accuracy of the results.
This calculation will involve new low-energy constants, of
which knowledge is scarce. In addition, future lattice
analysis may play an important role in this field [56]
and a combined analysis using the PA method will be
highly desirable.

V. CONCLUSIONS

In this work we have shown the excellent performance
of the Padé approximants’ method developed in
Refs. [1–3,11] for the description of the recently reported
first observation of the Dalitz decay η0 → γeþe− by the
BESIII Collaboration [25]. This experimental analysis
studied the timelike region of the η0 transition form factor
up to the resonance region.
Unlike our previous works, here we have explored the

limits of the application of PAs in the TL region, finding
that—beyond our expectations—PAs can be extended to
energies very close to the location of poles. We have nicely
described the behavior of the modulus square of the η0 TFF,
thus showing that this form factor has a simple analytical
structure in the complex plane made of an isolated branch
cut due to the ππ production threshold and a set of
single poles.
However, the careful analysis of the PA sequence

PL
1 ðQ2Þ revealed more effects than those of the ρ resonance

emerging here from ππ rescattering. Subleading effects
caused by additional branch cuts or the influence of higher
resonances’ tails are also captured by PAs and are indeed
responsible for the shift of the PA-pole location with
respect to the naive projection of the ρ resonant pole onto
the real axis. Since this shift is not known with precision it
is difficult to extract the exact position of the resonance
pole from the PA pole. This limitation of the method,
already mentioned at the beginning of this work, does not
prevent the PAs from guiding us with regards to the
underlying analytical structure of the TFF. One can take
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advantage of this highly nontrivial knowledge to further
use the PAs method in other scenarios such as B → π
semileptonic form factors, or combine it with dispersion
relations to include resonance poles.
A last remark concerns the role of VMD in experimental

analyses, now that the meaning of the PA pole on the real
axis is understood. As pointed out in Ref. [6], VMD should
be interpreted as a first step in a systematic approximation,
that is, the P1

1 element belonging to a more general
and exhaustive PN

1 sequence. Although it is common to
report on such a fit for ease of comparison, the range of
application of VMD in the TL region is much shorter than
the P7

1 we used here.
In summary, PAs are not only useful for fitting and

extrapolating data within the SL region, but they also give
us information about the analytical structure of the TFF in
the TL low-energy region. On the one hand, dispersion
relations with a single ππ elastic cut for the isovector part of
the TFF and a Breit-Wigner model for the isoscalar one
[26,27] prove the TFF to be a Stieltjes function, for which
the PA convergence is guaranteed in the SL and TL regions
below the cut. This already ensures an optimal extraction of
the LEPs from experimental data with tiny systematic
errors. On the other hand, the modulus of the TFF along
the branch cut is also well reproduced thanks to the
smoothness of the opening of the ππ cut, even though
the convergence theorems do not inform us about the
performance in this region. PAs are also capable of
accommodating the SL region high-energy QCD con-
straints while still providing accurate predictions of the
Γηðη0Þ→γγ decay widths.
Moreover, they allowed us to report the most up-to-date

results for the slope, curvature, and third derivative of the
η0TFF, and to update the η–η0 mixing parameters in a
mixing scheme compatible with the most general large-Nc
ChPT scenario at NLO, thus superseding the values
obtained in our previous works and those from the FKS
[51], BDO [52], and EF [46] schemes. With such results we
predicted the J=ψ and Z → ηð0Þγ decays.
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APPENDIX: BEST PADÉ APPROXIMANT FIT
PARAMETRIZATION

In this appendix, we provide the parametrizations of our
best PL

1 ðQ2Þ fit for the Q2Fη0γ�γðQ2Þ. Defining PL
1 ðQ2Þ as

PL
1 ðQ2Þ ¼ TNðQ2Þ

R1ðQ2Þ

¼ t1Q2 þ t2Q4 þ � � � þ tNðQ2ÞN
1þ r1Q2

; ðA1Þ

the corresponding fitted coefficients7 for the Q2Fη0γ�γðQ2Þ
are collected in Table IV. With these coefficients one can
extract the slope of the TFF by expanding Eq. (A1) and
normalizing the result as

bη0 ¼ m2
η0 ðt1 · r1 − t2Þ=t1 ¼ 1.312; ðA2Þ

with mη0 ¼ 0.95778 GeV, to be compared with the second
column in Table I.

TABLE IV. Fitted coefficients for the best Padé approximant,
P7
1ðQ2Þ, associated to Q2Fη0γ�γðQ2Þ.

Coefficient Value

t1 0.3437
t2 3.847 × 10−3

t3 0.550 × 10−3

t4 −1.621 × 10−4

t5 1.338 × 10−5

t6 −4.495 × 10−7

t7 5.261 × 10−9

r1 1.4413

7For full precision of the coefficients together with the
correlation matrix, contact the corresponding authors.

R. ESCRIBANO et al. PHYSICAL REVIEW D 94, 054033 (2016)

054033-12



[1] P. Masjuan, Phys. Rev. D 86, 094021 (2012).
[2] R. Escribano, P. Masjuan, and P. Sanchez-Puertas, Phys.

Rev. D 89, 034014 (2014).
[3] P. Sanchez-Puertas and P. Masjuan, EPJ Web Conf. 81,

05025 (2014).
[4] P. Masjuan and M. Vanderhaeghen, J. Phys. G 42, 125004

(2015).
[5] P. Masjuan, Nucl. Part. Phys. Proc. 260, 111 (2015).
[6] P. Masjuan, S. Peris, and J. J. Sanz-Cillero, Phys. Rev. D 78,

074028 (2008).
[7] P. Masjuan and P. Sanchez-Puertas, arXiv:1504.07001.
[8] R. Escribano and S. Gonzàlez-Solís, arXiv:1511.04916.
[9] P. Sanchez-Puertas and P. Masjuan, arXiv:1606.02704.

[10] P. Masjuan and P. Sanchez-Puertas, J. High Energy Phys. 08
(2016) 108.

[11] R. Escribano, P. Masjuan, and P. Sanchez-Puertas, Eur.
Phys. J. C 75, 414 (2015).

[12] S. Gardner, R. J. Holt, and A. S. Tadepalli, Phys. Rev. D 93,
115015 (2016).

[13] G. A. Baker and P. Graves-Morris, Encyclopedia of Math-
ematics and its Applications (Cambridge University Press,
Cambridge, England, 1996).

[14] P. Masjuan Queralt, arXiv:1005.5683.
[15] P. Masjuan and J. J. Sanz-Cillero, Eur. Phys. J. C 73, 2594

(2013).
[16] P. Masjuan, J. Ruiz de Elvira, and J. J. Sanz-Cillero, Phys.

Rev. D 90, 097901 (2014).
[17] I. Caprini, P. Masjuan, J. R. de Elvira, and J. J. Sanz-Cillero,

Phys. Rev. D 93, 076004 (2016).
[18] P. Masjuan, J. J. Sanz-Cillero, and J. Virto, Phys. Lett. B

668, 14 (2008).
[19] P. Masjuan and S. Peris, Phys. Lett. B 686, 307 (2010).
[20] P. Masjuan and S. Peris, J. High Energy Phys. 05 (2007)

040.
[21] F. Stollenwerk, C. Hanhart, A. Kupsc, U. G. Meissner, and

A. Wirzba, Phys. Lett. B 707, 184 (2012).
[22] P. Aguar-Bartolome et al. (A2 Collaboration), Phys. Rev. C

89, 044608 (2014).
[23] P. Masjuan, E. Ruiz Arriola, and W. Broniowski, Phys. Rev.

D 87, 014005 (2013).
[24] K. A. Olive et al. (Particle Data Group Collaboration), Chin.

Phys. C 38, 090001 (2014).
[25] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 92,

012001 (2015).
[26] C. Hanhart, A. Kupsc, U.-G. Meissner, F. Stollenwerk, and

A. Wirzba, Eur. Phys. J. C 73, 2668 (2013).
[27] B. Kubis and J. Plenter, Eur. Phys. J. C 75, 283 (2015).
[28] B. Ananthanarayan, G. Colangelo, J. Gasser, and H.

Leutwyler, Phys. Rep. 353, 207 (2001).
[29] T. Feldmann and P. Kroll, Phys. Rev. D 58, 057501

(1998).

[30] I. Balakireva, W. Lucha, and D. Melikhov, Phys. Rev. D 85,
036006 (2012).

[31] C. Q. Geng and C. C. Lih, Phys. Rev. C 86, 038201 (2012);
87, 039901(E) (2013).

[32] Y. Klopot, A. Oganesian, and O. Teryaev, Phys. Rev. D 87,
036013 (2013); 88, 059902(E) (2013).

[33] Y. Klopot, A. Oganesian, and O. Teryaev, JETP Lett. 99,
679 (2014).

[34] P. Roig, A. Guevara, and G. López Castro, Phys. Rev. D 89,
073016 (2014).

[35] S. S. Agaev, V. M. Braun, N. Offen, F. A. Porkert, and A.
Schäfer, Phys. Rev. D 90, 074019 (2014).

[36] L. G. Landsberg, Phys. Rep. 128, 301 (1985).
[37] L. Ametller, J. Bijnens, A. Bramon, and F. Cornet, Phys.

Rev. D 45, 986 (1992).
[38] H. Czyz, S. Ivashyn, A. Korchin, and O. Shekhovtsova,

Phys. Rev. D 85, 094010 (2012).
[39] H. J. Behrend et al. (CELLO Collaboration), Z. Phys. C 49,

401 (1991).
[40] J. Gronberg et al. (CLEO Collaboration), Phys. Rev. D 57,

33 (1998).
[41] P. del Amo Sanchez et al. (BABAR Collaboration), Phys.

Rev. D 84, 052001 (2011).
[42] M. Acciarri et al. (L3 Collaboration), Phys. Lett. B 418, 399

(1998).
[43] A. Bramon and E. Masso, Phys. Lett. B 104, 311

(1981).
[44] S. J. Brodsky and G. P. Lepage, Phys. Rev. D 24, 1808

(1981).
[45] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 74,

012002 (2006).
[46] R. Escribano and J. M. Frere, J. High Energy Phys. 06

(2005) 029.
[47] T. Feldmann, Int. J. Mod. Phys. A 15, 159 (2000).
[48] H. Leutwyler, Nucl. Phys. B, Proc. Suppl. 64, 223

(1998).
[49] J. Bijnens and G. Ecker, Annu. Rev. Nucl. Part. Sci. 64, 149

(2014).
[50] G. Ecker, P. Masjuan, and H. Neufeld, Eur. Phys. J. C 74,

2748 (2014).
[51] T. Feldmann, P. Kroll, and B. Stech, Phys. Rev. D 58,

114006 (1998).
[52] M. Benayoun, L. DelBuono, and H. B. O’Connell, Eur.

Phys. J. C 17, 593 (2000).
[53] R. Escribano and J. Nadal, J. High Energy Phys. 05 (2007)

006.
[54] J. M. Gerard and A. Martini, Phys. Lett. B 730, 264 (2014).
[55] T. Feldmann, P. Kroll, and B. Stech, Phys. Lett. B 449, 339

(1999).
[56] C. Michael, K. Ottnad, and C. Urbach (ETM Collaboration),

Phys. Rev. Lett. 111, 181602 (2013).

η0 TRANSITION FORM FACTOR FROM SPACE- … PHYSICAL REVIEW D 94, 054033 (2016)

054033-13

http://dx.doi.org/10.1103/PhysRevD.86.094021
http://dx.doi.org/10.1103/PhysRevD.89.034014
http://dx.doi.org/10.1103/PhysRevD.89.034014
http://dx.doi.org/10.1051/epjconf/20148105025
http://dx.doi.org/10.1051/epjconf/20148105025
http://dx.doi.org/10.1088/0954-3899/42/12/125004
http://dx.doi.org/10.1088/0954-3899/42/12/125004
http://dx.doi.org/10.1016/j.nuclphysbps.2015.02.023
http://dx.doi.org/10.1103/PhysRevD.78.074028
http://dx.doi.org/10.1103/PhysRevD.78.074028
http://arXiv.org/abs/1504.07001
http://arXiv.org/abs/1511.04916
http://arXiv.org/abs/1606.02704
http://dx.doi.org/10.1007/JHEP08(2016)108
http://dx.doi.org/10.1007/JHEP08(2016)108
http://dx.doi.org/10.1140/epjc/s10052-015-3642-z
http://dx.doi.org/10.1140/epjc/s10052-015-3642-z
http://dx.doi.org/10.1103/PhysRevD.93.115015
http://dx.doi.org/10.1103/PhysRevD.93.115015
http://arXiv.org/abs/1005.5683
http://dx.doi.org/10.1140/epjc/s10052-013-2594-4
http://dx.doi.org/10.1140/epjc/s10052-013-2594-4
http://dx.doi.org/10.1103/PhysRevD.90.097901
http://dx.doi.org/10.1103/PhysRevD.90.097901
http://dx.doi.org/10.1103/PhysRevD.93.076004
http://dx.doi.org/10.1016/j.physletb.2008.07.106
http://dx.doi.org/10.1016/j.physletb.2008.07.106
http://dx.doi.org/10.1016/j.physletb.2010.02.069
http://dx.doi.org/10.1088/1126-6708/2007/05/040
http://dx.doi.org/10.1088/1126-6708/2007/05/040
http://dx.doi.org/10.1016/j.physletb.2011.12.008
http://dx.doi.org/10.1103/PhysRevC.89.044608
http://dx.doi.org/10.1103/PhysRevC.89.044608
http://dx.doi.org/10.1103/PhysRevD.87.014005
http://dx.doi.org/10.1103/PhysRevD.87.014005
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1103/PhysRevD.92.012001
http://dx.doi.org/10.1103/PhysRevD.92.012001
http://dx.doi.org/10.1140/epjc/s10052-013-2668-3
http://dx.doi.org/10.1140/epjc/s10052-015-3495-5
http://dx.doi.org/10.1016/S0370-1573(01)00009-6
http://dx.doi.org/10.1103/PhysRevD.58.057501
http://dx.doi.org/10.1103/PhysRevD.58.057501
http://dx.doi.org/10.1103/PhysRevD.85.036006
http://dx.doi.org/10.1103/PhysRevD.85.036006
http://dx.doi.org/10.1103/PhysRevC.86.038201
http://dx.doi.org/10.1103/PhysRevC.87.039901
http://dx.doi.org/10.1103/PhysRevD.87.036013
http://dx.doi.org/10.1103/PhysRevD.87.036013
http://dx.doi.org/10.1103/PhysRevD.88.059902
http://dx.doi.org/10.1134/S002136401412008X
http://dx.doi.org/10.1134/S002136401412008X
http://dx.doi.org/10.1103/PhysRevD.89.073016
http://dx.doi.org/10.1103/PhysRevD.89.073016
http://dx.doi.org/10.1103/PhysRevD.90.074019
http://dx.doi.org/10.1016/0370-1573(85)90129-2
http://dx.doi.org/10.1103/PhysRevD.45.986
http://dx.doi.org/10.1103/PhysRevD.45.986
http://dx.doi.org/10.1103/PhysRevD.85.094010
http://dx.doi.org/10.1007/BF01549692
http://dx.doi.org/10.1007/BF01549692
http://dx.doi.org/10.1103/PhysRevD.57.33
http://dx.doi.org/10.1103/PhysRevD.57.33
http://dx.doi.org/10.1103/PhysRevD.84.052001
http://dx.doi.org/10.1103/PhysRevD.84.052001
http://dx.doi.org/10.1016/S0370-2693(97)01219-7
http://dx.doi.org/10.1016/S0370-2693(97)01219-7
http://dx.doi.org/10.1016/0370-2693(81)90132-5
http://dx.doi.org/10.1016/0370-2693(81)90132-5
http://dx.doi.org/10.1103/PhysRevD.24.1808
http://dx.doi.org/10.1103/PhysRevD.24.1808
http://dx.doi.org/10.1103/PhysRevD.74.012002
http://dx.doi.org/10.1103/PhysRevD.74.012002
http://dx.doi.org/10.1088/1126-6708/2005/06/029
http://dx.doi.org/10.1088/1126-6708/2005/06/029
http://dx.doi.org/10.1142/S0217751X00000082
http://dx.doi.org/10.1016/S0920-5632(97)01065-7
http://dx.doi.org/10.1016/S0920-5632(97)01065-7
http://dx.doi.org/10.1146/annurev-nucl-102313-025528
http://dx.doi.org/10.1146/annurev-nucl-102313-025528
http://dx.doi.org/10.1140/epjc/s10052-014-2748-z
http://dx.doi.org/10.1140/epjc/s10052-014-2748-z
http://dx.doi.org/10.1103/PhysRevD.58.114006
http://dx.doi.org/10.1103/PhysRevD.58.114006
http://dx.doi.org/10.1007/s100520000497
http://dx.doi.org/10.1007/s100520000497
http://dx.doi.org/10.1088/1126-6708/2007/05/006
http://dx.doi.org/10.1088/1126-6708/2007/05/006
http://dx.doi.org/10.1016/j.physletb.2014.01.068
http://dx.doi.org/10.1016/S0370-2693(99)00085-4
http://dx.doi.org/10.1016/S0370-2693(99)00085-4
http://dx.doi.org/10.1103/PhysRevLett.111.181602

