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We present analytic results for the three-loop static potential of two heavy quarks. The analytic
calculation of the missing ingredients is outlined, and results for the singlet and octet potential are
provided.
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I. INTRODUCTION

The static potential between two heavy quarks belongs to
the fundamental quantities of QCD. In lowest order, it is
described by the Coulomb potential adapted to QCD. Such
an approach was already used more than 40 years ago [1] to
describe the bound state of heavy quarks. Shortly after-
ward, the one-loop corrections were computed [2,3], and
the two-loop terms were added toward the end of the 1990s
[4–6]. Light quark mass effects at two loops can be found in
Ref. [7]. About eight years ago, the three-loop corrections
were computed by two groups in Refs. [8–10]. However, in
contrast to the lower-order expressions, the three-loop
results could only be presented in numerical form. In fact,
in Refs. [8,9], three coefficients in the expansion of the
master integrals around d ¼ 4, where d is the space-time
dimension, could only be evaluated numerically (see also
below). The evaluation of one of them is described in detail

in Ref. [11] (in a broader context), and the remaining two
coefficients are considered in Sec. II of this paper. We are
thus in the position to present analytic results at three loops.
The corresponding expressions can be found in Sec. III.
A generalization of the three-loop singlet potential has

been considered in Ref. [12]. It is still assumed that the
heavy color sources form a singlet state; however, the color
representation is kept general.
The new results can also be used to present analytic

expressions for the so-called octet potential which
describes the situation where the quark and antiquark do
not form a color-singlet but a color-octet state. Two- and
(numerical) three-loop results have been obtained in
Refs. [13,14], and [15], respectively. Analytic results for
the octet potential are presented in Sec. IV.
In order to fix the notation, we write the momentum

space potential in the form

V ½c�ðj~qjÞ ¼ −4πC½c� αsðj~qjÞ
~q2

�
1þ αsðj~qjÞ

4π
a½c�1 þ

�
αsðj~qjÞ
4π

�
2

a½c�2 þ
�
αsðj~qjÞ
4π

�
3
�
a½c�3 þ 8π2C3

A ln
μ2

~q2

�
þ…

�
; ð1Þ

with C½1� ¼ CF for the color-singlet and C½8� ¼ CF − CA=2
for the color-octet case. Here, CA ¼ Nc and CF ¼
ðN2

c − 1Þ=ð2NcÞ are the eigenvalues of the quadratic
Casimir operators of the adjoint and fundamental repre-
sentations of the SUðNcÞ color gauge group, respectively.
The strong coupling αs is defined in the MS scheme, and
for the renormalization scale, we choose μ ¼ j~qj in order to
suppress the corresponding logarithms. The general results,
both in momentum and coordinate space, can, e.g., be
found in Appendix A of Ref. [15].
The logarithmic term in Eq. (1) has its origin in an

infrared divergence which is present for the first time at
three loops as has been pointed out in Ref. [16]. The
corresponding pole has been subtracted minimally. Its

presence can be understood in the context of methods of
regions and potential nonrelativistic QCD [17–21] where
V ½c� appears as a matching coefficient. Thus, the infrared
divergence cancels against ultraviolet divergences of the
ultrasoft contributions. The latter have been studied in
Refs. [20,22,23]. For the resummation of leading and next-
to-leading ultrasoft logarithms, we refer to Refs. [24–26].
The three-loop coefficient a3 only has a moderate

numerical value (see, e.g., the discussion in Ref. [9])
and has thus only a relatively small influence on phenom-
enological quantities. This is in contrast to the two-loop
coefficient which is of the same order of magnitude as a1.
However, since the static potential is a matching coeffi-
cient, it is hence not a physical quantity. In fact, a3 is
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scheme dependent, and only the combination with all other
building blocks leads to meaningful quantities.
For later convenience, we decompose the three-loop

corrections according to the number of closed fermion
loops

a½c�3 ¼ a½c�;ð3Þ3 n3l þ a½c�;ð2Þ3 n2l þ a½c�;ð1Þ3 nl þ a½c�;ð0Þ3 ; ð2Þ

where nl is the number of light (massless) quarks. We
furthermore consider the difference between the singlet
and octet contributions and write (i ¼ 0, 1, 2, 3)

a½8�;ðiÞ3 ¼ a½1�;ðiÞ3 þ δa½8�;ðiÞ3 : ð3Þ

In Sec. IV, we provide analytical results for δa½8�;ðiÞ3 .
The three-loop coefficient of the color-singlet potential,

a½1�3 , has entered a number of physical applications as a
building block (see also Ref. [27] for a recent review on
applications of nonrelativistic QCD to high-energy proc-
esses). To name a few of them, we want to mention
the next-to-next-to-next-to-leading-order corrections to
the leptonic decay width of the Υð1SÞ meson [28]
and the top quark threshold production in electron
positron colliders [29]. Furthermore, a3 has entered analy-
ses to determine precise values for the charm and
bottom quark masses [30–33] and the strong coupling
constant [34].

II. CALCULATION OF I11 AND I16

The calculation of a½1�3 as performed in Ref. [9] requires
the evaluation of 41 master integrals which can be sub-
divided into three different classes. There are ten integrals
which do not have any static line [i.e., a propagator of the
form 1=ð−k0 � i0Þ, see also Fig. 1]. They are known since
long. Furthermore, we have 14 integrals with a massless
one-loop insertion. They can easily be integrated in terms
of Γ functions using standard techniques. The correspond-
ing results have been presented in Ref. [35]. Results for 16

more complicated integrals can be found in Ref. [36] as
expansions in ϵ ¼ ð4 − dÞ=2 to the necessary order except
for two integrals [I11 and I16 of Ref. [36]; see also Figs. 1(a)

and 1(b)]. Their OðϵÞ terms enter a½1�3 ; however, they were
only known numerically. The evaluation of these coeffi-
cients will be described in the remainder of this section. For
completeness, we want to mention that the third numerical
ingredient required in Ref. [9] comes from the finite
diagram in Fig. 1(c) (the 41st master integral) which has
been computed in a parallel article [11].
Let us also mention that techniques which have been

used to compute master integrals in Ref. [10] can be found
in Ref. [37]; see also Ref. [38] for a status report of the
approach used in Ref. [10].
The method which is used to compute I11 and I16 is

based on the dimensional recurrence relation and analy-
ticity with respect to space-time dimensionality d (the so-
called “DRA method”) and was developed in Ref. [39]. In
Ref. [40], this method was applied for the first time to the
case with more than one master integral in a sector. Some
integrals taken from families of integrals for the three-loop
static quark potential and denoted in Ref. [40] by I14 and
I15 [see Fig. 1(d)] have been calculated. Note that I14 and
I15 are the only nontrivial integrals entering the right-hand
side of the dimensional recurrence relation for I16.
Therefore, in principle, the results of Ref. [40] make the
calculation of I16 straightforward.
However, the numerical issues related to the calculation

of contributions to the inhomogeneous terms proportional
to I14 and I15 in the right-hand side of dimensional
recurrence relations for I16 are quite involved. The most
complicated part of this contribution has the form

TðνÞ ¼
X∞
k¼0

vTðνþ kÞ
X∞
n¼k

�Yn
l¼k

Mðνþ lÞ
�
uðνþ nÞ; ð4Þ

where ν ¼ d=2 and vTðxÞ, MðxÞ, and uðxÞ are a row vector,
a 2 × 2 matrix, and a column vector, respectively. Their
components are rational functions of the variable x. In order

+i 0 −i 0 −i 0 −i 0 −i 0 −i 0 −i 0 −i 0

(a) (b) (c) (d)

FIG. 1. (a)–(c): Master integrals entering a½c�3 which were only known numerically. Solid lines denote relativistic scalar propagators,
and wavy lines refer to static propagators. For the latter, the causality prescription is given explicitly where�i0 indicates a propagator of
the form 1=ð−k0 � i0Þ with k0 being the zeroth component of the momentum flowing through the corresponding line. The square in I18
indicates a convenient choice for the numerator which is specified in Ref. [11]. I18 is finite, and only the Oðϵ0Þ term is needed. For I11
and I16, also the Oðϵ1Þ terms enter a½c�3 . (d): Master integral which is needed for the computation of the integrals in (b) and (c). The
integral I15 belongs to the same integral family as I14 but has an additional dot on the lower line.
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to calculate the sums in Eq. (4) without nested loops, we
apply the standard trick of the DRA method; see Ref. [41].
Namely, let us denote

FðkÞ ¼
X∞
n¼k

Pðk; nÞuðνþ nÞ; ð5Þ

where Pðk; nÞ ¼ Q
n
l¼k Mðνþ lÞ. Then,

TðνÞ ¼
X∞
k¼0

vTðνþ kÞFðkÞ: ð6Þ

Using Eq. (5), the function FðkÞ can be calculated for given
k in one loop if one takes into account the recurrence
relation Pðk; nþ 1Þ ¼ Pðk; nÞ Mðνþ nþ 1Þ. Now, we
note that FðkÞ satisfies the recurrence relation

Fðkþ 1Þ ¼ M−1ðνþ kÞFðkÞ − uðνþ kÞ: ð7Þ
Therefore, in order to calculate consecutive terms of the
sum in Eq. (6), we need to use Eq. (5) only once and then

use the recurrence relation (7). However, the price we have
to pay is much higher than for scalar sums. This is
connected with the multiplication by the inverse matrix
M−1ðνþ kÞ. For x → ∞, the elements of MðxÞ are of order
unity, while its determinant tends to 1=1024. Due to this
fact, the multiplication by M−1 involves large cancellations
which result in rapid precision loss. For example, using a
precision of 7000 digits in the initial expression, we obtain
only about 370 digits in the final result.
Besides, it appears that the sum over n in the definition of

FðkÞ converges very slowly, with the summand behaving as
n−α (α > 1) at large n. So, in order to obtain the high-
precision numerical result suitable for using PSLQ [42],
one has to apply the matrix analog of the convergence
acceleration algorithm described in Ref. [43]. In particular,
one needs to know the exponent α of the powerlike decay.
This appears to be possible thanks to Ref. [44], where a
method for finding the asymptotic behavior of the solutions
of recurrence relations was developed. Once we dealt with
these numerical issues, we obtained the result1

I16 ¼ −
56π4

135ϵ
−
�
112π4

135
þ 16π2ζð3Þ

9
þ 8ζð5Þ

3

�
þ
�
968ζð5Þ

3
− 16π4l2 þ

136ζð3Þ2
3

þ 400π2ζð3Þ
9

−
838π6

2835
þ 1792π4

135

�
ϵ

þ
�
6144s6l2

7
−
6144s7a

7
þ 15360s7b

7
þ 1536α4ζð3Þ þ 1024π2α5 − 256π2α4 −

64

9
π4l32

− 2976ζð5Þl22 − 64π2ζð3Þl22 −
112

3
π4l22 −

7680ζð3Þ2l2
7

−
544π6l2
315

þ 128π4l2 þ
306202ζð7Þ

21
−
12182π2ζð5Þ

7

þ 64ζð5Þ
3

−
1168ζð3Þ2

3
−
11828π4ζð3Þ

945
þ 1664π2ζð3Þ

9
þ 1376π6

135
−
12544π4

135
þ 768s6

�
ϵ2 þOðϵ3Þ; ð8Þ

where ζðnÞ is Riemann’s zeta function evaluated at n and

l2 ¼ logð2Þ;

αn ¼ Linð1=2Þ þ
ð− log 2Þn

n!
;

s6 ¼ ζð−5;−1Þ þ ζð6Þ;
s7a ¼ ζð−5; 1; 1Þ þ ζð−6; 1Þ þ ζð−5; 2Þ þ ζð−7Þ;
s7b ¼ ζð7Þ þ ζð5; 2Þ þ ζð−6;−1Þ þ ζð5;−1;−1Þ: ð9Þ

ζðm1;…; mkÞ are multiple zeta values given by

ζðm1;…; mkÞ ¼
X∞
i1¼1

Xi1−1
i2¼1

…
Xik−1−1
ik¼1

Yk
j¼1

sgnðmjÞij
i
jmjj
j

: ð10Þ

In order to apply the DRA method to I11, one has to take
into account that the dimensional recurrence relation for I11
contains now two nontrivial integrals denoted in Ref. [40] by
I9 and I10. So, in a first step, one has to apply the DRA

method to these two integrals. Fortunately, they can be
calculated along the same lines as I14 and I15 fromwhich they
differ only by the �i0 prescription in one of the linear
denominators. In particular, the summing factor has the same
form as in Ref. [40] [see Eq. (4.14) of that paper]. Plugging
the results for I9 and I10 in the dimensional recurrence
relation for I11 and applying the DRA method, we obtain2

1See Fig. 1(b) for a graphical definition and Eq. (4.1) of
Ref. [40] for normalization factors.

2See Fig. 1(a) for a graphical definition and Eq. (4.1) of
Ref. [40] for normalization factors.
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I11 ¼
64π4

135ϵ
þ
�
128π4

135
þ 32π2ζð3Þ

9
−
8ζð5Þ
3

�
þ
�
16π4l2 þ

968ζð5Þ
3

þ 136ζð3Þ2
3

−
800π2ζð3Þ

9
þ 548π6

2835
−
2048π4

135

�
ϵ

þ
�
6144s6l2

7
−
6144s7a

7
þ 15360s7b

7
þ 1536α4ζð3Þ − 2048π2α5 þ 512π2α4 −

64

9
π4l32 − 2976ζð5Þl22

− 64π2ζð3Þl22 þ
80

3
π4l22 −

7680ζð3Þ2l2
7

−
208π6l2
315

− 128π4l2 þ
306202ζð7Þ

21
þ 1482π2ζð5Þ

7
þ 64ζð5Þ

3

−
1168ζð3Þ2

3
−
70208π4ζð3Þ

945
−
3328π2ζð3Þ

9
−
1504π6

135
þ 14336π4

135
þ 768s6

�
ϵ2 þOðϵ3Þ: ð11Þ

Note that theOðϵ2Þ terms of I16 and I11 in Eqs. (8) and (11) are not needed for a
½c�
3 . We nevertheless provide these results to

demonstrate the powerfulness of the DRA method.
In principle, the DRA method is also applicable to the calculation of I18. However, the difficulties related to the slow

convergence of certain matrix sums and the corresponding precision loss appear to be overwhelming. For this reason, the
method of differential equations has been applied to I18; see Ref. [11].

III. SINGLET POTENTIAL

In this section, we present analytic expressions for a½1�3 . One- and two-loop results using the same notation can be found in
Ref. [15]. Analytic results for the coefficients of n3l and n

2
l have already been presented in Ref. [8]. Here, they are repeated

for completeness:

a½1�;ð3Þ3 ¼ −
�
20

9

�
3

T3
F;

a½1�;ð2Þ3 ¼
�
12541

243
þ 368ζð3Þ

3
þ 64π4

135

�
CAT2

F þ
�
14002

81
−
416ζð3Þ

3

�
CFT2

F: ð12Þ

Let us now turn to the n1l and n0l term. Expressed in terms of the eigenvalues of the Casimir operators and higher-order
group invariants dabcdF and dabcdA (see, e.g., Ref. [45]), we obtain for the linear-nl term the analytic result

a½1�;ð1Þ3 ¼ dabcdF dabcdF

NA

�
π2
�
1264

9
−
976ζð3Þ

3
þ l2ð64þ 672ζð3ÞÞ

�
þ π4

�
−
184

3
þ 32l2

3
− 32l22

�
þ 10π6

3

�

þ TF

�
C2
F

�
286

9
þ 296ζð3Þ

3
− 160ζð5Þ

�
þ CACF

�
−
71281

162
þ 264ζð3Þ þ 80ζð5Þ

�

þ C2
A

�
−
58747

486
þ π2

�
17

27
− 32α4 þ l2

�
−
4

3
− 14ζð3Þ

�
−
19ζð3Þ

3

�
− 356ζð3Þ

þ π4
�
−
157

54
−
5l2
9

þ l22

�
þ 1091ζð5Þ

6
þ 57ðζð3ÞÞ2

2
þ 761π6

2520
− 48s6

��
; ð13Þ

and the gluonic part is given by

a½1�;ð0Þ3 ¼ dabcdF dabcdA

NA

�
π2
�
7432

9
− 4736α4 þ l2

�
14752

3
− 3472ζð3Þ

�
−
6616ζð3Þ

3

�

þ π4
�
−156þ 560l2

3
þ 496l22

3

�
þ 1511π6

45

�
þC3

A

�
385645

2916
þ π2

�
−
953

54
þ 584α4

3
þ 175ζð3Þ

2

þ l2

�
−
922

9
þ 217ζð3Þ

3

��
þ 584ζð3Þ

3
þ π4

�
1349

270
−
20l2
9

−
40l22
9

�
−
1927ζð5Þ

6
−
143ðζð3ÞÞ2

2
−
4621π6

3024
þ 144s6

�
:

ð14Þ

The numerical evaluation of the analytic results is in full agreement (including all digits) with Refs, [8–10].
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It is interesting to note that the contributions proportional to dabcdF dabcdF and dabcdF dabcdA only involve π2, π4, and π6 terms.
Note that these color structures appear for the first time at three-loop order. On the other hand, the other color structures
basically involve all constants one expects up to transcendentality weight 6. Note, however, that the constant s6 is only
present in the most non-Abelian parts, i.e., TFC2

A and C3
A. Let us also mention that log(2) terms are present to first, second,

and fourth powers, but there are no cubic terms.
In a next step, we specify to SUðNcÞ and replace the color factors by

CA ¼ Nc; CF ¼ N2
c − 1

2Nc
; TF ¼ 1

2
; NA ¼ N2

c − 1;

dabcdF dabcdF

NA
¼ 18 − 6N2

c þ N4
c

96N2
c

;
dabcdF dabcdA

NA
¼ NcðN2

c þ 6Þ
48

: ð15Þ

This leads to

a½1�;ð1Þ3 ¼ 66133

648
þ π2

�
−
79

9
þ l2ð−4 − 42ζð3ÞÞ þ 61ζð3Þ

3

�
−
272ζð3Þ

3
þ π4

�
23

6
−
2l2
3

þ 2l22

�
þ 20ζð5Þ − 5π6

24

þ 1

N2
c

�
143

36
þ π2

�
79

3
− 61ζð3Þ þ l2ð12þ 126ζð3ÞÞ

�
þ 37ζð3Þ

3
þ π4

�
−
23

2
þ 2l2 − 6l22

�
− 20ζð5Þ þ 5π6

8

�

þ N2
c

�
−
323615

1944
þ π2

�
16

9
− 16α4 −

59ζð3Þ
9

�
−
299ζð3Þ

3
þ π4

�
−
113

54
−
l2
6
þ l22

6

�

þ 1091ζð5Þ
12

þ 57ðζð3ÞÞ2
4

þ 13π6

70
− 24s6

�
;

a½1�;ð0Þ3 ¼ Nc

�
π2
�
929

9
− 592α4 þ l2

�
1844

3
− 434ζð3Þ

�
−
827ζð3Þ

3

�
þ π4

�
−
39

2
þ 70l2

3
þ 62l22

3

�
þ 1511π6

360

�

þ N3
c

�
385645

2916
þ π2

�
−
4

9
þ 96α4 þ

374ζð3Þ
9

�
þ 584ζð3Þ

3
þ π4

�
943

540
þ 5l2

3
− l22

�

−
1927ζð5Þ

6
−
143ðζð3ÞÞ2

2
−
29π6

35
þ 144s6

�
: ð16Þ

Finally, for Nc ¼ 3, we have

a½1�;ð1Þ3 ¼ −
452213

324
þ π2

�
274

27
−
409ζð3Þ

9
− 144α4 þ l2

�
−
8

3
− 28ζð3Þ

��
−
26630ζð3Þ

27

þ π4
�
−
293

18
−
35l2
18

þ 17l22
6

�
þ 30097ζð5Þ

36
þ 1931π6

1260
þ 513ðζð3ÞÞ2

4
− 216s6; ð17Þ

a½1�;ð0Þ3 ¼ 385645

108
þ π2

�
893

3
þ 816α4 þ l2ð1844 − 1302ζð3ÞÞ þ 295ζð3Þ

�
þ 5256ζð3Þ

þ π4
�
−
227

20
þ 115l2 þ 35l22

�
−
17343ζð5Þ

2
−
1643π6

168
−
3861ðζð3ÞÞ2

2
þ 3888s6; ð18Þ

which in numerical form is given by

a½1�3 ¼ 13432.5648565 − 3289.9052968nl þ 185.9900266n2l − 1.3717421n3l : ð19Þ
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IV. OCTET POTENTIAL

In this section, we proceed similarly to the previous one and present results for δa½8�;ðiÞ3 defined in Eq. (3). We discuss the

results in terms of CA, CF, etc., in Appendix A and present in this section expressions in terms of Nc. We have δa½8�;ðiÞ3 ¼ 0

for i ¼ 2 and i ¼ 3, and for the linear-nl and nl-independent terms, we get

δa½8�;ð1Þ3 ¼ π2
�
−
11

3
− 31ζð3Þ þ l2ð4þ 42ζð3ÞÞ

�
þ π4

�
−
7

6
þ 2l2

3
− 2l22

�
þ 5π6

24

þ N2
c

�
π2
�
8

9
þ 48α4 þ 25ζð3Þ

�
þ π4

�
2

3
þ 2l2

3

�
−
13π6

20

�
;

δa½8�;ð0Þ3 ¼ N3
c

�
π2
�
139

9
þ 304α4 þ 15ζð3Þ þ l2

�
−
1844

3
þ 434ζð3Þ

��

þ π4
�
295

6
− 30l2 −

62l22
3

�
−
1187π6

360

�
; ð20Þ

which for Nc ¼ 3 leads to

δa½8�;ð1Þ3 ¼ −
677π6

120
þ π4

�
29

6
þ 20l2

3
− 2l22

�
þ π2

�
13

3
þ 432α4 þ 194ζð3Þ þ l2 ð4þ 42ζð3ÞÞ

�
;

δa½8�;ð0Þ3 ¼ π2 ½417þ 8208α4 þ 405ζð3Þ þ l2 ð−16596þ 11718ζð3ÞÞ� þ π4
�
2655

2
− 810l2 − 558l22

�
−
3561π6

40
: ð21Þ

It is interesting to note that δa½8�;ð0Þ3 and δa½8�;ð1Þ3 have an
overall factor π2 which was predicted in Ref. [15] on the
basis of the involved master integrals. Although they could
not be computed analytically, it was possible to show that
there is an overall factor π2, a feature which is also observed
at two-loop order in QCD [13,14] and in N ¼ 4 super-
symmetric Yang-Mills theories [46].
In numerical form, we obtain for the complete three-loop

coefficient

δa½8�3 ¼ −2634.7351731þ 367.9626044nl: ð22Þ

V. CONCLUSIONS

The interaction of a slowly moving heavy quark-
antiquark pair can be described with the help of a static
potential, a concept which is familiar from ordinary
quantum mechanics. Its perturbative part is obtained from
the exchange of soft gluons which are conveniently
considered in the framework of nonrelativistic QCD.
Numerical results for the three-loop potential, which have
entered a number of physical observables, were obtained
eight years ago by two independent groups [8–10]. The
obtained precision has been sufficient for all physical

applications where a3 entered as a building block.
However, from the aesthetic point of view, it is important
to obtain analytic results for higher-order quantum correc-
tions. This has been achieved in this paper. We have
obtained analytic results for the three-loop corrections to
the singlet and octet potentials which are presented in
Secs. III and IV, respectively.
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APPENDIX: δa½8�2 AND δa½8�3 IN TERMS
OF COLOR INVARIANTS

In this Appendix, we present results for δa½8�;ð1Þ3 and

δa½8�;ð0Þ3 in terms of CA, CF, TF, NA, dabcdF , and dabcdA . Let us
mention that the representation given in Eq. (1) is only valid
for SUðNcÞ. Thus, in the following, we present results for

C½8�δa½8�;ðiÞ3 (i ¼ 0, 1) with C½8� ¼ CF − CA=2. For com-
pleteness, we also present the two-loop expression; at one-

loop order, we have δa½8�1 ¼ 0. Our results read
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C½8�δa½8�2 ¼
�
π4

12
− π2

��
C3
A − 48

dabcdF dabcdA

NA

�
;

C½8�δa½8�;ð1Þ3 ¼ CA
dabcdF dabcdF

NA

�
π2
�
88

9
−
32l2
3

þ 248ζð3Þ
3

− 112ζð3Þl2
�
þ π4

�
28

9
−
16l2
9

þ 16l22
3

�
−
5π6

9

�

þ dabcdF dabcdA

NA

�
π2
�
4

3
− 192α4 −

16l2
3

−
176ζð3Þ

3
− 56l2ζð3Þ

�
þ π4

�
−
10

9
−
32l2
9

þ 8l22
3

�
þ 209π6

90

�

þ C3
ATF

�
π2
�
−

7

27
þ 8α4 þ

4l2
9

þ 13ζð3Þ
18

þ 14l2ζð3Þ
3

�
þ π4

�
−

1

54
þ 5l2

27
−
2l22
9

�
−
23π6

270

�
;

C½8�δa½8�;ð0Þ3 ¼ CA
dabcdF dabcdA

NA

�
π2
�
−
2356

9
þ 3520α4 −

7376l2
3

þ 1420ζð3Þ þ 1736ζð3Þl2
�
þ π4

�
66 −

200l2
3

−
248l22
3

�

−
511π6

18

�
þ dabcdA dabcdA

NA

�
π2
�
50

3
−
1184α4

3
þ 3688l2

9
−
370ζð3Þ

3
−
868l2ζð3Þ

3

�

þ π4
�
−
197

9
þ 140l2

9
þ 124l22

9

�
þ 1871π6

540

�
þ C4

A

�
π2
�
257

54
−
512α4
9

þ 922l2
27

−
220ζð3Þ

9

−
217l2ζð3Þ

9

�
þ π4

�
−
25

54
þ 20l2

27
þ 31l22

27

�
þ 2897π6

6480

�
; ðA1Þ

with

dabcdA dabcdA

NA
¼ N2

cðN2
c þ 36Þ
24

: ðA2Þ

Numerical results of Eq. (A1) are given in Ref. [47]. All color factors have been computed with the help of the program
color [45].
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