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Analytic three-loop static potential
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We present analytic results for the three-loop static potential of two heavy quarks. The analytic
calculation of the missing ingredients is outlined, and results for the singlet and octet potential are

provided.
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I. INTRODUCTION

The static potential between two heavy quarks belongs to
the fundamental quantities of QCD. In lowest order, it is
described by the Coulomb potential adapted to QCD. Such
an approach was already used more than 40 years ago [1] to
describe the bound state of heavy quarks. Shortly after-
ward, the one-loop corrections were computed [2,3], and
the two-loop terms were added toward the end of the 1990s
[4-6]. Light quark mass effects at two loops can be found in
Ref. [7]. About eight years ago, the three-loop corrections
were computed by two groups in Refs. [8—10]. However, in
contrast to the lower-order expressions, the three-loop
results could only be presented in numerical form. In fact,
in Refs. [8,9], three coefficients in the expansion of the
master integrals around d = 4, where d is the space-time
dimension, could only be evaluated numerically (see also
below). The evaluation of one of them is described in detail
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in Ref. [11] (in a broader context), and the remaining two
coefficients are considered in Sec. II of this paper. We are
thus in the position to present analytic results at three loops.
The corresponding expressions can be found in Sec. IIL.

A generalization of the three-loop singlet potential has
been considered in Ref. [12]. It is still assumed that the
heavy color sources form a singlet state; however, the color
representation is kept general.

The new results can also be used to present analytic
expressions for the so-called octet potential which
describes the situation where the quark and antiquark do
not form a color-singlet but a color-octet state. Two- and
(numerical) three-loop results have been obtained in
Refs. [13,14], and [15], respectively. Analytic results for
the octet potential are presented in Sec. IV.

In order to fix the notation, we write the momentum
space potential in the form
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with Cl!l = Cy. for the color-singlet and C®®) = C. — C,/2
for the color-octet case. Here, C, =N, and Cp =
(N2—1)/(2N,) are the eigenvalues of the quadratic
Casimir operators of the adjoint and fundamental repre-
sentations of the SU(N,) color gauge group, respectively.
The strong coupling a; is defined in the MS scheme, and
for the renormalization scale, we choose u = |¢| in order to
suppress the corresponding logarithms. The general results,
both in momentum and coordinate space, can, e.g., be
found in Appendix A of Ref. [15].

The logarithmic term in Eq. (1) has its origin in an
infrared divergence which is present for the first time at
three loops as has been pointed out in Ref. [16]. The
corresponding pole has been subtracted minimally. Its
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presence can be understood in the context of methods of
regions and potential nonrelativistic QCD [17-21] where
Vel appears as a matching coefficient. Thus, the infrared
divergence cancels against ultraviolet divergences of the
ultrasoft contributions. The latter have been studied in
Refs. [20,22,23]. For the resummation of leading and next-
to-leading ultrasoft logarithms, we refer to Refs. [24-26].

The three-loop coefficient a; only has a moderate
numerical value (see, e.g., the discussion in Ref. [9])
and has thus only a relatively small influence on phenom-
enological quantities. This is in contrast to the two-loop
coefficient which is of the same order of magnitude as a;.
However, since the static potential is a matching coeffi-
cient, it is hence not a physical quantity. In fact, a; is
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scheme dependent, and only the combination with all other
building blocks leads to meaningful quantities.

For later convenience, we decompose the three-loop
corrections according to the number of closed fermion
loops

] _ [.3) 3

alf = 4 .2 (1)

n} 4+ dMPn2 4 &y, +a%0 (2
where n; is the number of light (massless) quarks. We
furthermore consider the difference between the singlet

and octet contributions and write (i = 0, 1, 2, 3)
a[38]»(i) _ []() —|—5a“ ) (3)
In Sec. IV, we provide analytical results for 5(1[38]’(1).

The three-loop coefficient of the color-singlet potential,
a[;], has entered a number of physical applications as a
building block (see also Ref. [27] for a recent review on
applications of nonrelativistic QCD to high-energy proc-
esses). To name a few of them, we want to mention
the next-to-next-to-next-to-leading-order corrections to
the leptonic decay width of the Y(1S) meson [28]
and the top quark threshold production in electron
positron colliders [29]. Furthermore, a; has entered analy-
ses to determine precise values for the charm and
bottom quark masses [30-33] and the strong coupling
constant [34].

II. CALCULATION OF I, AND I,
1]

The calculation of a;" as performed in Ref. [9] requires
the evaluation of 41 master integrals which can be sub-
divided into three different classes. There are ten integrals
which do not have any static line [i.e., a propagator of the
form 1/(—kqy £ i0), see also Fig. 1]. They are known since
long. Furthermore, we have 14 integrals with a massless
one-loop insertion. They can easily be integrated in terms
of I functions using standard techniques. The correspond-
ing results have been presented in Ref. [35]. Results for 16
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more complicated integrals can be found in Ref. [36] as
expansions in € = (4 — d)/2 to the necessary order except
for two integrals [/, and /¢ of Ref. [36]; see also Figs. 1(a)

and 1(b)]. Their O(e) terms enter a[;]; however, they were
only known numerically. The evaluation of these coeffi-
cients will be described in the remainder of this section. For
completeness, we want to mention that the third numerical
ingredient required in Ref. [9] comes from the finite
diagram in Fig. 1(c) (the 41st master integral) which has
been computed in a parallel article [11].

Let us also mention that techniques which have been
used to compute master integrals in Ref. [10] can be found
in Ref. [37]; see also Ref. [38] for a status report of the
approach used in Ref. [10].

The method which is used to compute 7;; and /4 is
based on the dimensional recurrence relation and analy-
ticity with respect to space-time dimensionality d (the so-
called “DRA method”) and was developed in Ref. [39]. In
Ref. [40], this method was applied for the first time to the
case with more than one master integral in a sector. Some
integrals taken from families of integrals for the three-loop
static quark potential and denoted in Ref. [40] by /4 and
15 [see Fig. 1(d)] have been calculated. Note that 7,4, and
1,5 are the only nontrivial integrals entering the right-hand
side of the dimensional recurrence relation for 7.
Therefore, in principle, the results of Ref. [40] make the
calculation of /¢ straightforward.

However, the numerical issues related to the calculation
of contributions to the inhomogeneous terms proportional
to 1,4 and I;5 in the right-hand side of dimensional
recurrence relations for /;4 are quite involved. The most
complicated part of this contribution has the form

f;vark Z(HMZH—I) (v+n)., (4)

where v = d/2 and v” (x), M(x), and u(x) are a row vector,
a 2 x 2 matrix, and a column vector, respectively. Their
components are rational functions of the variable x. In order

(¢) Ins (d) I1a

(a)—(c): Master integrals entering a;° which were only known numerically. Solid lines denote relativistic scalar propagators,

and wavy lines refer to static propagators. For the latter, the causality prescription is given explicitly where +i0 indicates a propagator of
the form 1/(—kq = i0) with kq being the zeroth component of the momentum flowing through the corresponding line. The square in /g
indicates a convenient choice for the numerator which is specified in Ref. [11]. I4 is finite, and only the O(¢°) term is needed. For I,

and /¢, also the O(e') terms enter agl (d): Master integral which is needed for the computation of the integrals in (b) and (c). The
integral /;5 belongs to the same integral family as /;, but has an additional dot on the lower line.
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to calculate the sums in Eq. (4) without nested loops, we
apply the standard trick of the DRA method; see Ref. [41].
Namely, let us denote

[]s

F(k) =) P(k,n)u(v+n), (5)

Il
~

n

where P(k, n) = [}, M(v + [). Then,

=> W+ kF (6)
k=0

Using Eq. (5), the function F (k) can be calculated for given
k in one loop if one takes into account the recurrence
relation P(k,n+ 1) =P(k,n) M(v +n+1). Now, we
note that F(k) satisfies the recurrence relation

Fk+1)=M"1(v+k)F(k) —u(v+k). (7)

Therefore, in order to calculate consecutive terms of the
sum in Eq. (6), we need to use Eq. (5) only once and then
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use the recurrence relation (7). However, the price we have
to pay is much higher than for scalar sums. This is
connected with the multiplication by the inverse matrix
M~!(v + k). For x — oo, the elements of M(x) are of order
unity, while its determinant tends to 1/1024. Due to this
fact, the multiplication by M~! involves large cancellations
which result in rapid precision loss. For example, using a
precision of 7000 digits in the initial expression, we obtain
only about 370 digits in the final result.

Besides, it appears that the sum over 7 in the definition of
F (k) converges very slowly, with the summand behaving as
n~* (a¢ > 1) at large n. So, in order to obtain the high-
precision numerical result suitable for using PSLQ [42],
one has to apply the matrix analog of the convergence
acceleration algorithm described in Ref. [43]. In particular,
one needs to know the exponent « of the powerlike decay.
This appears to be possible thanks to Ref. [44], where a
method for finding the asymptotic behavior of the solutions
of recurrence relations was developed. Once we dealt with
these numerical issues, we obtained the result’

/ 567 1127*  1672°¢(3)  8¢(5) n 968¢(5) 16290 + 136£(3)>  4007%¢(3) 838z% 1792x*
= - —_— —_— — ﬂ —_
7 135e \ 135 9 3 3 : 3 9 2835 135
6144541, 6144 15360 64
n < 756 2 - $7a - S7p + 153604 (3) + 10247 s — 2567 ay — ?ﬂ“lg
112 7680¢(3)%1, 54471, 306202¢4(7)  121827%¢(5)
—2976£(5)13 — 647°¢(3)15 — B - - 128741 -
¢(5) 7{(3)15 - 3 7 315 + 128771, + 3 7
64¢(5) 1168£(3)*  118282%¢(3)  16647%((3) 13767% 125447
- - - 768 2+ 0(e), 8
T3 3 o5 9 13 135 7685 Je + 0(€) ®)
where ¢(n) is Riemann’s zeta function evaluated at n and
I, = log(2),
—log2)"
a, = Li,(1/2) +w,
n!
s6 = {(=5.-1) +£(6),
$7a = é’(_s’ 1’ 1) =+ é’(_6’ 1) + C(_S’Q’) + Z.:(_7)v
s =8(7) +(5.2) +(=6,-1) + £(5. -1, -1). 9)

¢(my, ...,my) are multiple zeta values given by
oo i1—1 o=l k
sgn(m
comom) = S5 ST o
=1 j=I

i1=11i=1 Jj=

In order to apply the DRA method to 7, one has to take
into account that the dimensional recurrence relation for 7
contains now two nontrivial integrals denoted in Ref. [40] by
Ig and I;,. So, in a first step, one has to apply the DRA

'See Fig. 1(b) for a graphical definition and Eq. (4.1) of
Ref. [40] for normalization factors.

|
method to these two integrals. Fortunately, they can be
calculated along the same lines as /4 and /|5 from which they
differ only by the £i0 prescription in one of the linear
denominators. In particular, the summing factor has the same
form as in Ref. [40] [see Eq. (4.14) of that paper]. Plugging
the results for Iy and 7, in the dimensional recurrence
relation for /;; and applying the DRA method, we obtain’

See Fig. 1(a) for a graphical definition and Eq. (4.1) of
Ref. [40] for normalization factors.
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64zt [128z% 322%(3) 8L(5) 968L(5)  136£(3)  80072((3) 548z 20487z*

I = - 1671 - -

! 135€+<135 T 3 >+< Fht Tty 9 2835 135 >

61445‘6[2 6144S7a 15360S7b
+( 7 7 7

64
+ 1536a,¢(3) — 20487%as + 5127%a, — 37[413 —2976¢(5)13

80 76808(3)%, 208z°1 3062024 (7 14827%¢(5 64¢£(5
— 647 (3)B + 5 7 COPhL _2082°L sy o {(7) | 14822%(5) | 64¢(5)

7 315 21 7 3
11 2 7000874 2872 15047° 14 4
_HI68E(3)  702087°C(3) 33282°((3) 1504z°  14336x +768s6>52+0(63). (11)

3 945 9 135 135

Note that the (’)(62) terms of /4 and /; in Egs. (8) and (11) are not needed for a[;]. We nevertheless provide these results to
demonstrate the powerfulness of the DRA method.

In principle, the DRA method is also applicable to the calculation of I,5. However, the difficulties related to the slow

convergence of certain matrix sums and the corresponding precision loss appear to be overwhelming. For this reason, the
method of differential equations has been applied to /;g; see Ref. [11].

III. SINGLET POTENTIAL

In this section, we present analytic expressions for a[;] One and two-loop results using the same notation can be found in
Ref. [15]. Analytic results for the coefficients of n? 7 and n? have already been presented in Ref. [8]. Here, they are repeated

for completeness
1.3 203
a[g] (3 _ ( T3 ,

12541 Az 14002 41
1. _ ( 541 | 368((3) 64 )CATZ +( 00 6C(3)>CFT%’

— 12
% 3 T3 T3s 81 3 (12)

Let us now turn to the n} and n? term. Expressed in terms of the eigenvalues of the Casimir operators and higher-order
group invariants d%°¢ and d4b°? (see, e.g., Ref. [45]), we obtain for the linear-n; term the analytic result

abced jabed 6
iy _ dgldel [ (1264 9760(3) J(_184 32 0N 10r
=75 = 720(3 ~ 328
- {n(g 04 s+ 6723 ) + (- ot 4 222 e
286 296(( 71281
+TF{C2< 5+ g ) 160¢(5 >+CACF(——162 +264¢(3 )+80§(5)>
58747 17 4 19£(3)
22070 L3 C_14c(3) ) - =) -
157 sl 1091£(5 (3))>  761a°
4 2 2
—=x g ! — 4856 ¢+ 13
+”< 54 9+2)+ 6 )2 2 T 3550 T ¥ (13)

and the gluonic part is given by

(abed gabed 7432 14752 6616£(3
A e {nz[ 5 —4736a4+12( 3 —347243(3))—A]

N, 3
5601, 49612\ 1511x5 385645 953 584a, 175((3)
4( 2 2 3 2 4
+”< R N AT 2016 7| 54 3 2
922 217¢(3) 584¢(3) 1349 200, 408\ 1927£(5) 143(¢(3))? 46212
L(-== 4 -2 - - - 144
* 2( 9 T3 L T 2T I 6 2 3004 T4

(14)

The numerical evaluation of the analytic results is in full agreement (including all digits) with Refs, [8§—10].
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It is interesting to note that the contributions proportional to d47°¢d4%<d and d*?d3>® only involve 2, z*, and 7° terms.
Note that these color structures appear for the first time at three-loop order. On the other hand, the other color structures
basically involve all constants one expects up to transcendentality weight 6. Note, however, that the constant s¢ is only
present in the most non-Abelian parts, i.e., TzC% and C3. Let us also mention that log(2) terms are present to first, second,

and fourth powers, but there are no cubic terms.
In a next step, we specify to SU(N,) and replace the color factors by

Cy,=N CF:N%_1 Tle Ny=N2-1
< 2N, 2’ © v
d‘}dedanCd B 18 — 6N% + N? dabcddabcd N (N2 + 6)
Ny, 96N2 ’ N, 48

This leads to

oy _ 66133 -,/ 79 3 61£(3)\ 272{(3)  ,(23 2, 5 _Si
ay" =gt 9+12( —4 —427(3)) + 3 R + 215 | +204(5)

+]$2{M3+ [79—61g( )+l2(12+126§(3))] +37§(3)+7r4< 223+212—612) —204(5)+5%

36
B () B (105
. 109115(5) . 57({53))2 . 1336 ~ 24%}’
a"% = Nc{zﬂ [% — 5920, + 1 (18344 ) - 8275 G) ] + (— % + 7212 + 6231%> + 1531610”6}
N} {323%5 + 7’ <—g + 96a, + 3745(3)> + 5845(3) + <% + 5;2 12>
~ 192764(5) _ 143(3(3))2 ~ 2226 . 144%}'
Finally, for N. = 3, we have
allt — _ 453222413 e {% - % — 14day + I <—§ - 28((3))} - 7266335(3)
(T2 ) T B0t SOy,
a0 = % 7 [823 + 816ay + 1,(1844 — 1302¢(3)) + 295¢(3 } +5256¢(3)
+ 7 (—% 1150 + 3515) - 1734234(5> - 1614638” 3861(25( )’ 4 38885,

which in numerical form is given by

ail = 134325648565 — 3289.9052968n, + 185.9900266n7 — 1.3717421n3.
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IV. OCTET POTENTIAL

In this section, we proceed similarly to the previous one and present results for 5ag8]'(i) defined in Eq. (3). We discuss the

results in terms of C,, Cp, etc., in Appendix A and present in this section expressions in terms of N.. We have da;

8.0) _ o

for i =2 and i = 3, and for the linear-n; and n;-independent terms, we get

5aS ) —

+ N? {;:2 @ + 48a, + 255(3))

e -3+ bz o (-1 2 o) 3

139 1844
sai% = Ng{;ﬁ {T +304ay + 150(3) + (_T +434¢(3 ))}

6 3

95 6212
(20, - 2)

which for N, = 3 leads to

8],(1)
as ) ===

6771° 29 200,
=2 _9p
(6 + 3 2)

8a0 = 72417 + 8208, + 405¢(3) + 1> (—16596 + 11718(3))] +

It is interesting to note that 5ag8]'(0) and 5ag8]’(1) have an
overall factor 72 which was predicted in Ref. [15] on the
basis of the involved master integrals. Although they could
not be computed analytically, it was possible to show that
there is an overall factor 72, a feature which is also observed
at two-loop order in QCD [13,14] and in NV = 4 super-
symmetric Yang-Mills theories [46].

In numerical form, we obtain for the complete three-loop
coefficient

sal = 26347351731 + 367.9626044n,.  (22)

V. CONCLUSIONS

The interaction of a slowly moving heavy quark-
antiquark pair can be described with the help of a static
potential, a concept which is familiar from ordinary
quantum mechanics. Its perturbative part is obtained from
the exchange of soft gluons which are conveniently
considered in the framework of nonrelativistic QCD.
Numerical results for the three-loop potential, which have
entered a number of physical observables, were obtained
eight years ago by two independent groups [8—10]. The
obtained precision has been sufficient for all physical

7 2[2 Sﬂ'
6" 3 24
2 2L\ 1348
a2 2k 1Bz
T (3+ 3 > 20 ]
1187x°
360 } (20)

42 [13_3 +432a, + 194£(3) + 1, (4 + 42((3))] :

35617
55813)— o @D

655
+ (T - 81012

applications where a3 entered as a building block.
However, from the aesthetic point of view, it is important
to obtain analytic results for higher-order quantum correc-
tions. This has been achieved in this paper. We have
obtained analytic results for the three-loop corrections to
the singlet and octet potentials which are presented in
Secs. III and 1V, respectively.
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APPENDIX: 64} AND 64 IN TERMS
OF COLOR INVARIANTS

In this Appendix, we present results for 5a[8]( ) and

[38] 9 in terms of Cy, Cp, Tp, Ny, dPd, and d4P?. Let us
mention that the representation given in Eq. (1) is only valid
for SU(N ). Thus, in the following, we present results for
s (i =0, 1) with CB = C, - C,/2. For com-
pleteness we also present the two-loop expression; at one-

8]

loop order, we have da;" = 0. Our results read
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4 dabcddabcd
CBsal = (’1”2 - n2> (cj 48— )
A
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debedgabed [ /88 32, 248¢(3) 28 16L, 1612\ 5a°
CBs8) — o, 4F 9F 1200 2 —112¢(3)1 af£0_ 1P DB 2%
% AN, |"\97 3 3 O e e R 9
dgbedgabed [ /4 161, 176£(3) 10 320, 8B\ 209z
TG 12 (2 192g, — 2 2P 561 (3 L e R
N T T3 3 E ) e i R BT
7 4, 13¢(3)  145,L(3) 15, 2B\ 2318
CTp |72 (== + 8ay + -2 d(o 22 ) =T
e F[”( T IT: 3 )T\ T2 79 ) a0

dgbed gobed 2356 73761
CBlsay) = ¢, A [752 (——9 + 35200y —

Na

+1420¢(3) + 17364,“(3)12) + (66 -

200, 24853
3 3

36881, 370£(3)  868L,¢(3)

US| dgeldged [ (50 1184a
13 N, 3 3
(197, 1400, 1243
"9 9 9 540

18717 257 512
+ ”]+Cj[n2( 2

9 3 3 >

257 9221, 220(3)
549 27 9

289770

27LL(3)\ [ 25 20, 318
T 9 TP\t T ) T

with

6480 } (A1)

dspeddsd _ N2(N? +36)

Ny

24 (A2)

Numerical results of Eq. (A1) are given in Ref. [47]. All color factors have been computed with the help of the program

color [45].
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