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The pentaquark Pþ
c ð4450Þ recently discovered by the LHCb has been interpreted as a bound state of

Ψð2SÞ and a nucleon. The charmonium-nucleon interaction which provides the binding mechanism is
given, in the heavy-quark limit, in terms of charmonium chromoelectric polarizabilities and densities of the
nucleon energy-momentum tensor. In this work, we show in a model-independent way, by exploring
general properties of the effective interaction, that Ψð2SÞ can form bound states with a nucleon and Δ.
Using the Skyrme model to evaluate the effective interaction in the large-Nc limit and estimate 1=Nc

corrections, we confirm the results from prior work which were based on a different effective model (chiral
quark soliton model). This shows that the interpretation of Pþ

c ð4450Þ is remarkably robust and weakly
dependent on the details of the effective theories for the nucleon energy-momentum tensor. We explore the
formalism further and present robust predictions of isospin-3

2
bound states of Ψð2SÞ and Δ with masses

around 4.5 GeVand widths around 70 MeV. The approach also predicts broader resonances in theΨð2SÞ-Δ
channel at 4.9 GeV with widths of the order of 150 MeV. We discuss in which reactions these new isospin-3

2

pentaquarks with hidden charm can be observed.

DOI: 10.1103/PhysRevD.94.054024

I. INTRODUCTION

The LHCb Collaboration has recently discovered new
pentaquark states by studying the decays of Λ0

b → J=ΨpK−

[1]. This decay channel is dominated by the weak decay
Λ0
b → J=ΨΛ� with subsequent strong decays Λ� → pK−.

However, the J=Ψp spectrum contains structures which
can be interpreted as exotic pentaquark “Pþ

c ” ðcc̄uudÞ
resonances. In about ð8.4� 0.7� 4.2Þ% of the cases, a
broad resonance Pþ

c ð4380Þ is formed, and in about ð4.1�
0.5� 1.1Þ% of the cases, a narrow resonance Pþ

c ð4450Þ is
formed. Their properties are summarized in Table I. The
analysis of Ref. [1] is supported by the LHCb study [2]
where it was shown in a model-independent way that K−p
resonant or nonresonant contributions alone cannot explain
the structures seen in the Λ0

b → J=ΨpK− decays. The recent
LHCb analysis of the Λ0

b → J=ψpπ− decays provides
further support for the existence of the new pentaquark
states [3].
The new states have been interpreted in a variety of

theoretical approaches. For instance, it was considered that
they are loosely bound (“molecular”) charmed baryon-
meson states [4] and bound states of light and heavy
diquarks including c-quarks [5], and even the possibility of
open-color bound states was considered [6]. Also, the
possibility was discussed that the observed structures could
arise from threshold cusp effects [7].

In this work, we will use the formalism developed in
Ref. [8] where the narrow Pþ

c ð4450Þ state was interpreted
as a nucleon-ψð2SÞ s-wave bound state with JP ¼ 3

2
−. In

this approach, the binding mechanism is provided by the
effective charmonium-nucleon interaction, which is given
by the product of the charmonium chromoelectric polar-
izability and the nucleon energy-momentum tensor (EMT)
densities. In Ref. [8], also a JP ¼ 1

2
− state was predicted

with nearly the same mass as Pþ
c ð4450Þ (modulo hyperfine

splitting due to quarkonium-nucleon spin-spin interaction
which are suppressed in the heavy-quark mass limit by
1=mQ). The broader resonance Pcð4380Þ does not appear
as a nucleon-ψð2SÞ bound state in Ref. [8]. Notice that no
nucleon-J=Ψ bound states exist in this formalism as the
effective interaction is too weak in this channel.
The purpose of our study is to confirm the findings of

Ref. [8] and to investigate whether the formalism predicts

TABLE I. Summary of properties of the new pentaquark states
observed at the LHCb [1].

State Mass (MeV)
Width
(MeV) Isospin

Spin-parity
JP

Pþ
c ð4380Þ 4380�8�29 205�18�86 1

2
3
2
− or 3

2
þ or 5

2
þ

Pþ
c ð4450Þ4449.8�1.7�2.5 39�5�19 1

2
5
2
þ or 5

2
− or 3

2
−

PHYSICAL REVIEW D 94, 054024 (2016)

2470-0010=2016=94(5)=054024(16) 054024-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.054024
http://dx.doi.org/10.1103/PhysRevD.94.054024
http://dx.doi.org/10.1103/PhysRevD.94.054024
http://dx.doi.org/10.1103/PhysRevD.94.054024


further bound states which could allow us to test this
approach. For that, we will first derive a model-independent
lower bound which the chromoelectric polarizability must
satisfy such that charmonium-baryon bound states can
exist. This derivation only makes use of general properties
of the effective baryon-charmonium interaction. We will
apply this bound to show in a model-independent way that
ψð2SÞ can form s-wave bound states with a nucleon and Δ.
Specific predictions require the use of a model for the

nonperturbative calculation of the EMT densities of bary-
ons. For that, in Ref. [8], results were used from the chiral
quark soliton model [9]. In this work, wewill use a different
model for EMT densities, namely, the Skyrme model [10].
This model is based on chiral symmetry and the 1=Nc
expansion like the chiral quark soliton model. But it differs
in many important respects and is therefore well suited to
provide an important cross-check. Our results in the Skyrme
model will confirm in detail the calculation of Ref. [8].
The chiral soliton model and the Skyrme model describe

baryons as chiral solitons in the limit of a large number of
colors Nc and provide different practical realizations of the
picture of baryons in the large-Nc limit of QCD [11]. In
nature, Nc ¼ 3 does not seem large, and one may wonder
whether 1=Nc corrections could affect our description of
the new pentaquark states. We will therefore use the
Skyrme model to investigate also the role of 1=Nc
corrections. For that, we will establish a procedure to
construct a conserved EMTwhen a theory cannot be solved
exactly and certain (in our case 1=Nc) corrections must be
included as a small perturbation. We will show that our
description of the hidden charm pentaquarks is remarkably
robust, also when one includes 1=Nc corrections.
Our study of the 1=Nc corrections to the EMT has

interesting byproducts. Soliton models based on the large-
Nc expansion describe baryons with spin and isospin
quantum numbers S ¼ I ¼ 1

2
; 3
2
; 5
2
;… as different rotational

states of the same soliton solution [throughout this work, we
focus on the SU(2) flavor sector]. In contrast to the quantum
numbers S ¼ I ¼ 1

2
and 3

2
, which correspond, respectively,

to the nucleon and Δ, the quantum numbers S ¼ I ≥ 5
2
are

not observed. This is considered an unsatisfactory artifact of
the (rigid rotator) soliton approach. Our study will shed new
light on this issue. We will show that 1=Nc corrections
constitute a “reasonably small perturbation” in the nucleon
case. They are more sizable for Δ, but we find that also in
this case it is possible to reconstruct a conserved EMT
which satisfies basic criteria for mechanical stability.
However, we will show that for S ¼ I ≥ 5

2
this is not

possible; here, 1=Nc corrections are simply too destabiliz-
ing. In this way, the rotating soliton approach provides an
explanation why the quantum numbers S ¼ I ≥ 5

2
are not

realized in nature. As another byproduct, wewill discuss the
EMT of the Δ and show that it has a negative D term in
agreement with theoretical studies of other particles.

The main application in this context is, however, to inves-
tigate the question of whether charmonia can bind with the Δ
resonance. Wewill show that J=Ψ does not form bound states
with Δ. But in the Δ-ψð2SÞ channel, the formalism makes
robust predictions of bound states and also predicts resonant
states, albeitwith somewhat larger theoretical uncertainties.We
will make specific predictions for the masses, widths, spins,
and parities of the new states. Finally, wewill discuss in which
reactions the new states could in principle be observed.

II. EFFECTIVE QUARKONIUM-BARYON
INTERACTION

In this section, we review the derivation of the effective
quarkonium-baryon potential and describe how it can be
expressed in terms of EMT densities.

A. Effective potential

The description of hidden-charmonium pentaquark
states of Ref. [8] explores the fact that heavy charmonium
states are small compared to the nucleon size, and their
interaction with baryons is relatively weak on the typical
scale for strong interactions. In this situation, a nonrela-
tivistic multipole expansion can be applied [12].
The multipole expansion reveals that the dominant

mechanism for the baryon-quarkonium interaction is the
emission of two virtual chromoelectric dipole gluons in a
color singlet state. The potential describing the effective
interaction is proportional to the product of the quarkonium
chromoelectric polarizability and the gluon energy-
momentum density in the nucleon [13]. The small param-
eter justifying this derivation is given by the ratio of the
quarkonium size to the effective gluon wavelength. The
resulting effective dipole Lagrangian is given by [14]

Leff ¼ −Veff ; Veff ¼ −
1

2
αE2; ð1Þ

where α denotes the chromoelectric polarizability in the
channel of interest and E is the chromoelectric gluon field,
the definition of which includes the strong coupling
constant g renormalized at the quarkonium mass scale.

B. Chromoelectric polarizabilities

The chromoelectric polarizabilities can be calculated in
the heavy-quark approximation and large-Nc limit, where
the quarkonia are described as Coulomb systems in lowest-
order approximation, with the results given by [8,15]

αð1SÞ ≈ 0.2 GeV−3ðpertÞ; ð2aÞ

αð2SÞ ≈ 12 GeV−3ðpertÞ; ð2bÞ

αð2S → 1SÞ ≈
�
−0.6 GeV−3ðpertÞ;
�2 GeV−3ðphenoÞ: ð2cÞ
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In Eq. (2c), we included also the phenomenological value
for the polarizability of the 2S → 1S transition inferred
from analyses of ψ 0 → J=ψππ data [13] (such studies only
allow extracting the modulus of the transitional polar-
izability). For αð1SÞ, the 1=Nc corrections are merely of
order of 5% [16]. But for αð2SÞ and higher polarizabilities,
the effects of 1=Nc corrections are not known, and the
comparison of the perturbative and phenomenological
results in Eq. (2c) indicates that at present the chromo-
electric polarizabilities are not well understood. Below, we
will therefore use the values quoted in Eq. (2) not at their
bare values but as guidelines.
For ψðnSÞ with n ≥ 3, the perturbative results

for polarizabilities grow rapidly with n as αðnSÞ ∝
n2ð7n2 − 3Þ [15] because the size of the system grows.
In this situation, the Coulomb approximation becomes
worse, and the usefulness of perturbative predictions for
ψð3SÞ and higher states becomes questionable.

C. Relation to EMT densities

The effective interaction in Eq. (1) can be expressed in
terms of the densities of the nucleon EMT. This can be done
exploring the conformal anomaly [17] to relate E2 in
Eq. (1) to the trace Tμ

μ of the EMT of QCD and the gluon
contribution to the energy density TG

00. The latter can be
related as TG

00 ¼ ξsT00 to the total energy density T00 of the
nucleon where the parameter ξs describes the fraction of the
nucleon energy due to gluons at the scale μs [18].
Neglecting a numerically small term due to the current
masses of light quarks, one obtains [8]

E2 ¼ g2
�
8π2

bg2s
Tμ

μ þ ξsT00

�
¼ 8π2

b
g2

g2s
ðνT00 þ Tk

kÞ;

ν ¼ 1þ ξs
bg2s
8π2

; ð3Þ

where b ¼ ð11
3
− 2

3
NfÞ is the leading coefficient of the

Gell-Mann-Low function and gs is the strong coupling
constant renormalized at the scale μs. Notice that the
relevant scale for nonperturbative calculations of the
nucleon structure μs is different from the quarkonium scale
at which the strong coupling g is renormalized. Recall that g
enters Eq. (3) through the definition of the chromoelectric
gluon field E. Therefore, in general, gs ≠ g, although for
the charmonium-nucleon potential, these two scales are
comparable.
The coefficient ν introduced in Eq. (3) was estimated on

the basis of the instanton liquid model of the QCD vacuum
and the chiral quark soliton model, where the strong
coupling constant freezes at a scale set by the nucleon
size at αs ¼ g2s=ð4πÞ ≈ 0.5. Assuming ξs ≈ 0.5 as sug-
gested by the fraction of nucleon momentum carried by
gluons in deep-inelastic scattering at scales comparable to
μs, one obtains the value [8]

ν ≈ 1.5: ð4Þ

A similar result ν ¼ ð1.45–1.6Þ was obtained for the pion
in Ref. [18]. These results are supported by the analysis
of the nucleon mass decomposition in Ref. [19] where
ξs ≈ 1

3
, leading to ν ≈ 1.4, which is within the accuracy of

Eq. (4). We will use the value (4) for the calculations in
this work.

III. SUFFICIENT CONDITION FOR EXISTENCE
OF A QUARKONIUM-BARYON BOUND STATE

In this section, we discuss, in a model-independent way,
the lower bound for the chromoelectric polarizability at
which a quarkonium-baryon bound state is formed. In
Ref. [20], the sufficient condition for the existence of an s-
wave bound state in a given attractive potential,

−
2μ

R

Z
R

0

drr2VðrÞ − 2μR
Z

∞

R
drVðrÞ > 1; ð5Þ

was derived, where R is an arbitrary distance, μ is the
reduced baryon-charmonium mass, and the attractive
potential VðrÞ is negative. We will refer to this condition
as the Calogero bound in the following.
Let us consider first the nucleon case. The effective

ψð2SÞ-nucleon potential is normalized as [8]

Z
∞

0

drr2VeffðrÞ ¼ −α
π

b
g2

g2s
νMN; ð6Þ

and also its large r asymptotics (in the chiral limit in leading
order of the large-Nc expansion) is known [8] [see also
Eq. (25) below]:

VeffðrÞ ∼ −α
27

4b
g2

g2s
ð1þ νÞ g2A

F2
πr6

: ð7Þ

Now, we can choose the parameter R in Eq. (5) large
enough such that for r > R the asymptotics (7) can be used.
This allows us to rewrite Eq. (5) as an inequality for the
chromoelectric polarizability:

α >
b
2π

g2s
g2

1

ν

R
μMN

�
1 −

9

10π

1þ ν

ν

g2A
F2
πMN

1

R3

�−1
: ð8Þ

Note that this inequality is model independent as it is based
only on general (model-independent) properties of the
effective potential (6) and (7). If we choose R ¼ 1.5 fm
[for that value, we are sure that asymptotic formula (7)
works perfectly] and take the noncommutativity of the
chiral limit and the large-Nc limit (see Appendix) into
consideration, we obtain that for α > 10.7 GeV−3 the
nucleon and ψð2SÞ must form a bound state. This value
for the lower bound does not depend on details of the
potential shape.
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The inequality (8) can be easily generalized to any other
baryon. What one needs for that is to derive the large-
distance behavior of VeffðrÞ for a given baryon.1 This can
be done with help of chiral perturbation theory.
For example, if one applies the Calogero lower bound to

the case of the Δ resonance, one obtains that for α >
6.6 GeV−3 a charmonium-Δ bound state must form; i.e.,
the formation of such a bound state with isospin 3=2 is
more favorable than for the nucleon.

IV. ENERGY-MOMENTUM TENSOR
AND EMT DENSITIES

In this section, we briefly introduce the form factors of
the EMT, define the static EMTand the EMT densities, and
review their properties which are relevant for our study.

A. Form factors and EMT densities

The nucleon form factors of the total EMT operator
T̂μνð0Þ are defined as [21]

hp0; s0jT̂μνð0Þjp; si ¼ ūðp0; s0Þ
�
M2ðtÞ

PμPν

MN

þ JðtÞ iðPμσνρ þ PνσμρÞΔρ

2MN

þ d1ðtÞ
ΔμΔν − gμνΔ2

5MN

�
uðp; sÞ; ð9Þ

where P ¼ 1
2
ðp0 þ pÞ, Δ ¼ ðp0 − pÞ, t ¼ Δ2 with nucleon

states normalized as hp0;s0jp;si¼ 2p0ð2πÞ3δð3Þðp0−pÞδs0s.
The polarizations s and s0 are defined such that both
correspond to the same polarization vector s in the rest
frame of the corresponding nucleon. The spinors are
normalized as ūðp; sÞuðp; sÞ ¼ 2MN .
In QCD, the quark and gluon contributions to the EMT

are separately gauge-invariant operators and connected to
observables, although only their sum is scale independent
and conserved. They can be deduced from Mellin moments
of the generalized parton distribution functions of quarks
and gluons accessible in hard exclusive reactions.
In analogy to the electromagnetic form factors, one may

introduce the static EMT in the Breit frame characterized by
Δ0 ¼ 0 which implies t ¼ −Δ2. In this frame, the static
EMT is defined2 as [22]

Tμνðr; sÞ ¼
Z

d3Δ
2Eð2πÞ3 e

iΔrhp0; s0jT̂μνð0Þjp; si; ð10Þ

where E ¼ E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ 1
4
Δ2

q
. Working with three-

dimensional densities, which strictly speaking are well
defined only for nonrelativistic systems, is fully consistent
in our context because we will use models for the EMT
based on the large-Nc limit, where baryons are heavy. This
is also fully consistent with the nonrelativistic interaction
(1) of heavy quarkonia with baryons and the guidelines (2)
for polarizabilities calculated for heavy quarkonia in the
large-Nc limit.
Let us review here the densities relevant for this

work, namely, the energy density T00ðrÞ and the stress
tensor TijðrÞ. For a more detailed discussion of the static
EMT, we refer to Ref. [22]. The energy density is
normalized as

Z
d3rT00ðrÞ ¼ MN: ð11Þ

For a spin-1
2
particle (as well as for a spin-zero particle), the

stress tensor has the general decomposition

TijðrÞ ¼
�
eire

j
r −

1

3
δij

�
sðrÞ þ δijpðrÞ; ð12Þ

where pðrÞ is the pressure and sðrÞ is the distribution of
shear forces, while eir ¼ ri=r denotes the radial unit vector
and r ¼ jrj.

B. Consequences from EMT conservation

Because of EMT conservation, sðrÞ and pðrÞ are related
to each other through the differential equation

2

r
sðrÞ þ 2

3
s0ðrÞ þ p0ðrÞ ¼ 0; ð13Þ

and pðrÞ obeys [9] the von Laue condition [23], a necessary
(though not sufficient) condition for stability,

Z
∞

0

drr2pðrÞ ¼ 0: ð14Þ

To comply with Eq. (14), the pressure must have at least
one node. Stability considerations imply that pðrÞ > 0 in
the inner region, which corresponds to repulsion, and
pðrÞ < 0 in the outer region, which corresponds to attrac-
tion, with the repulsive and attractive forces balancing
exactly according to Eq. (14) [9]. An interesting quantity
related to the stress tensor is the D term, which is a
fundamental but unknown property [24] and expressed in
terms of the pressure or shear forces as [22]

1For a baryon of mass MB, the normalization condition is
trivial, Z

∞

0

drr2VeffðrÞ ¼ −α
π

b
g2

g2s
νMB:

2Notice the misprint in Eq. (5) of Ref. [22] where the factor
1=ð2EÞ should appear under the integral, as written in Eq. (10).
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d1 ¼ 5πMN

Z
∞

0

drr4pðrÞ ð15Þ

¼ −
4π

3
MN

Z
∞

0

drr4sðrÞ: ð16Þ

In all theoretical approaches so far, the D terms of various
particles were found negative.
In all expressions presented so far, sðrÞ and pðrÞ appear

on equal footing. As long as one deals with the total EMT
in a consistently solved theory, both quantities are indeed
related to each other and completely equivalent. However,
in some situations, one may deal with an incomplete
system. One example is when one considers form factors
of the quark part of the EMT in QCD. Another situation
may arise when one is not able to find the exact solution but
has to content oneself with an approximate solution in a(n)
(effective) theory. (We will encounter exactly this situa-
tion below.)
In such situations, working with sðrÞ is preferable over

pðrÞ for the following reason. If one deals with only a part
of the system, e.g., with the quark contribution to the EMT,
then there is a fourth form factor in Eq. (9) which is
proportional to the structure gμν (the gluon part of the EMT
has the same form factor but with opposite sign, such that in
the total quarkþ gluon EMT these terms drop out). Now,
we have seen that the pressure is associated with the trace of
the stress tensor and is sensitive to terms arising from
nonconservation of the EMT. In contrast to this, sðrÞ is
associated with the traceless part of the stress tensor and is
therefore insensitive to EMT-nonconserving terms. Below,
we will use this property to reconstruct from approximate
results for sðrÞ a conserved EMT.

C. Local criteria for stability

When constructing effective theories or models, it is
essential to demonstrate their theoretical consistency.
Hereby, the perhaps most important point concerns the
stability of the studied solution. The von Laue condition
(14) provides a useful global criterion, which was shown to
be satisfied in various approaches including nuclei, nucle-
ons, pions, Skyrmions, and Q-balls where the solutions
were absolutely stable [9,10,25–29]. But also metastable
and unstable solutions satisfy the von Laue condition
[29–31], which means it is a necessary but not sufficient
condition for stability.
For our purposes, it will be convenient to establish a

necessary local stability condition. Local in our context
means that it is not integrated over r like the von Laue
condition. For that, we explore the analogy to classical
continuum theory. This is well justified in our context,
since we have in mind to apply the criteria to a semi-
classical description of the nucleon in terms of a large-Nc
mean field solution. An intuitive criterion is the positivity
of the energy density

T00ðrÞ ≥ 0: ð17Þ

In classical continuum mechanics, it follows from consid-
ering that every (also infinitesimally small) piece of volume
makes a positive contribution to the energy of the system.
A less trivial local criterion can be obtained by consid-

ering that at any chosen distance r the force exhibited by
the system on an infinitesimal piece of area dAeir must be
directed outward. If this was not the case, the system
would collapse. Since this force is FiðrÞ ¼ TijðrÞdAejr ¼
½2
3
sðrÞ þ pðrÞ�dAeir, we obtain the criterion

2

3
sðrÞ þ pðrÞ > 0: ð18Þ

We checked that the condition (18) is satisfied in all
systems we are aware of where EMT densities were studied
[9,10,25–31]. As this includes unstable systems, apparently
also Eq. (18) is a necessary but not sufficient condition for
stability. Because of its local character, it provides a
stronger criterion than the von Laue condition (14) and
will play an important role below. Interestingly, the
criterion (18) allows one to draw a conclusion on the sign
of the D term. We see that

0 < 4π

Z
∞

0

drr4
�
2

3
sðrÞ þ pðrÞ

�

¼ −
2d1
MN

þ 4d1
5MN

¼ −
6d1
5MN

: ð19Þ

Thus, if a system satisfies the local stability criterion (18),
then it must necessarily have a negative D term [but a
negative D term does not imply that sðrÞ and pðrÞ satisfy
Eq. (18), so the opposite is in general not true]. Indeed, in
all systems studied so far, the D terms were found to be
negative [9,10,25–31].
It would be natural to expect that the criteria (17), (18)

hold also in quantum field theory, although in this case
more care is needed. Investigations in this direction are left
to future studies.

D. Chiral properties of densities

The leading large-distance dependence of the densities is
determined by chiral physics and can be derived in any
(effective) theory which consistently describes chiral sym-
metry breaking. Soliton models are particularly convenient
for that [9,10]. In the chiral limit in leading order of the
large-Nc expansion, the densities behave as, see Appendix,

T00ðrÞ ¼ 3F2
πR4

0

1

r6
þ…; ð20aÞ

pðrÞ ¼ −F2
πR4

0

1

r6
þ…; ð20bÞ
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sðrÞ ¼ 3F2
πR4

0

1

r6
þ…; ð20cÞ

where the dots indicate terms vanishing faster than the
displayed leading terms. The parameter R0 has the meaning
of the soliton size in chiral soliton models and is related to
the axial coupling constant gA ¼ 1.26 and the pion decay
constant Fπ ¼ 186 MeV as

gA ¼ 4π

3
F2
πR2

0: ð21Þ

In practice, one has to determine R0 from the self-consistent
profile, which minimizes the soliton energy (we will
discuss this in more detail in Sec. VA), and Eq. (21)
can be used to deduce the model prediction for gA. For finite
mπ , the densities exhibit exponentially suppressed Yukawa
tails; see Appendix.

E. Veff and its properties

We are now in the position to express the effective
potential Veff in Eq. (1) in terms of the EMT densities. With
the trace of the stress tensor given by Tk

k ¼ −3pðrÞ, the
effective potential is

VeffðrÞ ¼ −α
4π2

b
g2

g2s
ðνT00ðrÞ − 3pðrÞÞ: ð22Þ

Because of Eqs. (11) and (14), the effective potential is
“normalized” as

Z
d3rVeffðrÞ ¼ −α

4π2

b
g2

g2s
νMN: ð23Þ

An instructive property of the effective potential, which
may provide a useful estimate for the “range” of the
effective interaction, is the mean square radius

hr2effi≡
R
d3rr2VeffðrÞR
d3rVeffðrÞ

¼ hr2Ei −
12d1
5νM2

N
; ð24Þ

where hr2Ei ¼
R
d3rr2T00ðrÞ=

R
d3rT00ðrÞ denotes the

mean square radius of the energy density. With d1 < 0
found so far in all theoretical studies, one may expect
hr2effi > hr2Ei.
From Eqs. (20a) and (20b), we see that in the chiral limit

the effective potential behaves as

VeffðrÞ ¼ −α
12π2

b
g2

g2s
ð1þ νÞF2

πR4
0

1

r6
þ…: ð25Þ

Using Eq. (21), one obtains Eq. (7) quoted in Sec. III.

V. EMT OF NUCLEON AND Δ
IN SKYRME MODEL

To solidify the predictions from Ref. [8] and gain
new insights on the baryon-charmonium interaction, we
will use the Skyrme model [32], which respects chiral
symmetry and provides a practical realization of the large-
Nc picture of baryons described as solitons of mesonic
fields [11]. Despite its long history dating back to
Refs. [33–39], this model still provides good services
and was applied to studies of the EMT in Ref. [10], which
we shall explore in this work.

A. Description of baryons in Skyrme model

In this section, we briefly review the description of
baryons in the Skyrme model. For a detailed account, we
refer to Refs. [33,34]. The Skyrme model is based on the
following effective chiral Lagrangian:

L ¼ F2
π

16
trFð∂μUÞð∂μU†Þ

þ 1

32e2
trF½U†ð∂μUÞ; U†ð∂νUÞ�½U†ð∂μUÞ; U†ð∂νUÞ�

þm2
πF2

π

8
trFðU − 2Þ: ð26Þ

Here, Fπ is the pion decay constant of which the exper-
imental value is Fπ ¼ 186 MeV, e is the dimensionless
Skyrme parameter, mπ is the pion mass, and trF denotes the
trace over SU(2) matrices. In the large-Nc limit, the model
parameters scale as Fπ ¼ OðN1=2

c Þ, mπ ¼ OðN0
cÞ, e ¼

OðN−1=2
c Þ which implies L ¼ OðNcÞ. In the large-Nc limit,

the chiral SU(2) field U is static and assumed to have the
“hedgehog” structure U ¼ exp½iτerPðrÞ� with r ¼ jrj and
er ¼ r=r. The soliton profile PðrÞ satisfies Pð0Þ ¼ π which
ensures that the fieldU has unit winding number associated
with the baryon number. The large-distance behavior of
PðrÞ is dictated by chiral symmetry and is model inde-
pendent; see Appendix.
In leading order of the large-Nc limit, the soliton mass is

given by Msol¼−
R
d3rL≡R

d3rT00ðrÞ, and the variation
of the soliton mass, δMsol ¼ 0, is exactly equivalent to the
von Laue condition (14). This was proven analytically and
confirmed numerically in Ref. [10], where the expressions
for T00ðrÞ, pðrÞ and other EMT densities were derived and
evaluated in leading (LO) and next-to-leading order (NLO)
of the large-Nc expansion.
The minimization of the soliton mass δMsol ¼ 0 yields

the soliton solution which is then projected on spin and
isospin quantum numbers by considering slow rotations
UðrÞ → AðtÞUðrÞA−1ðtÞ in Eq. (26) with A ¼ a0 þ iaτ
and introducing conjugate momenta πb ¼ ∂L=∂ _ab. One
then quantizes the collective coordinates according to
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πb → −i∂=∂ab subject to the constraint a20 þ a2 ¼ 1. This
yields the Hamiltonian for soliton rotations

Hrot ¼ Msol þ
J2

2Θ
¼ Msol þ

I2

2Θ
; ð27Þ

where J2 and I2 are the squared spin and isospin operators
and Θ denotes the soliton moment of inertia which is a
functional of the soliton profile. The Hamiltonian (27)
describes states with the spin S and isospin I quantum
numbers S ¼ I ¼ 1

2
; 3
2
;… with the highest possible spin

equal to Nc=2 for general Nc. Clearly, isospin quantum
numbers I > 3

2
are exotic and correspond to hypothetical

multiplets that are not observed in nature. We shall come
back to this point below.
The above described procedure corresponds to the

“projection after variation” technique used in most
practical applications. Indeed, Eq. (27) implies that the
mass of a baryon with quantum numbers S ¼ I ¼ 1

2
; 3
2
;…

is given by

Mrot ¼ Msol þ
SðSþ 1Þ

2Θ
ð28Þ

with the “correction” due to soliton rotations assumed to be
a small perturbation. Parametrically, this is the case, since
the moment of inertia is Θ ¼ OðNcÞ and we work in the
large-Nc limit. But in practice, it is Nc ¼ 3, and the
“perturbation” is not necessarily small in all cases. A
particularly sensitive quantity in this respect is the
pressure. Including systematically 1=Nc corrections to
the EMT modifies not only T00ðrÞ leading to Eq. (28)
but also pðrÞ and sðrÞ. The pressure with included 1=Nc
corrections satisfies the von Laue condition (14) only if one
minimizes the full expression in Eq. (28). However, in the
projection-after-variation technique, one only minimizes
Msol, and “rotational corrections” strictly speaking spoil
stability [10].
In principle, one could use the “variation after projec-

tion” technique to remedy this problem. Here, one mini-
mizes the mass of the rotating baryon in Eq. (28), i.e.,
performs first the projection on the quantum numbers of the
considered baryon before minimizing its mass. In this way,
one ensures compliance with the von Laue condition (14).
However, this procedure has a serious drawback: it is at
variance with chiral symmetry as can be seen from the
large-r behavior of the profile [37,38],

FðrÞ ¼ const
r

expð−mSrÞ with

m2
S ¼ m2

π −
2SðSþ 1Þ
3Θ½PðrÞ�2 : ð29Þ

Since Θ ¼ OðNcÞ, we see that for Nc → ∞ we have
mS → mπ and recover from Eq. (29) the correct chiral

behavior of the profile; see Appendix. But for finite Nc, the
result is incorrect, and for small mπ , solutions do not
even exist.
Chiral symmetry and stability are crucial principles. If

one wants to preserve both, then none of the two methods,
projection after variation nor variation after projection, is
acceptable. In our context, however, we are mainly
interested in gaining trustworthy insight on effects of
1=Nc corrections on the effective baryon-quarkonium
interaction. For that reason, we will content ourselves with
a pragmatic approximate solution, which (a) preserves
chiral symmetry, (b) complies with the von Laue condition,
and (c) gives us reliable insight about the role of 1=Nc
corrections.
The approximate solution, which fulfills the above

criteria, is as follows. In the first step, we employ the
projection after variation procedure which respects chiral
symmetry. This means we first minimize the soliton energy,
which guarantees the correct chiral behavior of the theory
and yields a universal profile for all (light) baryons. After
this, we project the soliton solution on S ¼ I ¼ 1

2
; 3
2
…

states (nucleon, Δ resonance, … where the dots indicate
exotic quantum numbers not observed in nature). This
yields, in the leading order of the large-Nc limit, the same
EMT for all (light) baryons.
In the second step, we then add on top of the leading-

order results the rotational corrections as a small pertur-
bation. We do so for the energy density T00ðrÞ and shear
forces sðrÞ, but not for the pressure because the resulting
pðrÞwould violate the von Laue condition (14). Instead, we
determine the pressure from the differential equation (13),
which then automatically satisfies the von Laue condition
(14). Using Eq. (13), the pressure can be expressed in terms
of sðrÞ as [notice that Eq. (13) determines pðrÞ up to an
integration constant, which we fix such that pðrÞ → 0 for
r → ∞]

pðrÞjNLO;reconstruct ¼
�
−
2

3
sðrÞ þ 2

Z
∞

r

d~r
~r
sð~rÞ

�
NLO;approx

:

ð30Þ

This procedure corresponds to the construction of a
conserved EMT from approximate results for sðrÞ. It is
important to notice that the starting point for this con-
struction is sðrÞ, which is related to the traceless part of the
stress tensor and therefore in general insensitive to EMT-
nonconserving terms; see Sec. IV B. Below, we will show
that this procedure gives a consistent estimate of 1=Nc
corrections to EMT densities.

B. EMT densities with 1=Nc corrections

The expressions for the EMT densities in LO and NLO
of the 1=Nc expansion were derived in Ref. [10]. We refer
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to this work for technical details and use the same
parameters3 as Ref. [10].
Let us begin the discussion with the energy density

T00ðrÞ. In Fig. 1(a), we show the LO result for T00ðrÞ
which is “universal” in the following sense. In LO of the
1=Nc expansion, the nucleon and Δ are mass degenerate,
see Eq. (A4); i.e., both baryons have the same energy
density. More precisely, T00ðrÞ is the same for the entire

tower of light ground-state baryons S ¼ I ¼ 1
2
; 3
2
; 5
2
;…

including exotic quantum numbers. When NLO corrections
due to soliton rotation are included, the mass depends on
the S ¼ I quantum numbers according to Eq. (28). In
Fig. 1(a), we show the associated NLO results for T00ðrÞ
for the states S ¼ 1

2
; 3
2
; 5
2
; 7
2
which are normalized such thatR

d3rT00ðrÞ yields the result in Eq. (28) for the mass of the
respective state. From Eq. (28), it is clear that higher-
spin states are heavier, and Fig. 1(a) shows that this is
not due to higher density but because the “size” of the
system increases with S. This makes perfectly sense
in a “rigid-rotator” approach, as the NLO correction to
T00ðrÞ is proportional to the spin density ρJðrÞ which has
the behavior ρJðrÞ ∝ r2 in soliton models [9,10].4

Remarkably, for S ¼ 1
2
, the LO and NLO results can hardly

be distinguished on the scale of Fig. 1(a). This implies that
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FIG. 1. EMT densities from the Skyrme model as functions of r. The LO results are valid for any S ¼ I in the large-Nc limit. The
estimates of NLO corrections in the 1=Nc expansion are shown for states with the quantum numbers S ¼ I ¼ 1

2
; 3
2
; 5
2
; 7
2
. The figures show

(a) energy density T00ðrÞ, (b) shear forces sðrÞ, (c) pressure pðrÞ with approximate NLO corrections, (d) pðrÞ with NLO corrections
reconstructed according to (30), (e) same as Fig. 1(d) but for r2pðrÞ, and (f) the local stability criterion (18). The NLO results in the
upper panel, Figs. 1(a)–1(c), are estimated by simply evaluating the NLO expressions with the LO soliton profile, which yields
unacceptable results especially for pðrÞ which are at variance with Eq. (14). The results in the lower panel, Figs. 1(d)–1(f), are obtained
with the pressure reconstructed according to Eq. (30) which satisfies Eq. (14). Finally, Fig. 1(f) shows that the results for S ¼ I ¼ 1

2
; 3
2
,

which correspond to the nucleon and Δ, comply with the local stability criterion (18). In contrast to this, states with the exotic quantum
numbers S ¼ I ≥ 5=2 do not satisfy (18); i.e., in this way, the rotating soliton approach explains why they are not realized in nature.

3The parameters are fixed as Fπ ¼ 131.3 MeV, e ¼ 4.628
with mπ ¼ 138 MeV. This parameter choice has been optimized
[10] to ensure that the respective leading results in the large-Nc
expansion for the sum and difference of nucleon and Δ masses,
namely, MΔ þMN ≡ 2Msol and MΔ −MN ≡ 3

2Θ, reproduce the
experimental values. Notice that with this fixing the experimental
value of Fπ ¼ 186 MeV is underestimated by 30%, while the
model results for the individual nucleon and Δ masses overesti-
mate the physical values by about 20% [10]. This is a typical
accuracy for this model [33,34]. The 20% overestimate of the
baryon masses would affect the normalization of the effective
potential Veff in Eq. (23), which we shall address below in
Eq. (32).

4The spin density ρJðrÞ is associated with the form factor
JðtÞ in Eq. (9) and related to T0kðr; sÞ components of the static
EMT [22].
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for the nucleon the NLO corrections are moderate. For
higher spins S ¼ 3

2
; 5
2
; 7
2
, the NLO corrections quickly

become more sizable. Nevertheless, T00ðrÞ does not reveal
anything unusual and looks equally plausible for all spin
states. Other EMT densities, namely, sðrÞ and pðrÞ, will
turn out more insightful and give us a hint why the quantum
numbers S ¼ I ≥ 5

2
are not observed in nature.

Next, we investigate the distribution of shear forces. We
recall that for a large nucleus, a situation which is well
described in the liquid drop model, the shear forces are
given by sðrÞ ¼ γδðr − RNÞ, where RN denotes the radius
of the nucleus and γ is the surface tension which can be
inferred from the Bethe-Weizsäcker formula [22]. A
realistic nucleus has no sharp edge, and “finite skin” effects
smear out the delta function, but the liquid drop concept
and consequences from it remain valid [22,40]. However, a
single nucleon is much more diffuse, as can be seen from
the LO result in Fig. 1(b) which shows a “very strongly
smeared out delta function,” and an unambiguous definition
of the nucleon radius is not possible (although one may
define certain mean square radii; see Sec. V C). The NLO
corrections are moderate in the case of the nucleon; see
Fig. 1(b). For the Δ, the NLO correction is much more
sizable, where we observe that sðrÞ is clearly depleted and
more strongly spread out. Thus, in the rotating soliton
picture, the Δ is a larger and an even more diffuse hadron
than the nucleon. This is an intuitive and reasonable result.
However, for the quantum numbers S ¼ I ≥ 5

2
, we find a

very different pattern: here, the shear forces develop a node
being negative in the inner region and positive in the outer
region. A negative distribution of shear forces cannot be
associated with a surface tension of a (however diffuse)
particle and in fact was not observed in any of the
theoretical studies performed so far [9,10,25–31]. The
meaning of this result will become clear shortly.
Next, we discuss the pressure. Let us first recall that only

the LO result in Fig. 1(c) satisfies the von Laue condition in
Eq. (14). This is so because the condition (14) is equivalent
to the variational problem of minimizing the soliton mass
δMsol ¼ 0 [10]. If we added NLO corrections to pðrÞ and
evaluated them with a soliton profile obtained from the
variational problem δMrot ¼ 0, we of course would obtain
results satisfying the von Laue condition (14), but at the
price of unacceptable violations of chiral symmetry; see the
discussion in Sec. VA. If instead we use the LO soliton
profile obtained from δMsol ¼ 0, which preserves chiral
symmetry, and evaluate pðrÞ with NLO corrections “added
as a small perturbations” as it is customarily done, we
obtain the “approximate NLO” results shown in Fig. 1(c).
These results do not satisfy the von Laue condition.
Interestingly, on the scale of Fig. 1(c), the NLO correction
to the nucleon looks moderate, and now we are in the
position to quantify this statement. The approximate NLO
result for the pressure does not satisfy the von Laue
condition (14) exactly, but does so “approximately” since

� R∞
0 drr2pðrÞR∞
0 drr2jpðrÞj

�
NLO;approx;S¼1

2

¼ 0.30 ∼OðN−1
c Þ: ð31Þ

In this sense the 1=Nc corrections in the nucleon case are
moderate, and the von Laue condition remains “satisfied”
within the accuracy one would expect after adding NLO
corrections as a “small perturbation.” Another highly
sensitive test is provided by evaluating the D-term d1 from
sðrÞ and pðrÞ according to Eqs. (15) and (16). In LO, we
obtain the consistent result dp1;LO ¼ ds1;LO ¼ −4.48, where
the subscripts indicate whether the value is obtained from
sðrÞ or pðrÞ. If one naively includes NLO corrections, this
equivalence is spoiled, and we find dp1;NLO ¼ −2.61 vs
ds1;NLO ¼ −4.26. The two results agree within about
24% ∼OðN−1

c Þ, i.e., also within the expected accuracy.
It is important to stress that the approximate NLO result for
sðrÞ yields a D term much closer to the LO result than the
approximate NLO result for pðrÞ. For Δ and higher-spin
states, the NLO corrections to the pressure introduce a
major qualitative change: the zero of pðrÞ disappears,5 and
we find a “100% violation” of the von Laue condition as
measured analogous to Eq. (31). However, already the
“30% violation” of the von Laue condition for the nucleon
in Eq. (31) is not acceptable, as this implies nonconserva-
tion of the EMT as explained in Sec. VA.
To obtain an acceptable estimate for the NLO corrections

to the pressure and construct a conserved EMT, we have to
reconstruct pðrÞ from sðrÞ according to Eq. (30). The
“reconstructed NLO” results are shown in Fig. 1(d). These
results satisfy the von Laue condition (14) which we
visualize in Fig. 1(e), which shows the reconstructed
NLO results for r2pðrÞ. We again observe that the effects
of NLO corrections for the nucleon are small, and they are
more sizable for Δ. However, both states S ¼ 1

2
; 3
2
exhibit

the pattern of a stable physical situation: positive pðrÞ in
the inner region, negative pðrÞ in the outer region, and
exact balance according to the von Laue condition. The
situation is fundamentally different for higher-spin states
S ≥ 5

2
; here, the reconstructed pressure also satisfies the von

Laue condition, but the signs are reversed, and there is no
balance of forces. The negative pðrÞ in the center corre-
sponds to attractive forces which are unbalanced; i.e., the
inner part of the soliton collapses. At the same time, the
positive pðrÞ in the outer region is also unbalanced, and
the repulsive forces expel the outer part of the (too-fast)
rotating soliton.
Let us also comment on the local stability criteria. All

states satisfy T00ðrÞ ≥ 0 in agreement with Eq. (17).
However, only the states with S ≤ 3

2
comply with the local

5Notice that this is for the optimized parameters of Ref. [10];
see Footnote 3. For example, for the parameters of Ref. [33], the
NLO effects would be more drastic, and, e.g., the node of pðrÞ
would disappear already for S ¼ I ¼ 1

2
as shown in Ref. [10].
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stability criterion (18), while the states with S ≥ 5
2
violate it

as shown in Fig. 1(f). It is important to keep in mind that
this is a naive “mechanical picture” which is nevertheless
very insightful. The rotating soliton approach predicts all
states S ¼ I ¼ 1

2
; 3
2
; 5
2
;… on equal footing. It is therefore

remarkable that the approach itself explains that rotating
solitons with S ¼ I ≥ 5

2
are artifacts of the rigid rotator

quantization as they violate basic mechanical stability
criteria and therefore cannot correspond to physical states.

C. Selected results

Having established a consistent scheme to estimate 1=Nc
corrections to nucleon and Δ properties in the Skyrme
model, we end this section by stating some results of
interest in the context of EMT densities. For the parameters
used in this work, see Footnote 3, we have in LO for
the baryon masses MΔ ¼ MN ¼ 1085 MeV. Including
NLO corrections, we obtain MN ¼ 1159 MeV and MΔ ¼
1452 MeV. Thus, the physical values of the masses are
described within (20–30)% accuracy, which is typical for
this model [39]. Notice that soliton models generally tend
to overestimate baryon masses to spurious contributions
from rotational and translational zero modes [41].
In Table II, we summarize the Skyrme model predictions

for selected EMT properties. Besides the D-term d1, we
include results for the mean square radius of the energy
density hr2Ei and the mean square radius of the shear forces
defined as hr2si ¼

R∞
0 drr2sðrÞ=R∞

0 drsðrÞ. In addition, we
also quote the results for the position R0 at which the
pressure exhibits the node, i.e., pðR0Þ ¼ 0. The LO results
are equal for the nucleon and Δ, but NLO corrections
remove this degeneracy. The NLO results for d1 and R0 are
obtained with the reconstructed NLO result for the
pressure.
The results in Table II show that NLO corrections are

small for the nucleon and somewhat more sizable for Δ. In
both cases, they do not exceed 30%, which one would
naturally expect for 1=Nc corrections. With NLO correc-
tions included, the D term of the nucleon is −4.48, and that

of the Δ is −3.31. Moreover, the Δ is larger than the
nucleon, which is quantified by the various radii in Table II.
This is an intuitive result and in line with calculations of the
electric mean square radius ofΔþ in models [42] and lattice
QCD [43]. The result for the D term of the Δ in Table II is
to the best of our knowledge the first calculation of the D
term of the Δ resonance. Remarkably, also the D term of
the Δ is negative—in agreement with theoretical calcu-
lations in other systems [9,10,25–31]; see also
Refs. [21,44–51].

VI. CHARMONIUM-BARYON BOUND STATES

After the general introduction to the EMT and its
practical description in the Skyrme model, we are now
in the position to discuss the effective baryon-quarkonium
potential.

A. Veff from Skyrme model

Soliton models tend to overestimate baryon masses, and
the Skyrme model (with our parameter fixing) is no
exception in this respect; see the previous section. To
ensure a phenomenologically consistent description, we
rescale Veff as

VeffðrÞ ¼ −α
4π2

b

�
g2

g2s

�
Mphysical

Mrot
½νT00ðrÞ − 3pðrÞ�; ð32Þ

so the effective potential is correctly normalized with
respect to the physical value of the baryon mass in
Eq. (23). Notice that one could also refrain from this step
and obtain the same results by redefining the value of α.
The effective potentials for the nucleon and Δ obtained in
this way are shown in Fig. 2. We see that the effects of 1=Nc
corrections are modest for the nucleon and somewhat
more sizable for the Δ resonance. The Skyrme model
predictions for Veff shown in Fig. 2 will be used in the
following to investigate the dynamics in the nucleon- and
Δ-charmonium systems.
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FIG. 2. The effective potential VeffðrÞ normalized with respect
to the polarizability α for (a) the nucleon and (b) Δ as a function
of r in LO and NLO order of the large-Nc expansion after the
rescaling in Eq. (32); i.e., VeffðrÞ is normalized according to
Eq. (23) with respect to the physical value of the respective
baryon mass.

TABLE II. Selected EMT properties of the nucleon and Δ from
the Skyrme model. The results for the D-term d1; mean square
radii of the energy density and shear forces, hr2Ei and hr2si; and the
position R0 where the pressure distribution exhibits a node refer
to LO (where the properties of two baryons are degenerate) and to
NLO of the 1=Nc expansion.

LO

NLO

Nucleon Δ resonance

d1 −4.48 −4.25 −3.31
hr2Ei1=2 0.74 fm 0.75 fm 0.80 fm
hr2si1=2 0.63 fm 0.64 fm 0.72 fm
R0 0.64 fm 0.65 fm 0.83 fm
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B. Description of quarkonium-baryon bound states

If a baryon-quarkonium bound state exists, its binding
energy Ebind < 0 follows from solving the nonrelativistic
Schrödinger equation

�
−
∇2

2μ
þ VeffðrÞ − Ebind

�
ΨðrÞ ¼ 0; ð33Þ

where μ is the reduced mass6 in the channel of interest
defined as μ−1 ¼ M−1

charmonium þM−1
baryon.

The Schrödinger equation (33) can be conveniently
rewritten using a separation of variables and defining the
radial function as follows ΨðrÞ ¼ Φlmðϑ;φÞulðrÞ=r with
boundary conditions ulðrÞ ∝ rlþ1 at small r and unlðrÞ → 0

at large r such that it can be normalized as
R
∞
0 dru2l ðrÞ ¼ 1.

In principle, there could be several bound states which
should be labeled accordingly by a radial quantum number,
but we refrain from this to simplify notation.
Before starting the calculations, let us recall that the

shape of VeffðrÞ and its range, which can be defined, e.g., in
terms of hr2effi in Eq. (24), are determined by the model for
the EMT densities and the estimate for the parameter ν in
Eq. (4). But the overall normalization of the effective
potential is basically unconstrained due to the poor knowl-
edge of the chromoelectric polarizabilities α for which only
the rough guidelines in Eq. (2) are available. In practice, it
is therefore useful to treat α as a free parameter and vary it
in a relatively wide region in order to determine whether
bound states exist [8]. Notice that the chromoelectric
polarizability of J=ψ in Eq. (2a) is so small and Veff is
so shallow that in our formalism no bound states of the
nucleon and J=ψ exist—even if we allow the numerical
value of αð1SÞ to vary within a reasonable range. In the
following, we will therefore focus on Ψð2SÞ. Hereby, the
lower bound derived in Sec. III will play a very helpful role.

C. Confirmation of Pcð4450Þ as nucleon-ψð2SÞ
bound state

The states Pcð4380Þ and Pcð4450Þ are observed to decay
in the nucleon and J=Ψ; i.e., they have isospin 1

2
such that it

is natural to consider the nucleon channel. However, J=Ψ
itself cannot form bound states with the nucleon, also

because MN þMJ=Ψ ¼ 4035 MeV is smaller than the
mass of the lighter pentaquark Pcð4380Þ. Let us therefore
focus here on nucleon-ψð2SÞ bound states. In the follow-
ing, we will quote the numerical results obtained from the
Skyrme model in LO and NLO of the 1=Nc expansion and
confront them with the results from the chiral quark-soliton
model (χQSM) reported in Ref. [8] which also refer to LO
of the large-Nc limit.
In the eigenvalue problem Eq. (33), threshold bound

states (i.e., states with infinitesimally small binding
energies) emerge only if the chromoelectric polarizability
is above a certain minimal value αmin which depends on the
orbital angular momentum quantum number l. We obtain
for the reduced mass of the nucleon-Ψð2SÞ system (the
numbers differ only slightly in the nucleon-J=Ψ system)

l ¼ 0∶ α > αmin ¼
8<
:

5.1 GeV−3 Skyrme; LO;

5.0 GeV−3 Skyrme; NLO;

5.6 GeV−3 χQSM;Ref: ½8�;
ð34Þ

l¼ 1∶ α > αmin ¼
8<
:

23.8 GeV−3 Skyrme; LO;

23.5 GeV−3 Skyrme; NLO;

22.4 GeV−3 χQSM;Ref: ½8�;
ð35Þ

Bound states in the channels l ≥ 2 would require
polarizabilities α > αmin ¼ Oð50–60ÞGeV−3 and higher.
A comparison with the guideline (2) for αð1SÞ reveals that,
even if it were energetically possible, J=Ψ could not
form bound states with the nucleon. However, for
ψð2SÞ;ψð3SÞ;…, the minimal value of α in the l ¼ 0
channel is well below the perturbative guidelines in Eq. (2),
which means that the excited charmonia can form s-wave
bound states with the nucleon. In the following, we will
focus on ψð2SÞ, leaving the consideration of higher excited
charmonia to future work. Notice that the result (34) is in
agreement with the bound derived in Sec. III.
Following the procedure of Ref. [8], we now determine

which values of αð2SÞ would be required in order to
reproduce in the Skyrme model the exact binding energies
Ebind ¼ −176 MeV of Pþ

c ð4450Þ and Ebind ¼ −246 MeV
of Pþ

c ð4380Þ. The binding energy of the heavier pentaquark
state is exactly reproduced for

Pþ
c ð4450Þ∶ αð2SÞ ¼

8<
:

16.8 GeV−3 Skyrme; LO;

16.4 GeV−3 Skyrme; NLO;

17.2 GeV−3 χQSM;Ref: ½8�.
ð36Þ

The binding energy of Pþ
c ð4380Þ would be exactly repro-

duced for αð2SÞ ¼ ð19.6; 19.1; 20.2Þ GeV−3 in the frame-
works (Skyrme, LO; Skyrme, NLO; χQSM, Ref. [8])
respectively. These values for α are in reasonable agree-
ment with the perturbative estimate in Eq. (2), but in each

6In the recent lattice QCD simulation [52] it was investigated
how the potential between a(n) (infinitely heavy) qq̄ pair is
modified if the heavy qq̄ pair is placed inside a light hadron. It
was observed that the static potential and consequently also
quarkonium masses are reduced by a few MeV. This “medium
effect” is analogous to themodification of, e.g., ρ-meson properties
in nuclear environment and should not be confused with the
binding energy of a heavy qq̄ pair with a light hadron, which is
described by the effective interaction (1). The results of Ref. [52]
imply that in our calculations we should use reduced charmonium
masses instead of the physical ones. As other theoretical uncer-
tainties in our approach are more pronounced (heavy-quark mass
corrections and 1=Nc corrections), wewill neglect this small effect.
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case, there is only a single bound state. Therefore, we have
to choose which of the two pentaquark states can be
described in our formalism. The correct identification
can be made by considering the decay width.
The decay of a Ψð2SÞ-nucleon bound state is driven by

the potential of the 2S → 1S transition, which has the same
“universal shape” as the Veff responsible for the nucleon-
ψð2SÞ binding mechanism but a significantly smaller
normalization due to the small polarizability relevant for
the 2S → 1S transition in Eq. (2). As this transition
potential is relatively weak, one can use perturbation theory
to estimate the decay width as follows [8]:

Γ ¼ ð4μqÞ
����
Z

∞

0

drr2ulðrÞVðrÞjlðqrÞ
����
2

: ð37Þ

Here, q is the center-of-mass momentum q ¼ ffiffiffiffiffiffiffiffiffiffiffi
2μER

p
,

where ER is the resonance energy, μ is the reduced mass
of the decay products, jlðzÞ is the spherical Bessel function,
and VeffðrÞ is the potential (22) with the transitional
polarizability jαð2S → 1SÞj ¼ 2 GeV−3 from phenomeno-
logical studies of ψ 0 → J=ψππ data [13]. For the heavier
pentaquark state, we obtain in this way

Pþ
c ð4450Þ∶ Γ ¼

8<
:

17.0 MeV Skyrme; LO;

15.1 MeV Skyrme; NLO;

11.2 MeV χQSM;Ref: ½8�;
ð38Þ

which is in reasonable agreement with the observedwidth of
Pþ
c ð4450Þ quoted in Table I. For Pþ

c ð4380Þ, our formalism
would yield a similarly narrowwidthΓ¼ð21.3;18.8ÞGeV−3

for (Skyrme, LO; Skyrme,NLO), but the experimental result
is an order ofmagnitude larger; see Table I. Thus, the s-wave
nucleon-ψð2SÞ bound state found in our approach is clearly
identified with the heavier and narrower state Pþ

c ð4450Þ.
The lighter but broader resonancePcð4380Þ does not appear
to be a nucleon-ψð2SÞ bound state.
Our results confirm the interpretation of Pþ

c ð4450Þ as a
nucleon-Ψð2SÞ state [8]. A remarkably consistent and
robust picture emerges from our calculation and the
comparison to the results of Ref. [8]. For a rather well-
constraint value of the chromoelectric polarizability of

αð2SÞ ¼ ð16–17Þ GeV−3; ð39Þ

two different models of the nucleon, the χQSM used in
Ref. [8] and the Skyrme model used in this work, predict a
naturally narrow bound state in the l ¼ 0 channel of the
effective potential (1) which can be identified with
Pþ
c ð4450Þ. The results based on the χQSM in Eqs. (34)

and (38) refer to the LO of the 1=Nc expansion and are
systematically closer to the LO results in the Skyrme
model. Comparing the numbers from LO and NLO within
the Skyrme model shows that the predictions are also robust
with respect to 1=Nc corrections.

The approach predicts the following quantum numbers
for Pþ

c ð4450Þ. The vector-meson ψð2SÞ has JP ¼ 1−, and
the nucleon has JP¼ 1

2
þ. Considering that it is a bound state

in the l ¼ 0 channel, the parity of Pþ
c ð4450Þ is predicted to

be negative. The approach predicts actually not one but two
states with spins 1

2
and 3

2
with a mass difference, caused by

hyperfine splitting due to quarkonium-nucleon spin-spin
interaction, which is suppressed in the heavy-quark mass
limit [8]. The quantum numbers JP ¼ 3

2
− are consistent

with experiment; see Table I.
A comment regarding the spin-parity assignment for

Pþ
c ð4450Þ is in order. The result preferred by the LHCb

analysis is 5
2
þ [1]. The assignments 5

2
− and 3

2
− are within,

respectively, 1 sigma and 2.3 sigma of the preferred fit, i.e.,
also compatible with data, while assignments like 1

2
� or 7

2
�

are disfavored at 5-sigma level [1]. Of course, one should
keep in mind that the LHCb analysis did not test the
hypothesis that the structure around 4450 GeV could
consist of two nearly degenerate states with JP ¼ 3

2
− and

JP ¼ 1
2
− as predicted in the current approach. It would be

very interesting to perform such a test.

D. Prediction of a charmonium-Δ bound state

In Ref. [8], it was argued that not only the nucleon but
also other baryons could potentially form bound states
with charmonia via the effective interaction (1). With the
results obtained on the EMT of Δ in Sec. V, we are in the
position to investigate the question of whether Δ can form
bound states with charmonia. We will denote the possible
charmonium-Δ bound states as PΔc.
For the effective charmonium-Δ potential Veff to be

strong enough to form bound states in the channels with
angular momentum l, the polarizabilities must be above the
following minimal values:

l ¼ 0∶ α > αmin ¼
�
3.1 GeV−3 Skyrme; LO;

3.0 GeV−3 Skyrme; NLO;
ð40Þ

l ¼ 1∶ α > αmin ¼
�
14.7 GeV−3 Skyrme; LO;

14.0 GeV−3 Skyrme; NLO;
ð41Þ

l ¼ 2∶ α > αmin ¼
�
33.6 GeV−3 Skyrme; LO;

31.9 GeV−3 Skyrme;NLO:
ð42Þ

Confronting these results with the guideline (2) for αð1SÞ
reveals that J=Ψ cannot bind with Δ. However, ψð2SÞ
could form bound states with Δ in the l ¼ 0 and l ¼ 1
channels if we rely on our own estimate (39). This is
supported by the model-independent bound in Sec. III.
To proceed with the calculation of possible bound states

of Δ and ψð2SÞ, we will fix αð2SÞ at the values in Eq. (36)
which were required to explain Pcð4450Þ as a nucleon-
ψð2SÞ bound state and use the respective LO and NLO

PEREVALOVA, POLYAKOV, and SCHWEITZER PHYSICAL REVIEW D 94, 054024 (2016)

054024-12



predictions from the Skyrme model for the effective
potential as shown in Fig. 2. In this way, we obtain the
prediction that there is a single bound state in the l ¼ 0
channel with the binding energy and mass

l ¼ 0∶ Ebind ¼
�−370 MeV Skyrme; LO;

−430 MeV Skyrme; NLO;

⇔ M ¼
�
4.54 GeV Skyrme; LO;

4.49 GeV Skyrme;NLO:
ð43Þ

Estimating the width of the new state according to Eq. (37),
we obtain

l ¼ 0∶ Γ ¼
�
55 MeV Skyrme; LO;

68 MeV Skyrme;NLO:
ð44Þ

We again observe that the predictions are numerically very
stable with respect to model details like effects of 1=Nc
corrections. The parity of this new state is negative, and the
isospin is 3

2
. By applying the arguments of Ref. [8]

regarding the spin assignment, we predict that there are
three states with J ¼ 1

2
; 3
2
; 5
2
which are mass degenerate

modulo heavy-quark mass corrections. In the following, we
will refer to this new state as PΔcð4500Þ.
Let us now turn to the l ¼ 1 channel. In this case, our

estimated result for αð2SÞ in Eq. (39) is much closer to the
minimal value of α in Eq. (41), but it is clearly above it, and
a single bound state exists although it is loosely bound. The
calculation yields

l ¼ 1∶ Ebind ¼
�−25 MeV Skyrme; LO;

−36 MeV Skyrme; NLO;

⇔ M ¼
�
4.89 GeV Skyrme; LO;

4.88 GeV Skyrme;NLO:
ð45Þ

The estimate of the width of the new state according to
Eq. (37) yields Γ2 ¼ ð5.0; 9.5Þ GeV−3 for (Skyrme, LO;
Skyrme, NLO), but this is not the total width. This state is
below the threshold forΨð2SÞ-Δ production, but it is above
the threshold for Ψð2SÞ-nucleon-pion production. This
means that the Δ in this bound state has the phase space
to decay to the pion-nucleon final state without “waiting”
for the transition of Ψð2SÞ to J=Ψ to occur. The dominant
decay mode for this resonance is therefore PΔcð4900Þ →
Ψð2SÞNπ with a partial decay width Γ1 ∼ 150 MeV ≫ Γ2

which is determined by the width of the Δ. For the total
decay width, we therefore predict

l ¼ 1∶ Γ ¼ Γ1 þ Γ2 ≳ 150 MeV Skyrme; LO & NLO:

ð46Þ

The parity of this p-wave state is positive, and the isospin is
3
2
. The possible spins are in the range 1

2
≤ J ≤ 7

2
following

from combining spin 1 of Ψð2SÞ, spin 3
2
of Δ, and orbital

angular momentum l ¼ 1. The different spin states again
are mass degenerate in the heavy-quark mass approxima-
tion [8]. In practice, heavy-quark mass corrections [8]
could shift the masses of (some of) these states into the
Ψð2SÞ-Δ continuum; i.e., they could be presumably
even broader. Because of the proximity to the Ψð2SÞ-Δ
threshold, the theoretical uncertainties of this predictions
could be larger than in the l ¼ 0 channel.
The general reason why a prospective l ¼ 1 state appears

in the Ψð2SÞ-Δ system, but not in the Ψð2SÞ-nucleon
system, is related to the larger mass of the Δ which enters
the normalization of the potential in Eq. (23). For heavier
baryons, lower values for αmin are required to form bound
states; see Eqs. (34) and (35) vs (40) and (41). This is
supported by the model-independent bounds of Sec. III. As
a consequence, heavier baryons in general form more easily
bound states with charmonia, perhaps even with bottonia.

VII. POSSIBLE WAYS TO OBSERVE PΔc

In this section, we will discuss possible ways to observe
the newly predicted charmonium-Δ bound states PΔc.

A. PΔc and its SUð3Þ partners in decays
of bottom baryons

The pentaquarks Pc were observed in the decay Λ0
b →

J=ΨpK− [1], and their existence is supported by studies of
the decay Λ0

b → J=Ψpπ− [3]. These weak decays corre-
spond to b → cc̄s and b → cc̄d transitions respectively.
The second transition is Cabbibo suppressed. In the
following, we will discuss both types of transitions.

1. Transitions with ΔS= −1 and ΔI = 0
In this case, the decay Λ0

b → Δþ
c K− → J=Ψpπ0K− is

forbidden, and hence the J=ΨNπK̄ final state in the decay
of Λ0

b is not suitable for the search of PΔc. However, if one
considers the final state J=ΨNπK̄ in decays of the isospin-1
baryons Σb, the isospin-3=2 pentaquarks PΔc can be found
there. Presumably the most easily detectable modes (no
neutral particles in the final state) are

Σ−
b → P0

ΔcK
− → J=Ψpπ−K−; ð47Þ

Σþ
b → Pþþ

Δc K
− → J=ΨpπþK−: ð48Þ

We note thatΔS ¼ −1 decays of Ξb → J=ΨYK̄ (where Y is
a baryon with S ¼ −1 from the octet or decuplet) are
suitable for search of strange flavor SUð3Þ partners7 of Pc
and PΔc pentaquarks. A very interesting possibility to
search for PΩc (the S ¼ −3 decuplet partner of the

7On general grounds we expect that Ψð2SÞ is more strongly
bound to strange members of the octet and decuplet than to
nucleon and Δ.
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pentaquark PΔc) is provided by studies of the decay
Ξ0
b → J=ΨΩ−Kþ.

2. Transitions with ΔS= 0 and ΔI = 1
2

For such a Cabbibo-suppressed transition, PΔc can be
searched in Λ0

b decays with the final state J=ΨNπM (where
M is a isospin-1 meson, e.g., π meson). In decays of Σb
with the same final state, PΔc shows up also for the case
whereM is an isospin-0 meson, e.g., η meson. In decays of
Ξb, the pentaquarks PΔc can be searched in the final state
J=ΨNπK̄. Note that the strange octet and decuplet partners
of Pc and PΔc can be looked for in the same decay mode.

B. PΔc formation in photon and meson scattering
on the nucleon

In Refs. [53–55], it was suggested to search for Pc
pentaquarks through its formation in the process
γ þ p → Pc → J=Ψþ p. One might think that the search
for PΔc could be possible in the formation experiment like
γ þ p → PΔc → J=Ψþ N þ π. However, here we expect
that the γNPΔc vertex is much smaller than the analogous
γNPc vertex because the former involves isospin-1=2 →
3=2 transition and hence the overwhelming (see the
discussion in Ref. [54]) vector dominance γ → J=Ψ tran-
sition does not contribute. It seems that the more favorable
PΔc formation process is

γ þ p → PΔc þ π → J=Ψþ N þ π þ π: ð49Þ

In such a process, the γ → J=Ψ transition makes a large
contribution. The minimal photon energy in a fixed target
experiment needed to produce PΔcð4500Þ is 11 GeV, i.e.,
above the energies accessible in the Gluex Experiment at
Jefferson Lab.
In Ref. [56], the formation of Pc pentaquarks was

considered in pion-induced processes π þ N → Pc →
J=Ψþ N. It was shown that the signal cross section is
of order 1 nb. Obviously, the PΔc pentaquark formation in
π þ N → PΔc → J=Ψþ N þ π is of similar size, but
probably with smaller background. These reactions could
be studied in the charm spectroscopy program at J-PARC,
where pion beams with energies up to 20 GeV are
available [57].

VIII. CONCLUSIONS

In this work, we made use the formalism of Ref. [8]
where the narrow Pþ

c ð4450Þ state was interpreted as a
nucleon-ψð2SÞ s-wave bound state with JP ¼ 3

2
−. In the

framework of this formalism, we derived a general lower
bound which the charmonia chromoelectric polarizabilities
must satisfy such that charmonium-baryon bound states can
exist and showed in a model-independent way that ψð2SÞ
can form s-wave bound states with a nucleon and Δ.

Using the Skyrme model for the densities of the EMT,
we have confirmed in detail the calculations from Ref. [8]
which were based on a different model of the nucleon
(chiral quark soliton model). The emerging picture for
Pþ
c ð4450Þ as a nucleon-ψð2SÞ bound state is very robust

and insensitive to details of the underlying models. A
particulary important aspect of model dependence is related
to 1=Nc corrections. We have shown that the conclusions
and numerical details of the calculations regarding
Pþ
c ð4450Þ are unaffected by 1=Nc corrections.
As an interesting byproduct of our study, we have shown

how to construct a conserved EMTwhen a theory or model
cannot be solved exactly and, e.g., 1=Nc corrections must
be included as a small perturbation. The soliton approach
describes baryons with spin and isospin quantum numbers
S ¼ I ¼ 1

2
; 3
2
; 5
2
;… in the large-Nc limit. We have shown

that, when 1=Nc corrections are included, it is possible to
construct a conserved EMT with densities which obey
fundamental stability criteria only for S ¼ I ¼ 1

2
; 3
2
which

correspond to a nucleon andΔ. But for S ¼ I ≥ 5
2
, the 1=Nc

corrections are too destabilizing, explaining why such
states are not observed in nature.
We have investigated whether charmonia can bind with

Δ to produce results which could allow us to further test
this approach. We have shown that the approach predicts a
negative-parity s-wave bound state in the Δ-ψð2SÞ channel
with a mass around 4.5 GeV and width around 70 MeV. It
also predicts a broader positive-parity p-wave resonance
around 4.9 GeV with width of the order of 150 MeV.
Each of these states contains several spin states with
mass differences (caused by hyperfine splitting due to
quarkonium-baryon spin-spin interaction) which are
suppressed in the heavy quark mass limit.
An important question concerns how to observe these

new pentaquark states. We have examined suitable weak
decays of bottom-baryons Λ0

b, Σb, Ξb where the new
pentaquark states PΔc could be observed. We have also
discussed how the PΔc could be observed in photon-
nucleon or pion-nucleon scattering reactions.
An important future direction is to extend the formalism

to include charmonium-hyperon bound states. As hyperons
are heavier, the formation of such bound states is more
favorable to the nucleon case. Particularly interesting new
pentaquark states would include charmonium-Ω bound
states PΩc, which include the S ¼ −3 decuplet partner of
PΔc, have the minimal content ssscc̄, and could be detected
in weak decays of Ξ0

b → J=ΨΩ−Kþ. The properties of
these and other hyperon-charmonium bound states will be
addressed in future work. As they scale with the size of the
system, the chromoelectric polarizabilities of bottonia are
too small, and the resulting effective interactions are too
weak to form nucleon-bottomium bound states. An inter-
esting open question concerns the possibility of whether the
heavier hyperons may form bound states with bottonia.
This is another interesting topic to explore in future studies.
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APPENDIX: CHIRAL PROPERTIES
OF EMT DENSITIES

In this Appendix, we review the large-r behavior of the
EMTdensitiesT00ðrÞ, sðrÞ,pðrÞ derived fromsolitonmodels
in the large-Nc limit. The chiral soliton fields are described in
terms of profiles PðrÞ [9,10]. Although the dynamics of the
different models is much different, chiral symmetry uniquely
dictates that the profiles exhibit at asymptotic distances, in
practice at r≳ ð1–2Þ fm, the behavior

PðrÞ ¼ 2R2
0

r2
ð1þmπrÞ expð−mπrÞ þ…; ðA1Þ

where the dots indicate subleading terms. This behavior is
universal, i.e., valid for all (light) baryons in the large-Nc
limit. The “soliton size” R0 is a characteristic and in general
model-dependent length scale in the respective model. In the
chiral limit, however, it can be relatedmodel independently to
the axial-coupling constant of the nucleon and the pion decay
constant; see Eq. (21).
In the χQSM and the Skyrme model, the large-r behavior

of the EMT densities can be computed analytically [9,10].
Retaining only the leading chiral contributions, one obtains
from Eq. (A1) the results [10]

T00ðrÞ ¼
1

2

F2
πR4

0

r6
ð6þ 12mπrþ 11m2

πr2

þ 6m3
πr3 þ 2m4

πr4Þe−mπr þ…; ðA2aÞ

pðrÞ ¼ −
1

6

F2
πR4

0

r6
ð6þ 12mπrþ 13m2

πr2

þ 10m3
πr3 þ 4m4

πr4Þe−mπr þ…; ðA2bÞ

sðrÞ ¼ 1

2

F2
πR4

0

r6
ð6þ 12mπrþ 14m2

πr2

þ 8m3
πr3 þ 2m4

πr4Þe−mπr þ…: ðA2cÞ

In the chiral limit, one finds the behavior quoted in
Eqs. (20a)–(20b) in the main text, and for mπ ≠ 0, one
obtains large-distance behavior

T00ðrÞ ¼ F2
πR4

0

m4
π

r2
e−mπr þ…; ðA3aÞ

pðrÞ ¼ −
2

3
F2
πR4

0

m4
π

r2
e−mπr þ…; ðA3bÞ

sðrÞ ¼ F2
πR4

0

m4
π

r2
e−mπr þ… ðA3cÞ

Notice that Eq. (21) is valid only in the chiral limit. For
physical pion masses, Eq. (21) approximates the respective
model prediction for gA within 5% [10].
Although derived in soliton models, these results are

practically model independent. In particular, it was shown
that they imply the correct chiral behavior of the EMT
form factors which coincides with chiral perturbation
theory [58,59] if one considers that the large-Nc limit
and chiral limit do not commute [9]. The noncommutativity
of these limits is caused by the special role of the Δ
resonance. In the large-Nc limit, the Δ-nucleon mass
splitting vanishes,

MΔ −MN ∼OðN−1
c Þ; ðA4Þ

such that chiral loops with the Δ resonance as an inter-
mediate state contribute on the same footing as nucleon
intermediate states to chiral properties. The contribution of
the Δ to scalar-isoscalar quantities in the large-Nc limit is
exactly two times larger than that of the nucleon [60].
Therefore, e.g., the leading nonanalytic contributions
to the D term derived from soliton models are three times
larger than in chiral perturbation theory [9]. We have
taken this into account in Sec. III in our estimates of the
Calogero bounds for α by reducing the coefficient in the
large-r asymptotics of VeffðrÞ by factor 3. This resulting
bound is a lower and more realistic bound for Nc ¼ 3
colors.
It is interesting to inspect the local criterion (18) at

asymptotic distances. In the chiral limit, the compliance of
with (18) is evident. But for finite mπ, the leading terms
from (A2), i.e., the terms displayed in Eq. (A3a) in the
main text, cancel out exactly, and the criterion (18) is
fulfilled by the subleading chiral terms. The results for both
cases are

2

3
sðrÞ þ pðrÞ ¼ F2

πR4
0 ×

8<
:

1
r6 for mπ ¼ 0;

m3
π

r3 e
−mπr for mπ ≠ 0:

ðA5Þ
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