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We study microscopic processes responsible for chirality flips in the thermal bath of quantum
chromodynamics at finite temperature and zero baryon chemical potential. We focus on the temperature
range where the crossover from chirally broken phase to quark-gluon plasma takes place, namely,
T ≃ ð150; 200Þ MeV. The processes we consider are quark-quark scatterings mediated by collective
excitations with the quantum number of pions and σ meson; hence we refer to these processes simply as
one-pion (one-σ) exchanges. We use a Nambu-Jona-Lasinio model to compute equilibrium properties
of the thermal bath, as well as the relevant scattering kernel to be used in the collision integral to estimate
the chiral relaxation time τ. We find τ≃ 0.1 ÷ 1 fm=c around the chiral crossover.
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I. INTRODUCTION

Interactions of fermions with nontrivial gauge field
configurations carrying a finite winding number, QW ,
lead to chiral imbalance between the densities of right-
handed, nR, and left-handed, nL, chiral fermions. The
imbalance—induced via the Adler-Bell-Jackiw (ABJ)
anomaly [1,2]—is characterized by the finite chiral
density, n5 ≡ nR − nL. In finite-temperature quantum
chromodynamics (QCD) the topological gauge field
configurations in Minkowski space are named sphaler-
ons, whose production rate has been estimated to be
quite large [3,4]. The large number of sphaleron
transitions at high temperature suggests the possibility
that net chirality might be abundant (locally) in the
quark-gluon plasma phase of QCD. This observation
stimulated many studies of various exotic effects;
see [5–22] and references therein.
In order to describe equilibrium systems with a finite

chiral density n5 ≠ 0 it is customary to introduce the chiral
chemical potential, μ5, conjugated to the chiral density n5
[23–42]. Because of the chiral ABJ anomaly as well as
chirality-changing processes the chiral density n5 is not a
strictly conserved quantity. One might, however, assume
that the chiral chemical potential μ5 ≠ 0 describes a system
in thermodynamical equilibrium with a fixed value of
the chiral charge n5 on a time scale much larger than
the typical chiral relaxation time scale τ that is needed for
n5 to equilibrate. For example, this equilibration has been
recently studied in [23] where n5 is generated dynamically

via the chiral anomaly activated by the simultaneous
presence of parallel electric and magnetic fields.
In this article we compute the chiral relaxation time, τ, in

a two flavor Nambu-Jona-Lasinio (NJL) model that is
invoked to mimic the QCD thermal bath in the temperature
range T ≃ ð150; 200Þ MeVwhere the crossover from color
confinement phase to quark-gluon plasma takes place. The
main processes we consider are quark-quark scatterings
mediated by collective excitations with the quantum
numbers of pions; hence we simply call these processes
one-pion exchange. We also consider, for completeness,
scattering mediated by σ-meson exchange, which, however,
is less relevant both because of the larger σ mass and
because of the smaller weight of the diagrams with σ
exchange compared to the ones with a pion exchange.
We use the NJL model to evaluate the chiral condensate

at finite temperature, which allows us to compute the
constituent quark mass in the thermal bath. Once the quark
mass is known, we use the well-established NJL formalism
to compute the scattering kernel of the microscopic
processes we consider, and the collision integral (which
represents the main numerical computation of this work)
that allows us to estimate the relaxation time of chirality.
The main result of our article is that we find τ≃ 0.1 ÷ 1 fm
in the aforementioned crossover temperature range. We
also find that the relaxation time decreases with temper-
ature, regardless of the fact that chiral symmetry gets
partially restored at the crossover. This is explained by
taking into account that although the scattering kernel of
chirality flipping processes becomes smaller with increas-
ing temperature, the portion of phase space for the
scattering increases with temperature, eventually leading
to an increase of the scattering rate and a lowering of the
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relaxation time. The behavior of τ versus temperature
computed here is in some disagreement with the ansatz
τ ∝ 1=Mq used in Ref. [23], where Mq corresponds to the
constituent quark mass, which was admittedly too simple as
it did not take into account properly the phase space
opening at finite temperature.
We also consider a computation in which we merge by

hand the NJL model below the critical temperature with a
quasiparticle model above the critical temperature: the
latter differs from NJL because the quasiparticle thermal
mass, which is obtained by a numerical fit of Lattice data
about pressure, entropy, and energy density, is assumed to
arise as a pole in the propagator dressed with a chiral
invariant self-energy rather than from a term ∝ ψ̄ψ in the
Lagrangian. This thermal mass is generated by many
body effects that are not present in a mean field NJL: in
fact the latter describes only the constituent mass arising
from both spontaneous and explicit chiral symmetry
breaking. In quasiparticle models the thermal mass is
generally found to be large around the chiral crossover
and increasing with temperature [43–52]; this large mass
suppresses thermal quark excitations; therefore, we
expect that interpolating between NJL and quasiparticles
around the chiral crossover will lower the collision rate,
and hence increase the relaxation time. This rough idea is
in agreement with our results. We do not, however, push
very much the results of this calculation since it is far
from being rigorous: our only purpose is to illustrate how
the collision rate would be affected if beside the NJL
constituent quark mass one introduces in an effective
way many body effects encoded in a large thermal mass
above Tc.
The plan of the article is as follows. In Sec. II we state

the problem and set up the main equations needed to
compute the relaxation time. In Sec. III we discuss the
one-meson exchange within the NJL model. In Sec. IV
we summarize our main findings, in particular, the
relaxation time shown in Figs. 4 and 8. Finally, in
Sec. V we draw our conclusions.

II. RELAXATION TIME OF CHIRAL DENSITY

The main aim of this article is to compute the relaxation
time τ for chirality flips R ↔ L in a thermal bath at given
temperature T. In our effective-model approach the specific
microscopic process responsible for the chirality flips is the
pion exchange between left- and right-handed quarks. We
discuss this process in detail below. In this section we begin
with a brief statement of the problem of chiral density
relaxation, then we define the microscopic process that
changes chirality in the thermal bath and compute the
relevant scattering matrix.
In order to state the problem we consider quark matter in

the background of parallel electric and magnetic fields
[23,53–55]. In this case the evolution of the chiral density
n5 with time is given by

dn5
dt

¼ −n5Γþ Nc
ðeEÞðeBÞ

2π2
X
f

q2fe
− πM2

jqfeEj; ð1Þ

where the first term on the right-hand side describes a
relaxation of the chiral density due to chirality-changing
processes in the thermal medium, while the second term
comes from the ABJ chiral anomaly supplemented with the
exponential prefactor that takes into account the finiteness
of the quark massM. The quantity Γ in Eq. (1) corresponds
to the rate of the chirality flips while its inverse defines the
chiral relaxation time,

τ ¼ 1=Γ: ð2Þ

Physically, Eq. (1) indicates that in parallel electric and
magnetic external fields the ABJ anomaly creates a chiral
imbalance n5. According to the second term of Eq. (1), the
chiral density should start to grow linearly with time if even
the chiral imbalance was initially absent in the system,
n5 ¼ 0. This process would continue forever—as long as
the external fields are not screened by the media—if there
were no other processes in the system. However, in the
thermal bath certain microscopic processes may flip the
chirality of quarks and the significance of the chirality-
flipping process increases with the increase of the chiral
density n5. These processes are encoded in the first term in
Eq. (1) where Γ is the chirality-changing rate that defines
the characteristic chiral relaxation time τ, Eq. (2). If one
waits long enough, t ≫ τ, the value of chiral density n5
exponentially equilibrates at the following value:

neq5 ¼ Nc
ðeEÞðeBÞ

2π2
τ
X
f

q2fe
− πM2

jqfeEj: ð3Þ

The knowledge of the relaxation time τ is therefore crucial
since it allows us to determine the equilibrium value of
chiral density, neq5 , and to compute the thermodynamically
conjugated chiral chemical potential μ5.
As we describe in more detail below, the microscopic

processes we are interested in are quark-quark scattering
mediated by collective modes with the quantum numbers
of pions; hence we refer to these processes as one-pion
exchange for simplicity. The computation of τ for the
physical setup described above—i.e., for the system of
quarks in external electromagnetic fields—is too compli-
cated because the external fields create a finite chiral
density n5 that is associated with nonzero chiral chemical
potential μ5; the nonzero μ5 and the fields affect the quark
propagators, indirectly changing meson properties and
scattering amplitudes, making the consistent calculation
very tough. Therefore, here we limit ourselves to a much
simpler problem, namely, the computation of relaxation
time τ for a system without external fields at a negligibly
small value of the chiral chemical potential μ5 ≪ T. In this

M. RUGGIERI, G. X. PENG, and M. CHERNODUB PHYSICAL REVIEW D 94, 054011 (2016)

054011-2



paper we are not interested in a concrete physical mecha-
nism that creates the chiral imbalance. A similar approach
has already been used in [56] to estimate τ in quark-gluon
plasma, where gluon- and photon-mediated Compton
scattering processes have been taken as the microscopic
mechanisms for chirality flips in the thermal bath. Here we
differ from Ref. [56] because in the region of the chiral
crossover the pion-exchange processes are much more
effective compared to the Compton scattering.1

By the very definition of the chiral density,

n5 ¼ NcNf

Z
d3p
ð2πÞ3 ðfR − fLÞ; ð4Þ

where fR;L denote distribution functions for the right-
handed and left-handed quarks, respectively, we get

dn5
dt

¼ NcNf

Z
d3p
ð2πÞ3

�
dfR
dt

−
dfL
dt

�
: ð5Þ

The overall NcNf takes into account that n5 is defined as a
sum over color and flavor; keeping this in mind, fR;L
denote distribution functions for a quark with color and
flavor fixed. Time evolution of fR;L is given by the
Boltzmann collision integral,

dfRðpÞ
dt

¼
Z

dΠ
ð2πÞ4δ4ðpþ k − p0 − k0Þ

2Ep
jMj2F; ð6Þ

where dΠ corresponds to the standard momentum space
measure,

dΠ ¼ d3k
ð2πÞ32Ek

d3k0

ð2πÞ32E0
k

d3p0

ð2πÞ32E0
p
; ð7Þ

and the kernel F takes into account the population of the
incoming and outgoing particles in the process. In Eq. (6)
the squared transition amplitude jMj2 is the main ingre-
dient in the collision integral and it can be computed once a
microscopic process has been chosen.
The microscopic processes on which we focus in this

article are the transitions qRqR → qLqL and vice versa. The
change of chiral density produced by these processes would
cancel if the thermal bath is chirally balanced, μ5 ¼ 0.
However, the presence of the chiral imbalance μ5 ≠ 0
implies a different population of R- and L-handed quarks,
which in turn results in a finite rate for the chiral density
equilibration. Given this microscopic process it is possible
to specify the kernel Fðp; k; p0; k0Þ in Eq. (6). In this study

we consider the simple case of the classical Boltzmann
kernel, namely,

Fðp; k; p0; k0Þ ¼ fLðp0ÞfLðk0Þ − fRðpÞfRðkÞ ð8Þ

for the scattering of two incoming R quarks giving two
outgoing L quarks. The Boltzmann distribution functions
are defined as

fR=LðpÞ ¼ e−βω� ; ð9Þ

where the dispersion relation is

ωs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ sμ5Þ2 þM2

q

q
; s ¼ �1: ð10Þ

We also consider the Fermi-Dirac kernel,

Fðp; k; p0; k0Þ ¼ fLðp0ÞfLðk0Þ½1 − fRðpÞ�½1 − fRðkÞ�
− fRðpÞfRðkÞ½1 − fLðp0Þ�½1 − fLðk0Þ�;

ð11Þ

where the distribution functions

fR=LðpÞ ¼
1

1þ eβω�
ð12Þ

correctly take into account the Pauli blocking due to the
fermionic nature of quarks.
For simplicity we limit ourselves to consider the lowest

order in μ5=T in the collision integral (6). When we
combine dfR=dt and dfL=dt in Eq. (5) we take into
account that

dfL
dt

¼ dfR
dt

ðμ5 → −μ5Þ; ð13Þ

so only the odd part in μ5 contributes to dn5=dt. It is easy
to verify that both the Dirac delta argument and the
four energies in the denominator are even functions of
μ5; thus, it is enough to consider these at μ5 ¼ 0 and expand
Fðp; k; p0; k0Þ in Eq. (8) up to the first order in μ5=T.
Writing

dfR
dt

¼ AðpÞ þ μ5BðpÞ þOðμ25Þ ð14Þ

and taking into account Eq. (13) we have

dn5
dt

¼ 2NcNfμ5

Z
d3p
ð2πÞ3 BðpÞ; ð15Þ

where we have taken into account the color-flavor degen-
eracy; the squared matrix element to use in Eq. (15) is given
by Eq. (48). The collision rate for chirality change, Γ, is
obtained from Eq. (1), namely,

1Using explicit expressions of Ref. [56] we estimated that the
pion-mediated processes—with the relaxation time given in our
Fig. 8 below—are about 1 or even 2 orders of magnitude faster
compared to the Compton scattering.
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Γ ¼ −
1

n5

dn5
dt

; ð16Þ

and the relaxation time is then computed by Eq. (2).
In order to relate the chiral density to the chiral chemical

potential we use the NJL model at finite μ5 [26,27], limiting
ourselves to the leading order in μ5=T. The chiral density
n5 can be computed as n5 ¼ −∂Ω=∂μ5 where Ω is the
thermodynamic potential,

Ω ¼ ΩMF þΩv þ ΩT; ð17Þ

with

ΩMF ¼ ðMq −m0Þ2
4G

; ð18Þ

Ωv ¼ −NcNf

X
s¼�1

Z
d3p
ð2πÞ3 ωs; ð19Þ

ΩT ¼ −2NcNfT
X
s¼�1

Z
d3p
ð2πÞ3 log ð1þ e−βωsÞ: ð20Þ

In the above equations Mq ¼ m0 − 2Ghq̄qi with hq̄qi ¼
hūui þ hd̄di corresponding to the chiral condensate. To
obtain the chiral density as a function of μ5 we expand
Eq. (17) up to Oðμ25T2Þ,

Ω ¼ Ω0 þ μ25ðL0 þ LTÞ; ð21Þ

where Ω0 corresponds to the thermodynamic potential for
μ5 ¼ 0, namely,

Ω0 ¼
ðMq −m0Þ2

4G
− 2NcNf

Z
d3p
ð2πÞ3 ω − 4NcNfT

×
Z

d3p
ð2πÞ3 log ð1þ e−βωÞ; ð22Þ

with ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q

q
.

The term quadratic in μ5 in Eq. (21) comes with the
prefactors,

L0 ¼ −
NcNf

2π2
M2

q

Z
Λ

0

dp
p2

ðp2 þM2
qÞ3=2

; ð23Þ

LT ¼ −
NcNf

π2

Z
∞

0

dp
p2

ðp2 þM2
qÞ3=2

×
ð−M2

qeβω þ βp2ωeβω −M2
qÞ

ðeβω þ 1Þ2 : ð24Þ

By virtue of the equations above we can write

n5 ¼ −2μ5ðL0 þ LTÞ: ð25Þ

It can be easily verified that L0 vanishes for Mq ¼ 0. On
the other hand in the limit of vanishing quark mass the
above equation leads to n5 ¼ NcNfμ5T2=3 in agreement
with Ref. [6].
Divergent ultraviolet integrals in the above equations

are regulated by a hard cutoff Λ, where Λ is considered as
one of the parameters of the model and its value is fixed by
phenomenological requirements together with the NJL
coupling, G, and the bare quark mass. The parameter
set we use is Λ ¼ 653 MeV, m0 ¼ 5.39 MeV, and
G ¼ 2.14=Λ2. Taking into account Eqs. (15), (16), and
(25) we can write the rate for the chirality change as

Γ ¼ NcNf

L0 þ LT

Z
d3p
ð2πÞ3 BðpÞ; ð26Þ

with BðpÞ defined in Eq. (14). The relaxation time for
chirality is then given by Eq. (2).

III. ONE-MESON EXCHANGE WITHIN
THE NJL MODEL

We are interested in interaction channels that lead to a
change of chiral density in the thermal bath. Here we focus
on one-pion exchange, which should be the dominant
process around the chiral crossover. We also consider
scattering mediated by the σ meson but its contribution
to the collision rate is found to be smaller than the one
obtained by one-pion exchange. We assume that quarks
are in equilibrium in a thermal bath with temperature T and
chiral chemical potential μ5 ≠ 0 (a vanishing μ5 would
lead to a zero net chiral density change by this process) and
we focus on transitions qRqR → qLqL and qLqL → qRqR.
Strictly speaking, a system with the chiral imbalance,
μ5 ≠ 0, cannot be in thermal equilibrium due to chiral-
ity-changing processes that are the subject of this article.
However, we assume that there is a process that pumps the
chiral charge into the system so that the mean chiral density
and, consequently, the chiral chemical potential, are both
nonzero. The chiral charge may be pumped into the system
by the chiral anomaly in the background of parallel electric
and magnetic fields (see, e.g., Ref. [23] for the relevant
discussion in the context of the NJL model).

A. Quark-pion scattering kernel

In order to compute the rate for chirality-changing
processes (2) in the medium close to the chiral phase
transition we use a two flavor NJL model [57,58] (see
[59,60] for reviews) with Lagrangian density given by

L ¼ q̄ðiγμ∂μ −m0Þqþ L4; ð27Þ
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where q denotes a quark field with Dirac, color, and flavor
indices and m0 is the current quark mass. In the above
equation the interaction Lagrangian, L4, is given by

L4 ¼ G½ðq̄qÞ2 þ ðq̄iγ5τqÞ2�; ð28Þ

which is invariant under the SUð2ÞV ⊗ SUð2ÞA ⊗ Uð1ÞV
group, and G is a coupling constant with mass dimension
d ¼ −2. Introducing the collective fields σ ¼ Gq̄q,
π ¼ Gq̄iγ5τq, after a Hubbard-Stratonovich transformation
the interaction term L4 can be written as

L4 ¼ 2Ghq̄qiq̄qþ q̄½g0σqqσ þ g0πqqiγ5τ · π�q

−
ðGhq̄qi þ σÞ2 þ π2

G
; ð29Þ

where we have introduced the bare quark-meson couplings
g0σqq ¼ g0πqq ¼ 2. The bare couplings get renormalized by
quark interactions in the medium and they give effective
quark-meson couplings. From now on we denote by σ the
quantum fluctuation of the collective field Gq̄q on the top
of its expectation value Ghq̄qi. In the partition function of
the model specified by Lagrangian (29) an integration over
quark and meson fields is understood; the Lagrangian is
quadratic in quark fields so the functional integral can be
done exactly and one is left with an effective Lagrangian for
meson fields, whose in-medium propagators can be com-
puted easily by the random phase approximation; it is then
possible to write an effective quark-quark interaction due
to one-meson exchange. Since this topic is well established
in the literature, below we quote, without derivations, the
basic equations relevant for the present study and refer the
interested reader to the review [59] for further details. We
first focus on the one-pion exchange as it is the dominant
process in the temperature range of our interest; the
description of σ-meson exchange can be obtained easily
once the formalism for the pion exchange is established.
From Eq. (29) we can extract the quark-pion interaction

at the tree level,

Lπqq ¼ ig0πqqq̄γ5τ · πq ¼ ig0πqqðq̄Lτ · πqR − q̄Rτ · πqLÞ;
ð30Þ

where we have made explicit the change of chirality of
quarks due to the interaction with a pionlike collective
excitation. Therefore, it is possible to change the net
chirality of the system by virtue of processes qRqR →
qLqL and vice versa. The change of chiral density produced
by these processes would cancel if in the thermal bath
μ5 ¼ 0; however, assuming μ5 ≠ 0 implies a different
population of R- and L-handed quarks, which in turn
results in a finite rate for chiral density equilibration given
in (26) and (2).

The amplitude for the scattering process qq → qq due to
one-pion exchange can be written as

iM ¼ iq̄aiqbjq̄ckqdlðUαβÞabcdijkl ; ð31Þ

where a;…; d denote Dirac indices and i;…;l correspond
to flavor indices (one-meson exchange is blind to color
hence there is no need to introduce a color index in the
above equation). The scattering kernel, U, is given in the
random phase approximation by

iðUαβÞabcdijkl ¼ iðT αÞabij
2G

1 − 2GΠ
ðT βÞcdkl; ð32Þ

where interaction vertex T carries Dirac and flavor struc-
ture and depends on the particular interaction channel,

T α ¼ iγ5 ⊗ Tα: ð33Þ

For π0 exchange T α ¼ T β ¼ σ3 with σ3 being the third
Pauli matrix in flavor space; for π� exchange one has to use
the combinations

τ� ¼ 1ffiffiffi
2

p ðσ1 � σ2Þ: ð34Þ

However, the scattering amplitude does not depend on
the particular channel chosen among the neutral and
charged pion exchanges (neglecting the small mass differ-
ence between π� and π0); therefore, from now on we
suppress the greek indices and focus on π0 exchange. From
Eq. (32) it is possible to read the in-medium meson
propagator in momentum space,

Dðk2Þ ¼ 2G
1 − 2GΠðk2Þ ; ð35Þ

where the pion self-energy is given by

Πðk2Þ ¼ −iTr
Z

d4p
ð2πÞ4 γ5σ3SðpÞγ5σ3Sðp − kÞ: ð36Þ

A standard algebraic manipulation leads to [59]

Πðk0; kÞ ¼
1

2G

�
1 −

m0

Mq

�
þ 2NcNfk2Iðk2Þ; ð37Þ

where2

Iðk0; kÞ ¼ −i
Z

d4p
ð2πÞ4

1

ðp2 −M2
qÞ½ðp − kÞ2 −M2

q�
ð38Þ

2Our definition of I differs from the one of [59] for an
overall −i.
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and kμ ¼ ðk0; kÞ on the right-hand side of the above
equation.

B. σ-quark scattering kernel

The formalism set up in the previous section for the
quark-pion scattering can be adapted easily to the descrip-
tion of the scattering kernel of quarks with the σ meson. In
particular, the amplitude for the scattering process qq → qq
due to one-σ exchange can be written analogously to
Eq. (31), namely,

iM ¼ iq̄aiqbjq̄ckqdlðUÞabcdijkl ; ð39Þ

with the scattering kernel within the random phase approxi-
mation given by

iðUÞabcdijkl ¼ iðT Þabij
2G

1 − 2GΠσ
ðT Þcdkl; ð40Þ

and

T ¼ 1D ⊗ 1F; ð41Þ

where 1D and 1F denote the identity in Dirac and flavor
spaces, respectively. From Eq. (40) it is possible to read the
in-medium σ propagator in momentum space,

Dσðk2Þ ¼
2G

1 − 2GΠσðk2Þ
; ð42Þ

with self-energy given by

Πσðk2Þ ¼ −iTr
Z

d4p
ð2πÞ4 γ5σ3SðpÞγ5σ3Sðp − kÞ: ð43Þ

A standard algebraic manipulation leads to [59]

Πσðk0; kÞ ¼
1

2G

�
1 −

m0

Mq

�
þ 2NcNfðk2 − 4M2

qÞIðk2Þ;

ð44Þ

with I defined in Eq. (38).

C. Scattering amplitude: π exchange

By means of the one-pion exchange it is possible to
write several diagrams giving contribution to the scatter-
ing amplitude, represented in Fig. 1 for the case of an
incoming uR quark. We assume equal mass for charged
and neutral pions, and μ5u ¼ μ5d: in this way the one-
pion exchange is blind to quark flavor and the scattering
amplitude is independent of the particular current chosen.
Given a quark with color and flavor fixed, for the π0
exchange there are two possible processes, namely, (a)
and (b) in Fig. 1, and the charged pion exchange adds
one further process denoted by (c) in Fig. 1. In this
isospin symmetric limit the three diagrams in Fig. 1 give
the same result. We denote by Mi the antisimmetrized
amplitude corresponding to diagram (i) with i ¼ a, b, c.
For each of the diagrams with an incoming uR quark in
Fig. 1 we sum incoherently on the color of the second
incoming quark (namely, cross sections are summed
rather than amplitudes): this brings an overall Nc to
the total cross section. In addition we sum incoherently
over flavors, considering however that diagrams (b) and
(c) correspond to the same initial and final states
so the corresponding amplitudes should add coherently.
Therefore, we can write the squared amplitude as

jMj2 ¼ NcjMaj2 þ NcjMb þMcj2: ð45Þ

Since in the isospin symmetric limit the amplitude Mi
does not depend on the index i we can write

jMj2 ¼ Ncð1þ 4ÞjMaj2: ð46Þ
The calculation of the transition amplitude is quite

standard: the only detail to take into account is the
projection of initial and final states onto chirality eigen-
states. This is achieved noticing that the current can be
written as q̄Lγ5qR ¼ q̄γ5PRq, where PR ¼ ð1þ γ5Þ=2 and
a similar relation holds for the current changing an
incoming left to an outgoing right. Therefore, we can
use all the standard technology for tree level calculations of
transition amplitudes forgetting the selection of chirality in
the spinors, because it is automatically implemented thanks
to the chirality projector. In the isospin symmetric limit we

FIG. 1. Diagrams (a) and (b) correspond to neutral pion exchange; diagram (c) corresponds to charged pion exchange. Tree level
diagrams for the chirality flips of u quarks due to one-pion exchange.
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find that the diagrams in Fig. 1 give the same contribution.
We obtain

Ma ¼ DðtÞðū0p0γ5PRupÞðū0k0γ5PRukÞ
−DðuÞðū0k0γ5PRu1Þðū0p0γ5PRu2Þ; ð47Þ

here the prime denotes outgoing particles, labels 1 and 2
label the particle, and u and t denote standard Mandelstam
variables. In writing Eq. (47) we have ignored all the
overall i since they do not affect the squared matrix
element. Taking into account that for each color of the
incoming quark p there are Nc possible colors of the
incoming k for the scattering, and that the scattering
involving different colors sums up incoherently, we can
write the squared matrix element as

jMj2πqq ¼
1

4
½4Ncð1þ 4ÞDðtÞD†ðtÞa1

þ 4Ncð1þ 4ÞDðuÞD†ðuÞa2
− 2Ncð1þ 4ÞDtuða1 þ a2 − a3Þ�; ð48Þ

with Dtu ¼ DðtÞD†ðuÞ þDðuÞD†ðtÞ and ai defined as

a1 ¼
ðt − 2MqÞ2

4
; ð49Þ

a2 ¼
ðu − 2MqÞ2

4
; ð50Þ

a3 ¼
ðs − 2MqÞ2

4
; ð51Þ

with t, u, and s denoting the Mandelstam variables. The
overall factor 1=4 in Eq. (48) takes into account the average
over initial spins and sum over final spins.
From Eq. (48) we notice that the scattering takes

place in the t and u channels: because t ≤ 0 and u ≤ 0
the in-medium pion propagator is probed by spacelike
virtual momenta and the pion self-energy Πðk0; kÞ,
which is the main ingredient in the scattering kernel
in Eq. (32), has to be computed for k2 ≤ 0. After
analytic continuation to imaginary time and using the
Matsubara formalism to deal with loop integrals at finite
temperature we find

Iðk0; kÞ ¼ −
Z

d3p
ð2πÞ3

�
A

k0 þ Ep þ Epk
þ B
k0 − Ep − Epk

�
;

ð52Þ

where we have defined

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q

q
; Epk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − kÞ2 þM2

q

q
; ð53Þ

and

A ¼ 1

4Ep

tanhðEp=ð2βÞÞ
k0 þ Ep − Epk

þ 1

4Epk

tanhðEpk=ð2βÞÞ
k0 − Ep þ Epk

; ð54Þ

B ¼ 1

4Ep

tanhðEp=ð2βÞÞ
k0 − Ep þ Epk

þ 1

4Epk

tanhðEpk=ð2βÞÞ
k0 þ Ep − Epk

: ð55Þ

In Eq. (52) we have made explicit the poles at k0 ¼
�ðEp þ EpkÞ that, once treated by the iε prescription to
build a Feynman propagator, are responsible for the pion
instability towards creation of quark-antiquark pairs; in
a similar way in Eq. (54) we have split the contributions
in terms of functions that become singular when k0 ¼
�ðEp − EkpÞ that still give an imaginary part and are
related to pion emission and absorption processes by
quarks.
In the processes of interest in the present article only

the latter poles are relevant: as a matter of fact being
k2 ≤ 0 implies k20 ≤ k2; it is easy to realize that this
condition forces Ep þ Epk > jk0j for any value of k0,
hence removing the singularities ∝ ½k0 � ðEp þ EpkÞ�−1
from the p space. Physically this means that the only
contribution of the imaginary part of the scattering
kernel is related to emission and absorption processes.
Taking into account only the emission-absorption poles
the real and imaginary parts of I in Eq. (52) can be
easily obtained: treating the poles by the standard iε
prescription to build a Feynman propagator and using
the Sokhotski-Plemelj theorem,

1

x − x0 � iε
¼∓ iπδðx − x0Þ þ PV

1

x − x0
; ð56Þ

where PV corresponds to the principal value, we find

ℑIðk0; kÞ ¼ signðk0Þπ
Z

d3p
ð2πÞ3

�
1

4Ep

tanhðEp=ð2βÞÞ
k0 þ Ep þ Epk

þ 1

4Epk

tanhðEpk=ð2βÞÞ
k0 − Ep − Epk

�
δðk0 þ Ep − EpkÞ

þ signðk0Þπ
Z

d3p
ð2πÞ3

�
1

4Ep

tanhðEp=ð2βÞÞ
k0 − Ep − Epk

þ 1

4Epk

tanhðEpk=ð2βÞÞ
k0 þ Ep þ Epk

�
δðk0 − Ep þ EpkÞ: ð57Þ

We can resolve easily the two δ functions in Eq. (57),
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ℑIðk0; kÞ ¼ signðk0Þπ
Z

d3p
ð2πÞ3

1

jg0ðP�Þj
�
tanhðEp=ð2βÞÞ

4Ep
þ tanhðEpk=ð2βÞÞ

4Epk

�

×

�
1

k0 − Ep − Epk
þ 1

k0 þ Ep þ Epk

�
ðδðpx − PþÞ þ δðpx − P−ÞÞ; ð58Þ

where P� are the two solutions of the equation

gðpxÞ≡ k0 þ Ep − Epk ¼ 0; ð59Þ

satisfying P− ¼ −Pþ, and g0 denotes the derivative of g
with respect to px, whose absolute value can be easily
proved to be independent on the sign of px. The real part of
I is then obtained by taking the principal value of Eq. (52).

D. Scattering amplitude: σ exchange

For the scattering amplitude of chirality change due to σ
exchange we can follow the same lines of the previous
section. In this case the relevant diagrams are depicted in
Fig. 2, which we sum incoherently in color and flavor. In
the isospin symmetric limit, however, the two diagrams
coincide. Instead of Eq. (48) we have

jMj2σqq ¼
1

4
½4Ncð1þ 1ÞDσðtÞD†

σðtÞa1
þ 4Ncð1þ 1ÞDσðuÞD†

σðuÞa2
− 2Ncð1þ 1ÞDtuða1 þ a2 − a3Þ�; ð60Þ

with Dσ given by Eq. (42), Dtu ¼ DσðtÞD†
σðuÞ þ

DσðuÞD†
σðtÞ, and ai defined as in Eq. (48). For the real

and imaginary part of Πσ the arguments given above for
the pion self-energy are still valid; hence we do not repeat
them here.
Before going ahead we remark that a full calculation

would amount to considering the interference between the
diagrams for σ and pion exchange. We do not do this in our
work for simplicity; this decision is partly justified a pos-
teriori by the fact that we find that the collision rate due to σ
exchange is always smaller than the one due to pion
exchange; hence we expect that the interference of the
two processes does not considerably affect our results.

IV. RESULTS

A. The NJL model

In Fig. 3 we show by the green dashed line Mq versus
temperature, computed by minimization of the thermody-
namic potential in the NJL model at μ5 ¼ 0 given by
Eq. (22). We need this quantity as it enters into the
collision integral (15) via quark distribution functions
and squared matrix element (48). It also enters into the
relation between n5 and μ5 Eq. (25). From data shown in
Fig. 3 we notice a rapid decrease of Mq in the temperature
range (150,200) MeV, connecting a low-temperature phase
where chiral symmetry is spontaneously broken to a high-
temperature phase where chiral symmetry is approximately
restored. In Fig. 3 we also plot our results for masses of
pions and the σ meson, denoted respectively bymπ andmσ,
for later reference. By the inflection point of Mq we can
define a pseudocritical temperature, Tc ≃ 175 MeV, for
chiral symmetry restoration.
Next we turn to the computation of the relaxation time

of chiral density. The main task is to compute the 12-
dimensional integral in Eq. (26). We use the three-
dimensional Dirac delta to perform the integral over
d3p0 trivially; a change of variables (namely, a rigid
rotation) allows us to take p along the z axis implyingR
d3p ¼ 4π

R
p2dp. The Dirac delta expressing energy

conservation is used to integrate over kz. Eventually we are
left with a six-dimensional integral over p2dpd2kTd3k0

with d2kT ¼ dkxdky. We perform this integral numerically

50 100 150 200 250
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FIG. 3. Mq (green dashed line), mπ (solid blue line), and mσ

(orange dot-dashed line) versus temperature.

FIG. 2. Diagram (a) corresponds to u − u quarks scattering,
while diagram (b) denotes u − d scattering. Tree level diagrams
for the chirality flips of u quarks due to σ exchange.
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by a quasi-Monte Carlo routine [61,62] that uses the
MISER Monte Carlo adaptive algorithm [63,64] with a
Sobol low discrepancy sequence [65] in place of a uniform
random sequence. The integration variables are scaled in
units of temperature T, and we cut off integrals at 10T.
In Fig. 4 we plot the relaxation time of chiral density for

one-pion exchange (the green diamonds) and σ exchange
(the maroon squares) versus temperature. On the left panel
we plot the results obtained by the Boltzmann kernel in
Eq. (8); on the right panel we show our results obtained by
the Fermi-Dirac kernel in Eq. (11). One of the most
interesting aspects of data shown in Fig. 4 is the qualitative
behavior of the relaxation time versus temperature: we find
that regardless of the interaction channel chosen, as well as
the statistics used in the collision integral, τ decreases with
temperature. The lowering of τ is more evident in the low-
temperature phase and in the crossover region, staying
almost constant in the high-temperature phase.
In Fig. 4 we have shown the relaxation time for σ mesons

and for pions. We find that the relaxation time of pions is
always smaller than the one of σ mesons: in the low-
temperature phase this is mainly due to the larger mass of
the latter in comparison with that of pions, see Fig. 3. In the
high-temperature phase, where mσ ≃mπ , the relaxation
time due to σ exchange is still larger than the one obtained
by pions: as a matter of fact, even if diagram (a) in Fig. 1 is
equal to diagram (a) in Fig. 2, the multiplicity of diagrams
for π-mediated scattering is larger than the one for σ
exchange, implying that the former has a larger scattering
rate and a smaller relaxation time.
It is interesting to compare the results obtained by using

the Boltzmann kernel (8) in Eq. (26) with those obtained by
the Fermi-Dirac kernel (11), shown in Fig. 4 on left and
right panel, respectively. As expected, the use of the correct
Fermi-Dirac statistics leads to a slight increase of the

relaxation time, corresponding to a lowering of the collision
rate. This is due to the Pauli blocking factors in the collision
integral that effectively reduce the phase space available for
the collisions.
The response of τ to temperature might sound counter-

intuitive, as one might expect that by increasing temper-
ature chiral symmetry gets restored so the processes able
to flip chirality of quarks, which are naively expected to
be governed by Mq, should be suppressed and τ should
increase. However, a closer analysis of the problem shows
that it is not so trivial and one has to consider carefully all
the factors governing the relaxation time, which are the
phase space available for collisions on the one hand, and
the interaction strength on the other hand. As a matter of
fact, although the effective coupling strength among quarks
and pions can decrease with temperature, the phase space
available for collisions becomes larger thanks to smaller
quark masses and larger temperature, which broadens the
distribution functions.
This property can be illustrated by computing

J ¼ jMðt; uÞj2∂Fðt; uÞ∂μ5
����
μ5¼0

; ð61Þ

where ðt; uÞ correspond to the Mandelstam variables and F
corresponds to the kernel of the collision integral either
in Eq. (8) or (11), whose derivative with respect to μ5 at
μ5 ¼ 0 enters in the linearized collision rate (16). The
quantity J can be interpreted as the squared matrix element
weighted by distribution functions. We limit this discussion
to the case of π-mediated scattering and to the Fermi-Dirac
kernel in Eq. (8), since other cases do not differ qualita-
tively from this one. In Fig. 5 we plot J versus β

ffiffiffiffiffi
−t

p
and

β
ffiffiffiffiffiffi
−u

p
with β ¼ 1=T for several values of temperatures, for

the case of one-pion exchange and the Fermi-Dirac kernel
in the collision integral. Plots on the right column are
contour representations of the same quantities shown on the
left column. From upper to lower panels we plot J for
T ¼ 150 MeV, which is below Tc, for T ¼ Tc, and finally,
for T ¼ 210 MeV.
We notice that by increasing temperature the magnitude

of weighted matrix element J becomes gradually smaller;
hence the scattering matrix itself becomes less efficient
in producing chirality changes in the thermal bath. On the
other hand, J spreads in momentum space as temperature is
increased: in fact from the data shown in the contour plots
in the figure, results show that increasing temperature J
gets its larger contribution from the square 0 ≤ β

ffiffiffiffiffi
−t

p
≤ 5,

0 ≤ β
ffiffiffiffiffiffi
−u

p
≤ 5 in momentum space, which covers a

fraction of phase space growing as T2 with temperature.
As a consequence, the amount of phase space occupied by
quarks and giving a contribution to the collision integral
increases with temperature, competing against the lowering
of the scattering matrix and eventually leading to the
increase of the collision rate.
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0.1

1
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τ 
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]

π-exchange

σ-exchange

150 200 250 300

T [MeV]

Boltzmann kernel Fermi-Dirac kernel

FIG. 4. Relaxation time of chiral density for one-pion exchange
(green diamonds) and σ exchange (maroon squares) versus
temperature. In the left panel we plot the results obtained by
the Boltzmann kernel; on the right panel we show our results
obtained by the Fermi-Dirac kernel.
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We can elaborate more on the role of the effective phase
space opening with temperature by computing the collision
rate with jMj2 ¼ 1 in Eq. (6): in this way we remove every
detail about collisions, and Γ reacts only to the variation of
the distribution functions, hence measuring the amount of
momentum space involved in the collisions. In Fig. 6 we
plot Γ with jMj2 ¼ 1 versus temperature for the cases of
Boltzmann (red triangles) and Fermi-Dirac (green squares)
statistics. In both cases we find a noticeable increase of this
Γ in the crossover region: changing T from 150 to 200MeV
we find ΓðT ¼ 200Þ=ΓðT ¼ 150Þ≃ 18 for the case of the

Boltzmann kernel, and ΓðT ¼ 200Þ=ΓðT ¼ 150Þ≃ 11 for
the case of the Fermi-Dirac kernel.

B. Hybridization of the NJL model with
a quasiparticle model

Although the NJL model offers a nice qualitative
description of the chiral crossover at finite temperature,
it is likely to miss the description of relevant degrees of
freedom above Tc. As a matter of fact, quarks in the NJL
model above Tc have in the chiral limit a vanishing mass
within the mean field approximation; on the other hand it is
known that at large temperatures quarks develop a chirally
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invariant self-energy that generates a thermal pole mass,
MT ∝ gT, due to the QCD interactions, and this thermal
mass increases with temperature. Evading the chiral limit
by adding a small current quark mass in the NJL model
does not change the fact that Mq decreases with temper-
ature and Mq ≪ T for T > Tc. There are, however,
quasiparticle models inspired by the behavior of the
thermal mass in QCD at T ≫ Tc, in which one assumes
that a quasiparticle description is valid also at temperatures
T ≃ Tc; see for example [43–52]. In these models typically
one assumes MT ∝ gT with g corresponding to a temper-
ature dependent strong coupling constant fixed by a
numerical fit to lattice data from T ≃ Tc up to very large
temperatures.
In Fig. 7 we plot the constituent quark mass Mq

computed by the NJL model (the dashed line), compared
to the quasiparticle thermal mass MT (the dot-dashed line)
computed in Ref. [44]. The main difference between these
two masses, Mq and MT , is that the latter—contrary to the
former—is not related to a term ∝ ψ̄ψ in the quark
Lagrangian, being rather related to many body effects at
finite temperature that induce a pole in the full quark

propagator. While this concept is rigorous at very large
temperature, in quasiparticle models one assumes for
simplicity that the pole mass is still a meaningful concept
at the chiral crossover.
Assuming the point of view of a quasiparticle model

implies that above Tc quark mass can be quite large even if
chiral symmetry is restored: this can affect the collision rate
because of the reduction of momentum space occupied by
quarks. We find it therefore interesting to compute the
relaxation time of chiral density assuming a quasiparticle
nature of quarks above Tc. We achieve this by using a
model for the quark mass that interpolates between the
low-temperature NJL quark mass M ¼ MqðTÞ and the
high-temperature thermal quark mass MT ¼ MTðTÞ,
shown by the solid orange line in Fig. 7. The interpolating
function we use is

MðTÞ ¼ MqðTÞ þ aðTÞMTðTÞ; ð62Þ

where the function aðTÞ is given by

aðTÞ ¼ 1

2

�
1þ tanh

�
T − T0

c

��
: ð63Þ

In the above equation Mq corresponds to the solution of
the NJL gap equation, and MT is the quasiparticle mass
obtained by the fit of the corresponding lattice data in [44].
The two numerical parameters are chosen as T0 ¼
180 MeV and c ¼ 20 MeV. The functional form in
Eq. (62) is not the solution of a gap equation: it is chosen
only to interpolate smoothly between Mq and MT in the
crossover region, with the purpose of illustrating the effect
of turning from the NJL model to the quasiparticle one on
the relaxation time.
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In Fig. 8 we plot the relaxation time versus temperature
for the cases of the pure NJL model (green diamonds) and
NJL model hybridized with a quasiparticle model (maroon
triangles); in both cases we have used the Fermi-Dirac
kernel in the collision integral. We find that the overall
effect of the quasiparticle model mass is to increase the
relaxation time: as a matter of fact the increase of quark
mass induces a lowering of the available phase space for the
collisions, leading to a smaller collision rate and a larger
relaxation time in comparison with the NJL calculation.
Although relaxation time within the quasiparticle model is
larger than the one we obtain within the NJL model, the
effect of increasing temperature leads to a nonmonotonic
behavior of the relaxation rate τ: in fact the increasing ofM
given by Eq. (62) has to compete with the increase of
temperature that opens phase space and increases the
collision rate.

V. CONCLUSIONS

In this article we have studied relaxation of chiral
density, n5, in the two flavor NJL model that describes
in simple terms the chiral crossover of QCD at a temper-
ature Tc ≃ 170 MeV. In particular, we have computed the
relaxation time for chiral density τ (the chiral relaxation
time), which is associated with the scattering of quarks via
one-pion and one-σ-meson exchanges. These processes are
good candidates for inducing chirality flips in quark matter
around the chiral crossover within the effective-model
approach based on the NJL model.
In order to compute the chiral relaxation time, τ, we have

followed the well-established formalism to deal with quark
scattering within the NJL model. First, we evaluated the
finite-temperature π- and σ-meson propagators within the
random phase approximation. Secondly, we calculated
scattering amplitudes due to meson exchanges. Thirdly,
we used the latter to compute the collision integral for the

chirality-changing processes that is directly related to the
relaxation of the chiral density, dn5=dt, and we used again
the NJL model to relate the chiral density n5 with chiral
chemical potential μ5 in the thermal bath. We assumed a
weak chiral imbalance μ5 ≪ T in order to be able to work at
the lowest order in μ5=T that allowed us to drastically
simplify the computation of the collision integral. Finally,
we compute the collision rate Γ and the chiral relaxation
time τ via the relation Γ ¼ −ðdn5=dtÞ=n5. We focused on a
temperature range around the chiral crossover because at
this region the quark degrees of freedom should have solid
physical meaning.
We found that the results for the chiral relaxation

time τ do not depend on the statistics used to calculate
the collision integral as, according to Fig. 4, both
Boltzmann and Fermi-Dirac distributions give very
similar results in the chiral crossover region.
Moreover, the same figure demonstrates that the chiral
relaxation time τσ due to the σ-meson exchange is much
larger compared to the relaxation time τπ corresponding
to the pion exchanges, τσ ≫ τπ . This feature can be
explained by the fact that in the low-temperature phase
the σ exchange is suppressed because σ-meson mass is
larger than pion mass. Around and above the chiral
crossover the masses are of the same order, mσ ≃mπ ,
but still the relaxation time related to the σ exchange is
much larger compared to the one of the pion exchange
due to larger number of the diagrams that contribute to
the latter. Thus, the pion exchanges are dominating the
chiral relaxation processes.
We have computed also the relaxation time in the

hybridized NJL model, where the constituent quark’s mass
in the chirally restored region is tuned to the thermal mass
of the quarks obtained by a fit to lattice data about QCD
thermodynamics in [44]. Our results for the chiral relax-
ation time τ in the chiral crossover region are summarized
in Fig. 8. We find that regardless of the choice of the
thermal quark mass, the chiral relaxation time follows an
almost monotonic behavior with increasing temperature,
even if the effect of the thermal mass is to keep τ higher
compared to the one computed within the NJL model.
Globally, the relaxation time falls down with the increase of
the temperature from τ≃ 1 fm at the lower-temperature
end of the crossover at T ≃ 150 MeV till much faster chiral
flips, τ≃ 0.1 fm at higher temperature at T ≃ 250 MeV.
The fast increase of the collision rate (i.e., the lowering of τ)
with rising temperature can be understood as a combination
of two factors: on the one hand, the scattering matrix
weighted by the distribution functions decreases with
temperature, but on the other hand it also broadens in
the momentum space, thus effectively leading to a growing
of the phase space volume involved in collisions. The latter
dominates over the former, thus enhancing the collision
rate and lowering the relaxation time with increase of
temperature.
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FIG. 8. The chiral relaxation time for the NJL model (the green
diamonds) and NJLþ qp model (the maroon triangles).
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