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We consider how tetraquarks can affect the chiral phase transition in theories like QCD, with light quarks
coupled to three colors. For two flavors the tetraquark field is an isosinglet, and its effect is minimal. For
three flavors, however, the tetraquark field transforms in the same representation of the chiral symmetry
group as the usual chiral order parameter, and so for very light quarks there may be two chiral phase
transitions, which are both of first order. In QCD, results from the lattice indicate that any transition from
the tetraquark condensate is a smooth crossover. In the plane of temperature, T, and quark chemical
potential, μ, a crossover line for the tetraquark condensate is naturally related to the transition line for color
superconductivity. We stress that including tetraquarks is essential in using effective models to determine
the position of a critical end point in the plane of T and μ. For four flavors we suggest that a triquark field,
antisymmetric in both flavor and color, combine to form hexaquarks.
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I. INTRODUCTION

As suggested first by Jaffe [1], it is most plausible that in
QCD, the lightest scalar mesons with JP ¼ 0þ are com-
posed not just of a quark and antiquark, but contain a
significant admixture of tetraquark states, with two quarks
and two antiquarks [2–10]. Recently, there is increasing
experimental evidence for tetraquark and even pentaquark
states of heavy quarks [11].
In this article we concentrate on light quarks, and

generalize the standard analysis of the chiral phase tran-
sition at nonzero temperature [12–15] to consider how
tetraquarks can affect the chiral transition [16,17]. We limit
ourselves to three colors, and start with the case of two
flavors, showing that tetraquarks probably have a small
effect on the chiral phase transition. For three flavors,
though, if the quarks are sufficiently light then it is
possible—although not guaranteed—that the tetraquark
field generates a second chiral phase transition. In the
chiral limit both chiral phase transitions are of first order.
We discuss implications for the phase diagram of QCD at
nonzero temperature and chemical potential, and conclude
with some speculations about four flavors.
A detailed comparison of models with tetraquarks to

the hadronic spectrum is necessarily complicated and
involves not just the masses of hadronic states, but their
decays [1–10]. Thus our discussion is largely qualitative, to
emphasize what we find is an unexpected relation between

hadronic phenomenology at zero temperature and the phase
transitions of QCD.

II. NOTATION

Left- and right-handed quarks and antiquarks are
defined as

qL;R¼PL;Rq; q̄L;R¼ q̄PR;L; PL;R ¼
1� γ5
2

; ð1Þ

with γ25 ¼ 1.
We assume that there are Nf flavors of massless quarks,

which transform under the chiral symmetry group of
SUðNfÞL × SUðNfÞR ×Uð1ÞA as

qL → e−iα=2ULqL; q̄L → eþiα=2q̄LU
†
L;

qR → eþiα=2URqR; q̄R → e−iα=2q̄RU
†
R; ð2Þ

UL;R are elements of SUðNfÞL;R and α is an axial rotation
in Uð1ÞA.
For most of our discussion we implicitly limit ourselves

to the case of nonzero temperature and zero quark chemical
potential. This allows us to assume that the Uð1Þ symmetry
for quark number remains unbroken. At nonzero chemical
potential color superconductivity can occur, which sponta-
neously breaks this Uð1Þ symmetry [18–20]. As discussed
in Sec. VII, the generalization to nonzero quark chemical
potential requires a separate analysis.
To construct the effective fields it helps to explicitly

denote the flavor and color indices. The quark field qaA,
where a ¼ 1;…; Nf is the flavor index for Nf flavors, and
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A ¼ 1;…; Nc for Nc colors. The usual order parameter for
chiral symmetry is given by combining a left-handed
antiquark and a right-handed quark as a color singlet,

Φab ¼ q̄bAL qaAR : ð3Þ

This field transforms as N̄f ×Nf under SUðNfÞL and
SUðNfÞR,

Φ → eþiαURΦU
†
L: ð4Þ

Under the axial Uð1ÞA symmetry we can choose the
convention that Φ has charge ¼ þ1.
We note that the combination of antiquark and a quark

with the same chirality automatically vanishes: e.g.,
q̄LqL ¼ q̄PRPLq ¼ 0. In contrast, for tetraquarks it is
possible to pair two diquark fields of the same chirality,
Eq. (9) and Sec. IV B.
The chirally invariant couplings of quarks to the gauge

field Aμ and to the chiral field Φ are

Lqk
Φ ¼ q̄LDqL þ q̄RDqR þ yΦðq̄RΦqL þ q̄LΦ†qRÞ; ð5Þ

where Dμ ¼ ∂μ − igAμ is the covariant derivative.
The Yukawa term∼yΦ which couples quarks to the chiral

field Φ is an effective coupling. Including such a term is
useful in constructing an effective model for the chiral
transition [21]. We only write this term in order to contrast
the difference between the possible effective couplings
between quarks and the tetraquark fields in Eqs. (18)
and (29).
We note that it is possible for chiral symmetry to be

broken not by a quark antiquark operator in the 3̄ × 3
representation, but by a four quark operator in the 8 × 8
representation [22,23]. These four quark operators differ
from the tetraquark operators which we consider. In QCD,
though, there are general arguments against this possibility
[23], and certainly no indication from numerical simula-
tions on the lattice that this occurs [24–26].

III. TWO FLAVORS

The most attractive channel for the scattering of two
quarks is antisymmetric in both flavor and color [1]. For
two flavors, a diquark in this channel is then an antitriplet in
color and an isosinglet in flavor,

χAL ¼ ϵABCϵabðqaBL ÞTC−1qbCL ; ð6Þ

where C is the charge conjugation matrix [5]. In a basis
where γ5 ¼ ð12;−12Þ is diagonal, C ¼ diagð−σ2; σ2Þ. The
transpose of the quark field and the charge conjugation
matrix C are necessary to form a Lorentz scalar. This
combination is naturally related to the diquark condensates
for color superconductivity [18–20].

To obtain a spin zero field we combine left-handed
diquark with a right-handed diquark to form

ζ ¼ ðχARÞ�χAL: ð7Þ

The tetraquark field ζ is a color singlet and complex valued.
It is invariant under SUð2ÞL × SUð2ÞR, but transforms
under axial Uð1ÞA as

ζ → e−2iαζ; ð8Þ

so that ζ has axial Uð1ÞA charge ¼ −2.
Unlike for Φ, we can also form tetraquark fields from

diquarks of the same chirality,

ζL ¼ ðχALÞ�χAL; ζR ¼ ðχARÞ�χAR: ð9Þ

Both ζL and ζR are real valued and singlets under all flavor
transformations. Thus while they can be constructed, there
is no reason to expect that they should significantly affect
the dynamics in any interesting way. In particular, they
appear through terms which are linear in themselves and
have an expectation value at any temperature.
We thus turn to constructing an effective Lagrangian

which couples the usual chiral field Φ and the tetraquark
field ζ under an exact chiral symmetry of SUð2ÞL×
SUð2ÞR.
We assume that in counting mass dimensions, all scalar

fields have mass dimension one, as holds for a fundamental
scalar in four spacetime dimensions. Since the quarks have
mass dimension 3=2, this is different from their nominal
mass dimension, which is three for Φ and six for ζ. This is,
however, a standard assumption in constructing effective
models and is certainly justified by the renormalization
group near a transition of second order. We then categorize
all terms up to quartic order in Φ and ζ.
While in the chiral limit the SUð2ÞL × SUð2ÞR symmetry

is exact, the axial Uð1ÞA symmetry is only valid classically,
and is spontaneously broken quantum mechanically by
topologically nontrivial configurations such as instantons
[27,28]. There still persists a discrete axial symmetry of
Zð2ÞA. The simplest operator which is invariant under
SUð2ÞL × SUð2ÞR, but not Uð1ÞA, is the determinant of Φ.
For two flavors, under axial Uð1ÞA this operator has axial
charge ¼ þ2,

detΦ → e2iα detΦ: ð10Þ

This is invariant if α ¼ 0 or π, which is the residual
symmetry of axial Zð2ÞA.
Consequently, any couplings which are invariant under

Zð2ÞA but notUð1ÞA are nonzero in vacuum and for a range
of temperature. Eventually, at high temperature the break-
ing of axial Uð1ÞA is only due to instantons. This is
suppressed by a high power of temperature [27], so that

ROBERT D. PISARSKI and VLADIMIR V. SKOKOV PHYSICAL REVIEW D 94, 054008 (2016)

054008-2



axial Uð1ÞA is effectively restored as the temperature
T → ∞. This is supported by numerical simulations on
the lattice [29].
To help categorize the possible terms in effective

potentials it helps to start with those which persist at high
temperature, where axial Uð1ÞA is an approximate sym-
metry. The Uð1ÞA invariant terms that only involve Φ are

V∞
Φ ¼ m2

ΦtrðΦ†ΦÞ þ λΦ1trðΦ†ΦÞ2 þ λΦ2ðtrΦ†ΦÞ2: ð11Þ

These terms are standard in linear sigma models. For two
flavors, j detΦj2 is also a quartic term, but because Φ†Φ is a
Hermitian matrix, this can be expressed as a sum of the two
terms above, jdetΦj2¼detΦ†Φ¼ððtrΦ†ΦÞ2− trðΦ†ΦÞ2Þ=2.
There are two Uð1ÞA invariant terms which only

involve ζ,

V∞
ζ ¼ m2

ζ jζj2 þ λζðjζj2Þ2: ð12Þ
Lastly, there are two Uð1ÞA invariant terms coupling Φ

and ζ,

V∞
ζΦ ¼ þκ∞ðζ detΦþ c:c:Þ þ λζϕ1jζj2trðΦ†ΦÞ: ð13Þ

The last term is unremarkable, as both jζj2 and trðΦ†ΦÞ are
each separately invariant under Uð1ÞA. The first term,
however, is novel: it is a trilinear coupling between
one ζ field, with axial charge ¼ −2 and two Φ’s, with
charge ¼ þ1. Adding the complex conjugate (c.c.) assures
the total term is real. There is an analogous term for three
flavors, Eq. (24).
We then move on to categorize the full set of terms which

contribute at finite temperature, where theUð1ÞA symmetry
is reduced to Zð2ÞA. There are three terms involving only Φ

VA
Φ ¼ κΦðdetΦþ c:c:Þ þ λΦ3ðdetΦþ c:c:ÞtrðΦ†ΦÞ

þ λΦ4ðdetΦþ c:c:Þ2: ð14Þ
The first is a mass term makes the η meson heavy, and so
splits the Uð1ÞA symmetry in the spectrum [28]. The other
two are couplings of quartic order. Since Φ itself is not a
Hermitian matrix, detΦ does not reduce to traces of Φ, and
these are new, independent couplings. (This is can be
checked by taking the elements of Φ to be only off diagonal
and complex.)
At zero temperature, the tetraquark field ζ is a Zð2ÞA

singlet, and so there is no symmetry relating the real and
imaginary parts of ζ. The real part of ζ, ζr, is even under
parity, while the imaginary part, ζi, is odd. We start with the
terms for ζr. As it is a Zð2ÞA singlet and parity even, the
couplings of ζr with itself involves arbitrary powers

VA
ζr
¼ hrζr þm2

rζ
2
r þ κrζ

3
r þ λrζ

4
r : ð15Þ

Assuming that the underlying theory, such as QCD, does
not spontaneously break parity, then only even powers of

the imaginary part ζi can appear. Otherwise, arbitrary
combinations of ζr and ζ2i enter

VA
ζi
¼ þm2

i ζ
2
i þ κiζrζ

2
i þ λi1ζ

4
i þ λi2ζ

2
rζ

2
i : ð16Þ

However, ζi does not play a significant role in the chiral
phase transition, and so we neglect it henceforth.
That leaves couplings between ζr and Φ,

VA
ζΦ ¼ κζΦζrtrðΦ†ΦÞ þ λζΦ2ζ

2
rðdetΦþ c:c:Þ: ð17Þ

The trilinear coupling between ζr and trðΦ†ΦÞ was noticed
first by Giacosa [8].
These effective Lagrangians can be used to analyze the

effect of the tetraquark field ζ on the chiral phase transition.
At zero temperature we assume that the chiral symmetry is
spontaneously broken, with hΦi ≠ 0. Further, since there is
no reason why hr in Eq. (15) should vanish, we also assume
that hζri ≠ 0 at T ¼ 0.
As the temperature changes all of the Uð1ÞA invariant

couplings in Eqs. (11), (12), and (13) are nonzero at any T.
In contrast, the Zð2ÞA invariant couplings in Eqs. (14), (15),
(16), and (17) vanish as T → ∞.
In particular, while ζr and ζi are not related at zero

temperature, as T → ∞, we should have the (approximate)
restoration of axial Uð1ÞA symmetry. This implies that ζr
and ζi are degenerate, with hζri → 0 as T → ∞.
A chiral phase transition occurs when the expectation

value of Φ vanishes. We first review the standard picture in
the absence of the tetraquark field ζ. If axial Uð1ÞA is badly
broken at Tχ , then the chiral symmetry is SUð2ÞL×SUð2ÞR.
Assuming that quartic couplings are positive at Tχ , when
m2

Φ vanishes there is a second order phase transition in the
universality class of Oð4Þ symmetry. If Zð2ÞA is approx-
imately Uð1ÞA by Tχ then the chiral transition could be
induced to be first order through fluctuations [13]. Another
possibility is that SUð2ÞL×SUð2ÞR×Uð1ÞA¼Oð4Þ×Oð2Þ
has an infrared stable fixed point in a new universality class
[14]. For analyses in effective models, see Ref. [15].
Including the tetraquark field ζ does not appear to

significantly affect the chiral phase transition. For two
flavors, all of the mixing terms between ζ and Φ, Eqs. (13)
and (17), are quadratic in Φ. Consequently, the mixing
between Φ and ζ is ∼hΦi. If the chiral transition is of
second order, at Tχ this mixing vanishes, and only Φ is a
critical field. Both ζr and ζi are massive fields which mix
with Φ due to cubic terms.
If the chiral transition for two flavors is of first order,

then of course both hΦi and hζri have a discontinuity at Tχ .
Given the generality of the potentials, it is possible that

there is a phase transition associated with ζr, independent
of that for Φ. Even if hr vanishes at one given temperature,
due to the cubic terms in ζr, hζri should still be nonzero. As
noted by Mukherjee and Huang [17], this does not exclude
the possibility of a first order transition at which hζri jumps
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discontinuously from one value to another. While possible,
however, there is no compelling reason why such a first
order transition in ζr should occur.
We briefly discuss the mass spectrum of the model. As a

complex valued field, Φ has components with JP ¼ 0þ and
0−. The 0þ is composed of an isosinglet, the σ, and an
isotriplet, analogous to the ~a0. For the 0− part we have an
isosinglet η and an isotriplet of pions, ~π. In addition, ζ
contains two isosinglet fields, ζr;i with JP ¼ 0�.
At zero temperature, hΦi ≠ 0 generates a massless pion

and η, and a massive σ and ~a0. Terms which are only
invariant under Zð2ÞA make the η massive, pushing the
mass of the σ down [28]. With the tetraquark field, all that
happens is that the ζr field mixes with the σ, as does the ζi
field with the η; the isotriplet states are unaffected.
As noted above, the mixing between Φ and ζ is ∼hΦi,

and so vanishes in the chirally symmetric phase. At very
high temperatures whereUð1ÞA symmetry is approximately
valid, the Φ multiplet is (nearly) degenerate, as are ζr and
ζi. There is no reason why the masses of Φ and ζ should be
related to one another, although the two fields couple
through Eq. (13).
We conclude by noting that because the tetraquark field

is a singlet under SUð2ÞL × SUð2ÞR, there is no Yukawa
coupling analogous that between Φ and the quark fields,
Eq. (5). There is, however, a Uð1ÞA invariant coupling,

yζ2ððχALÞ�ζχAR þ ðχARÞ�ζ�χALÞ; ð18Þ

using χAL;R from Eq. (6). As each χL;R is a diquark operator,
this is a coupling between ζ and four quarks, so the
coupling yζ2 ∼ 1=mass3. A coupling with such a large,
negative mass dimension is much less important than those
given above, which have either positive or vanishing mass
dimension.

IV. THREE FLAVORS

A. Tetraquarks with opposite chirality

For three flavors the diquark field is

χaAL ¼ ϵabcϵABCðqbBL ÞTC−1qcCL : ð19Þ

Because of the antisymmetric tensor, χL transforms as an
antitriplet, 3̄, in both color and flavor. The diquark fields χL
and χR can be combined into a color singlet, tetraquark
field,

ζab ¼ ðχaAR Þ�χbAL : ð20Þ

Unlike for two flavors, ζ transforms nontrivially under the
SUð3ÞL × SUð3ÞR chiral symmetry

ζ → e−2iαURζU
†
L: ð21Þ

Note that while we define Φ ∼ q̄LqR, as a left-right field
Eq. (3), we choose to define ζ ∼ χ†RχL ∼ q̄Rq̄RqLqL as
right-left. We do this so that both ζ and Φ in the
same way under SUð3ÞL × SUð3ÞR, as 3̄ × 3. Because
of this difference, they have opposite signs under the axial
Uð1ÞA symmetry: Φab has axial charge þ1, while ζab has
charge −2.
As for two flavors, we first categorize the interactions

which are Uð1ÞA invariant. Those involving just Φ are

V∞
Φ ¼ m2

ΦtrðΦ†ΦÞ þ λΦ1trðΦ†ΦÞ2 þ λΦ2ðtrðΦ†ΦÞÞ2; ð22Þ

and similarly for ζ,

V∞
ζ ¼ m2

ζ trðζ†ζÞ þ λζ1trðζ†ζÞ2 þ λζ2ðtrðζ†ζÞÞ2: ð23Þ

Even under the assumption ofUð1ÞA symmetry, there are
numerous couplings between ζ and Φ. The most interesting
is a trilinear coupling between ζ and Φ,

V∞
ζΦ;3 ¼ κ∞ϵ

abcϵa
0b0c0 ðζaa0Φbb0Φcc0 þ c:c:Þ: ð24Þ

This term ties left-handed indices with left-handed, and
right with right, and so is invariant under SUð3ÞL×SUð3ÞR.
[Note that both Φab and ζab are defined so that the first
index is for SUð3ÞR, and the second for SUð3ÞL.] This is
invariant under the axial Uð1ÞA symmetry because there is
one ζ with charge −2 and two Φ’s with charge þ1. This
coupling is analogous to that for two flavors, ∼κ∞ζ detΦ
in Eq. (13).
There are four quartic couplings which are invariant

under Uð1ÞA and mix ζ and Φ

V∞
ζΦ;4¼ λζΦ1trðζ†ζΦ†ΦÞþλζΦ2trðζ†ΦΦ†ζÞ

þλζΦ3trðζ†ζÞtrðΦ†ΦÞþ λζΦ4trðζ†ΦÞtrðΦ†ζÞ: ð25Þ

We next turn to terms which are invariant only under
Zð3ÞA and not Uð1ÞA. The most important was noted first
by Black, Fariborz, and Schechter [2]. This is a quadratic
term, which directly mixes ζ and Φ,

VA
ζΦ;2 ¼ m2

ζΦtrðζ†Φþ Φ†ζÞ: ð26Þ

This has axial charge �3 and so is Zð3ÞA invariant. The
existence of this mixing term is an immediate consequence
of the fact that ζ andΦ transform in the same representation
of the chiral symmetry group.
There are three cubic terms which are Zð3ÞA invariant,

VA
ζΦ;3 ¼ κΦðdetΦþ c:c:Þ þ κζðdet ζ þ c:c:Þ

þ κζΦϵ
abcϵa

0b0c0 ðζaa0ζbb0Φcc0 þ c:c:Þ: ð27Þ

The last term is clearly similar to that in Eq. (24), except
that it involves two ζ’s and one Φ, with axial charge ∓ 3.
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There are six quartic terms which are Zð3ÞA invariant,

VA
ζΦ;4 ¼ λζΦ5ðtrðζ†ζζ†ΦÞ þ c:c:Þ

þ λζΦ6ðtrðζ†ΦÞ2 þ c:c:Þ þ λζΦ7ðtrðζ†ΦΦ†ΦÞ þ c:c:Þ
þ λζΦ8ðtrðζ†ζÞtrðζ†ΦÞ þ c:c:Þ
þ λζΦ9ððtrðζ†ΦÞÞ2 þ c:c:Þ
þ λζΦ10ðtrðζ†ΦÞtrðΦ†ΦÞ þ c:c:Þ: ð28Þ

These terms agree with Fariborz, Jora, and Schechter,
Appendix A in Refs. [3,4].
As discussed before for two flavors, we assume that all

couplings which are invariant under Zð3ÞA but not Uð1ÞA
are large at zero temperature, but negligible at high
temperature. We do not assume that they are small at the
chiral phase transition.
At zero temperature we expect that the chiral symmetry

is broken by a nonzero expectation value for Φ, hΦi ≠ 0.
Since we take the chiral symmetry to be exact, hΦi is
proportional to the unit matrix. Because of the mixing term
in Eq. (26), an expectation value for Φ automatically
induces one for ζ, with hζi ≠ 0.
At high temperature we expect that the chiral symmetry

is restored, so hΦi ¼ hζi ¼ 0. Further, because the direct
mixing between Φ and ζ, Eq. (26), which is only invariant
under Zð3ÞA, at high temperature the masses of ζ and Φ do
not mix. The fields do interact through Uð1ÞA invariant
couplings such as Eqs. (24) and (25).
The interesting question is how chiral symmetry is

restored. This depends upon the details of the effective
Lagrangian. For example, assume that m2

ζ is very large and
positive at zero temperature. Then an expectation value of ζ
is induced only by its mixing with Φ: the phase transition is
driven by the interactions of Φ with itself, and ζ plays a
tangential role.
Since both Φ and ζ lie in the same representation of

SUð3ÞL × SUð3ÞR, the converse is also possible: if m2
Φ is

large and positive at zero temperature, then chiral symmetry
breaking and restoration is driven by the tetraquark field, ζ.
We suggest that it is possible that both Φ and ζ play

important roles in the breaking of chiral symmetry at zero
temperature, and its restoration at Tχ .
If so, then it is very possible that there are two chiral

phase transitions, at temperatures T ~χ and Tχ , where
T ~χ < Tχ . Because of the cubic terms in ζ and Φ,
Eqs. (24) and (27), both transitions are presumably of first
order. As the temperature increases from zero, there is first
a phase transition at T ~χ , where both hΦi and hζi jump
discontinuously. Because of their mixing, both condensates
remain nonzero above but close to T ~χ . As the temperature
continues to increase, they jump again at Tχ , and vanish for
T > Tχ . Thus Tχ is properly termed the temperature for the
restoration of chiral symmetry. Nevertheless, the transition
at T ~χ is also a chiral phase transition, since both expectation

values jump there. It is simply not a transition above which
the chiral symmetry is restored.
In terms of the effective Lagrangian, there is a wide range

of parameters in which there are two chiral phase tran-
sitions. The most obvious is if the mass squared of both Φ
and ζ are negative at zero temperature. Then given the
bounty of cubic terms, it is extremely unnatural for there to
be only one phase transition.
What we are suggesting is actually rather elementary. If

both the usual chiral field Φ and the tetraquark field ζ
matter at zero temperature, as suggested by hadronic
phenomenology, then because they lie in the same repre-
sentation of SUð3ÞL × SUð3ÞR, it is very plausible that each
chiral field drives a phase transition.
As shown by our discussion of two flavors, our con-

clusion is special to three flavors. As we discuss in
Sec. VIII, even for four flavors the relevant fields may
differ, and be hexaquarks instead of tetraquarks.
The importance of tetraquarks for the chiral phase

transition is also special to being close to the chiral limit.
For physical values of the quark masses, numerical sim-
ulations on the lattice find only one chiral phase transition
[24,25]; for recent reviews, see [26]. As we argue in the
next section, the tetraquark field becomes more important
as the quarks become lighter.
We conclude this section by noting that unlike the case of

two flavors, that the tetraquark field can couple directly to
quarks through a Yukawa interaction similar to that for Φ in
Eq. (5),

yζ3ðq̄RζqL þ q̄Lζ†qRÞ: ð29Þ

However, this coupling has axial charge ∓ 3, and so is
invariant under Zð3ÞA, but not Uð1ÞA. Thus yζ3 vanishes
as T → ∞.

B. Tetraquarks with the same chirality

Analogous to the case of two flavors, Eq. (9), it is also
possible to combine two diquark fields with the same
chirality

ζabL ¼ χaAL ðχbAL Þ�; ζabR ¼ χaAR ðχbAR Þ�: ð30Þ

By their definition these fields are Hermitian, ζ†L ¼ ζL and
ζ†R ¼ ζR. They transform as an adjoint field under the
associated flavor group, with axial charge zero

ζL → ULζLU
†
L; ζR → URζRU

†
R: ð31Þ

For the left-handed fields, their self interaction include

VζL ¼ hζL trðζLÞ þm2
ζl
trðζ2LÞ þ κζL trðζ3LÞ þ λζL trðζ4LÞ; ð32Þ

and similarly for ζR.
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The important point is that because they are Hermitian
fields, and carry zero charge under axial Uð1ÞA, then a term
linear in either the trace of ζL or ζR is allowed at any
temperature. Thus we expect that each develops a nonzero
expectation value. This is true at any temperature: even in
the chirally symmetric phase, if hζLi and hζRi are each
proportional to the unit matrix, then SUð3ÞL and SUð3ÞR
symmetries remain unbroken by these expectation values.
We assume this remains valid at any temperature.
Couplings of the left- and right-handed tetraquark fields

with Φ include

VζLΦ ¼ κζLΦtrðζLΦ†ΦÞ þ κζRΦtrðζRΦΦ†Þ
þ λζLRΦtrðζLΦ†ζRΦÞ; ð33Þ

plus other terms. Invariance under parity requires
κζLΦ ¼ κζRΦ. There are, of course, also couplings with
the left-right tetraquark field ζ as well as with Φ. If both ζL
and ζR develop expectation values which are proportional
to the unit matrix, however, then all of these terms reduce to
couplings just between Φ and ζ, as written down previ-
ously. For example, all of the terms in Eq. (33) reduce just
to trðΦ†ΦÞ. Consequently, we do not expect that whatever
happens with ζL and ζR to materially affect the phase
transitions in Φ and ζ. As for two flavors [17], there can be
first order transitions associated with either field at any
temperature, but there seems to be no compelling dynami-
cal reason for such transitions.

V. TOY MODEL

In this section we discuss a simple model which
illustrates how two chiral phase transitions can arise for
three massless flavors.

A. Single chiral field

We first review the chiral phase transition for a single
chiral field, Φ. Besides establishing notation, it helps to
illustrate the range of possible values. We start with the
Lagrangian of Eqs. (22) and (27),

VΦðΦÞ ¼m2trðΦ†ΦÞ þ κðdetΦþ c:c:Þ þ λtrðΦ†ΦÞ2: ð34Þ

To avoid notational clutter, we drop the subscript Φ, taking
m2

Φ ¼ m2, κΦ ¼ κ, and λΦ1 ¼ λ. We also drop the cou-
pling ∼λΦ2ðtrðΦ†ΦÞÞ2.
In the chiral limit we take the expectation value of Φ to

be diagonal,

hΦabi ¼ ϕδab: ð35Þ

For this value,

VΦðϕÞ ¼ 3m2ϕ2 − 2κϕ3 þ 3λϕ4: ð36Þ

The equation of motion for ϕ is

∂VΦðϕÞ
∂ϕ ¼ 6ϕðm2 − κϕþ 2λϕ2Þ: ð37Þ

In the chiral limit there are only four distinct masses. The
fields with JP ¼ 0− are a degenerate octet, composed of the
pions, kaons, and the η, and a singlet η0. Those with JP ¼
0þ are a degenerate octet of the a0’s,K�’s, and an f0 meson,
and a singlet σ meson.
These four masses can be read off from Eqs. (68), (71),

(77), and (81) of Ref. [21],

m2
π ¼ m2 − κϕþ 2λϕ2;

m2
η0 ¼ m2 þ 2κϕþ 2λϕ2;

m2
a0 ¼ m2 þ κϕþ 6λϕ2;

m2
σ ¼ m2 − 2κϕþ 6λϕ2: ð38Þ

The pion mass squared is proportional to the equation of
motion, Eq. (37), and so m2

π ¼ 0, as necessary for a
Goldstone boson.
It is illuminating to rewrite the couplings in terms of

these masses. The equation of motion can be written as

m2
η0 −m2

π ¼ m2
a0 −m2

σ: ð39Þ

Although here the pion mass vanishes, this relation remains
valid even when m2

π ≠ 0, Eq. (91) of Ref. [21]. Using this
relation, we can express all three parameters in terms of ϕ
and two masses,

m2 ¼ 1

6
ðm2

η0 − 3m2
σÞ;

κϕ ¼ 1

3
m2

η0 ;

λϕ2 ¼ 1

12
ðm2

η0 þ 3m2
σÞ: ð40Þ

As expected, the η0 is massive because of the determinental
coupling ∼κ. Notice that the expectation value ϕ is not
fixed by these relations; usually that is determined by the
value of the pion decay constant.
Usually, in mean field theory one assumes that only the

mass parameterm2 is a function of temperature, and takes κ
and λ to be constant. At high temperaturem2ðTÞ ∼ λT2, but
the dependence is more complicated at small temperature.
We do not need to know this dependence to determine the
masses and couplings at the chiral phase transition, Tχ .
The solutions to the equation of motion are

ϕðTÞ ¼ κ

4λ

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8λ

κ2
m2ðTÞ

r �
; ð41Þ
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where in the broken phase the minimum corresponds to the
þ sign. The transition occurs when the free energy, which is
minus the potential, is equal to that in the symmetric phase.
Since VΦð0Þ ¼ 0, this occurs when

VΦðϕðTχÞÞ ¼ 0 ⇒
8λ

κ2
m2ðTχÞ ¼ þ 1

9
: ð42Þ

Just below the transition temperature,

T¼T−
χ ∶mη0 ¼

ffiffiffiffiffi
κ2

λ

r
; mσ ¼

1

3
mη0 ; ma0 ¼

ffiffiffiffiffi
10

9

r
mη0 : ð43Þ

For T > Tþ
χ , all masses, including those for the pion,

¼ mðTÞ. Assuming thatm2ðTÞ is monotonically increasing
with temperature, in order to have a phase transition we
need that m2ðTχÞ > m2ð0Þ.
The precise mass spectrum for QCD with three massless

flavors is not known at present. The relations in Eq. (40)
show that we can always treat two masses as free
parameters. As an example, consider

T ¼ 0∶ mη0 ¼ 960; mσ ¼ 600;

ma0 ¼ 1130; m2 ¼ −ð162Þ2; ð44Þ

where all masses are in MeV. In this we assume that the η0
and the σ mesons have the values given above, and stress
that they are only meant as suggestive. The mass of the a0
meson follows from Eq. (39), and m2 from Eq. (40). In
QCD the masses of the η0 and the a0 are very close, but the
above value for ma0 is not so unreasonable in the
chiral limit.
Using these values we can then compute the correspond-

ing quantities at the chiral transition temperature

T ¼ Tχ∶ mη0 ¼ 752; mσ ¼ 251;

ma0 ¼ 835; m2 ¼ þð89Þ2: ð45Þ

While all masses decrease with increasing temperature, at
Tχ those for the η0 and the a0 are still ∼75%–80% of their
values at T ¼ 0, while that for the σ meson is only ∼40%.
That does not tell us the value of Tχ , since that depends
upon the details of the temperature dependence of m2ðTÞ.

B. Mirror model at zero temperature

We now construct the simplest possible model which
illustrates how two chiral phase transitions arise in the
chiral limit. We assume that the potential for the tetraquark
field ζ is given by

VζðζÞ ¼ m2trðζ†ζÞ þ κðdet ζ þ c:c:Þ þ λtrðζ†ζÞ2: ð46Þ

We term this the “mirror” model, since we choose all
parameters to be identical to those for Φ, Eq. (34):

comparing to Eq. (23), we take m2
ζ ¼ m2, κζ ¼ κ,

and λζ ¼ λ.
The only term that we include which mixes ζ andΦ is the

Zð3ÞA invariant term in Eq. (26). It is not difficult to see that
including just this term greatly alters the mass spectrum.
Taking an expectation value for ζ which is diagonal, the
mixing term is

hζabi ¼ ζδab; Vmix ¼ 3 ~m2ζϕ; ð47Þ

where again to simplify the notation we take ~m2 ¼ m2
ζΦ.

Henceforth in this section, by ζ we denote not the matrix,
but the scalar expectation value of the diagonal component
thereof.
From Eq. (37), the equations of motion become

∂
∂ϕ ðVΦ þ VmixÞ ¼ 6ð ~m2ζ þm2ϕ − κϕ2 þ 2λϕ3Þ;
∂
∂ζ ðVζ þ VmixÞ ¼ 6ð ~m2ϕþm2ζ − κζ2 þ 2λζ3Þ: ð48Þ

For each field, the mixing term acts like a background field
proportional to the other field: in the equation of motion for
ϕ, there is a term ∼ ~m2ζ, and vice versa.
We first compute the mass spectrum at zero temperature.

At T ¼ 0, where m2
ζ ¼ m2

Φ the expectation values ζ and ϕ
are equal. The exact value is not of relevance for our
purposes.
The Φ fields contains two octets, which we term the π

and a0, and two singlets, the η0 and the σ. There are similar
fields for the ζ, which we denote as the ~π, ~a0, ~η0, and ~σ. The
mixing between these fields which is induced by Eq. (26) is
particularly simple: the π mixes only with the ~π, the η0 only
with the ~η0, and so on. Finding the mass eigenstates then
requires diagonalizing four 2 × 2 matrices. For the pions,
using the equation of motion in Eq. (48), when ζ ¼ ϕ the
mass matrix between the π and the ~π is

M2
π ~π ¼ ~m2

�−1 1

1 −1

�
: ð49Þ

The eigenvalues of this matrix are

π; ~π∶ 0; −2 ~m2: ð50Þ

For the mass squared of the massive “pion” to be positive
requires that ~m2 is negative. This is unremarkable, as the
mass squared for both the ζ and Φ are also negative. Since
the expectation values of ζ and ϕ are equal, after diago-
nalization each mass eigenstate is a linear combination of
the original fields, in equal proportion.
Since we are in the chiral limit, there is one massless and

one massive octet. There are nine Goldstone bosons when
SUð3ÞL × SUð3ÞR ×Uð1ÞA symmetry breaks to SUð3Þ.
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The quantum breaking of Uð1ÞA to Zð3ÞA makes the η0
massive and reduces this to eight. When the ζ and Φ are
decoupled each has eight Goldstone bosons. Coupling
themmakes one of the octets massive, leaving one massless
octet required by Goldstone’s theorem.
The mass squared for the remaining fields are

η0; ~η0∶ 3κϕ; 3κϕ − 2 ~m2;

a0; ~a0∶ m2 þ κϕþ 6λϕ2 � ~m2;

σ; ~σ∶ m2 − 2κϕþ 6λϕ2 � ~m2: ð51Þ

These are naturally related to the masses in the absence of
mixing, given in Eq. (38). Notice, however, that the
expectation value of ϕ is the solution of Eq. (48), and
not the solution of Eq. (37).
The masses of the a0 and ~a0, and the σ and ~σ, are

elementary, just the mass splitting induced by off diagonal
elements ∼ ~m2 in the mass matrix. The η0 and ~η0 differ from
these because they are Goldstone bosons when κ ¼ 0. For
all of these mesons, the mass eigenstates are linear super-
positions of the original fields, although not equally. The
exact mixing is easy to work out.
The masses in Eq. (51) obey the relation

m2
η0 þm2

~η0 −m2
π −m2

~π ¼ m2
a0 þm2

~a0
−m2

σ −m2
~σ: ð52Þ

One can show that given the potentials of Eqs. (34) and
(46), this relation remains valid even if we do not assume
that the parameters are related as in a mirror model.
We have not checked that this relation remains valid for

arbitrary potentials, but even so it illustrates a more general
point. The relation for two fields in Eq. (52) is very similar
to that for one field in Eq. (39). For one field, however,
there is a puzzle. As expected, the anomaly term ∼κ detΦ
splits the singlet η0 from octet π, making the η0 heavy.
However, it also pushes the mass of the singlet σ down
relative to the octet a0. Now of course to compare to QCD
we need to include the effect of quark masses, especially
that the strange quark is heavier than the up and down.
Even so, it is peculiar that the singlet σ is lighter than the
octet a0 for the JP ¼ 0þ field.
With two fields, however, there is no problem, as the

only relation is between the sum of the masses squared.
Thus the anomaly pushes the sum of the mass squared of
the η0 and the ~η0 up relative to that for π and the ~π.
Conversely, the anomaly pushes the masses of both the σ
and the ~σ down relative to the a0 and the ~a0. Since the states
from the ζ can be significantly heavier than the usual states,
it is much easier satisfying this constraint. See also our
discussion in Sec. VI A.

C. Mirror model at nonzero temperature

All of these masses in the previous section can only be
valid at zero temperature, where by fiat we imposed the

condition that m2
ζð0Þ ¼ m2

Φð0Þ. At nonzero temperature,
because the states are linear combinations of the original
fields, with mixing due to ~m2,

m2
ζðTÞ ≠ m2

ΦðTÞ ð53Þ

at any nonzero temperature.
This is obvious from effective models. If one computes

the thermal fluctuations from the ζ and Φ fields, then just
because the masses of the two multiplets differ, so will
the effective masses for ζ and Φ. In other words, we can
tune the masses to be equal at a given temperature, such
as zero, but we cannot impose this naturally at another
temperature.
For example, in the limit of high temperature, if we

neglect mesonic fluctuations then the dominant contribu-
tion to the thermal masses are given by quark loops. For the
Φ field this is ∼yΦT2, where yΦ is the Yukawa coupling of
the quarks to the Φ, Eq. (5), while for ζ it is ∼yζ3T2,
Eq. (29). There is no symmetry which relates the two
Yukawa couplings, and so yΦ ≠ yζ3. Indeed, since the
coupling ∼yζ3 respects the axial Zð3ÞA symmetry but not
Uð1ÞA, yζ3 vanishes as T → ∞, while yΦ is nonzero. Thus
the two masses differ as T → ∞, Eq. (53).
As an example, we assume that we fix the expectation

values at zero temperature to agree with the value of the
pion decay constant in QCD, which is ϕð0Þ ¼ 93=2,
Eq. (93) of Ref. [21]. From Eqs. (40) and (44),

ϕð0Þ ¼ ζð0Þ ¼ 46.; κ ¼ 6680.; λ ¼ 79: ð54Þ

These values are similar to those from a fit to QCD,
Eqs. (95) and (96) of Ref. [21]. Notice that in a linear sigma
model the couplings κ and λ are so large because the pion
decay constant is much smaller than the masses of the η0
and the σ.
We consider three cases to illustrate the range of

possibilities. In the first case, we take

m2
ϕðTÞ ¼ 3T2 þm2ð0Þ; m2

ζðTÞ ¼ 5T2 þm2ð0Þ;
m2

ζΦ ¼ −ð100Þ2: ð55Þ

We stress that the temperature dependence is meant only to
be illustrative. At low temperatures massless pions give a
contribution ∼T2, but the other contributions from massive
fields are of the Boltzmann-type. In this instance, the order
parameters behave as in Fig. 1. There are two first order
phase transitions: at T ~χ , both ζ and ϕ jump from one
nonzero value to another. At Tχ , both jump from nonzero
values to zero.
In the second case, we only change the mixing

mass m2
ζΦ,
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m2
ϕðTÞ ¼ 3T2 þm2ð0Þ; m2

ζðTÞ ¼ 5T2 þm2ð0Þ;
m2

ζΦ ¼ −ð120Þ2: ð56Þ

The order parameters behave as in Fig. 2. Because the
mixing mass m2

ζΦ is larger, the mixing term acts as a larger
background field. This smooths out the would be transition
at T ~χ from first order to crossover. There is then a single
chiral phase transition at Tχ .
These examples are only meant to illustrate various

possibilities. Nevertheless, it clearly is plausible to obtain a
second chiral phase transition from the presence of the
tetraquark condensate.
So far we have only considered the chiral limit. To

understand the broader implications for the phase diagram

of QCD we need to consider how nonzero quark masses
affect a tetraquark condensate and the phase diagram.

VI. MASSIVE QUARKS

A. Mass terms for tetraquarks

To describe QCD it is necessary to include terms for the
explicit breaking of chiral symmetry. Let the current quark
masses be

M ¼ diagðmu;md;msÞ; ð57Þ

where mu, md, and ms are the masses for the up, down, and
strange quarks.
Sincemu andmd are much less than other scales in QCD,

we take the isospin symmetric limit with mu ¼ md. In a
sigma model, the breaking of chiral symmetry is repre-
sented including a background field proportional to the
mass matrix,

V1
Φ ¼ −trðHΦðΦ† þ ΦÞÞ; ð58Þ

with

HΦ ¼ ðhu; hu; hsÞ: ð59Þ

If chiral symmetry is approximately valid we expect that
the ratio of the h’s is proportional to that for the current
quark masses, hu=hs ¼ mu=ms. However, the overall con-
stant is given by the details of the fit to the sigma model.
For small quark masses, it suffices to include only terms

linear in H and Φ. A complete catalog of all possible terms
is given in Appendix A of Refs. [3,4].
To understand the leading mass term for the tetraquark

field, imagine computing it explicitly in perturbation
theory. This is of course a terrible approximation, but it
should suffice to get the leading powers of the quark mass
right. For the usual Φ field, its expectation value is
proportional to a quark loop, ∼trð1=ðDþmquarkÞÞ. For
small masses this trace is proportional to mquark, so
hΦiii ∼mquark, which is given by taking Hii ∼mquark,
Eq. (59).
The tetraquark field, however, involves the antisymmet-

ric tensor for flavor, Eqs. (6) and (19). For example, the
expectation value of the strange-strange component of the
tetraquark field, ζss, involves the product of an up quark
loop times a down quark loop. For small quark masses each
is proportional to the mass, so hζssi ∼mumd. The other
components follow similarly. Hence for the tetraquark field,
the leading term which breaks the chiral symmetry is
proportional to the square of the quark masses and is

Mζ ¼ diagðmdms;mums;mumdÞ: ð60Þ

Assuming SUð2Þ isospin symmetry,

FIG. 2. The temperature dependence of the order parameters, ζ
and ϕ, in the mirror model, with the parameters of Eq. (56). There
is one chiral phase transition of first order at Tχ .

FIG. 1. The temperature dependence of the order parameters, ζ
and ϕ, in the mirror model for the parameters of Eq. (55). There
are two chiral transitions of first order, at T ~χ and then Tχ .
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Mζ ≈mudiagðms;ms;muÞ: ð61Þ

Thus to the linear sigma model we add

V1
ζ ¼ −trðHζðζ† þ ζÞÞ: ð62Þ

Assuming SUð2Þ isospin symmetry,

Hζ ¼ hðhs; hs; huÞ: ð63Þ

There is no reason for the background field for ζ to be
identical to that for Φ, and so while we expect that inHζ we
have h ∼ hu, we should take h as an independent constant
to be fit by hadronic phenomenology.
If we can neglect mixing, then the mass term of Eq. (63)

immediately gives us insight into why tetraquarks are so
appealing in QCD. As we discussed at the end of Sec. V B
following Eq. (48), a sigma model with a single field Φ
gives a light σ which has a large strange component. For the
tetraquark field, however, the mass term for the strange-
strange component of ζ is proportional to the product of
the light quark masses, ∼mumd. That is, a mass term such
as Eq. (61) naturally gives an “inverted” mass ordering
which appears to be present in QCD for the lightest 0þ
multiplet [1–10].
This of course neglects mixing between the Φ and ζ

fields, in particular through the direct mixing in Eq. (26).
This term does induce an expectation value hζi ∼m2

ζΦhΦi∼
m2

ζΦHΦ. As we stressed in Sec. V B, however, all fields are
linear combinations of Φ and ζ. Different choices for the
parameters of the model gives different ratios of mixtures.
It is still meaningful to stress that the leading term in

quark masses for the tetraquark field is that of Eq. (63). For
example, in the limit of high temperature the mixing
term ∼m2

ζΦ is very small, and the breaking of the chiral
symmetry from explicit quark masses is much smaller for ζ
than for Φ.

B. Phase diagram for three light flavors

In this section we discuss the implications for the phase
diagram in moving away from the chiral limit. As seen in
the discussion of the mirror model in Sec. V C, in the chiral
limit it is possible to obtain two chiral phase transitions, at
T ~χ and Tχ .
A useful way of plotting the phase diagram versus the

quark masses is in the two dimensional plane of the light
quark mass, taking mu ¼ md, versus the strange quark
mass ms.
When all quark masses are large, there is a region of first

order phase transitions which are dominated by that for
deconfinement. In a matrix model [30] the critical line
which borders this region of first order deconfining phase
transitions is determined by the color Zð3Þ field generated
by heavy quarks. Whatever bound states the heavy quarks

form—whether of two, four, or however many quarks—
seems unlikely to affect the position of the critical line for
deconfinement.
Thus we concentrate on the region of small quark

masses. If there are two chiral phase transitions in the
chiral limit, mu ¼ md ¼ ms, then it is natural that this
persists for a nonzero width in the plane of mu and ms. We
illustrate this in the “Columbia” phase diagram of Fig. 3.
Thus region II denotes where there are two chiral phase
transitions for first order, ending in the dotted line. In region
I, there is one chiral transition of first order, ending in the
solid line. QCD lies in C, the crossover region.
Both the dotted and solid lines are lines of second

order phase transitions. That there is a critical line in
going from two to one chiral phase transition can be
guessed from the behavior of the order parameters in
Fig. 2. Along the dotted critical line, at a temperature T ~χ

there is a linear combination of the Φ and ζ fields which
is critical. This transition is separate from the first order
chiral transition at Tχ .
The most interesting part of Fig. 3 is the left most axis,

where

mu ¼ md ¼ 0;

ms ≠ 0 ⇒ HΦ ¼ ð0; 0; hsÞ; Hζ ¼ ð0; 0; 0Þ: ð64Þ

Notice that Hζ vanishes because it is proportional to
mu, Eq. (63).
Consider first the strange-strange component of the

tetraquark field, ζss. Because of mixing with Φ, it develops
a nonzero expectation value. Then ζss acts exactly like the
tetraquark field for two flavors. For instance, the Uð1ÞA
invariant trilinear coupling ∼κ∞ for three flavors, Eq. (24),
reduces directly to theUð1ÞA invariant trilinear coupling for
two flavors ∼κ∞ in Eq. (13). In agreement with our
arguments about two flavors in Sec. III, we do not expect
that the strange-strange component of the tetraquark field
significantly affects the chiral transition when mu¼md¼0,
Eq. (64).

ms

mu,d

I

II

C

FIG. 3. The phase diagram for three light flavors of quarks, in
the plane of mu ¼ md versus ms. In region II there are two first
order chiral phase transitions; in region I, one transition; in region
C, there is only crossover. There are critical lines separating
regions II and I, and I and C. QCD lies in the crossover region.
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Whenmu ¼ md ¼ 0 there is one subtlety which is worth
noting. Assume that the effects of the anomaly are large, so
that we can assume that there is only a Zð2ÞA symmetry,
and not Uð1ÞA. For the quark masses as in Eq. (64), from
the SUð3ÞL × SUð3ÞR fields ζ and Φ we can obviously

extract two Oð4Þ fields, ~ζ and ~ϕ. The effective Lagrangian
for these two Oð4Þ fields is

Vmu¼md¼0 ¼ m2
ϕ
~ϕ2 þm2

ζ
~ζ2 þm2

ζϕ
~ζ · ~ϕ

þ λϕð~ϕ2Þ2 þ λζð~ζ2Þ2 þ λζϕ1~ζ
2~ϕ2

þ λζϕ2ð~ζ · ~ϕÞ2: ð65Þ

The couplings above are obviously related to those we
denoted previously. Clearly, there is no trilinear coupling

between ~ζ and ~ϕ which is Oð4Þ invariant.
It is not difficult to convince oneself that having two

fields does not alter the standard picture. For small ms, in
regions II and I, there are either two or one chiral phase
transitions. Approaching the boundary of region I from
below, there is a tricritical point at mtri

s , denoted by a cross
in Fig. 3. For ms > mtri

s , there is a line of second order
phase transitions, in the universality class of Oð4Þ. Unless
there is a conspiracy in the masses for ~ζ and ~ϕ, though,
having two fields does not alter the critical behavior in the

least: it simply means that some linear combination of ~ζ and
~ϕ is the relevant critical field. The shape of the critical
line between regions I and C as ms → 0 is dictated by
the tricritical behavior. There is no such curvature for the
critical line, separating regions I and II, because the
transition remains of second order as one moves along
the critical line when ms → 0.
Of course this assumes that there is a region II with two

chiral transitions of first order. This question can only be
settled definitively by numerical simulations on the lattice.
Since QCD only finds a crossover, such simulations need to
be done for very light quarks, which is most challenging.
Nevertheless, if the lattice does find two chiral phase
transitions for light quarks, this would be strong if indirect
evidence for the effects of tetraquarks formed from light
quarks in QCD.

VII. PHASE DIAGRAM IN T AND μ

In QCD, at nonzero temperature but zero quark chemical
potential, numerical simulations on the lattice indicate that
there is no true phase transition, but only a crossover at a
temperature Tχ ∼ 155 MeV [24–26]. Thus any second
chiral transition associated with the tetraquark field, at
T ~χ < Tχ , is a crossover.
Even so, at nonzero temperature and quark chemical

potential, there is naturally a relation between the crossover
line for tetraquark field and the transition line for color
superconductivity. A tetraquark field is important because

of diquark pairing, with the most attractive channel for
quark-quark scattering being antisymmetric in both flavor
and color, as a type of generalized Breit interaction [1].
Thus it is hardly suprising that in considering the scattering
of two quarks at the edge of the Fermi sea at nonzero
density, that color superconductivity occurs in the corre-
sponding, most attractive channel.
The analogy is deeper. Consider the diquark operators

for two flavors, χAL in Eq. (6), and three flavors, χaAL in
Eq. (19). These are almost identical to the operators which
condense when color superconductivity occurs [18–20].
That is, the tetraquark field is directly the gauge invariant
square of the diquark operators, Eqs. (7) and (20). Of
course the tetraquark field must be a color singlet, since it
appears in the confined phase at zero temperature and
chemical potential; there is no evidence for a color super-
conducting phase in vacuum.
There are differences between the condensation of a

tetraquark field in vacuum and color superconductivity.
Color superconductivity is dominated by the scattering of
quarks at opposite edges of the Fermi surface, between two
quarks with momenta þ~pF and −~pF. For a tetraquark
condensate, the entire tetraquark field carries zero momen-
tum, but each diquark operators carries equal and opposite
momenta. Further, the color-flavor locking which occurs
for three flavors and three colors [18,19] has no analogy for
the tetraquark condensate.
Even so, as one moves out in quark chemical potential,

then it is reasonable to speculate that a crossover line for the
tetraquark condensate connects smoothly with that for
color superconductivity.
We illustrate this in Fig. 4, as a cartoon of the possible

phase diagram. In particular, we do not indicate whether the
transitions are crossover, or true phase transitions, of either
first or second order. The chiral crossover line at μB ¼ 0
may end in a critical end point, and then turn first order
[31]. The transition line for color superconductivity prob-
ably includes a segment which is a line of second order
phase transitions [20]. Further, it is not evident how the

T

µB

~

FIG. 4. A conjectured phase diagram in temperature T and
baryon chemical potential μB. The χ line is that for the chiral
transition. The ~χ line is for a second transition related to the
presence of the tetraquark condensate, which may connect
smoothly to the transition line for color superconductivity.

HOW TETRAQUARKS CAN GENERATE A SECOND CHIRAL … PHYSICAL REVIEW D 94, 054008 (2016)

054008-11



tetraquark/color superconducting line is related to that for
hadronic superfluidity through a confined but dense quar-
kyonic phase [32].

VIII. FOUR FLAVORS

We conclude with an elementary comment about oper-
ators for four flavors and three colors. The diquark operator
which directly generalizes those for two and three flavors is

χðabÞAL ¼ ϵabcdϵABCðqcBL ÞTC−1qdCL : ð66Þ

This operator is an antisymmetric two-index tensor in the
SUð4ÞL flavor group, a 6̄. As before we then combine a left-
handed diquark field with a right-handed diquark to form a
color singlet tetraquark field,

ζðabÞ;ðcdÞ ¼ ðχðabÞAR Þ†χðcdÞAL ; ð67Þ

where ζðabÞ;ðcdÞ ¼ −ζðbaÞ;ðcdÞ, etc., so ζ lies in the 6̄ × 6
representation of SUð4ÞL × SUð4ÞR.
Since the tetraquark field ζ lies in a higher representation

of the chiral symmetry group than Φ, there is no direct
mixing between them. There is a cubic coupling,

iðΦaa0 Þ�ðζðabÞ;ða0b0Þ − ðζðabÞ;ða0b0ÞÞ�ÞΦbb0 ; ð68Þ

where the overall factor of i follows from the antisymmetry
of ζ. This coupling is invariant under Zð4ÞA but not Uð1ÞA.
There are many quartic couplings which can be written
down, including Uð1ÞA invariant terms such as

trðΦ†ΦÞtrðζ†ζÞ: ð69Þ

There are also quartic couplings which are invariant only
under Zð4ÞA, such as

Φaa0ζðabÞ;ða0b0ÞζðbcÞ;ðb0c0ÞΦcc0 þ c:c:: ð70Þ

Consequently, when Φ develops a vacuum expectation
value it affects ζ. Even so, there are no couplings present
which would indicate that the presence of ζ materially
affects either the pattern of symmetry breaking, or its
restoration, in any significant way.
This is a more general phenomenon. Starting with QCD,

from the quark fields it is possible to construct a ladder of
operators related to chiral symmetry breaking. The simplest
is Φ, which transforms as the fundamental representation in
SUðNfÞL × SUðNfÞR, where Nf is the number of flavors.
In addition, there are four quark operators, six quark
operators, and so on. Categorizing them according to the
representations of the chiral symmetry group, typically they
are either singlets, such as trðΦ†ΦÞ, or transform according
to higher representations. Singlet fields are like the tetra-
quark for two flavors in Sec. III, which do not dramatically

affect things. Similarly, fields in higher representations do
couple to fields in lower representations, but again it is
unnatural for them to have any dramatic effect. This is just
because fields in high representations have more indices,
and so as illustrated in Eqs. (68), (69), and (70), need more
Φ’s to absorb all of them.
The one exception is if there is another field which

transforms in the fundamental representation and so directly
mixes with Φ. If one abandons the prejudice of only using
diquarks fields, then it is possible to construct such a field for
four flavors and three colors. For a large number of colors,
Rossi andVeneziano suggested that junctions, which couple
all colors together through an antisymmetric tensor in color,
matter [33]. This suggests using junctions in both color and
flavor to form a triquark operator

χaL ¼ ϵabcdϵABCqbAL ðqcBL ÞTC−1qdCL : ð71Þ

This is a color singlet, and since it is composed of three quark
fields, transforms as a fermion.
We can naturally combine a left-handed triquark with a

right-handed triquark to form a hexaquark state

ξab ¼ ðχaRÞ†χbL; ð72Þ

which transforms as 4̄ × 4 under SUð4ÞL × SUð4ÞR.
The analysis of coupling the hexaquark field ξ to the

usual chiral field Φ is very similar to that for three flavors.
The axial Uð1ÞA symmetry is reduced to Zð4ÞA by the
anomaly, with Φ carrying axial charge ¼ þ1, and ξ, axial
charge ¼ −3.
The Uð1ÞA invariant couplings include mass and quartic

couplings between ξ and Φ, in direct analogy to Eqs. (22),
(23), and (25), replacing ζ → ξ. For three flavors there is
the Uð1ÞA invariant determinental term of Eq. (24). The
analogous term for four flavors is

κ∞ϵ
abcdϵa

0b0c0d0ξaa
0
Φbb0Φcc0Φdd0 þ c:c:: ð73Þ

Of the couplings which are invariant under Zð4ÞA but not
Uð1ÞA, the most important is a direct mixing term

m2
ξΦtrðξ†Φþ Φ†ξÞ; ð74Þ

as in Eq. (26). The determinental terms ∼κΦ detΦ and
∼κξ det ξ are of quartic order for four flavors. There are two
determinental terms of quartic order,

ϵabcdϵa
0b0c0d0 ðκξΦ1ξaa0ξbb0Φcc0Φdd0 þ κξΦ2ξ

aa0ξbb
0
ξcc

0
Φdd0 Þ

þ c:c: ð75Þ

The other quartic terms invariant under Zð4ÞA are those of
Eq. (28), just replacing ζ → ξ.
The analysis of the chiral transition for four flavors with

a hexaquark field is then closely analogous to that with a
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tetraquark field for three flavors. The hexaquark field ξ
mixes directly with Φ, so if one field condenses both do.
Similarly, the restoration of chiral symmetry involves both
fields. For four flavors the determinental terms are of
quartic instead of cubic order, and hence do not automati-
cally generate first order transitions.
However, it is also possible that chiral transitions are

driven first order by fluctuations, where coupling constants
flow from positive to negative values. This occurs to
leading order in an ϵ-expansion about 4 − ϵ dimensions
when Nf >

ffiffiffi
2

p
[13]. It is not clear if this remains true in

three dimensions: for two flavors, there is evidence that a
new critical point develops for SUð2ÞL×SUð2ÞR×Uð1ÞA¼
Oð4Þ×Oð2Þ [14,15]. If so, it is possible that such a new
critical point persists up to four flavors. We note that even
with two fields in the fundamental representation, only one
linear combination of the two contributes to the putative
critical behavior at Tχ . If the transition is of first order, it is
also possible that there are having two chiral fields in the
fundamental representation produces two chiral transitions,
as for three flavors.
It is interesting to speculate what the relevant effective

fields are for the chiral transition when the number of
colors, Nc, is greater than three. It has been suggested that
tetraquarks persist in the usual large Nc limit, where Nf is
held fixed as Nc → ∞ [34]. On the other hand, our analysis
suggests that the relevant limit might be more general:
taking Nf ¼ Nc → ∞, instead of tetraquarks we would use
junctions in both flavor and color to form 2ðNc − 1Þ quark
states which transform in the fundamental representation of
the chiral symmetry group.

IX. CONCLUSIONS

In this paper we showed that for QCD, because the
ordinary chiral and tetraquark fields transform in the same

representation of the chiral symmetry group, tetraquarks
must be included in any analysis of the chiral phase
transition. We speculated that for very small quark masses,
this could lead to the dramatic consequence of having two
separate chiral phase transitions, Sec. VI B.
We stress that understanding the role of tetraquarks is

essential in computing the position of a critical end point in
the plane of temperature and chemical potential, Sec. VII.
This is simply because at the critical end point the σ meson
becomes massless, and so one has to start with the right σ
field. Needless to say, this complicates using effective
models to explore the critical end point.
As in other instances, the lattice can be of help. Recently,

simulations have been performed investigating the nature of
the isoscalar σ meson for three relatively light dynamical
flavors [35]. It is difficult probing the isoscalar channel
because disconnected diagrams must be included. It is
much easier to measure the masses of the octet 0þ mesons,
where disconnected diagrams do not contribute. These
masses would be of use.
Of course in the end, the definitive approach to con-

straining effective models is to compare to experiment, for
both the masses and decays of the lightest scalar particles.
While a formidable task [2–10], we have demonstrated that
these properties of cold QCD are required to understand
hot QCD.
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