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Basic features of nonstrange vector and axial vector mesons are analyzed in the framework of a chiral
quark model that includes nonlocal four-fermion couplings. Unknown model parameters are determined
from some input values of masses and decay constants, while nonlocal form factors are taken from a fit
to lattice QCD results for effective quark propagators. Numerical results show a good agreement with the
observed meson phenomenology.
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I. INTRODUCTION

Given the nonperturbative character of QCD in the low-
energy regime, the analysis of hadron phenomenology
starting from first principles is still a challenge for
theoretical physics. Although substantial progress has been
achieved in this sense through lattice QCD (LQCD)
calculations, this approach shows significant difficulties,
e.g., when dealing with small quark masses or with
hadronic systems at nonzero chemical potentials. Thus,
it is important to study the consistency between the results
obtained through lattice calculations and those arising from
effective models for strongly interacting particles. For two
light flavors, it is believed that QCD supports an approxi-
mate SU(2) chiral symmetry that is dynamically broken at
low energies, where pions play the role of the correspond-
ing Goldstone bosons. The well-known Nambu-Jona-
Lasinio (NJL) model [1,2], in which light mesons are
described as fermion-antifermion composite states, is a
simple effective approach that shows these features. In the
NJL model, quarks interact through a local four-fermion
coupling, leading to relatively simple Schwinger-Dyson
and Bethe-Salpeter equations. Now, as a step toward a more
realistic approach to low-energy QCD, it is worth it to
consider extensions of the NJL model that include nonlocal
interactions [3]. In particular, this is supported by lattice
calculations, which lead to a given momentum dependence
of both the mass and the wave function renormalization
(WFR) in the effective quark propagators [4,5]. It is also
seen that nonlocal extensions of the NJL model do not
exhibit some problems that are present in the local theory.
For example, nonlocal interactions regularize the model in
such a way that the effective interaction is finite to all orders
in the loop expansion, and thus model predictions are less
dependent on the parametrizations, and there is no need to
introduce extra cutoffs [6].

Previous works on nonlocal NJL-like (nlNJL) models,
focused on different aspects of strong interaction physics,
can be found in the literature. These include the study of
vacuum hadronic properties considering either two [7–14]
or three [15] active quark flavors and various nonlocal form
factor shapes. In addition, this framework has been used to
describe the chiral restoration transition for hadronic
systems at finite temperature and/or chemical potential
(see, e.g., Refs. [16–21]). In this work, following the
proposal in Refs. [11,13], we consider a model in which
nonlocal form factors lead to a momentum dependence of
the mass and WFR in the quark propagator, and hence the
actual shape of these form factors can be taken from the
data obtained through lattice calculations [13,19]. We
concentrate here in particular in the incorporation of
explicit vector and axial vector interactions. Therefore,
besides the previously considered couplings between scalar
and pseudoscalar quark-antiquark currents, in our model,
we include couplings between vector and axial vector
nonlocal currents satisfying proper QCD symmetry
requirements. In fact, nonlocal models including vector
and axial vector currents have been previously considered
in Ref. [9]. However, those models do not include a
momentum-dependent WFR of quark propagators, which
is required in order to perform the comparison with lattice
QCD results. We dedicate the first part of the paper to work
out the formalism in order to derive analytical expressions
for some basic vector meson properties, such as masses and
decay parameters. Then, we present numerical results
obtained by taking the nonlocal form factors from a fit
to lattice QCD data. It is seen that, after fixing unknown
coupling constants so as to reproduce some input meson
observables, the model provides an adequate phenomeno-
logical description of the considered vector meson
properties.
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The article is organized as follows. In Sec. II, we
introduce the model and derive the corresponding gap
equations at the mean field level. In Sec. III, we describe the
vector meson sector, obtaining analytical results for meson
masses and decay amplitudes. The numerical and phenom-
enological analyses are included in Secs. IV, while in
Sec. V, we present a summary of our work. Finally, in
Appendixes A and B, we collect some analytical expres-
sions and describe the calculation procedure.

II. MODEL

We consider a two-flavor chiral quark model that
includes nonlocal vector and axial vector quark-antiquark
currents. Since our aim is to choose form factors that are in
agreement with LQCD calculations, it is convenient to
work in Euclidean space, where nonlocal interactions are
well defined [3]. The corresponding effective action is
given by

SE ¼
Z

d4x

�
ψ̄ðxÞð−i∂ þ m̂ÞψðxÞ −GS

2

h
jSðxÞjSðxÞ þ ~jPðxÞ · ~jPðxÞ þ jMðxÞjMðxÞ

i

−
GV

2

h
~jμVðxÞ · ~jVμðxÞ þ ~jμAðxÞ · ~jAμðxÞ

i
−
G0

2
j0μV ðxÞj0VμðxÞ −

G5

2
j0μA ðxÞj0AμðxÞ

�
; ð1Þ

where ψðxÞ is the Nf ¼ 2 quark doublet, ψ ¼ ðudÞT , and
m̂ ¼ diagðmu;mdÞ is the current quark mass matrix. We
will work in the isospin symmetry limit, assuming
mu ¼ md, which will be called from now on mc. The
fermion currents are given by [13]

jSðxÞ ¼
Z

d4zgðzÞψ̄
�
xþ z

2

�
ψ

�
x −

z
2

�
;

jaPðxÞ ¼
Z

d4zgðzÞψ̄
�
xþ z

2

�
iγ5τaψ

�
x −

z
2

�
;

jMðxÞ ¼
1

2ϰ

Z
d4zfðzÞψ̄

�
xþ z

2

�
i∂↔ψ

�
x −

z
2

�
;

jaVμðxÞ ¼
Z

d4zhðzÞψ̄
�
xþ z

2

�
τaγμψ

�
x −

z
2

�
;

jaAμðxÞ ¼
Z

d4zhðzÞψ̄
�
xþ z

2

�
τaγμγ5ψ

�
x −

z
2

�
;

j0VμðxÞ ¼
Z

d4zh0ðzÞψ̄
�
xþ z

2

�
γμψ

�
x −

z
2

�
;

j0AμðxÞ ¼
Z

d4zh5ðzÞψ̄
�
xþ z

2

�
γμγ5ψ

�
x −

z
2

�
; ð2Þ

where τa, a ¼ 1, 2, 3, are the Pauli matrices, while

uðx0Þ∂↔∂vðxÞ≡ uðx0Þ∂xvðxÞ − ∂x0uðx0ÞvðxÞ. Equations (2)
include the usual scalar (I ¼ 0) and pseudoscalar (I ¼ 1)
quark-antiquark currents [11,12] as well as vector and
axial-vector quark-antiquark currents that transform as
either isospin singlets or triplets. In addition, we consider
a coupling between “momentum” currents jMðxÞ [11,13],
which involve derivatives of the fermion fields. The
presence of this interaction is naturally expected as a
correction arising from the underlying QCD dynamics.

Whereas in a local theory, at the mean field level, it would
simply lead to a redefinition of fermion fields, in our
nonlocal scheme, it leads to a momentum-dependent
wave function renormalization of the quark propagator,
in consistency with LQCD analyses. For convenience, we
have chosen to take a common coupling constant GS for
both the scalar/pseudoscalar and momentum quark inter-
action terms. Notice, however, that the relative strength
between these terms is controlled by the mass parameter
ϰ in jMðxÞ. Finally, the functions fðzÞ, gðzÞ, hðzÞ, h0ðzÞ,
and h5ðzÞ are covariant form factors responsible for the
nonlocal character of the interactions. Notice that, in
order to guarantee chiral invariance, the form factor gðzÞ
has to be equal for the scalar and pseudoscalar currents
jSðxÞ and jaPðxÞ, and the same applies to the form factor
hðzÞ entering the vector and axial vector currents jaVμðxÞ
and jaAμðxÞ.
To work with mesonic degrees of freedom, we proceed

to perform a bosonization of the fermionic theory [3].
This is done in a standard way by considering the
corresponding partition function Z¼R

Dψ̄Dψ exp½−SE�
and introducing auxiliary bosonic fields σ1ðxÞ, σ2ðxÞ
[scalar, related respectively to the currents jSðxÞ and
jMðxÞ]; πaðxÞ (pseudoscalar); v0μðxÞ, vaμðxÞ (vector);
and a0μðxÞ, aaμðxÞ (axial vector), where indices a run
from 1 to 3. After integrating out the fermion fields,
the partition function can be written as

Z ¼
Z

Dσ1Dσ2D~πDv0μDa0μD~vμD~aμ exp ½−SbosE �; ð3Þ

where SbosE stands for the Euclidean bosonized action. In
momentum space, the latter is given by
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SbosE ¼ − log detAðp; p0Þ þ
Z

d4p
ð2πÞ4

�
1

2GS
½σ1ðpÞσ1ð−pÞ þ ~πðpÞ · ~πð−pÞ þ σ2ðpÞσ2ð−pÞ�

þ 1

2GV
½~vμðpÞ · ~vμð−pÞ þ ~aμðpÞ · ~aμð−pÞ� þ

1

2G0

v0μðpÞv0μð−pÞ þ
1

2G5

a0μðpÞa0μð−pÞ
�
; ð4Þ

where the operator Aðp; p0Þ reads

Aðp; p0Þ ¼ ð2πÞ4δð4Þðp − p0Þð−pþmcÞ þ gðp̄Þ½σ1ðp0 − pÞ þ iγ5~τ · ~πðp0 − pÞ� þ fðp̄Þ p̄
ϰ
σ2ðp0 − pÞ

þ hðp̄Þγμ½~τ · ~vμðp0 − pÞ þ γ5~τ · ~aμðp0 − pÞ� þ h0ðp̄Þγμv0μðp0 − pÞ þ h5ðp̄Þγμγ5a0μðp0 − pÞ; ð5Þ

with p̄≡ ðpþ p0Þ=2. Here, the functions fðpÞ, gðpÞ, hðpÞ,
h0ðpÞ, and h5ðpÞ stand for the Fourier transforms of the
form factors entering the nonlocal currents in Eq. (2).
Without loss of generality, the coupling constants can be
chosen so that the form factors are normalized to
fð0Þ ¼ gð0Þ ¼ hð0Þ ¼ h0ð0Þ ¼ h5ð0Þ ¼ 1.
Let us now consider the mean field approximation

(MFA), in which the bosonic fields are expanded around
their vacuum expectation values, ϕðxÞ ¼ ϕ̄þ δϕðxÞ. On
the basis of charge, parity, and Lorentz symmetries, we
assume that σ1ðxÞ and σ2ðxÞ have nontrivial translational
invariant mean field values σ̄1 and ϰσ̄2, respectively, while
the vacuum expectation values of the remaining bosonic
fields are zero (notice that σ̄2 is dimensionless, due to
the introduction of the parameter ϰ). Writing the operator
Aðp; p0Þ as A ¼ A0 þ δA, within this approximation, one
can expand the logarithm of the fermionic determinant as

logdetA¼ tr logA

¼ tr logA0þ trðA−1
0 δAÞ− 1

2
trðA−1

0 δAA−1
0 δAÞþ � � � ;

ð6Þ

where

A0ðp; p0Þ ¼ ð2πÞ4δð4Þðp − p0Þf−½1 − σ̄2fðpÞ�pþmc

þ σ̄1gðpÞg; ð7Þ

and the trace extends over Dirac, color, flavor, and
momentum spaces. In the same way, the bosonized
effective action in Eq. (4) can be expanded in powers of
meson fluctuations as

SbosE ¼ SMFA
E þ SquadE þ � � � ; ð8Þ

where the mean field action per unit volume reads [13]

SMFA
E

Vð4Þ ¼ −2NC

Z
d4p
ð2πÞ4Tr log½D

−1
0 ðpÞ� þ 1

2GS
ðσ̄21 þ ϰ2σ̄22Þ;

ð9Þ

the trace acting just over Dirac space. From Eq. (7), the
mean field effective quark propagator D0ðpÞ is given by

D0ðpÞ ¼
zðpÞ

−pþmðpÞ ; ð10Þ

where the functions mðpÞ and zðpÞ—momentum-
dependent effective mass and WFR—are related to the
nonlocal form factors and the vacuum expectation values
of the scalar fields by

zðpÞ ¼ ½1 − σ̄2fðpÞ�−1;
mðpÞ ¼ zðpÞ½mc þ σ̄1gðpÞ�: ð11Þ

The mean field values σ̄1;2 can be found by minimizing
the mean field Euclidean action. This leads to the set of
coupled gap equations [13],

σ̄1 ¼ 8NCGS

Z
d4p
ð2πÞ4 gðpÞ

zðpÞmðpÞ
DðpÞ ;

σ̄2 ¼ −8NCGS

Z
d4p
ð2πÞ4

p2

ϰ2
fðpÞ zðpÞ

DðpÞ ; ð12Þ

where we have defined DðpÞ ¼ p2 þmðpÞ2. The chiral
quark condensates—order parameters of the chiral restora-
tion transition—are given by the vacuum expectation values
hq̄qi, where q ¼ u, d. The corresponding expressions can
be obtained by differentiating the MFA partition function
with respect to the current quark masses. Away from the
chiral limit, this leads in general to divergent integrals.
Since one is interested in the description of the nontrivial
vacuum properties arising from strong interactions, it is
usual to regularize these integrals by subtracting the free
quark contributions (see, e.g., Refs. [9,11,17,18]). One gets
in this way

hq̄qi ¼ −4NC

Z
d4p
ð2πÞ4

�
zðpÞmðpÞ
DðpÞ −

mc

p2 þm2
c

�
: ð13Þ
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III. MESON MASSES AND DECAY CONSTANTS

We are interested in the description of vector meson
phenomenology, which requires going beyond the MFA.
In this section, we derive analytical expressions to be used
for the calculation of basic measurable phenomenological
quantities, such as meson masses and decay constants. It is
important to notice that pion observables, already calcu-
lated within this framework in previous works [11,13,22],

need to be revisited owing to the mixing between ~π and ~aμ
fields.

A. Meson masses and mixing

In general, meson masses can be obtained from the terms
in the Euclidean action that are quadratic in the bosonic
fields. When expanding the bosonized action, we obtain

SquadE ¼ 1

2

Z
d4p
ð2πÞ4 fGσðp2ÞδσðpÞδσð−pÞ þGσ0 ðp2Þδσ0ðpÞδσ0ð−pÞ þ Gπðp2Þδ~πðpÞ · δ~πð−pÞ

þ iGπaðp2Þ½pμδ~aμð−pÞ · δ~πðpÞ − pμδ~aμðpÞ · δ~πð−pÞ� þGμν
0 ðp2Þδv0μðpÞδv0νð−pÞ þ Gμν

5 ðp2Þδa0μðpÞδa0νð−pÞ
þGμν

v ðp2Þδ~vμðpÞ · δ~vνð−pÞ þ Gμν
a ðp2Þδ~aμðpÞ · δ~aνð−pÞg; ð14Þ

where the functions GMðp2Þ, M ¼ σ; σ0; π;… are given by
one-loop integrals arising from the fermionic determinant
in the bosonized action. In the case of the σ1, σ2 sector, the
expression in Eq. (14) is given in terms of the fields σ and
σ0, which are defined as linear combinations of σ1 and σ2,

δσ ¼ cos θδσ1 − sin θδσ2; δσ0 ¼ sin θ0δσ1 þ cos θ0δσ2:

ð15Þ

The mixing angles θ and θ0 are fixed in such a way that
there is no σ − σ0 mixing terms at the level of the quadratic
action for p2 ¼ −m2

σð0Þ, where the minus sign is due to the
fact that the action is given in Euclidean space. Once cross
terms have been eliminated, the functionsGMðp2Þ stand for
the inverses of the effective meson propagators, and thus
scalar meson masses are obtained by solving the equations
Gσð0Þ ð−m2

σð0Þ Þ ¼ 0. Explicit expressions for the functions
Gσð0Þ ðp2Þ can be found in Ref. [13].
To analyze the vector meson sector, one has to take

into account the tensors Gμν
v , Gμν

a , Gμν
0 , and Gμν

5 . From the
expansion of the fermionic determinant, we obtain

Gμν
v ðp2Þ ¼ Gρðp2Þ

�
gμν −

pμpν

p2

�
þ Lþðp2Þp

μpν

p2
;

Gμν
a ðp2Þ ¼ Ga1ðp2Þ

�
gμν −

pμpν

p2

�
þ L−ðp2Þp

μpν

p2
; ð16Þ

where

Gð ρ
a1
Þðp2Þ ¼ 1

GV
− 8NC

Z
d4q
ð2πÞ4 h

2ðqÞ zðqþÞzðq−Þ
DðqþÞDðq−Þ

×

�
q2

3
þ 2ðp · qÞ2

3p2
−
p2

4
�mðq−ÞmðqþÞ

�
;

ð17Þ

L�ðp2Þ ¼ 1

GV
− 8NC

Z
d4q
ð2πÞ4 h

2ðqÞ zðqþÞzðq−Þ
DðqþÞDðq−Þ

×

�
q2 −

2ðp · qÞ2
p2

þ p2

4
�mðq−ÞmðqþÞ

�
;

ð18Þ

with q� ¼ q� p=2. The functions Gρ;a1ðp2Þ and L�ðp2Þ
correspond to the transverse and longitudinal projections
of the vector and axial vector fields, describing meson
states with spin 1 and 0, respectively. Thus, the masses of
the physical ρ0 and ρ� vector mesons (which are degen-
erate in the isospin limit) can be obtained by solving the
equation

Gρð−m2
ρÞ ¼ 0: ð19Þ

In addition, in order to obtain the physical states, the vector
meson fields have to be normalized through

δvaμðpÞ ¼ Z1=2
ρ ~vaμðpÞ; ð20Þ

where

Z−1
ρ ¼ g−2ρqq ¼

dGρðp2Þ
dp2

����
p2¼−m2

ρ

: ð21Þ

Here, gρqq can be viewed as an effective ρ meson-quark
effective coupling constant. Regarding the isospin zero
channels, it is easy to see that the expressions for Gμν

0 ðp2Þ
can be obtained from those for Gμν

v ðp2Þ, just replacing
GV → G0 and hðqÞ → h0ðqÞ. In this way, one can define
for the ω vector meson a function Gωðp2Þ, obtaining the ω
mass and wave function renormalization as in Eqs. (19)
and (21). Similar relations apply to the axial vector sector,
where Gμν

5 ðp2Þ can be obtained from Gμν
a ðp2Þ by replacing
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GV → G5 and hðqÞ → h5ðqÞ. The lightest physical state
associated to this sector (quantum numbers I ¼ 0,
JP ¼ 1þ) is the f1 axial vector meson, and hence we
denote by Gf1ðp2Þ the form factor corresponding to the
transverse part of Gμν

5 ðp2Þ.
In the case of the pseudoscalar sector, from Eq. (14), it is

seen that there is a mixing between the pion fields and
the longitudinal part of the axial vector fields [23,24]. The
mixing term includes a loop function Gπaðp2Þ, while the
term quadratic in δπ is proportional to the loop function
Gπðp2Þ. These functions are given by

Gπðp2Þ ¼ 1

GS
− 8NC

Z
d4q
ð2πÞ4 gðqÞ

2
zðqþÞzðq−Þ
DðqþÞDðq−Þ

× ½ðqþ · q−Þ þmðqþÞmðq−Þ�;

Gπaðp2Þ ¼ 8NC

p2

Z
d4q
ð2πÞ4 gðqÞhðqÞ

zðqþÞzðq−Þ
DðqþÞDðq−Þ

× ½ðqþ · pÞmðq−Þ − ðq− · pÞmðqþÞ�; ð22Þ

where once again we have used the definitions

q� ¼ q� p=2. The physical states ~~aμ and ~~π can be now
obtained through the relations [23,24]

δπbðpÞ ¼ Z1=2
π ~πbðpÞ;

δabμðpÞ ¼ Z1=2
a ~abμðpÞ − iλðp2ÞpμZ

1=2
π ~πbðpÞ; ð23Þ

where the mixing function λðp2Þ, defined in such a way
that the cross-terms in the quadratic expansion vanish, is
given by

λðp2Þ ¼ Gπaðp2Þ
L−ðp2Þ : ð24Þ

The pion mass can be then calculated from G ~πð−m2
πÞ ¼ 0,

where

G ~πðp2Þ ¼ Gπðp2Þ −G2
πaðp2Þ

L−ðp2Þ p
2; ð25Þ

while the pion WFR can be obtained from

Z−1
π ¼ g−2πqq ¼

dG ~πðp2Þ
dp2

����
p2¼−m2

π

: ð26Þ

In the case of the a1 axial vector mesons (I ¼ 1 triplet),
since the transverse parts of the abμ fields do not mix with
the pions, the corresponding mass and WFR can be
calculated using relations analogous to those quoted for
the vector meson sector, namely, Eqs. (19) and (21), with
Ga1ðp2Þ given by Eq. (17).

B. Pion weak decay

By definition, the pion weak decay constant fπ is
given by the matrix elements of axial currents between
the vacuum and the physical one-pion states,

h0jJ a
AμðxÞj ~πbðpÞi ¼ ie−ip·xδabfπðp2Þpμ; ð27Þ

evaluated at the pion pole. To determine the axial currents,
we “gauge” the effective action SE, introducing external
gauge fields. In general, for a local theory, this is carried out
just by replacing

∂μ → ∂μ þ iGμ; ð28Þ
where Gμ is the corresponding gauge field. In our model,
due to the nonlocality of the interactions, the gauging
procedure requires the introduction of gauge fields not only
through the covariant derivative in Eq. (28) but also through
a parallel transport of the fermion fields in the nonlocal
currents (see, e.g., Refs. [3,8,12]):

ψðx − z=2Þ → WGðx; x − z=2Þψðx − z=2Þ;
ψ†ðxþ z=2Þ → ψ†ðxþ z=2ÞWGðxþ z=2; xÞ: ð29Þ

Here, x and z are the variables in the definitions of the
nonlocal currents in Eq. (2), while the functionWGðx; yÞ is
defined by

WGðx; yÞ ¼ P exp

�
i
Z

y

x
dsμGμðsÞ

�
; ð30Þ

where s runs over an arbitrary path connecting x with y. In
the case of the axial current, we introduce the axial gauge
fields Wa

μðxÞ, taking

Gμ ¼
1

2
γ5~τ · ~Wμ: ð31Þ

In addition, notice that if the action is written in terms of the
original states πb and abμ in order to calculate the matrix
element in Eq. (27) one has to take into account the mixing
described in the previous subsection. Once the gauged
effective action is built, the matrix elements can be obtained
by taking derivatives with respect to the gauge and the
physical pion fields,

h0jJ a
AμðxÞj ~πbðpÞi ¼

δ2SbosE

δWa
μðxÞδ ~πbðpÞ

����
Wa

μ¼~πb¼0

: ð32Þ

The resulting one-loop contributions are diagrammati-
cally schematized in Fig. 1. Tadpolelike diagrams, which
are not present in the local NJL model, arise from the
occurrence of gauge fields in Eqs. (29). We finally obtain

fπ ¼
mcgπqq̄
m2

π
½F0ð−m2

πÞ þ λðp2ÞF1ð−m2
πÞ�; ð33Þ
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where

F0ðp2Þ ¼ 8Nc

Z
d4q
ð2πÞ4 gðqÞ

zðqþÞzðq−Þ
DðqþÞDðq−Þ

× ½ðqþ · q−Þ þmðqþÞmðq−Þ�;

F1ðp2Þ ¼ 8Nc

Z
d4q
ð2πÞ4 hðqÞ

zðqþÞzðq−Þ
DðqþÞDðq−Þ

× ½ðqþ · pÞmðq−Þ − ðq− · pÞmðqþÞ�: ð34Þ

It is important to notice that the result for fπ does not
depend on the path chosen for the transport function in
Eq. (30) [see the comment after Eq. (42) below]. In the
absence of vector meson fields, the mixing term in Eq. (33)
vanishes, and our expression reduces to that previously
quoted in Ref. [13].

C. ρ meson-photon vertex and ρ electromagnetic
decay constant

Another important quantity to be studied is the ρ-photon
vertex. In our nonlocal model, meson-photon couplings
receive in general contributions from the parallel transport

in Eq. (29), and therefore we find it important to check
that the conservation of the vector current is satisfied. In
addition, from this vertex, we can obtain a prediction for the
electromagnetic ρ → eþe− decay amplitude.
The ρ-photon vertex is given by the matrix element of

the electromagnetic current between a vector meson state
and the vacuum,

h0jJ emμðxÞj~vaνðpÞi ¼ ie−ip·xΠa
μνðpÞ: ð35Þ

To calculate this matrix element, one can follow the
procedure discussed in the previous subsection, taking now

Gμ ¼ eQAμ; ð36Þ

where e is the proton charge and Q ¼ diagð2=3;−1=3Þ.
Once again, it is possible to distinguish two contributions

to Πa
μν, namely, ΠðIÞa

μν and ΠðIIÞa
μν , arising from a two-vertex

and a tadpolelike diagram, respectively (see Fig. 2). We
obtain

ΠðIÞa
μν ðpÞ ¼ 4NCδa3eZ

1=2
ρ

Z
d4q
ð2πÞ4

zðqþÞzðq−Þ
DðqþÞDðq−ÞhðqÞ

�
1

2

�
1

zðqþÞþ
1

zðq−Þ
�
½qþμ q−ν þ qþν q−μ − ðqþ · q−Þδμν −mðqþÞmðq−Þδμν�

þ σ̄1½mðqþÞq−ν þmðq−Þqþν �αgμðq;pÞ þ σ̄2

�
−
ðq−Þ2
2

qþν −
ðqþÞ2
2

q−ν þmðqþÞmðq−Þqν
�
αfμðq;pÞ

�
; ð37Þ

ΠðIIÞa
μν ðpÞ ¼ −4NCδa3eZ

1=2
ρ

Z
d4q
ð2πÞ4

zðqÞ
DðqÞ qναhμðq; pÞ:

ð38Þ

Here, we have defined, for a given function fðpÞ,

αfμðq; pÞ ¼
Z

d4l
ð2πÞ4 ½fðqþ l=2ÞFμðp − l;lÞ

þ fðq − l=2ÞFμðl; p − lÞ�; ð39Þ

with

Fμðk; k0Þ ¼ −i
Z

d4zeik
0z
Z

z

0

dsμe−iðkþk0Þs; ð40Þ

where s runs over a path connecting the origin with a point
located at z.

It can be seen that the tensors ΠðIÞa
μν and ΠðIIÞa

μν are in
general not transverse. However, the sum of both contri-
butions satisfies pμΠa

μν ¼ 0, as required from the conser-
vation of the electromagnetic current. This can be verified
by noting that

ðkþ k0ÞμFμðk; k0Þ ¼ −i
Z

d4zeik
0z
Z

zðkþk0Þ

0

dωe−iω

¼ ð2πÞ4½δð4ÞðkÞ − δð4Þðk0Þ�; ð41Þ

ρ

(a)

ρ

(b)

FIG. 2. Quark-loop diagrams contributing to the ρ meson
vertex. (a) Two-vertex diagram. (b) Tadpolelike contribution.

FIG. 1. Diagrammatic representation of the contributions to the
pion decay constant. The cross represents the axial current vertex.
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which leads to

pμαfμðq; pÞ ¼ fðqþÞ − fðq−Þ: ð42Þ

It is also worth noticing that the integral in Eq. (41)
becomes trivial, and therefore the result in Eq. (42) does
not depend on the integration path in Eq. (40) [a similar
mechanism leads to the path independence of the functions
in Eqs. (34)]. Using the relation in Eq. (42), after an
adequate change of variables, one obtains

pμðΠðIÞa
μν þ ΠðIIÞa

μν Þ ¼ 0: ð43Þ

A similar cancellation has been found in Ref. [9], where a
nlNJL model that includes vector mesons without a quark
WFR is considered.
Let us now concentrate on the ρ electromagnetic decay

constant fv, which can be defined from ρ0 → eþe− decay,

Γðρ0 → eþe−Þ ¼ 4π

3
α2mρf2v; ð44Þ

where α ¼ e2=ð4πÞ is the electromagnetic fine structure
constant. It can be seen that fv is related to the trace of
Π3

μνðpÞ through

3m2
ρefv ¼ gμνΠ3

μνðpÞjp2¼−m2
ρ
: ð45Þ

To evaluate the transverse part of the tensor Π3
μν, we take a

straight line path for the integral over sμ in Eq. (30). This
leads to

αfμðq; pÞ ¼
Z

1

−1
dλ

�
qμ þ λ

pμ

2

�
f0
�
qþ λ

p
2

�
; ð46Þ

where f0ðpÞ denotes the derivative of f with respect to p2.
After some algebra, we obtain

fv ¼
Z1=2
ρ

3m2
ρ
½JðIÞð−m2

ρÞ þ JðIIÞð−m2
ρÞ�; ð47Þ

where

JðIÞðp2Þ ¼ −4Nc

Z
d4q
ð2πÞ4 hðqÞ

�
3

2

½zðqþÞ þ zðq−Þ�
DðqþÞDðq−Þ ½ðqþ · q−Þ þmðqþÞmðq−Þ� þ 1

2

zðqþÞ
DðqþÞ þ

1

2

zðq−Þ
Dðq−Þ

þ q2

ðq · pÞ
�
zðqþÞ
DðqþÞ −

zðq−Þ
Dðq−Þ

�
þ zðqþÞzðq−Þ
DðqþÞDðq−Þ

�
ðq · pÞ − q2p2

ðq · pÞ
�
½−σ̄1½mðqþÞ þmðq−Þ�αþg ðq; pÞ

þ σ̄2½q2 þ
p2

4
−mðqþÞmðq−Þ�αþf ðq; pÞ�

�
;

JðIIÞðp2Þ ¼ −4Nc

Z
d4q
ð2πÞ4

zðqÞ
DðqÞ

�
q2

ðq · pÞ ½hðq
þÞ − hðq−Þ� þ

�
ðq · pÞ − q2p2

ðq · pÞ
�
αþh ðq; pÞ

�
: ð48Þ

Superindices (I) and (II) correspond to the contributions
from the diagrams in Figs. 2a and 2b, respectively, while
the functions αþf ðq; pÞ have been defined as

α�f ðq; pÞ ¼
Z

1

−1
dλ

λ

2
f0
�
q − λ

p
2

�
: ð49Þ

D. π0 → γγ decay

Let us analyze in the context of our model the anomalous
decay π0 → γγ. As is well known, in the NJL model, this
decay is problematic; in order to reproduce the experi-
mentally observed result, it is necessary to perform quark
loop momentum integrations up to infinity instead of
following the cutoff prescription of the model [25]. In
our framework, taking into account the discussion of gauge
interactions in the previous subsections, the decay ampli-
tude can be calculated from the matrix element

h0jJ em μðxÞJ em νð0Þj ~π3ðpÞi

¼ δ3SbosE

δAμðxÞδAνð0Þδ ~π3ðpÞ
����
Aμ;ν¼ ~π3¼0

: ð50Þ

In principle, there are several diagrams that contribute to
the amplitude at the level of one loop. As in the case of the
pion decay constant fπ , since the physical π0 state ~π3ðpÞ is
a combination of π and aμ fields, one has to consider the
linear expansion of the bosonized action in π and in aμ. The
diagrams leading to nonzero contributions are those
depicted in Fig. 3. If the outgoing photons are assumed
to be in states of 4-momenta k1 and k2 with polarization

vectors εðλ1Þμ ðk1Þ and εðλ2Þν ðk2Þ, respectively, the decay
amplitude can be written as

Mðπ0 → γγÞ
¼ i4πα ~Fðk1; k2Þϵμναβεðλ1Þμ ðk1Þ�εðλ2Þν ðk2Þ�k1αk2β; ð51Þ
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where the form factor ~Fðk1; k2Þ is given by the sum of π and aμ contributions to the ~π3 state,

~Fðk1; k2Þ ¼ Z1=2
π ½Fπðk1; k2Þ þ λðp2ÞFaðk1; k2Þ�; ð52Þ

with p ¼ k1 þ k2.
The first term in the brackets, corresponding to the diagram in Fig. 3a, has been calculated (apart from an isospin factor)

in Ref. [22]. One has

Fπðk1; k2Þ ¼
2Nc

3

Z
d4q
ð2πÞ4 h

�
qþ k2

2
−
k1
2

�
zðqÞzðq − k1Þzðqþ k2Þ
DðqÞDðq − k1ÞDðqþ k2Þ

Aðq; k1; k2Þ; ð53Þ

where

Aðq; k1; k2Þ ¼
�

1

zðqÞ þ
1

zðq − k1Þ
��

1

zðqÞ þ
1

zðqþ k2Þ
��

mðqÞ − q2

2
×

�
mðqþ k2Þ −mðqÞ

ðq · k2Þ
−
mðq − k1Þ −mðqÞ

ðq · k1Þ
��

:

ð54Þ

On the other hand, the form factor Faðk1; k2Þ arises from the sum of the contributions corresponding to the diagrams in
Figs. 3b and 3c. Although these turn out to be separately divergent, it is seen that divergent pieces cancel out and the sum is
finite. We obtain

Faðk1; k2Þ ¼ −
2Nc

3

Z
d4q
ð2πÞ4

�
hðqþ k2=2− k1=2Þ

zðqÞzðq − k1Þzðqþ k2Þ
DðqÞDðq− k1ÞDðqþ k2Þ

×

�
ðmðq− k1Þ þmðqþ k2ÞÞAðq; k1; k2Þ

þ q2

2

�
Bðq; q− k1; qþ k2Þ

ðq · k2Þ
−
Bðq; qþ k2; q− k1Þ

ðq · k1Þ
��

þ q2
�
hðqþ k2=2Þ

ðq · k2Þ
Cðq; k1Þ þ

hðqþ k1=2Þ
ðq · k1Þ

Cðq; k2Þ
��

;

ð55Þ

where

Bðq; r; sÞ ¼
�

1

zðqÞ þ
1

zðrÞ
��

1

zðqÞ −
1

zðsÞ
�
DðsÞ;

Cðq; kÞ ¼
�

1

zðqþ k=2Þ þ
1

zðq − k=2Þ
�

zðqþ k=2Þzðq − k=2Þ
Dðqþ k=2ÞDðq − k=2Þ : ð56Þ

Finally, after phase space integration and summing over outgoing photon polarizations, the π0 → γγ decay amplitude is
given by

Γðπ0 → γγÞ ¼ π

4
α2m3

π
~Fðk1; k2Þ2: ð57Þ

Since photons are on-shell, from Lorentz invariance it is seen that ~Fðk1; k2Þ can only be function of the scalar
product ðk1 · k2Þ ¼ −m2

π=2.

(a) (b) (c)

FIG. 3. Quark-loop diagrams contributing to the π0 → γγ decay amplitude. (a) Triangle diagram leading to the form factor
Fπðk1; k2Þ in Eq. (53). Diagrams (b) and (c) lead to divergent contributions, though their sum can be worked out to obtain the finite
result in Eq. (55).
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E. ρ → ππ decay

In general, various transition amplitudes can be calcu-
lated by expanding the bosonized action to higher orders
in meson fluctuations. In this subsection, we concentrate
in the processes ρ0 → πþπ− and ρ� → π�π0, which are
responsible for more than 99% of ρ meson decays. The
decay amplitudes MðvaðpÞ → πbðq1Þπcðq2ÞÞ are obtained
by calculating the corresponding functional derivatives of
the effective action, which can be written in terms of two
form factors ~Fρππðp2; q21; q

2
2Þ and ~Gρππðp2; q21; q

2
2Þ:

δ3SbosE

δ ~vaμðpÞδ ~πbðq1Þδ ~πcðq2Þ
����
δvμ¼δπ¼0

¼ð2πÞ4δð4Þðpþq1þq2Þϵabc
�
~Fρππðp2;q21;q

2
2Þ
ðq1μþq2μÞ

2

þ ~Gρππðp2;q21;q
2
2Þ
ðq1μ−q2μÞ

2

�
: ð58Þ

Only the transverse piece, driven by the form factor
~Gρππðp2; q21; q

2
2Þ, contributes to ρ → ππ decay widths.

Indeed, in the isospin limit, one has

Γρ0→πþπ− ¼ Γρ�→π�π0 ¼
1

48π
mρg2ρππ

�
1 −

4m2
π

m2
ρ

�
3=2

; ð59Þ

where gρππ ≡ ~Gρππð−m2
ρ;−m2

π;−m2
πÞ.

The form factor ~Gρππðp2; q21; q
2
2Þ arises from the effective

vertex ~ρ ~π ~π, where ~ρ and ~π are renormalized states. Since
we expand the effective action in Eq. (4) in powers of the
unrenormalized fields, it is convenient to write the effective
vertex in terms of the original fields ρ, π, and aμ [the latter
has to be taken into account due to the π − a mixing
given by Eq. (23), as mentioned in previous subsections]. In
this way, the form factor receives contributions from the
diagrams sketched in Fig. 4. One has

~Gρππðp2; q21; q
2
2Þ ¼ Z1=2

ρ Zπ½Gρππðp2; q21; q
2
2Þ

þ λðp2ÞGρπaðp2; q21; q
2
2Þ

þ λðp2Þ2Gρaaðp2; q21; q
2
2Þ�; ð60Þ

where Gρππðp2; q21; q
2
2Þ, Gρπaðp2; q21; q

2
2Þ, and

Gρaaðp2; q21; q
2
2Þ are one-loop functions that arise from

the expansion of the effective action. The explicit forms of

these functions, which can be obtained after a rather
lengthy calculation, can be found in Appendix A.

IV. NUMERICAL RESULTS

A. Model parameters and form factors

To fully define the model, it is necessary to provide the
values of the unknown parameters and to specify the shape
of the form factors entering the nonlocal fermion currents.
There are six parameters, namely, the current quark mass
mc and the dimensionful coupling constants GS, GV , G0,
G5, and ϰ. Regarding the form factors, as stated in the
Introduction, we will take into account the results obtained
in lattice QCD for the momentum dependence of the mass
and WFR in the quark propagator. Therefore, following
Ref. [26], we write the effective mass mðpÞ as

mðpÞ ¼ mc þ αmfmðp2Þ; ð61Þ

where αm is a mass parameter defined by the normalization
condition fmð0Þ ¼ 1. Since LQCD calculations involve
various current quark masses, we have chosen to take as
input the shape of the (normalized) function fmðp2Þ, taking
LQCD results in the limit of low mc and smallest lattice
spacing. Considering the LQCD analysis in Ref. [26], we
parametrize this function by

fmðp2Þ ¼ 1

1þ ðp2=Λ2
0Þα

; ð62Þ

with α ¼ 3=2. On the other hand, for the wave function
renormalization, we use the parametrization [11,13]

zðpÞ ¼ 1 − αzfzðp2Þ; ð63Þ

where

fzðp2Þ ¼ 1

ð1þ p2=Λ2
1Þβ

: ð64Þ

It is found that LQCD results favor a relatively low value
for the exponent β, and therefore we take here β ¼ 5=2,
which is the smallest exponent compatible with the ultra-
violet convergence of the gap equations (12). As required
by dimensional analysis and Lorentz invariance, the func-
tions fmðp2Þ and fzðp2Þ carry dimensionful parameters Λ0

and Λ1, which represent effective cutoff momenta in the
corresponding channels. Thus, we will use here the above
functional forms for the form factors, taking Λ0 and Λ1 as

FIG. 4. Diagrams contributing to ρ → ππ decays.
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two further free parameters of the model. Regarding the
parameters αm and αz introduced in Eqs. (61) and (63),
from Eqs. (11), it is seen that they are related to the mean
field values of the scalar fields by

mð0Þ ¼ mc þ αm ¼ mc þ σ̄1
1 − σ̄2

; ð65Þ

zð0Þ ¼ 1 − αz ¼
1

1 − σ̄2
; ð66Þ

and hence, for a given set of model parameters, they can be
obtained by solving the gap equations (12).
The model also includes the form factors hðpÞ, h0ðpÞ,

and h5ðpÞ, introduced through the vector and axial vector
current-current interactions. For definiteness and simplic-
ity, we will assume the effective behavior of quark
interactions to be similar in the J ¼ 0 and J ¼ 1 channels,
and therefore we will take for hðpÞ the same form as gðpÞ.
Regarding the vector-isoscalar sector, as it is usually done,
we assume approximate degeneracy with the vector-
isovector part, and hence we take hðpÞ≃ h0ðpÞ. The axial
vector-isoscalar sector can be studied separately, since it
decouples from the rest of the Lagrangian. Here, we will
just take h5ðpÞ ¼ hðpÞ in order to get an estimation for the
constant G5 from phenomenology.
Given the form factor shapes, in order to study the

phenomenology, we have to determine the values of the
model parameters (current quark mass, coupling constants,
and effective cutoff momenta). To do this, we first carry out
a fit to lattice results for the functions fmðp2Þ and zðpÞ,
from which we obtain the values of the cutoffs Λ0 and Λ1,
as well as the parameter αz. The latter will be used, together
with five phenomenological quantities, as input to deter-
mine the remaining six free model parameters. From the
LQCD results quoted in Ref. [4], we obtain

Λ0 ¼ 917� 14 MeV;

Λ1 ¼ 1775� 53 MeV;

αz ¼ 0.244� 0.010; ð67Þ

with χ2=dof ¼ 1.17 and χ2=dof ¼ 0.25 for the fits to
fmðp2Þ and zðpÞ data, respectively. The fits have been
carried out considering lattice values up to 2.5 GeV. Both
the data and the fitting curves for fmðp2Þ and zðpÞ are
shown in Fig. 5. In the case of zðpÞ, it is seen that the fit
leads to somewhat large values of zðpÞ at low momenta in
comparison with lattice points. We notice, however, that
errors in this region are relatively large, and in addition,
these points are the most sensitive to changes in lattice
spacing and/or sea quark masses [4].
Once the form factor shapes have been fixed, one can set

the model parameters so as to reproduce the empirical
values of some selected observables. As stated, we take
from the fit the values of Λ0 and Λ1, and then we determine
the values of the parameters mc, GV , GS, G0, G5, and ϰ
from six input quantities. These have been chosen to be the
fitted value of αz together with the empirical values of the
pion weak decay constant fπ and the masses of the π, ρ, ω,
and f1 mesons. From our numerical analysis, we find
that there is a set of parameters that allows us to properly
reproduce these empirical values. The corresponding
results are quoted in Table I.
The numerical analysis requires solving a system of

coupled equations that includes the gap Eqs. (12), equa-
tions GMð−m2

MÞ ¼ 0 for M ¼ π, ρ, ω and f1 to determine
meson masses, and Eq. (33) for fπ. This involves the
calculation of one-loop integrals introduced in Secs. III. A
and III. B, which in general is not a trivial task due to the
fact that the form factor fmðp2Þ, as function of the fourth
component p4 of the momentum, has cuts when p4 is
extended to the complex plane. Depending on the value of
the 3-momentum ~p, these cuts can occasionally cross the
real axis and have to be taken into account through a proper
deformation of the integration path. Details of the calcu-
lations are given in Appendix B.
From Table I, we find a ratio GS=GV ∼ 1.5, which is in

agreement with standard NJL model parametrizations [2].
Concerning the value of G0, it is necessary to take into
account that we are working within a two-flavor model, and
therefore effects of strange quark bound states are not
explicitly considered. Our determination of G0 would be

FIG. 5. Fit to lattice data for the functions fmðp2Þ and zðpÞ.
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valid only in the case of “ideal mixing” between SUð3Þf
singlet and octet I ¼ 0 states, which means taking the ω as
an approximate SUð3Þf octet state and the ϕ meson as an
approximately pure s̄s state. In the case of the f1 axial
vector meson, there is an additional problem, which is
common to various quark models. Indeed, models that do
not include an explicit mechanism of confinement usually
have difficulties for describing meson resonances, since
there is a threshold above which the meson mass becomes
large enough to allow the decay of the meson into two
quarks. This threshold is typically of the order of 2mð0Þ,
and therefore models that lead to constituent masses larger
than about 400 MeV (as occurs in our case) can avoid
this problem for low mass resonances like the ρ meson
[27]. Other possible approaches are, e.g., the extension
of GMð−sÞ functions to the complex plane [28] or the
search for a peak in the meson spectral function [29].
Mathematically, in our model, the onset of the unphysical
qq̄ channel corresponds to the fact that in the integrals of
the form of, e.g., Eq. (17) there is a “pinch point” at which
both functions DðqþÞ and Dðq−Þ in the integrand are equal
to zero (i.e., both constituent quarks are simultaneously
on shell). For the parameters in Table I, the threshold is
found to be at 1264 MeV, i.e., below the empirical value
mf1 ¼ 1280 MeV, and the free parameter to be adjusted to
get the phenomenological value of the f1 mass is the
coupling constant G5. To obtain an approximate value for
this constant, we have solved the equation Gf1ð−m2Þ ¼ 0

varying G5Λ2
0 from large values of G5 up to G5Λ2

0 ≃ 22,
which leads to m≃ 1 GeV, and then we have extrapolated
to the region above the threshold to obtain mf1 ≃
1280 MeV for G5Λ2

0 ∼ 14.

B. Numerical results for phenomenological quantities

Using the parameters and nonlocal form factors quoted
in the previous subsection, we can calculate the predictions
of the model for the phenomenological quantities analyzed
in Secs. II and III.
Our numerical results for various observables are

summarized in Table II (we have not included here the

quantities taken as phenomenological inputs, namely, mπ ,
fπ , mρ, mω, and mf1). From the table, it is seen that the
predictions of the model for the π0 → γγ, ρ → eþe−, and
ρ → ππ decay rates are in good agreement with experi-
ments, being compatible with the empirical values [30]
within an accuracy of less than 10%. We can also obtain a
prediction for the width Γðω → eþe−Þ, which is found to
be about 0.8 keV, somewhat larger than the experimental
value 0.60� 0.02 keV [30]. However, as discussed above,
our result might become modified after the inclusion of
strangeness degrees of freedom owing to the ω − ϕmixing.
Regarding the σ − σ0 sector, we obtain a physical state with
a mass of about 680 MeV, which can be identified with the
observed σ meson resonance (the mass of which is rather
uncertain), while for the state σ0 we find that the function
Gσ0 ð−sÞ grows monotonically with s, indicating that this
state does not represent a physical meson (a more detailed
discussion on the σ0 state in this type of models can be
found in Ref. [13]). In the case of the a1 vector mesons, we
find that the function Ga1ð−sÞ decreases with s until it
reaches a minimum at

ffiffiffi
s

p ≃ 1250 MeV, very close to the
threshold of on-shell quark pair production, or pinch point,
found at 1264 MeV. Recalling the discussion in the
previous subsection, in order to estimate the value of the
a1 mass, it is possible either to take the minimum of
Ga1ð−sÞ or to make an extrapolation based on the behavior
of Ga1ð−sÞ up to, say, s ∼ ð1 GeVÞ2. Both approaches lead
to ma1 ∼ 1200–1250 MeV, which is in good agreement
with experimental expectations. We have also analyzed the
dependence of our results on the value of αz within the error

TABLE II. Model predictions and empirical values [30] for
various observables.

Model Empirical

Γðπ0 → γγÞ (MeV) 7.82 × 10−6 ð7.63� 0.16Þ × 10−6

Γðρ → eþe−Þ (MeV) 6.71 × 10−3 ð7.04� 0.06Þ × 10−3

Γðρ → ππÞ (MeV) 137 149.1� 0.8
mσ (MeV) 683 400–550
ma1 (MeV) 1200–1250 1190–1270

TABLE I. Model parameters. The values of Λ0, Λ1, and αz have been obtained from a fit to lattice QCD
calculations for the effective quark propagator, see Eq. (67). The model parameters mc, GS, ϰ, GV , G0, and G5 are
fitted against the phenomenological values of five hadronic observables, plus the value of αz given by the fit to
LQCD data.

Model parameters Inputs Model parameters Inputs

Λ0 (MeV) LQCD results mc (MeV) 1.59 αz LQCD results
Λ1 (MeV) LQCD results GSΛ2

0
19.0 mπ (MeV) 139

ϰ=Λ0 11.2 fπ (MeV) 92.2

GVΛ2
0

13.0 mρ (MeV) 775

G0Λ2
0

12.8 mf1 (MeV) 1280

G5Λ2
0

∼14 mω (MeV) 783
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given by the fit to LQCD data [see Eq. (67)], obtaining that
the model predictions do not vary significantly.
Finally, in Table III, we quote our results for mean

field values of scalar fields, chiral quark condensates,
and effective quark-meson couplings. It is seen that the
model leads to a zero-momentum effective quark
mass mð0Þ ¼ ðmc þ σ̄1Þ=ð1 − σ̄2Þ≃ 400 MeV, somewhat
larger than the value of 311 MeVobtained in Ref. [13] for a
nlNJL model without vector meson degrees of freedom. For
comparison, notice that standard NJL model parametriza-
tions lead to values of constituent (momentum-
independent) quark masses around 350 MeV [2].
Concerning the chiral quark condensates, our results
are relatively large in comparison with usual phenomeno-
logical estimations and lattice calculations, which lead
to condensates in the range of ð−240 MeVÞ3 to
ð−320 MeVÞ3 [31]. In addition, when determining the
model parameters, we have found a relatively low value for
the current quark mass, namely, mc ¼ 1.59 MeV, in
comparison with lattice estimates that lead to mc ≃ 3.4�
0.25 MeV in the isospin limit [30]. The results for these
quantities in nlNJL models are in fact strongly dependent
on the form factor shapes, as it is found in Refs. [13,20,21],
where two- and three-flavor nonlocal models (which do
not include the vector meson sector) are considered. As
discussed in those articles, one has to take into account
that both mc and hq̄qi are scale-dependent quantities, and
our fit has been carried out using lattice data that corre-
spond to a renormalization scale μ ¼ 3 GeV, somewhat
larger than the usual scale of 2 GeV. To get rid of the scale
dependence, one can look at the product −hq̄qimc, for
which we get, within our parametrization, a result of about
8.12 × 10−5 GeV4. This is in good agreement with the
value arising from the Gell-Mann-Oakes-Renner relation
at the leading order in the chiral expansion, namely,
−hq̄qimc ¼ f2πm2

π=2≃ 8.21 × 10−5 GeV4. Finally, for
completeness, we include in Table III the values obtained
for the effective quark-meson couplings gπqq̄ and gρqq̄.

V. SUMMARY AND OUTLOOK

In this work, we have introduced a two-flavor chiral
quark model that includes nonlocal four-fermion inter-
actions. Besides the usual scalar and pseudoscalar cou-
plings already present in the standard (local) NJL model,

we consider the couplings between vector and axial-vector
quark-antiquark currents as well as a current-current
interaction that leads to WFR of the quarks fields. The
model leads to a dressed quark propagator in which the
effective mass and WFR are functions of the momentum
through nonlocal form factors, and these can be fitted to the
results obtained in lattice QCD calculations.
We have concentrated on vacuum properties related with

the presence of vector and axial-vector mesons, which have
not been taken into account in this context in previous
works. For this analysis, we have evaluated various one-
loop diagrams contributing to vector and axial-vector mass
terms and decay amplitudes. It is seen that, owing to the
nonlocal character of the interactions, the model leads to
tadpole diagrams contributing to the ρ-photon vertex, in
addition to the usual quark loop contributions. The longi-
tudinal components of both contributions are found to be
separately nonvanishing, while their sum is transverse,
as requested by electromagnetic current conservation. It is
worth mentioning that analytical expressions for the pion
mass and decay constants obtained in previous works have
been revisited in order to take into account π − a1 mixing.
On the phenomenological side, the fit of nonlocal

form factors to lattice QCD results for effective quark
propagators provides a more natural and realistic way to
regularize the model in comparison with the standard NJL
approach. The remaining unknown parameters, namely,
the current quark mass and the current-current coupling
constants, can be determined from some input observables.
Here, we have chosen to take as inputs the measured values
of the pion decay constant and a set of meson masses. From
the numerical evaluation of the analytical expressions,
we find that the model is able to properly reproduce the
empirical values of these observables and leads to phe-
nomenologically acceptable values for other scalar and
vector meson masses and decay widths.
To conclude, let us state that the inclusion of the axial

and vector meson sector offers a more complete picture of
hadron phenomenology in the framework of nonlocal quark
models, and its effects can be important for the analysis
of hadronic observables such as the pion electromagnetic
form factor and the vector and axial vector form factors for
pion radiative decays. It is also worth it to extend the study
of ρ meson properties to finite-temperature systems, given
its importance for the study of heavy ion collisions. In
addition, for the case of hadronic systems at finite chemical
potential, it is expected that vector interactions lead to a
nonzero condensate in the J ¼ 1, I ¼ 0 channel, which can
be important for the study of the QCD phase diagram [32]
and the physics of compact objects [33]. We expect to
report on these issues in forthcoming articles.
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APPENDIX A: ANALYTICAL EXPRESSIONS FOR THE FORM FACTORS IN ρ → ππ DECAYS

Here, we quote the analytical expressions for the functions Gρππðp2; q21; q
2
2Þ, Gρπaðp2; q21; q

2
2Þ, and Gρaaðp2; q21; q

2
2Þ

contributing to the form factor ~Gρππðp2; q21; q
2
2Þ; see Eq. (60). To calculate the ρ → ππ decay amplitude, we have to evaluate

these functions at q21 ¼ q22 ¼ ðp − q1Þ2 ¼ −m2
π, p2 ¼ −m2

ρ. We find it convenient to introduce the momentum
v ¼ q1 − p=2, which satisfies p · v ¼ 0, v2 ¼ m2

ρ=4 −m2
π . Then, the functions Gρxyðp2; q21; q

2
2Þ, where subindices x and

y stand for either π or a, can be written as

Gρxyðp2; q21; q
2
2Þ ¼ 16Nc

Z
d4q
ð2πÞ4 hðqÞgðqþ v=2þ p=4Þgðqþ v=2 − p=4Þ zðqþÞzðq−Þzðqþ vÞ

DðqþÞDðq−ÞDðqþ vÞ fxyðq; p; vÞ; ðA1Þ

where we have defined q� ¼ q� p=2. After a rather lengthy calculation, we find for fxyðq; p; vÞ the expressions

fππ ¼ ½ðqþ · q−Þ þmðqþÞmðq−Þ�
�
1þ ðq · vÞ

v2

�
−
ðq · vÞ
v2

f2½q · ðqþ vÞ� þmðqþ vÞ½mðqþÞ þmðq−Þ�g;

fπa ¼ −2mðqþ vÞ½ðqþ · q−Þ − 2
ðq · vÞ2
v2

þmðqþÞmðq−Þ�

þ
�
1þ ðq · vÞ

v2

�
fðqþ · pÞmðq−Þ − ðq− · pÞmðqþÞ − 2ðq · vÞ½mðqþÞ þmðq−Þ�g;

faa ¼
�
1þ ðq · vÞ

v2

��
qþ2q−2 − ðqþ · q−Þðqþ vÞ2 −

�
v2 þ p2

4

�
mðqþÞmðq−Þ

�

þmðqþ vÞ
�
mðqþÞðq− · pÞ −mðq−Þðqþ · pÞ þ ðq · vÞ

v2

�
v2 −

p2

4

�
½mðqþÞ þmðq−Þ�

�

þ 2
ðq · vÞ
v2

ðqþ vÞ2
�
ðq · vÞ − p2

4

�
: ðA2Þ

APPENDIX B: LOOP INTEGRALS AND BRANCH
CUTS IN THE FORM FACTORS

As described in Sec. IV, we have considered a para-
metrization of the nlNJL model that allows us to reproduce
LQCD results for the momentum dependence of effective
quark propagators. From the comparison with LQCD data,
the form factors gðpÞ and fðpÞ have been written in terms
of the functions fmðp2Þ and fzðp2Þ given by Eqs. (62) and
(64). In this Appendix, we discuss the numerical evaluation
of loop integrals, which have to be treated with some care
given the particular form of fmðp2Þ.
Let us consider loop integrals that involve an external

momentum p, such as those in the functions GMðp2Þ,
F0;1ðp2Þ, and JðI;IIÞðp2Þ, defined in Sec. III. The integrals
can be generically written as

Iðp2Þ ¼
Z

d4q
ð2πÞ4 Fðq

þ; q−; pÞ; ðB1Þ

where q� ¼ q� p=2 and Fðqþ; q−; pÞ is a function that
includes the form factors either explicitly or through the
quark effective masses and/or wave function

renormalizations. More precisely, it is seen that in general
Fðqþ; q−; pÞ may include the form factors fmðsÞ evaluated
at s ¼ ðqþÞ2, ðq−Þ2 and/or q2. We are interested in this form
factor since its explicit form fmðsÞ ¼ 1=½1þ ðs=Λ2

0Þ3=2�
implies the existence of a branch cut in the complex plane s,
namely, at ReðsÞ < 0, ImðsÞ ¼ 0. It is worth noticing that
in all cases the integrals have to be evaluated numerically at
p2 ¼ −M2, where M is some meson mass.
To perform the calculations, we choose, as usual, the

fourth axis in the direction of the external momentum. Thus,

one has pμ ¼ ðiM; ~0Þ, and Iðp2Þ can be reduced to a double
integral in q4 and j~qj. Since the functions Fðqþ; q−; pÞ are
symmetric under the exchange qþ ↔ q−, it is easy to see
that Fðqþ; q−; pÞ ¼ Fðqþ�; q−�; pÞ, which ensures the
reality of Iðq2Þ. Now, let us take j~qj fixed and consider
the analytical structure of the integrand in the complex q4
plane. It is immediately seen that we will find a pair of
branch cuts in this plane arising from the function fmðq2Þ,
and other pairs of cuts will appear from the occurrences of
fm½ðqþÞ2� and fm½ðq−Þ2�, respectively. In the case of
fmðq2Þ ¼ fmðq24 þ j~qj2Þ, the cuts are given by
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Reðq4Þ ¼ 0, jImðq4Þj > j~qj, and hence they never cross the
real q4 axis, along which the integral is to be performed. On
the other hand, for fm½ðq�Þ2�, the cuts are located at
Reðq4Þ ¼ 0, jImðq4Þ �M=2j > j~qj, and therefore if
j~qj < M=2, both fm½ðqþÞ2� and fm½ðq−Þ2� have cuts that
cross the real q4 axis.
The treatment of these cuts is a matter of prescription. In

fact, after taking the form factors from LQCD calculations
in Euclidean space, one could turn back to Minkowski
space through a Wick rotation. Then, one would find that
the cuts are located along the integration axis, and to
evaluate the integrals, they have to be moved away
according to some recipe. Here, we will adopt the pre-
scription of translating the arguments of fmðsÞ according to

fm½ðqþÞ2� → fm½ðqþÞ2 − iε�; ðB2Þ

fm½ðq−Þ2� → fm½ðq−Þ2 þ iε�; ðB3Þ
while fmðq2Þ is kept unchanged. In this way, branch cuts
do not overlap, and the property Fðqþ; q−; pÞ ¼
Fðqþ�; q−�; pÞ remains valid. From Eqs. (B2) and (B3),
the cuts associated to the functions fm½ðq�Þ2� are given by(

Reðq4Þ − ε
M�2Imðq4Þ ¼ 0;

jImðq4Þ �M=2j − j~qj > 0:
ðB4Þ

The corresponding curves in the complex plane q4 are
sketched in Fig. 6, where we have distinguished two
situations in which j~qj > M=2 (Fig. 6a) and j~qj < M=2
(Fig. 6b). Branch cuts corresponding to the functions
fm½ðqþÞ2�, fm½ðq−Þ2�, and fmðq2Þ have been represented
with dashed, dotted and dashed-dotted lines, respectively. If
j~qj > M=2, as it is shown in Fig. 6a, the cuts do not cross the
integration axis, and thus there is no extra contribution to the
loop integral. On the contrary, for j~qj < M=2, two branch
cuts cross from one half-plane to the other one, passing
through the real q4 axis. Since the integral over q4 has to be
ultimately equivalent to an integral over the Minkowski
momentum q0, obtained through the corresponding Wick
rotation, the integration contour along q4 should be
deformed in order to subtract the contribution of the crossing
pieces, which are represented with solid lines in Fig. 6b. A
similar procedure has to be followed when poles of the
integrand cross the integration axis at some value of j~qj; in
that case, the contributions resulting from the deformation of
the q4 integration contour can be obtained by calculating the
residues of the poles, according to Cauchy’s theorem. The
need to add cut or pole contributions to the loop integrals
becomes evident by looking at relatively simple integrals as
those appearing in the gap equations (12); if one carries out a
translation of the loop momentum p → p0 ¼ pþ r, with

r2 ¼ −M2, for fixed j~p0j there will be branch cuts in the
complex plane p0

4 that cross from the upper half-plane to the
lower one (or vice versa). In addition, in general, the
integrand will have poles that for large enough values of
M cross the real p0

4 axis at some value of j~p0j. From
Cauchy’s theorem, it is easy to see that the corresponding
contributions have to be subtracted if one requires the loop
integral to be invariant under the translation.
In practice, the contributions from the cuts can be

obtained by carrying out integrations in the q4 plane along
adequate contours that enclose the crossing pieces, letting
then ε → 0. Owing to the symmetry of the functions
Fðqþ; q−; pÞ, imaginary parts from the integrations in
the upper and lower half-planes cancel out, leading to
a real total contribution. Then, the result has to be
integrated over the 3-momentum variable j~qj. Notice
that—according to the conditions in Eq. (B4)—this inte-
gration goes from j~qj ¼ 0 to j~qj ¼ M=2, and therefore the
contribution can be neglected if the meson mass M is
relatively small, which is in general the case whenM ¼ mπ .
Finally, in the case of the ρ → ππ form factor, the situation
is more complicated since the relevant loop integral, given
by Eq. (A1), involves two independent external momenta p
and v. It can be seen that the integrand has two additional
branch cuts in the q4 complex plane, arising from the
functions fmðsÞ evaluated at s ¼ ðqþ v=2� p=4Þ2. To
deal with these new cuts, we have used the prescription
fm½ðq þ v=2 � p=4Þ2� → fm½ðq þ v=2 � p=4Þ2 � iε0�,
choosing an integration path that encloses the pieces of the
cuts that cross the real p4 axis as explained above.

(a) (b)

FIG. 6. Branch cuts of the functions Fðqþ; q−; pÞ in the
complex plane q4, according to the prescription in Eqs. (B2)
and (B3). The curves in graphs (a) and (b) correspond to j~qj >
M=2 and j~qj < M=2, respectively.
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