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In this paper we study the high energy behavior of electroweak Standard Model for a nonzero Weinberg
angle θW . We evaluate the spectrum of the electroweak Pomeron and demonstrate that the leading intercept
is given by αe:w:4 ln 2 and does not depend on the mixing angle θW . Due to its very small numerical value,
we conclude that the high energy behavior of electroweak theory cannot be discussed without including the
QCD Pomeron which, at sufficiently large energies, will dominate.
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I. INTRODUCTION

High energy scattering processes described by the
SUð2Þ ⊗ Uð1Þ gauge theory of electroweak interactions,
in particular the elastic scattering of weak vector bosons,
have played an important role in unravelling the gauge
structure of the electroweak sector. From the very begin-
ning the Higgs mechanism was conceived as a way to
avoid power law violations of unitarity at high energies.
Nevertheless, due to logarithmic loop corrections, resum-
mation is required in order to understand the asymptotic
high energy behavior of the theory. In a pure electroweak
weak theory these corrections stem from the Reggeization
of the electroweak gauge bosons and from the formation of
the electroweak Pomeron [1]. When the QCD sector is
taken into account, due to formation of virtual quarks, also
the QCD Pomeron [2,3] starts contributing [4] and even-
tually overtakes the electroweak Pomeron. This implies that
the unitarization problem in the electroweak sector is still
awaiting its final solution.
Due to the rich particle content of the Standard Model,

the study of the electroweak Pomeron is a challenging task.
As a first step, the decoupled limit (θw ¼ 0) of the spectrum
of the SUð2Þ Pomeron was studied in [5,6], and it has been
found that the inclusion of a vector meson mass does not
affect the spectrum of the Pomerons. However, it does
change significantly the form of the eigenfunctions.
In this paper we extend this study to the realistic case of a

nonzero mixing angle θw. A priori it is not clear how
mixing might affect the high energy behavior, given the fact
that the Higgs mechanism, even in the leading logarithmic
approximation, introduces new contributions to the inter-
action kernels. As a first step, we will work in the leading
logarithmic approximation and neglect effects of the run-
ning coupling constant. Our main (numerical) result is that
the θw ≠ 0 corrections to the eigenvalue spectrum are small,
indicating that the eigenvalues of the electroweak Pomeron

coincide with our earlier results [5,6] for an SUð2Þ gauge
theory.
Our paper is organized as follows. In Sec. II we give a

short overview of the Balitski-Fadin-Kuraev-Lipatov
(BFKL) approach applied to electroweak interactions.
First (Sec. II A) we review the case when the Higgs field
is absent, then (Sec. II B) we analyze how the Higgs
mechanism leads to a system of coupled equations for the
electroweak Pomeron [1], and finally (Sec. II C) we
demonstrate that the Higgs mechanism does not affect
the large-transverse momentum limit of the theory. In order
to study the influence of the small-momentum region on the
physically important leading intercept, we then perform, in
Sec. III, a perturbative expansion in sin2 θW , making use of
the smallness of the Weinberg angle. After a short review of
our numerical methods developed earlier [5,6] we compute
corrections to the leading intercept of the order Oðsin2 θWÞ
and argue that they vanish. After that in Sec. IV we reduce
our system of initially 17 coupled equations for the
electroweak Pomeron to a single equation (which is linear
in the wave function, but has a complicated dependence on
the eigenvaule ω) and perform a numerical analysis in the
lattice approximation. Finally, in Sec. V we draw our
conclusions.

II. ELECTROWEAK INTERACTIONS AT HIGH
ENERGIES: GENERALITIES

A. The massless SUð2Þ Pomeron

The Lagrangian of the electroweak interaction can be
written as a sum of several contributions [7],

LEW ¼ Lgauge þ Lfermions þ LHiggs boson þ LYukawa; ð1Þ

where Lgauge has the form
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Lgauge ¼ −
1

4
Wμν

a Wa
μν −

1

4
BμνBμν; ð2Þ

andWa
μν and Bμν are the field strength tensors for the gauge

fields of groups SUð2Þ and Uð1Þ respectively. For a
moment we disregard completely all the other terms in
Eq. (1) since at high energy only exchange of the vector
gauge fields [8] gives the contributions to the leading
lnð1=xÞ order of perturbative QCD (LLA).1 In LLA
the massless field Wa

μ Reggeizes and the behavior of the
scattering amplitude at high energies is governed by the
BFKL evolution [12–14]2

ϕWðk2; Y ¼ ln ð1=xÞÞ ¼
Z

dω
2πi

eωYϕWðω; k2Þ; ð3Þ

where

ωϕWðω; k2Þ ¼ ᾱe:w:

�Z
dk02

jk2 − k02j þ kϵ
ϕWðω; k02Þ

− ln ðk2=ϵ2ÞϕWðω; k2Þ
�
; ð4Þ

ᾱe:w: ¼ g2

4π
2
π for the SUð2Þ group, the second term in (4)

stems from vector boson Reggeization, and ϵ → 0 provides
a regularization near the point k2 ¼ k02 in the emission
kernel. The solution of (4) is well known [8,9]. The
eigenvalues (spectrum) of the BFKL equation is continuous
and is parametrized by a variable ν which is related to the
eigenvalue as

ωe:w:BFKLðνÞ ¼ ᾱe:w:

�
2ψð1Þ− ψ

�
1

2
− iν

�
− ψ

�
1

2
þ iν

��
;

ð5Þ

where ψðzÞ is a polygamma function. The spectrum (5) is
limited from above by ωðν ¼ 0Þ ¼ 4 ln 2ᾱe:w:, which yields
for the large-s behavior s1þωðν¼0Þ. For all other ν, the
spectrum is twice degenerate, with eigenfunctions given by

ϕBFKL
W ðk2Þ ¼ ðk2Þ−1

2
�iν: ð6Þ

The set (6) forms an orthonormalized and a complete set of
functions. The Abelian fields Bν do not interact with each

other in LLA and they lead to the amplitude which is
proportional to s [10].

B. Symmetry breaking and the
electroweak Pomeron

As peculiar features of the electroweak theory, due to a
Higgs mechanism gauge bosons get masses (which, naively
speaking, we expect not to affect high energy behavior of a
theory) and physical fields Z and γ are defined as mixtures
of gauge fieldsW3 and B. Taking into account that onlyW3

Reggeizes, it is not clear how the switch from (W3; B) to
physical (Z, γ) will affect a high energy behavior of the
theory. For this reason it is not obvious: on the one hand, we
expect that a low-energy spontaneous symmetry breaking
cannot affect the high energy amplitudes. On the other
hand, the Higgs field couples to both gauge fields and
generates new vertices absent in unbroken theory. The
systematic investigation of high energy scattering in the
electroweak sector in the leading log approximation was
described in [1]. It was found that the charged gauge bosons
Reggeizes, and the corresponding trajectory function is
given by

ωcðtÞ ¼ αcðtÞ − 1 ¼ ðt −M2
WÞðc2WβWZðtÞ þ s2WβWγðtÞÞ;

ð7Þ

where cW ≡ cos θW , sW ≡ sin θW , t ¼ −q2, q is a trans-
verse momentum of a boson, and

βijðtÞ ¼
ᾱew
4π

Z
d2k

1

k2 þM2
i

1

ðk − qÞ2 þM2
j
: ð8Þ

In a neutral channel, the situation is more complicated since
Reggeization exists for a linear combination of Z-boson
and photon γ which corresponds to a component W3 of the
SUð2Þ gauge field. A general consideration in this case is
complicated, and it was demonstrated in [1] that it can be
significantly simplified if we consider this Reggeizeable
part as a separate contribution of two auxiliary fictitious
fields n and 3, assuming that Z and γ do not Reggeize at all.
The corresponding propagators of real and fictitious par-
ticles are given by

Z →
c2W
ω

1

q2 þM2
Z
; γ →

s2W
ω

1

q2
;

n →
1

ω − ωnðq2Þ
1

q2 þM2
W
3 → −

1

ω

1

q2 þM2
W
; ð9Þ

and the neutral trajectory is defined as

ωnðtÞ ¼ αnðtÞ − 1 ¼ ðt −M2
WÞβWWðtÞ; ð10Þ

where βWW is given by (8). The trajectory function αnðtÞ
passes though unity at t ¼ M2

W , i.e. neither the Z-boson nor

1In LLA we sum all Feynman diagrams considering
ᾱS ≪ 1; ᾱS ln ð1=xÞ ∼ 1 and ᾱS lnðQ2Þ ≪ 1.

2Throughout this paper, we will be interested in the BFKL
eigenvalue problem. Rather than dealing with BFKL-Green’s
functions, Gωðq; k; k0Þ, we therefore define amplitudes by con-
voluting the Green’s function at one end with some impact factor
(which we do not need to specify). The resulting amplitudes
ϕðω; q; kÞ are defined to include one of the external momentum
propagators.
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the photon lie on this trajectory. In the limit θW → 0 the
sum of the four exchanges (9) reduces to

1

ω − ωnðtÞ
1

q2 þM2
W
; ð11Þ

and ωc and ωn coincide. For large momenta only the
contribution of the field n survives,

c2W
q2 þM2

Z
þ s2W

q2
−

1

q2 þM2
W
¼ O

�
M4

W

ðq2Þ3
�
: ð12Þ

When formulating coupled integral equations for the
different exchange channels, it was found to be convenient
to treat the four terms in (9) as independent states: Z; γ; n; 3.
In the following we will use the bracketed notations
fZng ¼ Znþ nZ and fn3g ¼ 3nþ n3.
The corresponding eigenfunctions of BFKL evolution

should satisfy a system of coupled equations3

ðω − ωiðkÞ − ωjðkÞÞΦijðkÞ

¼
Z

d2k0

ð2πÞ3
X
i0j0≠γ

Kij;j0j0
ð−1ÞN3ði0;j0Þc2NZði0;j0Þ

W Φi0j0 ðk0Þ
Dðk0;MiÞDðk0;MjÞ

ð13Þ

þ
ffiffiffi
2

p Z
d2k0

ð2πÞ3
0
Kij;ccðk; k0Þ

Φccðk0Þ
Dðk0;MWÞ2

ð14Þ

ðω − 2ωcðkÞÞΦccðkÞ

¼
ffiffiffi
2

p Z
d2k0

ð2πÞ3

×
X
i0j0

Kcc;ij
ð−1ÞN3ði;jÞc2NZði;jÞ

W s
2Nγði;jÞ
W Φijðk0Þ

Dðk0;MiÞDðk0;MjÞ
ð15Þ

þ
Z

d2k0

ð2πÞ3 Kcc;ccðk; k0Þ
Φccðk0Þ

Dðk0;MWÞ2
; ð16Þ

where indices i; j; i0; j0, unless stated otherwise, run over
above-mentioned neutral states Z; γ; n; 3; and Nmði; jÞ
stands for the number of times “m” appears among its
arguments [so for example NZðZ; ZÞ ¼ 2, NZðZ; γÞ ¼
1;…]. The factors ð−1ÞN3ði;jÞc2NZði;jÞ

W s
2Nγði;jÞ
W appear from

numerators of propagators, and in denominators which
stem from propagators (9) we use shorthand notations
Dðk;MiÞ≡ k2 þM2

i . For the sake of brevity we will use an
abbreviation DðkÞ≡Dðk;MWÞ, and MW ≡M. The corre-
sponding kernels have a form

Kij;j0j0 ¼
g2M2

W

2c2NZði;j;i0;j0Þ
W

θði; j; i0; j0 ≠ γÞ; ð17Þ

Kij;ccðk; k0Þ ¼ g2
�
−M2

ij þ
ðDðk;MiÞ þDðk;MjÞÞDðk0Þ

Dðk − k0Þ
�

¼ g2
�
−M2

ij þ 2Kemðk; k0Þ

þ ðM2
i þM2

j − 2M2
WÞDðk0Þ

Dðk − k0Þ
�
; ð18Þ

Kemðk; k0Þ ¼ g2
DðkÞDðk0Þ
Dðk − k0Þ ¼ g2Kemðk; k0;MWÞ; ð19Þ

Kemðk; k0;MÞ ¼ g2
DðkÞDðk0Þ
Dðk − k0;MÞ ; ð20Þ

M2
ij ¼ M2

i þM2
j −

M2
i M

2
j

2M2
W

; ð21Þ

Kcc;cc ¼ g2
�
−M2

W þDðkÞDðk0Þ

×

�
c2W

Dðk − k0;MZÞ
þ s2W
Dðk − k0; 0Þ

��

≡ g2ð−M2
W þ ðc2WKemðk; k0;MZÞ

þ s2WKemðk; k0;MZÞÞÞ; ð22Þ

where the θ-function in (17) reflects the fact that the kernel
Kij;i0j0 vanishes if any of the indices is γ.

4 In these notations
the trajectories (7) and (10) can be rewritten as

ωiðkÞ ¼ −δi;ng2
Z

d2k0

ð2πÞ3
DðkÞ

Dðk0ÞDðk − k0Þ ; ð23Þ

ωcðkÞ ¼ −g2
Z

d2k0

ð2πÞ3
DðkÞ
Dðk0Þ

×

�
c2W

Dðk − k0;MZÞ
þ s2W
Dðk − k0; 0Þ

�
: ð24Þ

C. Large momentum asymptotics

At large transverse momenta k ≫ M, we expect that the
theory should not depend on a value of mixing angle θW .
We will show explicitly that in this region the system of
equations reduces to the equation for the SUð2Þ Pomeron,
supporting the intuitive expectation that the low-energy
symmetry breaking does not affect the high energy asymp-
totic behavior of the scattering amplitude. In the region of

3For simplicity in this paper we restrict ourselves to the
forward region q ¼ 0.

4This happens because in the leading order over αEW there are
no terms with a direct coupling of a Higgs boson to a massless
photon.
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large transverse momenta k; k0; jk − k0j ≫ M we can
neglect all the masses, so the emission kernels take a form

Kij;ccðk; k0Þ ≈ 2g2KBFKLðk; k0Þ; ð25Þ

Kcc;cc ≈ g2KBFKLðk; k0Þ; ð26Þ

where the BFKL kernel is given by

KBFKLðk; k0Þ ¼ g2
k2k02

ðk − k0Þ2 : ð27Þ

Equation (13) simplifies to

ðω − ωiðkÞ − ωjðkÞÞΦijðkÞ

≈ 2
ffiffiffi
2

p
g2

Z
d2k0

ð2πÞ3
0KBFKLðk; k0Þ
Dðk0;MWÞ2

Φccðk0Þ ð28Þ

and implies that neutral fields Φij differ only due to Regge
trajectories in the lhs of (28). In particular, using (23)
and (24), we may get that at large momenta

ΦZZ ≈ Φγγ ≈ Φ33 ≈ ΦZγ ≈ ΦZ3 ≈ Φγ3; ð29Þ

ΦZn ≈ Φ3n ≈ ΦZ3: ð30Þ

Combining this with (12), we can see that in (12) the
contribution of all components with indices Z, γ or 3
mutually cancel (decouple) at large k, i.e. in (15) only a
field “n” contributes. Also, we can notice that there are no
terms which depend explicitly on θW . If we assume thatffiffiffi
2

p
ΦnnðkÞ ¼ Φcc and does not depend on azimuthal angle,

after redefinition

ϕBFKL
W ðkÞ ¼ ΦccðkÞ

Dðk;MÞ ð31Þ

we may reproduce (4). It is known that the large-k
asymptotics of solutions of (4) are the same as in massive
case (6),

ϕBFKL
ij ðkÞ ∝ ðk2Þ−1

2
�iν; ð32Þ

such that

ΦijðkÞ ∝ ðk2Þ12�iν: ð33Þ

The fact that ΦijðkÞ grows at large k justifies omission of
contact terms in (13) and finalizes our proof that for
asymptotically large k the eigenfunctions and eigenvalues
coincide with the SUð2Þ Pomeron, independently of the
value of θW .
A crucial assumption which was implicitly used in this

section is that if we consider large momentum k, then in the

integrals in (13) and (15) the dominant contribution also
comes from large k0 and large jk − k0j. Potentially the latter
assumption might be violated near k ≈ k0, where the
emission kernel (19) is strongly peaked, giving rise to a
strong sensitivity to θW . For this reason in the following
Sec. III we perform an analysis of OðθwÞ corrections and
demonstrate explicitly that it does not affect the spectrum.
Additionally, the proof given above could be invalidated by
localized solutions which fall off rapidly at large k as ϕi;j ∝
1=k2 or faster (see Appendix A 1 for a particular example of
such a solution). If such solutions exist and have intercept
ω > ωBFKLðν ¼ 0Þ, potentially they could significantly
change the evolution of the BFKL spectrum. For this
reason in Sec. IV we perform a general analysis in the
lattice and demonstrate that there are no such solutions.

III. PERTURBATIVE ANALYSIS
IN THE SMALL-θW LIMIT

In this section we develop a systematic perturbative
expansion of (13) and (15) over the parameter s2w ¼ sin2 θW
up to the first order of perturbation theory. In addition to
explicit dependence on the Weinberg angle in (9). we
should also take into account the θw dependence in Z-boson
mass,

M2
Z ¼ M2

W

c2W
≈M2

Wð1þ s2wÞ: ð34Þ

The trajectory ωcðq2Þ in this limit may be expanded as

ωcðq2Þ ≈ ωnðq2Þ þ s2WΔωcðq2Þ; ð35Þ

where

Δωcðq2Þ¼ ᾱewðq2−M2Þ
Z

d2k
4π

M4

k2DðkÞ2Dðq−kÞ : ð36Þ

From now on we use a notation Δ for the corrections
proportional to s2w. The kernel Kij;i0j0 given in (17) may be
expanded as

Kij;i0j0 ≈
g2M2

W

2
θði; j; i0; j0 ≠ γÞð1þ NZði; j; i0; j0Þs2WÞ:

ð37Þ

In a similar fashion, using the expansion of M2
ij,

M2
ZZ ¼ 3

2
M2 þ s2wM2

M2
Zγ ¼ M2 þ s2wM2

M2
Zn ¼

3

2
M2 þ 1

2
s2wM2: ð38Þ
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M2
γγ ¼ 0

M2
nn ¼

3

2
M2

M2
γn ¼ M2

M2
nγ ¼ M2; ð39Þ

we may obtain for the kernels with account of Oðs2wÞ
corrections

KZZ;cc ¼ g2
��

−q2 −
3

2
M2

�

þDðkÞDðq − k0Þ þDðq − kÞDðk0Þ
Dðk − k0Þ

�

þ s2wg2
�
−M2 þM2

DðkÞ þDðq − kÞ
Dðk − k0Þ

�
ð40Þ

KZγ;cc ¼ g2
�
−q2 −M2 þDðkÞDðq− k0Þ þ ðq− kÞ2Dðk0Þ

Dðk− k0Þ
�

þ s2wg2
�
−M2 þM2

Dðq− k0Þ
Dðk− k0Þ

�
ð41Þ

KγZ;cc ¼ g2
�
−q2 −M2 þ k2Dðq − k0Þ þDðq − kÞDðk0Þ

Dðk − k0Þ
�

þ s2wg2
�
−M2 þM2

Dðk0Þ
Dðk − k0Þ

�
ð42Þ

KZn;cc¼g2
�
−q2−

3

2
M2þDðkÞDðq−k0ÞþDðq−kÞDðk0Þ

Dðk−k0Þ
�

þs2wg2
�
−
M2

2
þM2

Dðq−k0Þ
Dðk−k0Þ

�
ð43Þ

KnZ;cc¼g2
�
−q2−

3

2
M2þDðkÞDðq−k0ÞþDðq−kÞDðk0Þ

Dðk−k0Þ
�

þs2wg2
�
−
M2

2
þM2

Dðk0Þ
Dðk−k0Þ

�
ð44Þ

Kγγ;cc ¼ g2
�
−q2 þ k2Dðq − k0Þ þ ðq − kÞ2Dðk0Þ

Dðk − k0Þ
�

ð45Þ

Kγn;cc ¼ g2
�
−q2 −M2 þ k2Dðq − k0Þ þDðq − kÞDðk0Þ

Dðk − k0Þ
�

ð46Þ

Knγ;cc ¼ g2
�
−q2 −M2 þDðkÞDðq− k0Þ þ ðq− kÞ2Dðk0Þ

Dðk− k0Þ
�

ð47Þ

Knn;cc¼g2
�
−q2−

3

2
M2þDðkÞDðq−k0ÞþDðq−kÞDðk0Þ

Dðk−k0Þ
�

ð48Þ

Kcc;ijðq; k; k0Þ ¼ Kij;ccðq; k0; kÞ: ð49Þ

Kcc;cc¼ g2
�
−q2−M2þDðkÞDðq−k0ÞþDðq−kÞDðk0Þ

Dðk−k0Þ
�

þ s2wg2M4
DðkÞDðq−k0ÞþDðq−kÞDðk0Þ

ðk−k0Þ2Dðk−k0Þ2 : ð50Þ

In what follows it is convenient to introduce a shorthand
notation ΔK for all Oðs2WÞ-corrections, both due to kernels
and propagators. In the case of a ΔKcc;cc component, we
should also add an Oðs2WÞ-contribution from the Regge
trajectory,

ΔKcc;cc ¼ ðΔKcc;cc þ ðΔωð−k2Þ þ Δωð−ðq − kÞ2ÞÞ

× δð2Þðk − k0ÞÞ 1

Dðk0ÞDðq − k0Þ ; ð51Þ

and it is straightforward to verify that there is a cancellation
of the s-channel photon pole. The other components of
operator ΔK are given explicitly as

ΔKγγ;cc ¼ 0; ΔKnn;cc ¼ 0; ΔKγn;cc ¼ 0 ð52Þ

ΔKcc;γn ¼ ΔKcc;γZ; ΔKcc;nγ ¼ ΔKcc;Zγ ð53Þ

ΔKcc;ZZ ¼ g2
�
2ðq2 þM2Þ þ

�
q2 þ 3

2
M2

�

×

�
M2

Dðk0Þ þ
M2

Dðq − k0Þ
�
−

M2

Dðk − k0Þ

×

�
DðkÞ
Dðk0ÞDðq − k0Þ þ Dðq − kÞ

Dðq − k0ÞDðk0Þ
�

−2
DðkÞDðq − k0Þ þDðq − kÞDðk0Þ

Dðk − k0Þ
�

×
1

Dðk0ÞDðq − k0Þ ð54Þ

ΔKcc;Zn ¼ g2
�
q2 þM2 þ

�
q2 þ 3

2
M2

�
M2

Dðk0Þ

þ M2

Dðk − k0Þ
�
DðkÞ − DðkÞ

Dðk0ÞDðq − k0Þ
�

−
DðkÞDðq − k0Þ þDðq − kÞDðk0Þ

Dðk − k0Þ
�

×
1

Dðk0ÞDðq − k0Þ ð55Þ
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ΔKcc;nZ ¼ g2
�
q2 þM2 þ

�
q2 þ 3

2
M2

�
M2

Dðq − k0Þ

þ M2

Dðk − k0Þ
�
Dðq − kÞ − Dðq − kÞ

Dðq − k0ÞDðk0Þ
�

−
DðkÞDðq − k0Þ þDðq − kÞDðk0Þ

Dðk − k0Þ
�

×
1

Dðk0ÞDðq − k0Þ ð56Þ

ΔKcc;γZ ¼ g2
�
−q2−M2þDðkÞDðq−k0ÞþDðq−kÞk02

Dðk−k0Þ
�

×
1

k02Dðq−k0Þ ð57Þ

ΔKcc;Zγ ¼ g2
�
−q2−M2þDðkÞðq−k0Þ2þDðq−kÞDðk0Þ

Dðk−k0Þ
�

×
1

Dðk0Þðq−k0Þ2 : ð58Þ

Finally the transitions neutral → neutral. Here we have
corrections both from the kernels and from the propagators
of the Z-boson and of the photon. There are no corrections
from the trajectory functions, so they only contribute to the
leading order diagonal kernels nn → nn. In the following
we list the corrections for the different channels:

ΔKZZ;ZZ ¼ g2
M2

2

�
2−

M2

Dðk0Þ−
M2

Dðq−k0Þ
�

1

Dðk0ÞDðq−k0Þ
ð59Þ

ΔKnZ;ZZ ¼ g2
M2

2

�
1−

M2

Dðk0Þ−
M2

Dðq−k0Þ
�

1

Dðk0ÞDðq−k0Þ
ð60Þ

ΔKnn;ZZ ¼ g2
M2

2

�
−

M2

Dðk0Þ −
M2

Dðq − k0Þ
�

1

Dðk0ÞDðq − k0Þ
ð61Þ

ΔKZZ;Zn ¼ g2
M2

2

�
2 −

M2

Dðk0Þ
�

1

Dðk0ÞDðq − k0Þ ð62Þ

ΔKnZ;Zn ¼ g2
M2

2

�
1 −

M2

Dðk0Þ
�

1

Dðk0ÞDðq − k0Þ ð63Þ

ΔKnn;Zn ¼ g2
M2

2

�
−

M2

Dðk0Þ
�

1

Dðk0ÞDðq − k0Þ ð64Þ

ΔKZZ;nn ¼ 2g2
M2

2
ð65Þ

ΔKZn;nn ¼ g2
M2

2
: ð66Þ

The remaining kernels are easily obtained using a sym-
metry ΔKij;i0j0 ¼ ΔKji;i0j0 ¼ ΔKij;j0i0.

A. The case of zero Weinberg angle, θW = 0

In this section we study the eigenvalues for the case
θW ¼ 0. In this limit the set of equations (13) and (15)
simplifies considerably, since the photon field decouples
from the other equations, and the other neutral fields have
the same mass. Besides, all the kernels K no longer
distinguish these states, and the only differences among
the neutral states is due to the nonzero Regge trajectory
of n. In this limit the system (13) and (15) reduces to a
system of seven coupled equations:

ωΦZZðkÞ ¼
g2

2

Z
d2k0

ð2πÞ3
1

D2ðk0Þ
�X

ij≠γ
ð−1ÞN3Φijðk0Þ − 3

ffiffiffi
2

p
Φccðk0Þ

�
þ 2

ffiffiffi
2

p Z
d2k0

ð2πÞ3
1

D2ðk0ÞKemðk; k0ÞΦccðk0Þ;

ð67Þ

ðω − ωnðkÞÞΦZnðkÞ ¼
g2

2

Z
d2k0

ð2πÞ3
1

D2ðk0Þ
�X

ij≠γ
ð−1ÞN3Φijðk0Þ − 3

ffiffiffi
2

p
Φccðk0Þ

�
þ 2

ffiffiffi
2

p Z
d2k0

ð2πÞ3
1

D2ðk0ÞKemðk; k0ÞΦccðk0Þ;

ð68Þ

ωΦZ3ðkÞ ¼
g2

2

Z
d2k0

ð2πÞ3
1

D2ðk0Þ
�X

ij≠γ
ð−1ÞN3Φijðk0Þ − 3

ffiffiffi
2

p
Φccðk0Þ

�
þ 2

ffiffiffi
2

p Z
d2k0

ð2πÞ3
1

D2ðk0ÞKemðk; k0ÞΦccðk0Þ;

ð69Þ
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ωΦ33ðkÞ ¼
g2

2

Z
d2k0

ð2πÞ3
1

D2ðk0Þ
�X

ij≠γ
ð−1ÞN3Φijðk0Þ − 3

ffiffiffi
2

p
Φccðk0Þ

�
þ 2

ffiffiffi
2

p Z
d2k0

ð2πÞ3
1

D2ðk0ÞKemðk; k0ÞΦccðk0Þ; ð70Þ

ðω − ωnðkÞÞΦn3ðkÞ ¼
g2

2

Z
d2k0

ð2πÞ3
1

D2ðk0Þ
�X

ij≠γ
ð−1ÞN3Φijðk0Þ − 3

ffiffiffi
2

p
Φccðk0Þ

�
þ 2

ffiffiffi
2

p Z
d2k0

ð2πÞ3
1

D2ðk0ÞKemðk; k0ÞΦccðk0Þ;

ð71Þ

ðω − 2ωnðkÞÞΦnnðkÞ ¼
g2

2

Z
d2k0

ð2πÞ3
1

D2ðk0Þ
�X

ij≠γ
ð−1ÞN3Φijðk0Þ − 3

ffiffiffi
2

p
Φccðk0Þ

�
þ 2

ffiffiffi
2

p Z
d2k0

ð2πÞ3
1

D2ðk0ÞKemðk; k0ÞΦccðk0Þ;

ð72Þ

ðω − 2ωnðkÞÞΦccðkÞ ¼ −g2
Z

d2k0

ð2πÞ3
1

D2ðk0Þ
�
3

ffiffiffi
2

p

2

X
ij≠γ

ð−1ÞN3Φijðk0Þ þ Φccðk0Þ
�

þ 2
ffiffiffi
2

p Z
d2k0

ð2πÞ3
1

D2ðk0ÞKemðk; k0Þ
X
ninj≠γ

ð−1ÞN3Φijðk0Þ þ 2

Z
d2k0

ð2πÞ3
1

D2ðk0ÞKemðk; k0ÞΦccðk0Þ:

ð73Þ

There are three more decoupled equations containing a photon:

ðω − ωnðkÞÞΦnγðkÞ ¼ −g2
ffiffiffi
2

p Z
d2k0

ð2πÞ3
1

D2ðk0ÞΦccðk0Þ þ 2
ffiffiffi
2

p Z
d2k0

ð2πÞ3
1

D2ðk0ÞKemðk; k0ÞΦccðk0Þ;

ωΦZγðkÞ ¼ −g2
ffiffiffi
2

p Z
d2k0

ð2πÞ3
1

D2ðk0ÞΦccðk0Þ þ 2
ffiffiffi
2

p Z
d2k0

ð2πÞ3
1

D2ðk0ÞKemðk; k0ÞΦccðk0Þ;

ωΦ3γðkÞ ¼ −g2
ffiffiffi
2

p Z
d2k0

ð2πÞ3
1

D2ðk0ÞΦccðk0Þ þ 2
ffiffiffi
2

p Z
d2k0

ð2πÞ3
1

D2ðk0ÞKemðk; k0ÞΦccðk0Þ; ð74Þ

ωΦγγðkÞ ¼ 2
ffiffiffi
2

p Z
d2k0

ð2πÞ3
1

D2ðk0ÞKemðk; k0ÞΦccðk0Þ: ð75Þ

As we can see from (67)–(73), there are several coinciding
components of Φij which we denote as5

ΦZZðkÞ ¼ ΦZ3ðkÞ ¼ Φ33ðkÞ ¼ Φ1ðkÞ ð76Þ

ΦZnðkÞ ¼ Φn3ðkÞ ¼
ω

ω − ωnðkÞ
Φ1ðkÞ: ð77Þ

Using (76) and (77), the sum over neutral fields in
(67)–(73) reduces to

X
ij≠γ

ð−1ÞN3Φijðk0Þ ¼ Φnnðk0Þ; ð78Þ

and the full system (76) and (77) reduces to a simple system
of just two coupled equations. With the substitutions (after
the angular integration)

g2
d2k0

ð2πÞ3 → g2
dκ
8π2

→
g2

4π

dκ
2π

¼ ᾱe:w:
4

dκ ð79Þ

we find

ðω − 2ωðkÞÞΦnnðkÞ ¼
g2

2

Z
d2k0

ð2πÞ3
1

D2ðk0Þ
× ðΦnnðk0Þ − 3

ffiffiffi
2

p
Φccðk0ÞÞ

þ 2
ffiffiffi
2

p Z
d2k0

ð2πÞ3
Kemðk; k0ÞΦccðk0Þ

D2ðk0Þ ;

ð80Þ

5In contrast to a result found in [1], we can see that not all
neutral fields in (76) and (77) coincide due to nonzero Regge
trajectory ωnðkÞ. In the limit θW ¼ 0 this does not affect the
eigenvalues, but for the Oðs2WÞ corrections this difference is
important.
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ðω − 2ωðkÞÞΦccðkÞ ¼ −g2
Z

d2k0

ð2πÞ3
1

D2ðk0Þ

×

�
3

ffiffiffi
2

p

2
Φnnðκ0Þ þ Φccðκ0Þ

�

þ2
ffiffiffi
2

p
g2

Z
d2k0

ð2πÞ3
Kemðk; k0ÞΦnnðk0Þ

D2ðk0Þ

þ 2g2
Z

d2k0

ð2πÞ3
Kemðk; k0ÞΦccðk0Þ

D2ðk0Þ :

ð81Þ

As it was discussed in [1], this system of equations (80) and
(81) has two solutions, with isospin zero and two. Since we
are mostly interested in the leading intercept, in what
follows, we will consider only the isospin zero case, for
which a solution has a form

�
ΦnnðkÞ
ΦccðkÞ

�
¼

�
1ffiffiffi
2

p
�
ΦðkÞ: ð82Þ

We thus end up with a SUð2Þ BFKL equation for ΦðkÞ:

ðω − 2ωðkÞÞΦðkÞ ¼ −g2
5M2

W

2

Z
d2k0

ð2πÞ3
Φðk0Þ
D2ðk0Þ

þ 4

Z
d2k0

ð2πÞ3
Kemðk; k0ÞΦðk0Þ

D2ðk0Þ ; ð83Þ

which up to a renormalization of the field Φ coincides with
(4) which has been analyzed in detail in [5]. The field Φ1

defined in (76) is related to Φ as

Φ1ðkÞ ¼
ω − 2ωðkÞ

ω
ΦðkÞ ¼

�
1 −

2ωðkÞ
ω

�
ΦðkÞ; ð84Þ

and for the states with photons we may cast our result into
the form

ΦnγðkÞ ¼
ω − 2ωðkÞ
ω − ωðkÞ ΦðkÞ þ g2

2ðω − ωðkÞÞ
Z

d2k0

ð2πÞ3
Φðk0Þ
D2ðk0Þ

ð85Þ

ΦZγðkÞ ¼ Φ3γðkÞ ¼
ω − 2ωðκÞ

ω
ΦðkÞ þ g2

2ω

Z
d2k0

ð2πÞ3
Φðk0Þ
D2ðk0Þ

ð86Þ

ΦγγðkÞ ¼
ω − 2ωðκÞ

ω
ΦðkÞ þ 5g2

2ω

Z
d2k0

ð2πÞ3
Φðk0Þ
D2ðk0Þ : ð87Þ

B. Lattice solutions of the equations for θW = 0

1. The method

In this section we analyze the solutions in the lattice
using the approach of [6]. Since the solution Φ of (83) at
large momenta is growing as (33), it is more convenient to
change a normalization as in (31) and will work with a field
ϕ which is decreasing at large momenta. Since we are
interested only in solutions which do not depend explicitly
on azimuthal angle, it is convenient to perform the angular
integrations and to introduce the dimensionless variables
κ ¼ k2=M2

W and κ0 ¼ k02=M2
W . Such transition in the

integrals in (83) reduces to the substitution (79). The
kernel Kemðk; k0Þ after angular averaging becomes

K0ðκ; κ0Þ ¼ g2
ðκ þ 1Þðκ0 þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðκ − κ0Þ2 þ 2ðκ þ κ0Þ þ 1
p ; ð88Þ

and Eq. (83) simplifies to

ωϕðκÞ ¼
Z

dκ0Kðκ; κ0Þϕðκ0Þ; ð89Þ

where

Kðκ; κ0Þ ¼ ᾱe:w:

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðκ − κ0Þ2 þ 2ðκ þ κ0Þ þ 1
p

−
5

2

1

κ þ 1

1

κ0 þ 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
contact term

−
κ þ 1ffiffiffi
κ

p ffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p ln

ffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p þ ffiffiffi
κ

p
ffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p
−

ffiffiffi
κ

p δðκ − κ0Þ
�
: ð90Þ

For our numerical studies we use a logarithmic grid in both
variables κ and κ0 with N þ 1 nodes,

κn ¼ κmin exp

�
n
N
ln ðκmax=κminÞ

�
; n ¼ 0;…; N; ð91Þ

where the values of κmin, κmax were set to κmin ¼ 10−40;
κmax ¼ 1080, and N ¼ 1024. In this grid (89) takes a form
of linear matrix eigenvalue problem:

ωϕn ¼
XN
m¼0

Knmϕm; ð92Þ

ϕn ≡ ϕðκnÞ; ð93Þ

Knm ≡ Kðκn; κmÞκm
�
1

N
ðκmax=κminÞ

�
: ð94Þ

In Ref. [5] we solved (92) both for the massive (83) and for
the massless BFKL equation. For the latter case the
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eigenvalue spectrum and the eigenfunctions obtained from
the lattice approximation coincide, with a very good
precision, with the well-known analytical results (6), (5),
provided we replace the continuous parameter ν by the
discrete lattice parameter,

νn ¼
2.9n

ln ðκmax=κminÞ
: ð95Þ

We view this as a test of our lattice approximation.
For the massive case, the positive eigenvalues are

described very well by the same expression with νn being
replaced by

νðMÞ
n ¼ 2.9n

ln ðκmax=ðκmin þM2ÞÞ : ð96Þ

The first twenty eigenvalues are given in Table I. The lattice
value of the leading intercept differs from its analytical
result ωBFKL=ᾱe:w: ¼ 4 ln 2 ≈ 2.77 by 3 × 10−5, which
illustrates a very high precision of the chosen method.
The eigenfunctions with positive intercepts can be para-
metrized as

ϕðapproxÞ
n ðκÞ ¼ αðnÞffiffiffiffiffiffiffiffiffiffiffi

κ þ 4
p sinðνðMÞ

n LnðκÞ þ φnÞ;

LnðκÞ≡ ln

� ffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p þ ffiffiffi
κ

p
ffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p
−

ffiffiffi
κ

p
�
; ð97Þ

where φn ¼ bϕν
ðMÞ
n with bϕ ≈ 1.865. In the continuum

limit we should replace the discrete variable νðMÞ
n by the

continuous variable ν. As we can see from Fig. 1, indeed
the transition to the continuum spectrum (limit κmax → ∞)
is smooth.

C. Corrections proportional to sin2 θW
In this section we will estimate the corrections of the

order ∝ s2W to the leading intercept. A small value of the
parameter ðs2WÞphys ≡ sin2 θW ¼ 0.234� 0.0013 implies
that a perturbative expansion should converge rapidly.
While application of the perturbation theory for the shift
of band in a continuum spectrum is not well defined, in the

lattice the spectrum is discrete, so an ordinary perturbation
theory is applicable provided first order corrections are
smaller than the distance between the neighbor states. In
this section we assume this, and show that the correspond-
ing correction to the intercept explicitly vanishes. In the
first order of perturbation theory, the shift of the leading
intercept is given by

Δω1 ¼
R
dκdκ0ϕ1ðκÞΔKðκ; κ0Þϕ1ðκ0Þ

∥ϕ1∥2
; ð98Þ

where the kernels ΔK were introduced earlier in (51)–(66),
and the norm ∥ϕn∥ is defined as

∥ϕ1∥2 ¼
Z

dκjϕ1ðκÞj2: ð99Þ

Using the parametrization of ϕ1 from (97), we can see
that the norm (99) is growing as a function of upper cutoff
as ∝ ln κmax, which is a manifestation of the fact that we
work with wave functions of continuum spectrum. For this
reason we should only focus on the large-κmax behavior of
the different contributions to numerator. As we can see
from (40)–(43), (50), all the contributions to ΔK from
expansion of masses in kernels ΔK and Regge trajectories
Δωc have an additional suppression OðM2=k2Þ and thus
lead to finite contributions to the numerator (vanishing
contributions to Δω1) in the limit6 κmax → ∞. Similarly, all
the contributions due to expansion of mass MZ in propa-
gators do not affect Δω1.

TABLE I. The first twenty roots of the massive BFKL
equation (83).

Root
No. ωn=ᾱe:w:

Root
No. ωn=ᾱe:w:

Root
No. ωn=ᾱe:w:

Root
No. ωn=ᾱe:w:

1 2.77 6 2.61 11 2.27 16 1.825
2 2.755 7 2.555 12 2.185 17 1.73
3 2.735 8 2.49 13 2.1 18 1.635
4 2.7 9 2.425 14 2.01 19 1.54
5 2.66 10 2.35 15 1.915 20 1.445

50 100 150
0.1

0.2

0.3

0.4

0.5

0.6

ln k max
2

n

5

4

3

2

1

FIG. 1. Dependence of eigenvalues on the ultraviolet cutoff
κmax. Only the first five eigenvalues are shown; eigenvalues with
larger n uniformly fill in the band ω≲ ω0.

6See Appendix A 2 for a more detailed explanation and
numerical estimates.
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More complicated is evaluation of the Oðs2WÞ terms
which stem from numerators of (9) which do not have any
additional power suppression. Approximating all kernels in
(40)–(43), (50) with Kemðk; k0Þ and using

Z
dκ0Kemðκ; κ0Þϕ1ðκ0Þ ≈ ðω1 − 2ωnðκÞÞϕ1ðκÞ þO

�
M2

κ

�
;

ð100Þ

we obtain for the leading contributions to the numerator
of (98):

Z
dκϕ1ðκÞ

Z
dκ0Kemðκ; κ0Þϕ1ðκ0Þ

¼
Z

dκϕ1ðκÞðω1 − 2ωnðκÞÞϕ1ðκÞ

≈ 2

Z
dκϕ2

1ðκÞωðκÞdκ ≈ 2

Z
dκ ln κϕ2

nðκÞ: ð101Þ

Separately each of these contributions leads to a logarithmi-
cally divergent correction to eigenvalue

R
dκdκ0ϕ1ðκÞKemðκ; κ0Þϕ1ðκ0Þ

∥ϕ1∥2
∝ ln κmax ≫ 1: ð102Þ

However, in the sum over all components there are strong
cancellations of all such contributions. Indeed, as we can
see from (40)–(50), such corrections might appear only
from Kcc;ij,

7 which in the large momentum limit has a
structure

ΔKcc;ijðκ; κ0Þ ≈ 4s2WηijKemðκ; κ0Þ
�
1þO

�
M2

κ

��
; ð103Þ

where

ηZγ ¼ ηnγ ¼ η3γ ¼ −ηZZ ¼ −ηZn ¼ −ηZ3 ¼ 1: ð104Þ

After summing all terms in the last line and taking into
account the large momentum asymptotic relations (29)
and (30) for the components of ϕij, we can see that there is

a full cancellation of all leading terms. The OðM2

κ Þ-
corrections lead to finite contributions to the numerator
(vanishing contribution to Δω). As a consequence, the
correction (98) decreases as 1= lnðκmaxÞ in the infinite
lattice limit. This finishes a proof that the Oðsin2 θWÞ term
vanishes in the κmax → ∞ limit. These cancellations are a
mere consequence of the fact that the large momentum limit
of the theory with Higgs mechanism is the same as for the
pure SUð2Þ Pomeron.

D. Corrections proportional to sin4 θW
and the continuum limit

The corrections of the order of Oðs4WÞ are relevant not
only for academic interest but also because they allow us to
verify that the discrete spectrum perturbation theory is
applicable to analysis of discretized eigenvalues in the
lattice. There are two sources of such corrections. The
corrections which stem from Oðs4WÞ-expansion terms in
the kernels and propagators can be estimated from (98).
From analysis of the coefficients in front of Kem in kernel
components Kcc;ZZ, KγZ;cc and Kγγ;cc, we may repeat the
line of reasoning of a previous section and demonstrate that
large Oðs4WÞ-corrections which stem from the numerators
of propagators in ZZ, γZ and γγ states vanish.
More complicated is the structure of the Oðs4WÞ-

corrections in the second order of a perturbation theory
which are given by

Δð2Þω ¼
X
i;i≠1

ðΔω1iÞ2
ω1 − ωi

; ð105Þ

where we have introduced a shorthand notation for the
transition matrix element

Δω1i ¼
R
dκdκ0ϕ1ðκÞΔKðκ; κ0Þϕiðκ0Þ

∥ϕi∥∥ϕi∥
; ð106Þ

and ∥ϕi∥ is defined in (99).
Following the analysis of the first order perturbation

theory, we derive that Δω1i behaves as 1= lnðκmaxÞ in the
infinite lattice limit. The splitting of levels in denominator
of (105) for the leading intercept behaves as8 ω1 − ωi ∝
1= ln2 ðκmax=ðκmin þ 1ÞÞ due to Oðν2Þ behavior of (5) near
ν ¼ 0. As a consequence, the ratio (105) is stable in the
limit κmax → ∞ and deserves special attention. As shown in
Appendix A 2, numerically the ratio is small, which
justifies application of perturbative expansion to discretized
lattice spectrum. We see two sources of the numerical
smallness in each term of (105): the large value of the
second derivative D ¼ jχ00ðνÞν¼0j ¼ 28ζð3Þ ≈ 33.6 and the
oscillatory behavior of the integrand in the numerator of
(106) (which is a manifestation of the orthogonality of ϕ1

and ϕi when ΔK ≈ const).

IV. LATTICE ANALYSIS FOR NONZERO θW

In this section we construct a general solution of the
Weinberg-Salam model with nonzero θW . We demonstrate
that the system (13) and (15) can be reduced to a single
integral equation (113) for the function ϕcc. We do not
make any assumptions about smallness of Weinberg angle

7Kcccc also contains Kem, but the propagator of the charged
field does not contain s2w.

8Note that this estimate is valid only for the leading intercept.
For all other eigenvalues ωj − ωi ∝ 1= ln ðκmax=ðκmin þ 1ÞÞ, so
the ratio (106) vanishes.
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θW nor select any restricted kinematics in momentum
space. We start our analysis from the observation that
the kernel Kij;j0j0 in (13) may be factorized into two
parts, as

Kij;j0j0 ¼ g2
M2

W

2c2NZði;j;i0;j0Þ
W

¼ g2
M2

W

2c2NZði;jÞ
W c2NZði0;j0Þ

W

≡ g2
M2

i M
2
j

2M2
W

1

c2NZði0;j0Þ
W

: ð107Þ

We notice that c2NZði0;j0Þ
W in the denominator of (107) cancels

against similar factors in the numerator of (13), which
allows to cast the latter into the form

ðω − Nnði; jÞωnðkÞÞΦijðkÞ

¼ g2
M2

i M
2
j

2M2
W

Z
d2k0

ð2πÞ3 φΣðk0Þ

þ
ffiffiffi
2

p Z
d2k0

ð2πÞ3
Kij;ccðk; k0ÞΦccðk0Þ

Dðk0;MÞ2 ð108Þ

or

ΦijðkÞ ¼ ðω − Nnði; jÞωnðkÞÞ−1
�
g2

M2
i M

2
j

2M2
W

Z
d2k0

ð2πÞ3 φΣðk0Þ þ
ffiffiffi
2

p Z
d2k0

ð2πÞ3
Kij;ccðk; k0ÞΦccðk0Þ

Dðk0;MÞ2
�
; ð109Þ

where

φΣðkÞ≡
X
ij≠γ

ð−1ÞN3ði;jÞ ΦijðkÞ
Dðk;MiÞDðk;MjÞ

¼
X
ij≠γ

ð−1ÞN3ði;jÞððω − Nnði; jÞωnðkÞÞDðk;MiÞDðk;MjÞÞ−1

×

�
g2

M2
i M

2
j

2M2
W

Z
d2k0

ð2πÞ3 φΣðk0Þ þ
ffiffiffi
2

p Z
d2k0

ð2πÞ3
Kij;ccðk; k0ÞΦccðk0Þ

Dðk0;MÞ2
�
: ð110Þ

Equation (110) contains, on the rhs, φΣðk0Þ only as part of the integral
R
d2k0φΣðk0Þ. So we take the integral over k of both

sides and solve for NΣ½Φcc�≡ R
d2k
ð2πÞ3 φΣ:

NΣ½Φcc�≡
Z

d2k
ð2πÞ3 φΣðkÞ

¼
� ffiffiffi

2
p Z

d2k
ð2πÞ3

Z
d2k0

ð2πÞ3
X
ij≠γ

ð−1ÞN3ði;jÞKij;ccðk; k0ÞΦccðk0Þ
ðω − Nnði; jÞωnðkÞÞDðk;MiÞDðk;MjÞDðk0;MÞ2

�

×

�
1 − g2

X
ij≠γ

Z
d2k
ð2πÞ3

ð−1ÞN3ði;jÞ

ðω − Nnði; jÞωnðkÞÞDðk;MiÞDðk;MjÞ
M2

i M
2
j

2M2
W

�−1
: ð111Þ

For a given Φcc from (110) and (111) we can immediately extract ϕΣðkÞ. Returning to (109) we notice that on the rhs again
this factor NΣ½ϕcc� appears, and we can write

ΦijðkÞ ¼ ðω − Nnði; jÞωnðkÞÞ−1
�
g2

M2
i M

2
j

2M2
W

NΣ½Φcc� þ
ffiffiffi
2

p Z
d2k0

ð2πÞ3
Kij;ccðk; k0ÞΦccðk0Þ

Dðk0;MÞ2
�
: ð112Þ

Finally, substituting (112) into (15) and combining with (109) and (110) we arrive at

ðω − 2ωcðkÞÞΦccðkÞ ¼
Z

d2k0

ð2πÞ3
Kcc;ccðk; k0ÞΦccðk0Þ

Dðk0;MWÞ2
þ g2

M2
W

ffiffiffi
2

p

2
NΣ½Φcc�

×
Z

d2k0

ð2πÞ3
X
ij≠γ

Kcc;ijðk; k0Þð−1ÞN3ði;jÞ

ðω − Nnði; jÞωnðk0ÞÞDðk0;MiÞDðk0;MjÞ

þ 2

Z
d2k0

ð2πÞ3
Z

d2k00

ð2πÞ3
X
ij

Kcc;ijðk; k0Þð−1ÞN3ði;jÞc2NZði;jÞ
W s

2Nγði;jÞ
W Kij;ccðk0; k00ÞΦccðk00Þ

ðω − Nnði; jÞωnðk0ÞÞDðk0;MiÞDðk0;MjÞDðk00;MWÞ2
: ð113Þ
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Equation (113) represents a linear integral equation for Φcc.
Further simplifications of Eq. (113) are not possible, so we
use numerical methods for its analysis.
In Sec. III A we have demonstrated that in the case

θW ¼ 0, instead of (113), the isospin zero wave function
might be found as a solution of a much simpler equa-
tion (83). Albeit (113) does not reduce to (83) in the limit
θW ¼ 0, it is possible to demonstrate that any solution of
(83) is also a solution of (113) in this limit (see
Appendix A 3 for details). The fact that, in general, the
spectrum depends on θW can be seen from the second line
in Eq. (111): for nonzero θw due to incomplete cancellation
of contributions of Z and 3 in the denominator appears a
term ∼Oðs4WÞ=ω. This contribution for sufficiently small
positive ω leads to a pole. The position of this pole (ω0)
depends on the value of θW , as shown in Fig. 2, and signals
that near the pole there could be a sizable sensitivity to θW .
A dependence on θw is also contained in the last line of
Eq. (111). It turns out that net dependence on θW , for the
leading eigenvalue, is negligible. This result can be traced
back to the fact that, in the region of large transverse
momenta, the equation approaches the BFKL equation.
Equation (113) is not a canonical eigenvalue problem.

Instead, ω appears in the denominators in the rhs. In order
to solve the equation for ω, we use the following method:

(i) On the rhs of (113) we replace ω everywhere by a
fixed parameter9 ωðrÞ, thus converting Eq. (113) into
an ordinary eigenvalue problem.

(ii) We apply the method of Sec. III B 1 to solve this
eigenvalue problem, and find the corresponding
eigenvalues ωðlÞ ¼ ωðlÞðωðrÞÞ as functions of the
fixed parameter ωðrÞ.

(iii) We extract the true eigenvalues of Eq. (113) by
solving the algebraic equation ωðlÞðωðrÞÞ ¼ ωðrÞ.

Due to the complexity of the equation (113) and to the finite
precision of our numerical evaluation, we cannot extend
our lattice up to very large κ ¼ k2

m2 ∼ 1080, as we did in
Sec. III B 1. We fix the minimal and maximal values of κ
and the number of nodes N as

κmin ¼ 10−10; κmax ¼ 1015; N ¼ 4096: ð114Þ

Figure 3 illustrates that the root trajectories ωðlÞðωðrÞÞ are
homogeneously decreasing functions of parameter ωðrÞ, as
expected from (113). For this reason, each trajectory
ωðlÞðωðrÞÞ gives rise to only one root ωj. In agreement
with our results of the previous section, for the leading root
the effect of a nonzero mixing angle θW is negligible.
However, this result is not universal, and for ω ≈ 0 the
dependence is much stronger. Finally, in Table II we give
numerical values for positive roots.
Due to the relatively small size of the lattice (114), we

obtain only four positive roots, in agreement with what was
found in Sec. III B 1 in Fig. 1. We expect that with an
increase of the size of the lattice the intercept of the leading
pole will grow up to its true value 4 ln 2, as well as the
distance between the neighboring roots will decrease as
shown in Fig. 1.
Despite the somewhat low precision of the above

estimates, we clearly see from Table II that the first root
does not depend on the value of θW for any value of θW . As
it has been discussed, we know the spectrum at θW ¼ 0 and
we know the first order correction in sin2ðθWÞ. Therefore,

0.0 0.2 0.4 0.6 0.8
10 5

10 4

0.001

0.01

0.1

1

sin 2
w

cr
it

FIG. 2. Behavior of the critical eigenvalue ωcrit which causes a
pole in the second line of Eq. (111). The vertical red line stands
for the physical value of Weinberg angle θW .
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4

r
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r

sin2
W 0.23

W 0j 1

j 2

j 3

j 4

j 5

0 1 2 3 4

FIG. 3. Root trajectories ωðlÞðωðrÞÞ. Dashed lines correspond to
physical mixing angle θW . The red line stands for ωðlÞ ¼ ωðrÞ.
We use units ᾱe:w: ¼ 1. For the upper cases j ¼ 1, 2, 3, 4 the solid
lines (θW ¼ 0) and the dashed lines (physical mixing angle) are
practically indistinguishable, i.e. they are nearly identical.

9The superscripts l and r stand for “left” and “right”-hand side
substitutions of ω.
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we can conclude that for θW ≠ 0 the spectrum of the
electro-weak Pomeron is the same as the spectrum of the
massless BFKL equation, with the replacement ᾱS → ᾱe:w:.

V. CONCLUSIONS

In this paper we have analyzed the spectrum of the
electroweak BFKL Pomeron, both using perturbative (in
θW) methods as well as a numerical nonperturbative study
on the lattice (for θW ≠ 0). We found that the leading
intercept important for the high energy behavior of the
amplitudes depends on θW very weakly, and for physical
value of θW differs from the special case θw ¼ 0 by less
than 1% (see Table II). However, for subleading intercepts
the dependence on θw is more pronounced. On the other
hand, since we have a continuous spectrum, this depend-
ence is not important for the description of the processes.
The leading order intercept is given by Δe:w: ¼

ω0 ≈
8αe:w:
π ln 2 ≈ 0.176, where αe:w: is the electroweak fine

structure constant. Numerically, this is a small number.
However at, for example, W ¼ ffiffiffi

s
p ¼ 30 TeV the contri-

bution of the electroweak Pomeron ∝ ðs=M2
WÞΔe:w: , at W ¼ffiffiffi

s
p ¼ 30 TeV gives already an enhancement of the order of
exp ð0.176 ln ðW2=M2

WÞÞ ≈ 8 which is not small.
On the other hand, in all practical applications the

high energy behavior is dominated by the inclusion of
the QCD Pomeron, whose intercept is enhanced by a factor
3
2

αs
αe:w:

(see Fig. 4). So the real problem is the coexistence and
mixing of the QCD Pomeron with the electroweak one. Let
us give an example. First, because of the external coupling
the contribution of the QCD Pomeron is suppressed
by the factor αe:w:ᾱ

2
S in comparison to the electroweak

Pomeron. Next, for W ¼ 30 TeV the ratio of the
QCD Pomeron to the electroweak can be estimated
as αe:w:ᾱ2S exp ðᾱS4 ln 2 ln ðW2=Q2Þ − 0.176 ln ðW2=M2

WÞÞ
where Q is the virtuality of W, Z, γ in the electroweak
process. ForQ ¼ 1 GeV and ᾱS ¼ 0.2 we see that the ratio
is about 20, showing that the QCD Pomerons win.
However, this conclusion may be a bit premature since
the intercept of the QCD Pomeron is strongly affected by
the QCD next-to-leading order corrections while such QCD
corrections do not change the intercept of the electroweak
Pomeron. Pure electroweak corrections are not known.
Assuming that the QCD corrections diminish the intercept
of the QCD Pomeron by a factor of 2 (as it follows from the

phenomenology of deep inelastic scattering), we see that
the ratio is about 0.1 showing that we might have a window
in the energy in which we are able to measure and to
investigate the electroweak Pomeron. The energy W ¼
30 TeV perhaps is too large for the real experiment. At a
more realistic energy, W ¼ 3 TeV, the effect of the
electroweak Pomeron is smaller than at W ¼ 30 TeV.
leading to exp ð0.176 ln ðW2=M2

WÞÞ ≈ 3.6. The contribution
of the QCD Pomeron is negligibly small. Therefore, this
energy might give a reasonable compromise between a
realistic experimental possibility and seeing an enhance-
ment due to electroweak Pomeron contribution.
We consider our results as an important demonstration

that low-energy effects [like symmetry breaking and mix-
ing of SUð2Þ with Uð1Þ in physical bosons] do not affect
the leading intercept describing the high energy behavior.
A small value of the intercept also ensures that higher order
loop corrections remain small and can be addressed
perturbatively.
An interesting future step of our study is the inclusion of

the running coupling. It is known from the study of the
QCD Pomeron [11] that the running of αs leads to a discrete
spectrum. The two gluon wave function belonging to the
leading BFKL eigenvalue is concentrated at smaller
momenta, and for this reason we expect a stronger
sensitivity to the infrared behavior of the theory. In
electroweak theory, this should translate into a stronger
sensitivity to a Higgs mechanism and to the value of the
mixing angle.
If the electroweak standard model with one Higgs boson

remains the correct theory at LHC energies and beyond it
may be interesting to extrapolate scattering processes and
unitarity constraints up to energies where strong and

TABLE II. The positive roots ωj=ᾱe:w: of (113) evaluated with
lattice parameters (114).

j θW ¼ 0 sin2 θW ¼ 0.23

1 2.335 2.331
2 1.561 1.560
3 0.839 0.845
4 0.245 0.262

(a) (b)

FIG. 4. (a) The contribution of the electroweak Pomeron to an
electroweak scattering process. (b) Contribution of the QCD
Pomeron to the same electroweak processes. External wavy lines
stand for electroweak bosons (Z, W, γ), the grey blob with gluon
ladder inside stands for the QCD Pomeron.
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electroweak couplings become comparable. At such ener-
gies, QCD and the electroweak sector will mix, and
unitarization should affect both sectors. Our analysis
presented in this paper may provide a starting point for
addressing such questions.
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APPENDIX:

1. Discrete state of the BFKL equation for
massive gluon

In [5] we found that in a limit θW → 0 the spectrum of
the BFKL with massive boson is continuous and coincides
with spectrum of massless QCD. Now we would like to
demonstrate that the theory possesses additional discrete
levels absent in the massless limit. However, we overlooked
in that paper the existence of a new discrete level with the
intercept ωdiscr ¼ − 5

8
ᾱe:w: and with the eigenfunction

given by

ϕctðκÞ ¼
1

1þ κ
: ðA1Þ

Plugging the ansatz (A1) into (89), we may see that the
contributions of the first and the third terms in (90) mutually
cancel, and the contribution of the second term yields for the

eigenvalue ωdiscr ¼ − 5
8
ᾱe:w:. In a diagrammatic language

this solution corresponds to a sum of the diagrams in Fig. 5.
However, in a general case θW ≠ 0 we can see that

solutions of a form

Φij ¼
cij

Dðk;MiÞDðk;MjÞ
; ðA2Þ

Φcc ¼
c

Dðk;MÞ2 ðA3Þ

do not satisfy the eigenvalue equations (13) and (15).

2. Numerical results of Δω1

In Sec. III C we argued that a correction (98) is sup-
pressed in the limit κmax → ∞. In this section we give for
the sake of reference corresponding contributions of differ-
ent components in order to support this claim. We use
shorthand notations ΔωΔK

1 for the Oðs2WÞ-corrections to
kernels (40)–(43) and (50) and ΔωΔP

1 due to Oðs2WÞ-
corrections to propagators. Using an upper cutoff as in
Sec. III B 1, we found

ΔωΔK
1 ¼ s2W10

−4 ×

0
BBBBBBBBBBBBB@

ZZ ~n ~n fZ ~ng 33 fZ3g f ~n3g cc

ZZ 1.10 0.55 1.65 0.55 −1.65 −1.65 0.48

~n ~n 0.55 0 0.55 0 −0.55 −0.55 0

fZ ~ng 0.82 0.27 1.10 0.27 −1.10 −1.10 0.24

33 0.55 0 0.55 0 −0.55 −0.55 0.24

fZ3g −0.82 −0.27 −1.10 −0.27 1.10 1.10 −0.24
f ~n3g −0.82 −0.27 −1.10 −0.27 1.10 1.10 −0.24
cc 0.48 0 0.48 0 −0.48 −0.48 −24

1
CCCCCCCCCCCCCA

ðA4Þ

and

FIG. 5. The diagrams that lead to the discrete level due to
contact term interaction.
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ΔωΔP
1 ¼ s2W10

−4 ×

0
BBBBBBBBBBBBB@

ZZ ~n ~n fZ ~ng 33 fZ3g f ~n3g cc

ZZ −3.16 0 −2.58 0 2.58 0 0

~n ~n 0.82 0.27 1.10 0.27 −1.10 −1.10 0.24

fZ ~ng 0.82 0.27 1.10 0.27 −1.10 −1.10 0.24

33 0.82 0.27 1.10 0.27 −1.10 −1.10 0.24

fZ3g 0.82 0.27 1.10 0.27 −1.10 −1.10 0.24

f ~n3g 0.82 0.27 1.10 0.27 −1.10 −1.10 0.24

cc L − 8.90 0 0.89 − L 0 L − 0.89 0 0

1
CCCCCCCCCCCCCA

ðA5Þ

where L ¼ −0.53 × 104. We can see that, indeed, all corrections except those ∼L are small and vanish in the limit
κmax → ∞. The components ∼L vanish in a full sum, which finishes the proof that the corrections are small.

3. Proof that (113) includes (83) for θW = 0

In this section we demonstrate explicitly that for the case θW ¼ 0 any solution of Eq. (83) does satisfy Eq. (113). Indeed,
we may rewrite (83) as

Z
d2k0Kemðk; k0Þ

Φccðk0Þ
D2ðk0Þ ¼ −g2

5M2
W

8

Z
d2k0

Φccðk0Þ
D2ðk0Þ þ

ðω − 2ωðkÞÞ
4

ΦccðkÞ: ðA6Þ

Since in the limit θW ¼ 0 the kernels Kij;cc and Kcc;cc, up to a constant, are proportional to Kemðk; k0Þ,

Kcc;ccðk; k0Þ ¼ −g2M2
W þ 2Kemðk; k0Þ ðA7Þ

Kcc;nnðk; k0Þ ¼ −
3g2M2

W

2
þ 2Kemðk; k0Þ; ðA8Þ

we can use (A6) to evaluate explicitly the convolutions. Equation (113) in the limit θW ¼ 0 is given by

ðω − 2ωnðkÞÞDðk;MWÞ2ϕccðkÞ ¼
Z

d2k0½−M2
W þ 2Kemðk; k0Þ�

Φccðk0Þ
D2ðk0Þ þ

M2
W

2

fðkÞ R d2k0fðk0ÞΦccðk0Þ=D2ðk0Þ
1 − M2

W
2

R
d2k

ðω−2ωnðkÞÞD2ðkÞ

þ 2

Z
d2k0

Z
d2k00

Kcc;nnðk; k0ÞKnn;ccðk0; k00Þ
ðω − 2ωnðk0ÞÞD2ðk0Þ

Φccðk00Þ
D2ðk00Þ ; ðA9Þ

where

fðkÞ ¼
ffiffiffi
2

p Z
d2k0

Kcc;nnðk; k0Þ
ðω − 2ωnðk0ÞÞD2ðk0Þ : ðA10Þ

A straightforward application of (A6) after some algebra yields

Z
d2k0fðk0ÞΦccðk0Þ

D2ðk0Þ ¼
ffiffiffi
2

p

2

Z
d2k0

Φccðk0Þ
D2ðk0Þ

�
1 −

M2
W

2

Z
d2k

ðω − 2ωnðkÞÞD2ðkÞ
�
; ðA11Þ

M2
W

2

fðkÞ R d2k0fðk0ÞΦccðk0Þ=D2ðk0Þ
1 − M2

W
2

R
d2k

ðω−2ωnðkÞÞDðkÞDðkÞ
¼ M2

W

2

Z
d2k00

Φccðk00Þ
D2ðk00Þ

Z
d2k0

½− 3M2
W

2
þ 2Kemðk; k0Þ�

ðω − 2ωnðk0ÞÞD2ðk0Þ ; ðA12Þ
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2

Z
d2k0

Z
d2k00

Kcc;nnðk; k0ÞKnn;ccðk0; k00Þ
ðω − 2ωnðk0ÞÞDðk0ÞDðk0Þ

Φccðk00Þ
D2ðk00Þ ¼ −g2

M2
W

4

Z
d2k0

Φccðk0Þ
D2ðk0Þ þ

ðω − 2ωnðkÞÞ
2

ΦccðkÞ

− g2
M2

W

2

Z
d2k0

½− 3M2
W

2
þ 2Kemðk; k0Þ�

ðω − 2ωnðk0ÞÞD2ðk0Þ

¼
Z

d2k00
Φccðk00Þ
D2ðk00Þ ; ðA13Þ

and Z
d2k0Kcc;ccðk; k0Þ

Φccðk0Þ
D2ðk0Þ ¼

�ðω − 2ωnðkÞÞΦccðkÞ
2

þ g2
M2

W

4

Z
d2k00

Φccðk00Þ
D2ðk00Þ

�
: ðA14Þ

After summation of (A11)–(A14) we recover the lhs of (A9).

4. Large transverse momenta

In this Appendix we show how Eq. (113) has the same solution as the BFKL equation at large values of κ > M2
Z, which

we have discussed in Sec. III [see Eqs. [9] and (28)]. For large κ we can rewrite functions Φij and Φcc of Sec. IV in the form

ΦijðκÞ κ ≫ M2
Z

→
Dðκ;MiÞϕWðκÞ ¼ κκ−

1
2
þiν;

ΦccðκÞ κ ≫ M2
W

→
Dðκ;MWÞϕWðκÞ ¼

1

κ
κ−

1
2
þiν; ðA15Þ

where ϕWðκÞ is the eigenfunction of the BFKL equation [see Eq. [9]]. In Eq. (A15) we first calculate the last term of
Eq. (113):

2

Z
d2k0

ð2πÞ3
Z

d2k00

ð2πÞ3
X
ij

Kcc;ijðk; k0Þð−1ÞN3ði;jÞc2NZði;jÞ
W s

2Nγði;jÞ
W Kij;ccðk0; k00ÞΦccðk00Þ

ðω − Nnði; jÞωnðk0ÞÞDðk0;MiÞDðk0;MjÞD2ðk00;MWÞ
: ðA16Þ

First, in the sum over i, j we consider the terms with i ¼ j ¼ n, which after substituting Eq. (A15) takes the form

2

Z
d2k0

ð2πÞ3
Z

d2k00

ð2πÞ3
Kcc;nnðk; k0ÞKnn;ccðk0; k00ÞϕW

ðω − 2ωnðk0ÞÞDðk0;MWÞ

¼ 2

Z
d2k0

ð2πÞ3
Z

d2k00

ð2πÞ3
Kcc;nnðk; k0Þð12 ðω − 2ωnðk0ÞÞϕWðk0Þ − 3

2
ϕWðk00Þ=k002Þ

ðω − 2ωnðk0ÞÞD2ðk0;MWÞ

k; k0; k00 ≫ MW
→

Z
d2k0

ð2πÞ3
Kcc;nnðk; k0Þ
Dðk0;MWÞ

ϕWðk0Þ k; k00 ≫ MW
→

2

Z
d2k0

ð2πÞ3
Kemðk; k0Þ
Dðk0;MWÞ

ϕWðk0Þ: ðA17Þ

In the second line of Eq. (A17) we use the explicit form of the kernel Knn;ccðk0; k00Þ [see Eq. (19)] while in the last line we
neglect the terms that are of the order of 1=k2 at large k in comparison ϕWðkÞ. Note that this term is the same as the first term
in Eq. (113). Replacing Kcc;ijðk; k0Þ and Kij;ccðk0; k00Þ by 2Kemðk; k0Þ and 2Kemðk0; k00Þ, respectively, at large k, k0 and k00 we
can see that the sum over n, j with j ¼ Z; 3; γ can be reduced to

8

Z
d2k0

ð2πÞ3
Z

d2k00

ð2πÞ3
Kemðk; k0ÞKemðk0; k00Þϕccðk00Þ

ðω − ωnðk0ÞÞk04
fc2W − 1þ s2Wg|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼0

: ðA18Þ

Summation over i, j i ¼ Z; 3; γ and j ¼ Z; 3; γ reduces to the replacement ω − ωnðk0Þ → ω and f� � �g →
fc4W þ 1þ s4W þ 2c2Ws

2
W − 2c2W − 2s2Wg ¼ 0, in Eq. (A18). Therefore, the only term which contributes at large momenta

is the term with ij ¼ nn, and Eq. (113) reduces to the BFKL equation [see Eq. [9]] since the second term in Eq. (113)
vanishes in this kinematic region. It is instructive to note that we have proven the equivalence of Eqs. (113) and [9] without
assuming that jκ − κ0j ≫ M2

W .
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