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Within a dispersive approach to hadronic light-by-light scattering in the muon g − 2, the evaluation of
the numerically dominant pseudoscalar-pole contribution involves the pseudoscalar-photon transition form
factor F Pγ�γ� ð−Q2

1;−Q2
2Þ with P ¼ π0; η; η0 and, in general, two off-shell photons with spacelike momenta

Q2
1;2. We show that for π0ðη; η0Þ, the region of photon momenta below about 1(1.5) GeV gives the main

contribution to hadronic light-by-light scattering. We then discuss how the precision of current and future
measurements of the single- and double-virtual transition form factor in different momentum regions
impacts the precision of a data-driven estimate of this contribution to hadronic light-by-light scattering.
Based on Monte Carlo simulations for a planned first measurement of the double-virtual form factor at
BESIII, we find that for the π0; η; η0-pole contributions a precision of 14%, 23%, 15% seems feasible.
Further improvements can be expected from other experimental data and also from the use of dispersion
relations for the different form factors themselves.
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I. INTRODUCTION

The anomalous magnetic moment of the muon aμ ¼
ðg − 2Þ=2 has served for many years as an important test
of the Standard Model (SM) of particle physics; see
Refs. [1–4], which review theory and experiment and
contain many references to earlier work. The contributions
from the different sectors in the SM and the current
experimental value, largely dominated by the measurement
at Brookhaven [5], corrected for a small shift in the ratio of
the magnetic moments of the muon and the proton [6], have
been collected in Table I. For the muon g − 2, all sectors of
the SM contribute significantly at the current level of
precision. The QED contribution dominates numerically,
but it is very precisely known up to five-loop order [7].
Also, the electroweak contribution is under control at the
two-loop level, including a small hadronic uncertainty and
estimates of leading three-loop contributions [8]. The main
source of uncertainty originates from the hadronic con-
tributions from vacuum polarization (HVP) and light-
by-light scattering (HLbL) at various orders in the
electromagnetc coupling α. Comparing SM theory and
experiment, a discrepancy of 3–5 standard deviations has
been observed for several years now.1 This deviation could
be a sign of new physics beyond the SM [1–4], but the large
hadronic uncertainties make it difficult to draw firm
conclusions. These uncertainties need to be reduced and

better controlled [15], also in view of planned future muon
g − 2 experiments at Fermilab and J-PARC, which will try
to reduce the experimental error by a factor of 4 to about
δaexpμ ¼ 16 × 10−11 [16].
While the HVP contribution can be improved

systematically with measurements of the cross section
σðeþe− → hadronsÞ, the often-used estimates for HLbL,

aHLbLμ ¼ ð105� 26Þ × 10−11; ½17� ð1Þ

aHLbLμ ¼ ð116� 40Þ × 10−11; ½2; 11� ð2Þ

are both largely based on the same model calculations
[18–22], which suffer from partly uncontrollable uncertain-
ties. Therefore, the error estimates in Eqs. (1) and (2) are
essentially just guesses. Note that the central values probably
need to be shifted downwards toaHLbLμ ¼ ð98� 26Þ × 10−11

TABLE I. Contributions to the muon g − 2 from the different
sectors in the SM and comparison of theory and experiment.

Contribution aμ × 1011 References

QED (leptons) 116 584 718.853 � 0.036 [7]
Electroweak 153.6 � 1.0 [8]
HVP 6907.5 � 47.2 [9]
HVP (NLO) −100.3 � 2.2 [9]
HVP (NNLO) 12.4 � 0.1 [10]
HLbL 116 � 40 [2,11]
HLbL (NLO) 3 � 2 [12]
Theory (SM) 116 591 811 � 62 � � �
Experiment 116 592 089 � 63 [5,6]
Exp.−Th. (3.1σ) 278 � 88 � � �

*nyffeler@kph.uni‑mainz.de
1The absolute and relative sizes of the deviation depend on the

treatment of the hadronic contributions and how aggressively the
errors are estimated. See Ref. [13] for other recent evaluations of
the HVP contribution.
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for Ref. [17] and to aHLbLμ ¼ ð102� 40Þ × 10−11 for
Refs. [2,11], since recent reevaluations [14,23,24]
of the axial-vector contribution yield a smaller value
aHLbL;axialμ ¼ ð8� 3Þ × 10−11 compared to the result
aHLbL;axialμ ¼ ð22� 5Þ × 10−11 obtained in Ref. [22] and
used in Refs. [2,11]. Reference [17] had already used a
somewhat smaller value, aHLbL;axialμ ¼ ð15� 10Þ × 10−11.
Furthermore, after the publication of Refs. [2,11,17], there
were claims in Refs. [25,26] using different models that
the dressed quark-loop contribution might be around
110 × 10−11—i.e., much bigger than, for instance, the value
ð21� 3Þ × 10−11 estimated in Ref. [20]. Moreover, in
Ref. [27] it was argued that the pion-loop contribution could
also be potentially bigger in absolute size,−ð11−71Þ×10−11

compared to −ð19� 13Þ × 10−11 in Ref. [20]. See Ref. [28]
for an analysis of these claims and a brief review on other
recent developments in HLbL.
There are attempts ongoing to calculate the HLbL

contribution to the muon g − 2 from first principles in
lattice QCD. A first, still incomplete, result was obtained
recently in Ref. [29], which contains references to earlier
work in the last years. Another approach was proposed in
Ref. [30]. It remains to be seen how fast reliable estimates
for HLbL can be obtained within lattice QCD, where all
systematic uncertainties of the extrapolations to physical
quark masses (physical pion masses), to the continuum, and
to infinite volume are fully under control, and also all
quark-disconnected contributions are included.
In this situation, a dispersive approach to HLbL was

proposed recently in Refs. [31,32], which tries, in the spirit
of the HVP calculation, to relate the presumably numeri-
cally dominant contributions from the pseudoscalar poles
and the pion loop with on-shell intermediate pseudoscalar
states to—in principle—measurable form factors and cross
sections with off-shell photons:

γ�γ� → π0; η; η0; ð3Þ

γ�γ� → πþπ−; π0π0: ð4Þ

The two dispersive approaches differ somewhat.
Reference [31] considers first the four-point function
hVVVVi with three off-shell and one on-shell photon,
then identifies the intermediate on-shell hadronic states and
then projects on the muon g − 2. On the other hand,
Ref. [32] writes down directly a dispersion relation for
the Pauli form factor F2ðk2Þ and evaluates the imaginary
part of F2ðk2Þ from the various multiparticle cuts with
hadrons and photons in the Feynman diagrams, and then
calculates aμ ¼ F2ð0Þ.
The hope is that this data-driven estimate for HLbL will

allow a 10% precision for these contributions, with a
reliable and controllable error related to the experimental
measurement precision, and that the remaining, hopefully

smaller contributions—e.g., from axial vectors (3π-
intermediate state), other heavier states, and a dressed
quark loop, properly matched to perturbative QCD and
avoiding double-counting—can be obtained within models
with about 30% uncertainty to reach an overall reliable
precision goal of about 20% ðδaHLbLμ ≈ 20 × 10−11Þ. It
remains to be seen how successful this dispersive approach
will be in the end—i.e., whether the needed experimental
input information will be collected with the required
precision (to be studied in this paper for the pseudosca-
lar-pole contributions) and how, for instance, off-shell
effects of the intermediate states can be controlled without
double-counting and without introducing again large
model-dependent uncertainties.
In this paper we will concentrate on the dispersive

approach to the pseudoscalar-pole contribution to HLbL,
which is numerically dominant according to most model
calculations. It arises from the one-particle intermediate
states of the light pseudoscalars π0; η; η0 shown in the
Feynman diagrams in Fig. 1.
The blobs in the Feynman diagrams represent the

double-virtual transition form factor F Pγ�γ�ðq21; q22Þ, where
P ¼ π0; η; η0. See Ref. [33] for a recent brief overview on
transition form factors (TFF); many more details can be
found in the older review [34].2

In order to simplify the notation, we will now discuss
mainly the neutral pion–pole contribution. The generali-
zation to the pole contributions of η and η0 is straight-
forward. The pion-photon transition form factor
F π0γ�γ�ðq21; q22Þ is defined by the following vertex function
in QCD:

i
Z

d4x eiq1·xh0jTfjμðxÞjνð0Þgjπ0ðq1 þ q2Þi

¼ εμναβqα1q
β
2F π0γ�γ� ðq21; q22Þ: ð5Þ

Here jμðxÞ ¼ ðψ̄ Q̂ γμψÞðxÞ is the light-quark part
of the electromagnetic current [ψ̄ ≡ ðū; d̄; s̄), and

FIG. 1. The pseudoscalar-pole contribution to hadronic light-
by-light scattering. The shaded blobs represent the transition form
factor F Pγ�γ� ðq21; q22Þ, where P ¼ π0; η; η0.

2More generally, one can define a pseudoscalar exchange
contribution to HLbL which involves a form factor with off-shell
pseudoscalars F P�γ�γ� ððq1 þ q2Þ2; q21; q22Þ [2,11,18,20,35,36], but
this contribution to HLbL is then model dependent. In particular, it
will depend on the interpolating field used for the pseudoscalars.
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Q̂ ¼ diagð2;−1;−1Þ=3 is the charge matrix]. The form
factor describes the interaction of an on-shell neutral pion
with two off-shell photons with four-momenta q1 and q2.
It is Bose symmetric, F π0γ�γ� ðq21; q22Þ ¼ F π0γ�γ� ðq22; q21Þ,
because the two photons are indistinguishable. The form
factor for real photons is related to the decay width

into two photons: F 2
π0γ�γ� ð0; 0Þ ¼ 4Γðπ0 → γγÞ=ðπα2m3

πÞ.
Often the normalization with the chiral anomaly is used:
F π0γ�γ�ð0; 0Þ ¼ −Nc=ð12π2FπÞ.
If one evaluates only the pion-pole contribution of the

Feynman diagrams and projects on the muon g − 2, one
obtains the result [21]

aHLbL;π
0

μ ¼
�
α

π

�
3h
aHLbL;π

0ð1Þ
μ þ aHLbL;π

0ð2Þ
μ

i
; ð6Þ

aHLbL;π
0ð1Þ

μ ¼
Z

d4q1
ð2πÞ4

d4q2
ð2πÞ4

1

q21q
2
2ðq1 þ q2Þ2½ðpþ q1Þ2 −m2

μ�½ðp − q2Þ2 −m2
μ�

×
F π0γ�γ� ðq21; ðq1 þ q2Þ2ÞF π0γ�γ�ðq22; 0Þ

q22 −m2
π

~T1ðq1; q2;pÞ; ð7Þ

aHLbL;π
0ð2Þ

μ ¼
Z

d4q1
ð2πÞ4

d4q2
ð2πÞ4

1

q21q
2
2ðq1 þ q2Þ2½ðpþ q1Þ2 −m2

μ�½ðp − q2Þ2 −m2
μ�

×
F π0γ�γ� ðq21; q22ÞF π0γ�γ� ððq1 þ q2Þ2; 0Þ

ðq1 þ q2Þ2 −m2
π

~T2ðq1; q2;pÞ; ð8Þ

where p2 ¼ m2
μ (on-shell muon) and the external photon

now has a four-momentum of zero (soft photon). The
kinematic functions ~T1;2ðq1; q2;pÞ are reproduced in
Appendix A. The first and the second graphs in Fig. 1
give rise to identical contributions, leading to the term with
~T1. The third graph yields the contribution involving ~T2.
There have been objections [37] raised recently about the

implementation of the dispersive approach for the pion-
pole contribution in Refs. [31,32]. According to the argu-
ments in Refs. [22,37], there should be no form factor at the
external vertex with the soft photon. This amounts to
setting the single-virtual form factors F π0γ�γ� ðq2; 0Þ in
Eqs. (7) and (8) to a constant. Maybe the disagreement
arises over whether one interprets the diagrams in Fig. 1 as
genuine Feynman diagrams contributing to the muon g − 2
or as unitarity diagrams often used in the context of
dispersive approaches. In Ref. [32] it was shown, however,
that when one writes down a dispersion relation for the
Pauli form factor F2ðk2Þ and evaluates the imaginary part
of F2ðk2Þ from the various two-particle and three-particle
cuts in the Feynman diagrams, and then calculates
aμ ¼ F2ð0Þ, one obtains for a simple vector-meson domi-
nance (VMD) model for the form factor exactly the
expressions in Eqs. (7) and (8) with a form factor at the
external vertex. We will therefore use the prescription from
Refs. [21,31,32] to study the pseudoscalar-pole contribu-
tion aHLbL;Pμ to HLbL.
Most model evaluations of aHLbL;π

0

μ (pion pole defined in
different ways, or pion exchange with off-shell pion form

factors) and aHLbL;Pμ , with P ¼ π0; η; η0, agree at the level of
15%, but the full range of estimates (central values) is much
larger [38]:

aHLbL;π
0

μ;models ¼ ð50 − 80Þ × 10−11

¼ ð65� 15Þ × 10−11 ð�23%Þ; ð9Þ

aHLbL;Pμ;models ¼ ð59 − 114Þ × 10−11

¼ ð87� 27Þ × 10−11 ð�31%Þ: ð10Þ

This situation has to be improved without relying too
much on various models, in particular before the new muon
g − 2 experiment at Fermilab yields results with a fourfold
improvement over the Brookhaven experiment in a few
years [16]. In this paper we therefore study, as model
independently as possible, which are the most important
momentum regions for the pseudoscalar-pole contribution
aHLbL;Pμ . We also analyze what is the impact of the precision
of current and future measurements of the single-virtual
F Pγ�γ� ðq2; 0Þ and the double-virtual pseudoscalar transition
form factor F Pγ�γ� ðq21; q22Þ in different momentum regions
on the uncertainty of a data-driven estimate of this con-
tribution to HLbL. We hope that this information will be a
valuable guide to help the experimental community to plan,
design, and analyze the measurements of decay rates, form
factors, and cross sections of the light pseudoscalars
π0; η; η0 and their interactions with off-shell photons. In a
way, our approach is a generalization of the pie charts often
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shown for the HVP contribution and its error as a function
of the center-of-mass energy

ffiffiffi
s

p
in σðeþe− → hadronsÞ

[2]. However, since HLbL involves different amplitudes
[20,31,41] which depend on several invariant momenta, the
situation is of course more complicated than for the HVP
contribution.
This paper is organized as follows: Section II recalls the

three-dimensional integral representation for the pseudo-
scalar-pole contribution aHLbL;Pμ derived in Ref. [2],
which separates model-independent weight functions
w1;2ðQ1; Q2; cos θÞ from the dependence on the form factor
F Pγ�γ� ð−Q2

1;−Q2
2Þ for spacelike (Euclidean) momenta with

magnitude Q1;2 and angle θ between the momentum
vectors. In Sec. III, the weight functions for π0, η, and
η0 are analyzed in detail. Several three-dimensional plots (as
functions of the two momenta Q1;2) and one-dimensional
plots (as functions of the angle θ) are shown, and the
maxima and minima of the weight functions are deter-
mined. The relevant momentum regions for aHLbL;Pμ in
different bins in the ðQ1; Q2Þ plane are identified in Sec. IV
within two simple models for the TFF, since the loop
integral in Eq. (7) diverges without a form factor which
dampens the large-momentum region. Section V summa-
rizes the experimental status on the precision of measure-
ments of the TFF for π0; η, and η0. This is based on data for
the two-photon decay width ΓðP → γγÞ, the slope of the
form factor at zero momentum, and data for the single-
virtual form factor F Pγ�γ� ð−Q2; 0Þ in the spacelike and
timelike momentum region. For the double-virtual form
factor F Pγ�γ� ð−Q2

1;−Q2
2Þ, there are currently no experi-

mental data available. We use the results of a Monte Carlo
(MC) simulation [42] for planned measurements of this

form factor at the BESIII detector to estimate the potential
precision which could be reached in the next few years.
Section VI then discusses the impact of the experimental
uncertainties for the TFF on aHLbL;Pμ and points out in which
specific momentum regions (momentum bins) a high
experimental precision of TFF is needed for a precise
data-driven estimate of the pseudoscalar-pole contribution
to HLbL. Finally, Sec. VII presents a summary of our
findings and the conclusions. In Appendix A, we reproduce
the formulas for the kinematic functions ~T1;2 in the loop
integrals in Eqs. (7) and (8) from Ref. [21] and the weight
functions w1;2 from Ref. [2]. We give the Taylor expansions
for the weight functions in various limits (small and large
momenta, collinear momenta). A brief summary of the two
form-factor models that we use in our numerical analysis
can be found in Appendix B.

II. THREE-DIMENSIONAL INTEGRAL
REPRESENTATION FOR THE

PSEUDOSCALAR-POLE CONTRIBUTION aHLbL;P
μ

We concentrate again mainly on the pion-pole contri-
bution in this section. After a Wick rotation to Euclidean
momenta Qi; i ¼ 1; 2, and averaging over the direction of
the muon momentum p using the method of Gegenbauer
polynomials (hyperspherical approach) [43], one can per-
form for arbitrary form factors in the two-loop integrals (7)
and (8) all angular integrations, except one over the angle θ
between the four-momenta Q1 and Q2 which also appears
throughQ1 ·Q2 in the form factors. In this way, one obtains
the following three-dimensional integral representation for
the pion-pole contribution with on-shell pion transition
form factors [2]:

aHLbL;π
0ð1Þ

μ ¼
Z

∞

0

dQ1

Z
∞

0

dQ2

Z
1

−1
dτw1ðQ1; Q2; τÞF π0γ�γ� ð−Q2

1;−ðQ1 þQ2Þ2ÞF π0γ�γ� ð−Q2
2; 0Þ; ð11Þ

aHLbL;π
0ð2Þ

μ ¼
Z

∞

0

dQ1

Z
∞

0

dQ2

Z
1

−1
dτw2ðQ1; Q2; τÞF π0γ�γ� ð−Q2

1;−Q2
2ÞF π0γ�γ� ð−ðQ1 þQ2Þ2; 0Þ: ð12Þ

The integrations in Eqs. (11) and (12) run over the lengths of the two Euclidean four-momenta Q1 and Q2 and the angle θ
between them,Q1 ·Q2 ¼ Q1Q2 cos θ. We have written Qi ≡ jðQiÞμj, i ¼ 1; 2, for the length of the four-vectors. Following
Ref. [31], we changed the notation used in Ref. [2] and write τ ¼ cos θ in order to avoid confusion with the Mandelstam
variable t in the context of the dispersive approach.
The weight functions which appear in the integrals (11) and (12) are given by

w1ðQ1; Q2; τÞ ¼
�
−
2π

3

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p Q3
1Q

3
2

Q2
2 þm2

π
I1ðQ1; Q2; τÞ; ð13Þ

w2ðQ1; Q2; τÞ ¼
�
−
2π

3

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p Q3
1Q

3
2

ðQ1 þQ2Þ2 þm2
π
I2ðQ1; Q2; τÞ; ð14Þ

ANDREAS NYFFELER PHYSICAL REVIEW D 94, 053006 (2016)

053006-4



where the functions I1;2ðQ1; Q2; τÞ have been calculated in
Ref. [2] and are given in Appendix A. From our definition
of the form factor in Eq. (5), it follows that the weight
functions w1;2ðQ1; Q2; τÞ are dimensionless. Furthermore,
w2ðQ1; Q2; τÞ is symmetric under Q1 ↔ Q2 [2]. Finally,
w1;2ðQ1; Q2; τÞ → 0 for Q1;2 → 0 and for τ → �1. The

precise behavior of w1;2ðQ1; Q2; τÞ for Q1;2 → 0 and
τ → �1, as well as for Q1;2 → ∞, can be found in
Appendix A.
The three-dimensional integral representation in

Eqs. (11) and (12) separates the generic kinematics in
the pion-pole contribution to HLbL, described by the
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FIG. 2. Weight functions w1ðQ1; Q2; τÞ and w2ðQ1; Q2; τÞ for the pion as functions of the Euclidean momenta Q1

and Q2 for a selection of values of τ ¼ cos θ. (a) w1 for θ ¼ 165°ðτ ¼ −0.966Þ; (b) w1 for θ ¼ 120°ðτ ¼ −0.5Þ; (c) w1 for
θ ¼ 90°ðτ ¼ 0Þ; (d) w1 for θ ¼ 45°ðτ ¼ 0.707Þ; (e) w2 for θ ¼ 165°ðτ ¼ −0.966Þ; (f) w2 for θ ¼ 45°ðτ ¼ 0.707Þ. Note the
different range in Q1;2 for w2. The plots of w2 for θ ¼ 120° and 90° look similar to the one shown for θ ¼ 45°, but the peaks are
slightly broader.

PRECISION OF A DATA-DRIVEN ESTIMATE OF … PHYSICAL REVIEW D 94, 053006 (2016)

053006-5



model-independent weight functions w1;2ðQ1; Q2; τÞ,3 from
the dependence on the single- and double-virtual form
factors F π0γ�γ�ð−Q2; 0Þ and F π0γ�γ� ð−Q2

1;−Q2
2Þ in the

spacelike (Euclidean) region, which can in principle be
measured, obtained from a dispersion relation [44] (for η; η0
in Refs. [45–47]), or, as has been done so far, modeled. We
will discuss the experimental situation concerning the
single- and double-virtual TFF of π0; η; η0 below in Sec. V.
In Ref. [21], a two-dimensional integral representation

for aHLbL;π
0

μ was derived which also allowed a separation
between certain weight functions and the form factors;
however, the derivation was only possible for a class of
VMD-like form factors based on large-Nc QCD. The
constant Wess-Zumino-Witten (WZW) [48] form factor,
as defined in Eq. (B1), also falls into this class, and since in
this case there is no dependence on the angle θ from the
form factors in Eqs. (11) and (12), one can obtain two of the
weight functions in Ref. [21] from the weight functions
derived in Ref. [2] by integrating over the angles

wf1ðQ1; Q2Þ ¼
Z

1

−1
dτw1ðQ1; Q2; τÞ; ð15Þ

wg2ðmπ; Q1; Q2Þjsymm ¼
Z

1

−1
dτw2ðQ1; Q2; τÞ; ð16Þ

where

wg2ðmπ; Q1; Q2Þjsymm ¼ 1

2
½wg2ðmπ; Q1; Q2Þ

þwg2ðmπ; Q2; Q1Þ�: ð17Þ

Only this symmetric part of the function wg2ðmπ; Q1; Q2Þ
given in Ref. [21] contributes in the corresponding two-

dimensional integral representation for aHLbL;π
0ð2Þ

μ , since it
is multiplied by F π0γ�γ� ð−Q2

1;−Q2
2Þ. This symmetrization

removes the negative regions visible in the plots for the
function wg2ðmπ; Q1; Q2Þ shown in Ref. [21]. The plots of
the symmetrized function will then look very similar to
those for w2ðQ1; Q2; τÞ shown in Fig. 2. We have checked
the relations (15) and (16) numerically.
As one can see from the expressions for the weight

functions w1;2 in Eqs. (13) and (14), the only explicit
dependence on the pseudoscalar appears via the mass in the
pseudoscalar propagators. This will be important with
respect to the most relevant momentum regions for the
HLbL contribution to the muon g − 2. Of course, the form
factors will also depend on the type of the pseudoscalar.
First of all, the normalization of the form factors is related
to the decay width ΓðP → γγÞ, and secondly, there is a
difference in the momentum dependence, since e.g., in a
VMD model, the relevant vector-meson masses will be
different for π0, η, and η0 (e.g., ρ meson versus ϕ meson).

III. MODEL-INDEPENDENT WEIGHT
FUNCTIONS w1;2ðQ1;Q2;τÞ
A. Weight functions for π0

In Fig. 2 we have plotted the weight functions
w1ðQ1; Q2; τÞ and w2ðQ1; Q2; τÞ for the pion as functions
of Q1 and Q2 for a selection of values of θ. Note that
although the weight functions rise very quickly to the
maxima in the plots in Fig. 2, the slopes along the two axes
and along the diagonal Q1 ¼ Q2 actually vanish for both
functions; see Eq. (A21). We stress again that these weight

TABLE II. Values of the maxima of the weight functions w1ðQ1; Q2; τÞ and w2ðQ1; Q2; τÞ for the pion and
locations of the maxima in the ðQ1; Q2Þ plane for a selection of angles θ with decreasing θ (increasing τ ¼ cos θ).

θðτ ¼ cos θÞ Max. w1 Q1 [GeV] Q2 [GeV] Max. w2 Q1 ¼ Q2 [GeV]

175° (−0.996) 0.592 0.163 0.163 0.100 0.142
165° (−0.966) 1.734 0.164 0.162 0.277 0.132
150° (−0.866) 3.197 0.166 0.158 0.441 0.114
135° (−0.707) 4.176 0.171 0.153 0.494 0.099
120° (−0.5) 4.559 0.176 0.146 0.471 0.087
105° (−0.259) 4.349 0.182 0.139 0.403 0.078
90° (0.0) 3.664 0.187 0.130 0.312 0.070
75° (0.259) 2.702 0.189 0.122 0.218 0.063
60° (0.5) 1.691 0.187 0.114 0.132 0.057
45° (0.707) 0.840 0.180 0.106 0.064 0.050
30° (0.866) 0.283 0.168 0.099 0.021 0.043
15° (0.966) 0.0385 0.154 0.092 0.0027 0.037
5° (0.996) 0.0015 0.147 0.089 0.000 092 0.037

3Note that theweight functionsw1;2ðQ1; Q2; τÞ also describe the
relevant momentum regions in the casewhere one defines the pion-
pole contribution according to Refs. [22,37] and sets the single-
virtual form factor at the external vertex to a constant. Moreover,
these weight functions are also relevant if one evaluates the pion-
exchange contribution with model-dependent off-shell pion form
factors F π0�γ�γ� ð−ðQ1 þQ2Þ2;−Q2

1;−Q2
2Þ [2,11].
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functions are completely independent of any models for the
form factors. In this respect, these three-dimensional plots
differ from similar plots in Ref. [49], which show, in the
context of specific models for various contributions to
HLbL, the full integrand in the ðQ1; Q2Þ plane after the
angular integrations, including the form factors.
We can immediately see that for both weight functions,

the low-momentum region Q1;2 ≤ 0.5 GeV is the most
important in the corresponding integrals (11) and (12) for

aHLbL;π
0

μ . For w1ðQ1; Q2; τÞ, there is a peak around
Q1 ∼ 0.15–0.19 GeV, Q2 ∼ 0.09–0.16 GeV. In Table II
we have collected the values of the maxima of
w1ðQ1; Q2; τÞ and the locations of the maxima in the
ðQ1; Q2Þ plane for a selection of values of θ. With
decreasing θ (increasing τ), the value of the maximum
grows until θ ¼ 120°ðτ ¼ −0.5Þ and then decreases again.
Note that w1ðQ1; Q2; τÞ can become negative for θ ≤ 75°
and for some values of Q1;2, but the minima are small in
absolute size compared to the maxima. Table III shows the
global maximum and minimum of the function

w1ðQ1; Q2; τÞ in the physically allowed region Q1;2 ≥ 0

and −1 ≤ τ ≤ 1.
For θ ≤ 150°ðτ ≥ −0.85Þ, a ridge develops along the Q1

direction for Q2 ∼ 0.18–0.26 GeV (maximum along the
line Q1 ¼ 2 GeV). This ridge leads for a constant WZW
form factor to an ultraviolet divergence ðα=πÞ3C ln2ðΛ=mμÞ
[50] for some momentum cutoff Λ with C ¼
3ðNc=ð12πÞÞ2ðmμ=FπÞ2 ¼ 0.0248 [21,51]. Of course, real-
istic form factors fall off for large momenta Q1;2—see

Fig. 7 in Appendix B—and the integral aHLbL;π
0ð1Þ

μ will be
convergent.
The weight function w2ðQ1; Q2; τÞ is about an order of

magnitude smaller than w1ðQ1; Q2; τÞ, as can be seen in
Fig. 2. There is no ridge, since the function is symmetric
under Q1 ↔ Q2. Here the peak is around Q1 ¼
Q2 ∼ 0.14 GeV for τ near −1. The value of the maximum
grows for decreasing θ (increasing τ) until
θ ¼ 135°ðτ ¼ −0.707Þ, and then decreases again. The
location of the peak thereby moves to much lower values,
down to Q1 ¼ Q2 ∼ 0.04 GeV when τ is near þ1; see

TABLE III. Values and locations in ðQ1; Q2; θÞ of the global maxima and minima of the weight functions
w1ðQ1; Q2; τÞ and the global maxima of w2ðQ1; Q2; τÞ for all three pseudoscalars π0, η, η0.

Value Q1 [GeV] Q2 [GeV] θðτ ¼ cos θÞ
Max. w1jπ0 4.563 0.177 0.145 118.1° (−0.471)
Min. w1jπ0 −0.0044 0.118 1.207 45.7° (0.698)
Max. w2jπ0 0.495 0.097 0.097 133.1° (−0.684)

Max. w1jη 0.813 0.322 0.310 123.8° (−0.556)
Min. w1jη −0.0037 0.129 1.368 47.1° (0.680)
Max. w2jη 0.044 0.124 0.124 122.0° (−0.531)

Max. w1jη0 0.332 0.415 0.416 124.8° (−0.571)
Min. w1jη0 −0.0030 0.144 1.595 48.7° (0.661)
Max. w2jη0 0.015 0.128 0.128 120.9° (−0.513)

FIG. 3. Weight functions (a) w1ðQ1; Q2; τÞ and (b) w2ðQ1; Q2; τÞ for the pion as functions of τ ¼ cos θ for a selection of Q1 and Q2

values. Note the logarithmic scale for w2 and that the function is symmetric under the exchange Q1 ↔ Q2.
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Table II for more details about the peak locations. The
function w2ðQ1; Q2; τÞ is always positive, and its global
maximum is shown in Table III.
Figure 3 shows the weight functions w1;2ðQ1; Q2; τÞ as

functions of τ for some selected values of Q1 and Q2. One
can see that there is a strong enhancement for Q1 ¼ Q2 for
negative τ when the original four-vectors ðQ1Þμ and ðQ2Þμ
become more and more antiparallel. In particular, the
functions have a rather large slope for τ → −1, and the

maximal value is always located at τ < 0.4 However, both
weight functions always vanish for τ ¼ −1, as mentioned
before and discussed in Appendix A. Furthermore, the

FIG. 4. Weight functions w1ðQ1; Q2; τÞ and w2ðQ1; Q2; τÞ for η and η0 as functions of the Euclidean momentaQ1 andQ2, each for two
values of τ ¼ cos θ. (a) w1 for η with θ ¼ 165°ðτ ¼ −0.966Þ; (b) w1 for η with θ ¼ 45°ðτ ¼ 0.707Þ; (c) w2 for η with
θ ¼ 165°ðτ ¼ −0.966Þ; (d) w2 for η with θ ¼ 45°ðτ ¼ 0.707Þ. Note the different range in Q1;2 for w2. (e) w1 for η0 with
θ ¼ 165°ðτ ¼ −0.966Þ; (f) w1 for η0 with θ ¼ 45°ðτ ¼ 0.707Þ. The plots of w2 for η0 look similar to those for η with the same θ.

4Note the factor 1=ðQ1 þQ2Þ2 from one of the photon
propagators in the weight functions w1;2ðQ1; Q2; τÞ; see Eqs. (A5)
and (A6). According to Eqs. (A31) and (A35), the weight
functions w1;2ðQ;Q; τÞ along the diagonal Q1 ¼ Q2 ¼ Q have
infinite slope at τ ¼ −1.
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weight functions get smaller for growing values of
Q1;2 > 0.5 GeV, as is already visible in the three-
dimensional plots in Fig. 2.

B. Weight functions for η and η0

In Fig. 4 we have plotted the model-independent weight
functions w1;2ðQ1; Q2; τÞ for the η and the η0 as functions of
Q1 andQ2 for the two angles θ ¼ 165° and 45°. The shapes
of the plots for θ ¼ 120° and 90° are similar to the ones
shown for θ ¼ 45°.
The only dependence on the pseudoscalars appears in the

weight functions w1;2ðQ1; Q2; τÞ through the pseudoscalar
propagators, i.e., a factor 1=ðQ2

2 þm2
PÞ in w1 and a factor

1=ððQ1 þ Q2Þ2 þ m2
PÞ ¼ 1=ðQ2

1 þ 2Q1Q2τ þ Q2
2 þ m2

PÞ
in w2; see Eqs. (13) and (14). As can be seen from the plots
in Fig. 4, this shifts the relevant momentum regions (peaks,
ridges) in the weight functions to higher momenta for η
compared to π0 and even higher for η0. Note that for w1, the
momentum range in the plots for η and η0 is now 0–3 GeV,
whereas it was only 0–2 GeV for π0 in Fig. 2. It also leads
to a suppression in the absolute size of the weight functions
due to the larger masses in the propagators. This pattern
will also be visible in the values for the contributions to
HLbL. For the bulk of the weight functions (maxima,
ridges) we observe the following approximate relations

(for the same angle θ, but not necessarily at the same values
of the momenta):

w1jη ≈
1

6
w1jπ0 ; ð18Þ

w1jη0 ≈
1

2.5
w1jη: ð19Þ

Of course, the ratio of the weight functions is given by the
ratio of the propagators and is maximal at zero momenta
and at that point equal to the ratio of the squares of the
masses, but at zero momenta the weight functions them-
selves vanish. The combined effect is well described by the
relations in Eqs. (18) and (19). Furthermore, for both η and
η0, the weight function w2 is about a factor of 20 smaller
than the corresponding weight function w1.
The peaks for the weight function w1ðQ1; Q2; τÞ for η

and η0 are less steep compared to π0, and the ridge is quite
broad in the Q2 direction. Furthermore, the ridge falls off
only slowly in the Q1 direction, and for θ ≤ 75° is still
about half of the maximum out to values of Q1 ¼ 3 GeV.
For the weight function w2ðQ1; Q2; τÞ, the peaks are again
less steep and larger values of the momenta contribute,
compared to the pion.

TABLE IV. Values of the maxima of the weight functions w1;2ðQ1; Q2; τÞ and locations of the maxima in the
ðQ1; Q2Þ plane for a selection of angles θ. Top part: η meson. Bottom part: η0 meson.

θðτ ¼ cos θÞ Max. w1 Q1 [GeV] Q2 [GeV] Max. w2 Q1 ¼ Q2 [GeV]

175° (−0.996) 0.117 0.328 0.328 0.0061 0.143
165° (−0.966) 0.341 0.327 0.327 0.018 0.142
150° (−0.866) 0.616 0.325 0.323 0.032 0.137
135° (−0.707) 0.778 0.323 0.317 0.041 0.131
120° (−0.5) 0.809 0.322 0.308 0.044 0.123
105° (−0.259) 0.729 0.323 0.296 0.040 0.114
90° (0.0) 0.575 0.328 0.282 0.032 0.106
75° (0.259) 0.395 0.336 0.267 0.023 0.096
60° (0.5) 0.231 0.346 0.253 0.014 0.087
45° (0.707) 0.107 0.356 0.241 0.0063 0.077
30° (0.866) 0.034 0.363 0.231 0.0019 0.067
15° (0.966) 0.0044 0.367 0.225 0.000 23 0.063
5° (0.996) 0.000 17 0.368 0.224 8 × 10−6 0.065

175° (−0.996) 0.049 0.434 0.434 0.0020 0.143
165° (−0.966) 0.142 0.432 0.433 0.0059 0.142
150° (−0.866) 0.255 0.427 0.430 0.011 0.139
135° (−0.707) 0.320 0.419 0.423 0.014 0.134
120° (−0.5) 0.330 0.413 0.412 0.015 0.128
105° (−0.259) 0.293 0.412 0.397 0.014 0.120
90° (0.0) 0.227 0.418 0.378 0.011 0.112
75° (0.259) 0.154 0.431 0.358 0.0079 0.102
60° (0.5) 0.088 0.451 0.340 0.0047 0.092
45° (0.707) 0.041 0.472 0.326 0.0022 0.082
30° (0.866) 0.013 0.491 0.315 0.000 66 0.072
15° (0.966) 0.0017 0.504 0.309 0.000 079 0.067
5° (0.996) 0.000 062 0.508 0.307 3 × 10−6 0.070
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Table IV shows for η and η0 the maxima of the weight
functions w1;2ðQ1; Q2; τÞ and the locations of the maxima
in the ðQ1; Q2Þ plane for a selection of angles θ. For the η
meson, the peak in the weight function w1ðQ1; Q2; τÞ is
around Q1 ∼ 0.32–0.37 GeV, Q2 ∼ 0.22–0.33 GeV. For
θ ≤ 120°ðτ ≥ −0.5Þ, again the broad ridge along the Q1

direction is visible with Q2 ∼ 0.4–0.7 GeV (maximum
along the line Q1 ¼ 2 GeV). The peak for the weight
function w2ðQ1; Q2; τÞ is around Q1 ¼ Q2 ∼ 0.14 GeV for
τ near −1, as for the pion. The location of the peak moves
down to Q1 ¼ Q2 ∼ 0.06 GeV when τ is near þ1. The
global maximum and minimum of w1ðQ1; Q2; τÞ and the
global maximum of w2ðQ1; Q2; τÞ are shown in Table III.
For the η0, the peak in w1ðQ1; Q2; τÞ now occurs

for even higher momenta: Q1 ∼ 0.41–0.51 GeV,
Q2 ∼ 0.31–0.43 GeV. Here the broad ridge along
the Q1 direction arises for θ ≤ 120°ðτ ≥ −0.5Þ, with
Q2 ∼ 0.6–1 GeV. The locations of the peaks of
w2ðQ1; Q2; τÞ in the ðQ1; Q2Þ plane follow a similar pattern
as for the η meson; see Table IV. Again, the global
maximum and minimum of w1ðQ1; Q2; τÞ and the global
maximum ofw2ðQ1; Q2; τÞ have been collected in Table III.

IV. RELEVANTMOMENTUM REGIONS IN aHLbL;P
μ

In order to study the impact of different momentum
regions on the pseudoscalar-pole contribution, we need, at
least for the integral with the weight function w1ðQ1; Q2; τÞ
in Eq. (11), some knowledge on the form factor
F Pγ�γ� ð−Q2

1;−Q2
2Þ, since the integral diverges for a con-

stant form factor.5 For illustration, we take for the pion two
simple models to perform the integrals: lowest meson
dominance with an additional vector multiplet (the
LMDþ V model) [21,52], based on the minimal hadronic
approximation [53,54] to large-Nc QCD matched to certain
QCD short-distance constraints from the operator product
expansion (OPE) [55]; and the well-known and often-used
VMD model. Of course, in the end, the models have to be
replaced as much as possible by experimental data on the
single- and double-virtual TFF, or one can use a DR for the
form factor itself [44–47].
Some details and properties of these two form-factor

models can be found in Appendix B. There are two main
differences between the models. First, the LMDþ Vmodel
does not factorize FLMDþV

π0γ�γ� ð−Q2
1;−Q2

2Þ ≠ fðQ2
1Þ × fðQ2

2Þ.
Such a factorization is also not expected in QCD. Second,
the two models have different behaviors of the double-
virtual form factor for large and equal momenta. The
LMDþ V model reproduces by construction the OPE

[56,57], whereas the VMD form factor falls off too fast
[see Eq. (B2) for the exact OPE behavior]:

FLMDþV
π0γ�γ� ð−Q2;−Q2Þ ∼ FOPE

π0γ�γ� ð−Q2;−Q2Þ ∼ 1

Q2

for largeQ2; ð20Þ

FVMD
π0γ�γ� ð−Q2;−Q2Þ ∼ 1

Q4
for largeQ2: ð21Þ

Nevertheless, as can be seen from Fig. 7 and Table VIII in
Appendix B, for not-too-large momenta, Q1 ¼ Q2 ¼
Q ¼ 0.5½0.75� GeV, the form factors F π0γ�γ� ð−Q2;−Q2Þ
in the two models differ by only 3% [10%]. Furthermore,
both models give an equally good description of the single-
virtual TFF F π0γ�γ�ð−Q2; 0Þ [52,58].
The LMDþ V model was developed in Ref. [52] in the

chiral limit and assuming octet symmetry. This is certainly
not a good approximation for the more massive η and η0
mesons, where the nonet symmetry, the effect of the Uð1ÞA
anomaly, and the η − η0-mixing also have to be taken into
account. Since we are interested here in the determination
of the relevant momentum regions of the pseudoscalar-pole
contributions to HLbL and the impact of experimental
measurement errors of the form factors, we will take for the
η and η0 mesons the usual VMD model for the TFF, as
already done in Refs. [11,21]. See Appendix B for more
details about the VMD model parameters for η and η0.
The two models yield the following results for the pole

contributions of the light pseudoscalars to HLbL (we list
here only the central values)6:

aHLbL;π
0

μ;LMDþV ¼ 62.9 × 10−11; ð22Þ

aHLbL;π
0

μ;VMD ¼ 57.0 × 10−11; ð23Þ

aHLbL;ημ;VMD ¼ 14.5 × 10−11; ð24Þ

aHLbL;η
0

μ;VMD ¼ 12.5 × 10−11: ð25Þ

The results (22) and (23) for the pion-pole contribution
in the two models are in the ballpark of many other
estimates—see Eq. (9)—but they also differ by 9.4%
relative to the LMDþ V result, due to the different
high-energy behavior for the double-virtual TFF in
Eqs. (20) and (21) for Q1;2 ≥ 1 GeV. In fact, the pattern

5As already observed in Refs. [19,21], for the integral with the
weight function w2ðQ1; Q2; τÞ in Eq. (12), one obtains
even for a constant WZW form factor a finite and small result:
ðαπÞ3aHLbL;π

0ð2Þ
μ;WZW ¼ 2.5 × 10−11, ðαπÞ3aHLbL;ηð2Þμ;WZW ¼ 0.78 × 10−11, and

ðαπÞ3aHLbL;η
0ð2Þ

μ;WZW ¼ 0.65 × 10−11.

6Although the weight functions w1;2ðQ1; Q2; τÞ vanish for
Q1;2 → 0 and τ → �1, for the numerical integration with
VEGAS [59] we introduced a small infrared/collinear cutoff as
follows: Q1;2 ≥ ϵGeV, τ ≤ 1 − ϵ, and τ ≥ −1þ ϵ2 with
ϵ ¼ 10−6, where the latter condition takes into account the
steeper slope for τ → −1, when Q1 ¼ Q2; see Fig. 3 and
Eqs. (A31) and (A35) in Appendix A.
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of the contributions to aHLbL;π
0

μ is to a large extent
determined by the model-independent weight functions
w1;2ðQ1; Q2; τÞ, which are concentrated below about
0.5 GeV, up to that ridge in w1 along the Q1 direction.
As long as realistic form-factor models for the double-
virtual case fall off at large momenta and do not differ too
much at low momenta [with the normalization from
Γðπ0 → γγÞ and constraints from the single-virtual tran-
sition form factor], we expect similar results for the pion-
pole contribution at the level of 15%, which is in fact what
is seen in the literature [38]. Nevertheless, due to the ridge-
like structure in the weight function w1 along the Q1

direction, the high-energy behavior of the form factors is
relevant at the precision of 10% one is aiming for.
For the η and η0, the results in Eqs. (24) and (25) are as

expected from the discussion of the relative size of the
weight functions in Eqs. (18) and (19). The result for η is
about a factor of 4 smaller than for the pion with VMD. The
result for η0 is only slightly smaller than for η. Note that the
normalization of the form factors related to the decay
ΓðP → γγÞ and the momentum dependence due to different
values ofMV for η and η0 also play an important role for the
results in Eqs. (24) and (25).
For a more detailed analysis, we integrate in Eqs. (11)

and (12) over individual momentum bins and all angles θ as
follows:

Z
Q1;max

Q1;min

dQ1

Z
Q2;max

Q2;min

dQ2

Z
1

−1
dτ; ð26Þ

and we display the results, relative to the totals in
Eqs. (22)–(25), in Fig. 5.

Since the absolute size of the weight function
w1ðQ1; Q2; τÞ is much larger than w2ðQ1; Q2; τÞ, the

contribution from the integral aHLbL;Pð1Þμ in Eq. (11) domi-

nates over aHLbL;Pð2Þμ in Eq. (12). Therefore, the asymmetry
seen in the ðQ1; Q2Þ plane in Fig. 5, with larger contribu-
tions below the diagonal, reflects the ridge-like structure of
w1ðQ1; Q2; τÞ in Figs. 2 and 4. Note that in relating the
contributions to aHLbL;Pμ from different momentum
regions to the form factor, one has to take into account

that what enters in the dominant part aHLbL;Pð1Þμ in
Eq. (11) is the double-virtual form factor at momenta
F Pγ�γ� ð−Q2

1;−ðQ1 þQ2Þ2Þ, not F Pγ�γ� ð−Q2
1;−Q2

2Þ.
For the pion, the largest contribution comes from the

lowest bin Q1;2 ≤ 0.25 GeV, since a large part of the peaks
in the weight functions (for different angles θ) is contained
in that bin. More than half of the contribution comes from
the four bins with Q1;2 ≤ 0.5 GeV. In contrast, for the η
and η0, it is not the bin Q1;2 ≤ 0.25 GeV which yields the
largest contribution, since the maxima of the weight
functions are shifted to higher momenta, around 0.3–
0.5 GeV. Furthermore, more bins up to Q2 ¼ 2 GeV
now contribute at least 1% to the total. This is different
from the pattern seen for π0. The plots of the weight
functions for η and η0 in Fig. 4 show that now the region
1.5–2.5 GeV is also important for the evaluation of the
η- and η0-pole contributions. However, as mentioned
before, the VMD model is known to have a too-fast falloff
at large momenta, compared to the OPE. Therefore, the

sizes of the contributions aHLbL;ημ and aHLbL;η
0

μ in Eqs. (24)
and (25) might be underestimated by the VMD model,
which could also affect the relative importance of the
higher-momentum region in Fig. 5.

FIG. 5. (a) Relative contributions to the total aHLbL;π
0

μ from individual bins in the ðQ1; Q2Þ plane, integrated over all angles according
to Eq. (26). Note the larger size of the bins with Q1;2 ≥ 1 GeV. Top line in each bin: LMDþ V model; bottom line: VMD model.
Contributions smaller than 1% have not been displayed. For the LMDþ V model, there are further contributions bigger than 1% along
the Q1 axis. For 2 GeV ≤ Q1 ≤ 20 GeV: 1.1% in the bin 0 ≤ Q2 ≤ 0.25 GeV and 1.2% for 0.25 GeV ≤ Q2 ≤ 0.5 GeV. (b) Relative

contributions to the total of aHLbL;ημ and aHLbL;η
0

μ with the VMD model from individual bins in the ðQ1; Q2Þ plane, integrated over all
angles. Top line in each bin: η meson; bottom line: η0 meson.
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Integrating both Q1 and Q2 from zero up to some upper
momentum cutoff Λ (integration over a square) and
integrating over all angles θ, one obtains the results shown
in Table V; see also Ref. [60] for a similar analysis for the
pseudoscalar-exchange contribution. This amounts to sum-
ming up the individual bins shown in Fig. 5.
As one can see in Table V, for the pion more than half of

the final result stems from the region below Λ ¼ 0.5 GeV
(59% for LMDþ V, 64% for VMD), and the region below
Λ ¼ 1 GeV gives the bulk of the total result (86% for
LMDþ V, 92% for VMD). The small difference between
the form-factor models for small momentaQ1;2 ≤ 0.5 GeV

is reflected in the small absolute difference for aHLbL;π
0

μ in
the two models for Λ ≤ 0.75 GeV. For instance, for
Λ ¼ 0.5 GeV, the difference is only 0.2 × 10−11, i.e., about
0.5%; and for Λ ¼ 0.75 GeV, the difference is only
0.8 × 10−11, i.e., 1.6%. The faster falloff of the VMD
model at larger momenta beyond 1 GeV, compared to the
LMDþ V model, leads to a smaller contribution from that
region to the total. Therefore, we can see in Fig. 5 that the
main contributions in the VMD model, relative to the total,
are concentrated at lower momenta compared to the
LMDþ V model, in particular below 0.75 GeV.
On the other hand, Table V shows that for η and η0, the

region below Λ ¼ 0.25 GeV only gives a small contribu-
tion to the total (12% for η, 8% for η0). Up to Λ ¼ 0.5 GeV,
we get about half (one third) for η (η0), and the bulk of the
results comes from the region belowΛ ¼ 1.5 GeV, 96% for
the η and 93% for the η0 meson. But note again that the
VMD model might have a too-strong falloff at large
momenta. A less model-dependent evaluation of aHLbL;ημ

and aHLbL;η
0

μ , largely based on experimental data, would
therefore be highly preferable.

V. EXPERIMENTAL STATUS OF
TRANSITION FORM FACTORS

For the calculation of the pseudoscalar-pole contribution
aHLbL;Pμ with P ¼ π0; η; η0 in Eqs. (11) and (12), the single-
virtual form factor F Pγ�γ�ð−Q2; 0Þ and the double-virtual

form factor F Pγ�γ� ð−Q2
1;−Q2

2Þ, both in the spacelike
region, enter. We are interested here in the impact of
uncertainties of experimental measurements of these form
factors on the precision of aHLbL;Pμ . In the following, we will
summarize the experimental information which is currently
available for these form factors, or which should be
available in the near future. We will mostly just quote
the uncertainties of several experiments in different
momentum regions, concentrating on the most precise
and most recent ones. More details about the actual
measurements can be found in the given references. See
Ref. [33] for a brief overview of the various experimental
processes where information on the transition form factors
can be obtained. More details can be found in Ref. [34].
For the single-virtual form factor, we parametrize the

measurement errors in Eqs. (11) and (12) as follows:

F Pγ�γ�ð−Q2; 0Þ → F Pγ�γ�ð−Q2; 0Þð1� δ1;PðQÞÞ: ð27Þ

The momentum-dependent errors δ1;PðQÞ in different bins
are displayed in Table VI in Sec. VI. Ideally, one should
combine all the experimental data to obtain F Pγ�γ�ð−Q2; 0Þ
and δ1;PðQÞ as functions for all momenta. However, there
are currently still regions where there are no data, or rather
unprecise data, available. We therefore need to make some
assumptions and will employ a simplified approach with
binwise constant errors. Also, no correlations between
different bins are taken into account.
Similarly, for the double-virtual form factor we para-

metrize the measurement errors in the following way:

F Pγ�γ� ð−Q2
1;−Q2

2Þ→F Pγ�γ� ð−Q2
1;−Q2

2Þð1�δ2;PðQ1;Q2ÞÞ;
ð28Þ

where the assumed momentum-dependent errors
δ2;PðQ1; Q2Þ in different bins are shown in Fig. 6 in
Sec. VI. Since there are currently no data available for
the double-virtual form factor, we will use the results of a
MC simulation [42] for BESIII, as described below, to
estimate the errors δ2;PðQ1; Q2Þ.

TABLE V. Pseudoscalar-pole contribution aHLbL;Pμ × 1011, P ¼ π0; η; η0, for different form-factor models obtained
with a momentum cutoff Λ. The percentage in parentheses gives the relative contribution of the total obtained with
Λ ¼ 20 GeV.

Λ [GeV] π0 [LMDþ V] π0 [VMD] η [VMD] η0 [VMD]

0.25 14.4 (22.9%) 14.4 (25.2%) 1.8 (12.1%) 1.0 (7.9%)
0.5 36.8 (58.5%) 36.6 (64.2%) 6.9 (47.5%) 4.5 (36.1%)
0.75 48.5 (77.1%) 47.7 (83.8%) 10.7 (73.4%) 7.8 (62.5%)
1.0 54.1 (86.0%) 52.6 (92.3%) 12.6 (86.6%) 9.9 (79.1%)
1.5 58.8 (93.4%) 55.8 (97.8%) 14.0 (96.1%) 11.7 (93.1%)
2.0 60.5 (96.2%) 56.5 (99.2%) 14.3 (98.6%) 12.2 (97.4%)
5.0 62.5 (99.4%) 56.9 (99.9%) 14.5 (100%) 12.5 (99.9%)

20.0 62.9 (100%) 57.0 (100%) 14.5 (100%) 12.5 (100%)

ANDREAS NYFFELER PHYSICAL REVIEW D 94, 053006 (2016)

053006-12



A. Pion transition form factor

For the single-virtual TFF of the pion F π0γ�γ� ð−Q2; 0Þ,
the following experimental information is available. The
normalization of the form factor can be obtained from the
decay width Γðπ0 → γγÞ ¼ ðπα2m3

π=4ÞF 2
π0γ�γ� ð0; 0Þ. For a

detailed overview of theory and experiment we refer to
Ref. [61]. See also Ref. [62], which briefly reviews the
theory for other decay modes of the neutral pion that will be
discussed below. From the Particle Data Group (PDG)
average [4] for the decay width Γðπ0 → γγÞ ¼
ð7.63� 0.16Þ eV, one obtains a 1.1% precision on the
form-factor normalization. The error is largely driven by
the single most precise measurement of the decay width by
the PrimEx Collaboration: Γðπ0→γγÞ¼ð7.82�0.22ÞeV
[63]. We will take the corresponding precision of 1.4%
for the form factor at vanishing momenta as a conservative
estimate on the normalization. An improvement from
PrimEx-II is expected soon at the level of 0.7% for the
form factor [64]. There are also plans to measure this decay
at KLOE-2 with 0.5% statistical precision for the normali-
zation of the form factor [58]. Note that at the level of
1%–2%, quark mass corrections and radiative corrections
to the decay width need to be considered in order to
compare theory [65] and experiment.
Another important piece of experimental information is

the slope of the form factor at the origin. Following
Ref. [34], one defines7

bπ0 ¼
1

F π0γ�γ� ð0; 0Þ
dF π0γ�γ� ðq2; 0Þ

dq2

����
q2¼0

: ð29Þ

The PDG [4] uses essentially the determination of
the slope by CELLO [66] as their average,
bπ0 ¼ ð1.76� 0.22Þ GeV−2, with a 12.5% precision
(assuming that the systematic error is of the same size
as the statistical error, as stated in Ref. [66]). The CELLO
Collaboration was the first to measure the single-virtual
form factor F π0γ�γ� ð−Q2; 0Þ for spacelike momenta in
the momentum range 0.7–1.6 GeV in the process
eþe− → eþe−γ�γ� → eþe−π0. CELLO determines the
slope of the form factor using a simple VMD ansatz with
vector-meson mass Λπ0 ¼ ð748� 42Þ MeV to fit the data
and evaluates the slope at zero momentum from the fitted
function as bπ0 ¼ 1=Λ2

π0
. As pointed out in Ref. [52], this

large extrapolation from 0.7 GeV to the origin might induce
a model dependence or bias that is not covered by the
uncertainty from the fit to the data at higher energies. In
Ref. [39] it was argued, based on Padé approximants to
form-factor measurements in the spacelike region by

CELLO, CLEO [67], and BABAR [68], that there might
be a 45% systematic uncertainty in the slope from the
modeling and the large extrapolation. From a sequence of
Padé approximants, Ref. [39] obtained the result
bπ0 ½Padé� ¼ ð1.78� 0.12Þ GeV−2 with 6.9% precision.
Other experimental determinations of the slope in the
timelike region from the single Dalitz decay π0 → eþe−γ
in Ref. [69], published around the same time as CELLO
and used in the PDG average, yield mostly similar central
values, close to the CELLO result and the VMD prediction
bπ0 ½VMD� ¼ 1=M2

ρ ¼ 1.66 GeV−2, but with uncertainties
of 100% or more (one experiment even obtained a negative
central value). Note that a proper treatment of radiative
corrections needs to be done in order to extract information
on the form factor or the branching ratio BRðπ0 → eþe−γÞ
from the data, as discussed in Ref. [70].
The single-virtual form factor F π0γ�γ� ð−Q2; 0Þ for

spacelike momenta has been measured by a series of
experiments. The CELLO [66] measurement was
done in the momentum range 0.7 ≤ Q ≤ 1.6 GeV
ð0.5 ≤ Q2 ≤ 2.7 GeV2Þ. It has a precision of about
8%–9% in the two bins from 0.7 to 1 GeV. Between 1
and 1.4 GeV, the precision is about 11%–12%, and for the
highest bin it is 20%. Later, CLEO [67] measured
the form factor in the region 1.2 ≤ Q ≤ 3 GeV
(1.5 ≤ Q2 ≤ 9 GeV2). Between 1.2 and 1.5 GeV the
precision is about 6%–7%, between 1.5 and 2 GeV it is
about 8%–11%, and above 2 GeV the uncertainty increases
gradually to 15%. At higher energies, 2 ≤ Q ≤ 6.3 GeV
ð4 ≤ Q2 ≤ 40 GeV2Þ, there are measurements of the form
factor available from BABAR [68] and Belle [71]. Between
2 and 3 GeV, the precision of BABAR is about 3%–4%. For
Belle, the form-factor measurements in the two lowest bins
with 2 ≤ Q ≤ 2.4 GeV have errors of 16% and 13%,
respectively. The error for the next three bins, with
2.4 ≤ Q ≤ 3 GeV, then drops to 5%–6%. There is a
disagreement between the data of BABAR and Belle above
about 3 GeV, with the BABAR data for the form factor not
showing the 1=Q2 behavior expected from QCD [72].
While this puzzle needs to be clarified, the form-factor data
above 3 GeV are not very relevant for the muon g − 2, as
already discussed in Ref. [73]. This can be seen from the
plots of the weight functions in Fig. 2 and the results in
Table V.
An analysis is ongoing by BESIII [74] to measure

the form factor in the region 0.5 ≤ Q ≤ 1.8 GeV
(0.3 ≤ Q2 ≤ 3.1 GeV2) with a precision of 5%–10%.
Finally, according to the simulations performed in
Ref. [58], KLOE-2 should be able to measure the form
factor with 6% statistical precision at even lower energies:
0.1 ≤ Q ≤ 0.3 GeV (0.01 ≤ Q2 ≤ 0.09 GeV2).
In principle, one can obtain information about the

single-virtual form factor jF π0γ�γ�ðq2; 0Þj at small timelike
momenta from the single Dalitz decay π0 → γ�γ → eþe−γ;
see Ref. [69]. However, due to the small pion mass, the

7The PDG [4] parametrizes the form factor in conver-
sion or Dalitz decays for small momenta in the linearized
form F π0γ�γ� ðq2; 0Þ ¼ F π0γ�γ� ð0; 0Þð1þ aπ0q

2=m2
π0
Þ; therefore

bπ0 ¼ aπ0=m
2
π0
.
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kinematical reach in jqj is very small, and form-factor
effects are not clearly visible. This explains the difficulty to
extract, for instance, the slope parameter with a reasonable
precision. At higher momenta, the form factor enters in the
process eþe− → γ� → π0γ and has been measured at SND
and CMD-2 [75]. Of course, one cannot simply translate
the form-factor values jF π0γ�γ� ðq2; 0Þj measured at timelike
momenta q2 into the spacelike region Q2. A proper
analytical continuation needs to be performed, preferably
without introducing too much model dependence.
Finally, recently a dispersion relation has been proposed in

Ref. [44] to determine the single- and double-virtual form
factors. So far, only the single-virtual form factor has been
evaluated in this dispersive framework. The dispersion
relation yields, within uncertainties, a perfect description
of the experimental data for eþe− → π0γ from Ref. [75]. At
small spacelike momenta, very small errors are obtained,
e.g., for Q ¼ 0.25; 0.5; 1 GeV, the uncertainties for
F π0γ�γ�ð−Q2; 0Þ are 0.24%, 0.9%, 3.8% [76]. Note that to
these uncertainties an error of about 1.4% for the normali-
zation at Q2 ¼ 0 has to be added in quadrature. The
normalization error might go down further soon, thanks to
PrimEx-II [64]. The dispersion relation predicts the slope
with 2% precision: bπ0 ½DR� ¼ ð1.69� 0.03Þ GeV−2. This
agrees quitewellwith thenaiveVMDestimate, but thismight
be a coincidence; see the discussion in Ref. [44].
Based on the current experimental situation and the

progress expected in the next few years, we obtain the
momentum-dependent errors δ1;π0ðQÞ in different bins as
shown inTableVI inSec.VI.Currently, no experimental data
on the pion TFF are available below the pointQ ¼ 0.7 GeV
from CELLO [66], except for the normalization from
Γðπ0 → γγÞ and estimates of the slope. BESIII [74] should
publish their results down to0.5GeVsoon, andKLOE-2 [58]
might also perform measurements for 0.1 ≤ Q ≤ 0.3 GeV.
For the lowest bin, 0 ≤ Q < 0.5 GeV, we therefore assume
an error, based on “extrapolating” the current data sets and
the data that will be available in a few years. In the bin
0.5–1 GeV, mostly the data from CELLO and future BESIII
data lead to the assumed precision, while in the region
1–2 GeV these are data from CLEO [67] and future BESIII
data. Finally, for 2–3 GeV, the data from BABAR [68] are the
most precise. If one uses the dispersion relation from
Ref. [44] below 1 GeV and the current error on the
normalization from the decay width, one obtains (conserva-
tively) the uncertainties in the lowest two bins given in
brackets in Table VI.
The second ingredient in Eqs. (11) and (12) is the

double-virtual form factor F π0γ�γ� ð−Q2
1;−Q2

2Þ. Currently,
there are no direct experimental measurements available for
this form factor at spacelike momenta. From the double
Dalitz decay π0 → γ�γ� → eþe−eþe−, one can obtain the
double-virtual form factor jF π0γ�γ�ðq21; q22Þj at small invari-
ant momenta in the timelike region [77], but the results are

inconclusive, even translating into a negative value for the
slope of the form factor bπ0 ¼ ð−2.2� 2.2Þ GeV−2 (with
100% uncertainty). There might again be some issues with
potentially large radiative corrections with respect to the
extraction of the form factor and its slope from the data; see
Refs. [62,78].
From processes in the timelike region like

ω→π0γ�→π0lþl−ðl¼e;μÞ, ϕ → π0γ� → π0lþl−, and
eþe− → γ� → ωπ0, there is information available for
jF π0γ�γ� ðm2

V; q
2Þj, i.e., along certain lines in the two-

dimensional plane ðq21; q22Þ [33]. Again, it is not so straight-
forward to use this information measured far in the timelike
region to obtain the form factor with spacelike momenta.
There is also indirect information available on the

double-virtual form factor F π0γ�γ� ðq21; q22Þ from the loop-
induced decay π0 → eþe− [4,79]. Without a form factor at
the π0 − γ� − γ� vertex, the loop integral in this decay is
ultraviolet divergent. One therefore obtains short-distance
constraints on the form factor F π0γ�γ� ð−Q2

1;−Q2
2Þ in the

spacelike region; see Ref. [54]. The connection between the
pion (pseudoscalar) decay into a lepton pair and the pion
(pseudoscalar) pole contribution to HLbL was already
pointed out in Refs. [21,51]. It was later taken up in
Ref. [80], and problems to explain both processes simulta-
neously with the same model have been stressed. Again,
there are potential issues with radiative corrections to
extract the decay rate π0 → eþe− from the measured data;
see Ref. [81].
The decay π0 → γγ and the double-virtual form factor

F π0γ�γ�ð−Q2
1;−Q2

2Þ have also been studied in lattice QCD
[82,83] for spacelike and timelike momenta. While at low
momenta a description of the form factor by the VMD
model seems to work, at higher spacelike momenta, i.e.,
above 0.5–1 GeV, deviations are seen, in particular the
impact of excited states in the vector channel. For the pion
decay width, the result Γðπ0 → γγÞ ¼ 7.83ð31Þð49Þ eV has
been quoted in the most recent paper in Ref. [83], rather
close to the experimental result from the PDG and PrimEx,
but the precision of 7.4% is not yet competitive with the
experimental uncertainty. The result is the extrapolation to
the physical pion mass; however, only one lattice spacing
has been used. The double-virtual form factor with off-shell
momenta has only been studied in Refs. [82,83] for
unphysical pion masses (Mπ ≥ 300 MeV), which lead to
vector-meson masses of 1 GeV or more. Therefore, more
studies are needed for firm conclusions about the appli-
cability and generalization of VMD.
Because of the lack of direct experimental measurements

of the double-virtual form factor F π0γ�γ� ð−Q2
1;−Q2

2Þ, mod-
els have been used to describe the form factor in the

spacelike region, and thus all current evaluations of aHLbL;π
0

μ

are model dependent. Often the assumption is made
that the form factor factorizes F π0γ�γ� ð−Q2

1;−Q2
2Þ ¼

fðQ2
1Þ × fðQ2

2Þ, like in the popular VMD model, but, as
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already mentioned, this factorization is not expected in
QCD. With this assumption, the double-virtual form factor
is then completely determined by the single-virtual form
factor where a lot of experimental information is available,
although not yet in the low-momentum region
Q ≤ 0.7 GeV, which is very important for the pion-pole
contribution, as we have seen before. Nevertheless, at least
for low momenta, the assumption of factorization might
work well numerically. For instance, the LMDþ V model,
which does not factorize, and the VMD model differ for
Q1 ¼ Q2 ¼ 0.5 GeV by only 3%.
Of course, it would be preferable to replace these model

assumptions as much as possible with experimental data. In
fact, it is planned to determine the double-virtual form
factor at BESIII for momenta 0.5 ≤ Q1;2 ≤ 1.5 GeV, and a
first analysis is already in progress [42] based on existing
data. More data will be collected in the coming years.
Maybe at very low momenta, Q1;2 ≤ 0.5 GeV, KLOE-2
could also measure this double-virtual form factor, and
Belle 2 could perhaps measure it at higher momenta,
Q1;2 ≥ 1 GeV. It would be highly welcome if some
simulations and data analysis would be performed.
The dispersion relation derived in Ref. [44] allows one to

determine the double-virtual form factor, but has not yet
been evaluated. This might allow one to check the
factorization property, although at momenta approaching
1 GeV, where the LMDþ V and the VMD model differ
already by 23%, it remains to be seen whether the
dispersive approach will give reliable results. If factoriza-
tion works below 1 GeV, the precision of the dispersive
approach for the form factor could be 2 × 4% ¼ 8% (or
better); see Table VI.
In view of the current absence of direct experimental

information on the double-virtual form factor
F π0γ�γ�ð−Q2

1;−Q2
2Þ, we use as an estimate of the meas-

urement errors δ2;π0ðQ1; Q2Þ the results of a Monte Carlo
simulation [42] for the BESIII detector using the LMDþ V
model in the EKHARA event generator [84] for the signal
process eþe− → eþe−γ�γ� → eþe−π0. The results for
δ2;π0ðQ1; Q2Þ in different momentum bins are shown in
Fig. 6 in Sec. VI.
Since the number of MC events Ni in bin number i is

proportional to the cross section σi (in that bin), and since
for the calculation of the cross section the form factor enters
squared, the statistical error on the form-factor measure-
ment is given according to Poisson statistics by

σi ∼ F 2
π0γ�γ� ⇒

δF π0γ�γ�

F π0γ�γ�
¼

ffiffiffiffiffi
Ni

p
2Ni

: ð30Þ

To simplify the appearance of Fig. 6, we have rounded the
number of events from the Monte Carlo simulation to
integer values (similarly for the percentage errors) and
symmetrized the entries off the diagonal. In total, there are
605 events in the displayed momentum region.

In the lowest-momentum bin Q1;2 ≤ 0.5 GeV, there are
no events in the simulation, because of the acceptance of
the detector. When both Q2

1;2 are small, both photons are
almost real, and the scattered electrons and positrons
escape detection along the beam pipe. As a further
assumption, we have therefore taken the average of the
uncertainties in the three neighboring bins as an estimate
for the error in that lowest bin. This “extrapolation” from
the neighboring bins seems justified, since information
along the two axes is (or will soon be) available, and the
value at the origin is known quite precisely from the decay
width. Note that although the form factor for spacelike
(Euclidian) momenta is rather smooth in the two models
considered in this paper (and in other models as well), see
Fig. 7 in Appendix B, it is far from being a constant, and
some nontrivial extrapolation is needed. For instance, for
Q2 ¼ ð0.5 GeVÞ2 we get for both the LMDþ V and
the VMD model F π0γ�γ� ð−Q2; 0Þ=F π0γ�γ� ð0; 0Þ ¼ 0.7
and F π0γ�γ�ð−Q2;−Q2Þ=F π0γ�γ� ð0; 0Þ ¼ 0.5. Of course, a
direct experimental measurement in that lowest bin would
be helpful. In the meantime, the dispersive approach from
Ref. [44] will hopefully give reliable results at these low
momenta.
The Monte Carlo simulation [42] corresponds to a data

sample with an integrated luminosity of 2.9 fb−1, collected
at BESIII at an energy of

ffiffiffi
s

p ¼ 3.773 GeV. This is
approximately half of the data set collected at BESIII so
far. We should point out that the simulation only included
signal events without any decay of the π0 and assumed
100% detection efficiency and acceptance. There is a large
background from Bhabha events with additional radiated
photons, which has to be removed by cuts or more
sophisticated analysis techniques, like neural networks.
Based on a first preliminary analysis of the actual BESIII
data [42] with strong cuts to reduce the background, it
seems possible that the number of events and the corre-
sponding precision for F π0γ�γ�ð−Q2

1;−Q2
2Þ shown in Fig. 6

could be achievable with the current data set plus a few
more years of data taking at BESIII.
On the other hand, once experimental data becomes

available, e.g., event rates in the different momentum bins,
there will still be the task of unfolding the data to
reconstruct the form factorF π0γ�γ� ð−Q2

1;−Q2
2Þ. This should

be done without introducing too much model dependence,
i.e., more sophisticated approaches are needed than what is
done for the single-virtual form factor where often a simple
VMD form factor is used as fitting function. As a first
approximation, one could maybe even use a constant form
factor in each momentum bin. In this sense the situation is
somewhat different from the hadronic vacuum polarization
contribution to the muon g − 2, where one only needs to
insert the hadronic cross section into the dispersion integral
with a known kernel function and can then use a simple
trapezoidal rule to perform the integral.
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B. η transition form factor

For the η meson, the following experimental information
is available about the single-virtual form factor
F ηγ�γ� ð−Q2; 0Þ. From the PDG average [4] for the decay
width Γðη → γγÞ ¼ ð0.516� 0.018Þ keV, one obtains a
1.7% precision on the form-factor normalization. The error
is driven by the recent measurement Γðη → γγÞ ¼
ð0.520� 0.024Þ keV by the KLOE-2 Collaboration [85],
which gives a 2.3% precision for the form factor at
vanishing momenta.
In contrast to the pion, the single Dalitz decay

η → lþl−γ, with l ¼ e, μ, now has enough phase space
so that the slope and the form factor can be measured in the
timelike region. The slope of the form factor at zero
momentum has been extracted with a precision of 9.1%
from measurements of the form factor by NA60 [86]8 and
by A2 [88]: bη½NA60;A2� ¼ ð1.95� 0.18Þ GeV−2. The
NA60 Collaboration measured the Dalitz decay η → μþμ−γ
approximately in the range 220 ≤ jqj ≤ 480 MeV, whereas
the A2 Collaboration measured the decay η → eþe−γ down
to very small momenta, 45 ≤ jqj ≤ 450 MeV. As in earlier
experiments, a VMD ansatz was fitted to the data, and from
this fit function the slope was calculated. In Ref. [89] it
was argued, based on an analysis using Padé approximants
for the form factor, that the modeling of the data with a
simple VMD ansatz and the extrapolation to zero might
induce an additional error on the slope of about 5% for
experimental determinations in the timelike region.
Combining various recent timelike and spacelike data,
Ref. [89] obtained a 2% determination of the slope:
bη½Padé� ¼ ð1.919� 0.037Þ GeV−2, improving on an ear-
lier 11% determination based on spacelike data in
Ref. [40]: bη½Padé; spacelike� ¼ ð2.00� 0.22Þ GeV−2.
The slope was also determined from measurements of

the form factor F ηγ�γ� ð−Q2; 0Þ in the spacelike region.
The CELLO Collaboration [66] measured in the region
0.5–1.8 GeV, and the slope was extracted with about 21%
precision (assuming, as for the pion, that the systematic
error is of the same size as the statistical error). However,
since a simple VMD ansatz was fitted to the data
above 0.5 GeV, there could be some large bias and
uncertainty from the extrapolation to zero momentum, as
already discussed in the context of determinations of the
slope of the form factor for the pion. In fact, the fitted
vector-meson mass Λη½CELLO� ¼ ð839� 63Þ MeV dif-
fers quite substantially from the value Λη½NA60;A2� ¼
ð716� 33Þ MeV obtained by NA60 and A2. Shortly
before CELLO, the form factor in the spacelike region
has also been measured by the TPC/2γ Collaboration [90]
in the region 0.3–2.6 GeV. The fitted vector-meson mass

Λη½TPC=2γ� ¼ ð700� 80Þ MeV is rather close to the value
extracted in the timelike region. The TPC=2γ Collaboration
did not evaluate the slope; their measurement would
translate into a precision of 23% for the slope. The fit
by the CLEO Collaboration [67] of their form-factor data in
the spacelike region from 1.2 to 4.5 GeV with a VMD
model yielded an even better determination of the vector-
meson mass ΛηðCLEOÞ ¼ ð774� 29Þ MeV. This would
formally translate into an 8% determination of the slope,
but the extrapolation to zero seems even more questionable
than for CELLO, and therefore CLEO did not quote a value
for the slope. The value of Λη by CLEO differs by 2
standard deviations from the results by NA60 and A2.
There is, however, no reason why the fitted values of Λη for
large spacelike and small timelike momenta should be the
same. Note that we used the value of Λη from the CLEO fit
to fix the vector-meson mass in our VMD model to obtain
the result in Eq. (24).
The form factor F ηγ�γ� ð−Q2; 0Þ has been measured

in the spacelike region for the first time by the
TPC=2γ Collaboration [90] for 0.3 ≤ Q ≤ 2.6 GeV
ð0.1 ≤ Q2 ≤ 7 GeV2Þ. Since the data points are not tabu-
lated, the measurement precision is difficult to estimate
from the logarithmic plot in their paper. The CELLO [66]
Collaboration measured the form factor for 0.5 ≤ Q ≤
1.8 GeV ð0.3 ≤ Q2 ≤ 3.4 GeV2Þ. The precision for
0.5 ≤ Q ≤ 0.9 GeV is 14% and for 0.9 ≤ Q ≤ 1.1 GeV
about 19%. In the two bins above 1.1 GeV, the precision is
23% and 18%, respectively. The CLEO Collaboration [67]
measured the form factor in the range 1.2 ≤ Q ≤ 4.5 GeV
ð1.5 ≤ Q2 ≤ 20 GeV2Þ. For 1.2–1.6 GeV the best precision
in some decay channels is about 8%–9%, between 1.6 and
2 GeV about 8%–10%, and above 2 GeV about 10%–14%
(or even more than 20% in the highest bin in some decay
channels). More recently, BABAR [91] measured the form
at higher momenta, 2≤Q≤6.3GeV ð4 ≤ Q2 ≤ 40 GeV2Þ.
Between 2 and 3 GeV the precision is about 4%–5%. There
is also one earlier measurement by BABAR at very large
timelike momenta q2 ¼ 112 GeV2 [92], which is compat-
ible with the results for large spacelike momenta.
It is difficult to extract the precision of themeasurement of

the transition form factor jF ηγ�γ�ðq2; 0Þj in the timelike
region by the NA60 Collaboration from the logarithmic plot
in Ref. [86]. The precision of the form-factor measurements
by the A2 Collaboration [88] between 45 and 150 MeV is
about 1.5%–2%, between 150 and 300 MeVabout 2%–5%,
between 300 and 400 MeV about 5%–11%, and above
400MeVaround15%–28%. In the region 220–400MeV, the
precision of NA60 is about the same as A2, while above
400MeV, the precision ofNA60 seems a bit better. As for the
pion, one then needs to properly map the values measured in
the timelike into the spacelike region via an analytical
continuation, without introducing new model dependence.
In Ref. [45], a dispersion relation was proposed and

evaluated for the single-virtual TFFF ηγ�γ� ðq2; 0Þ. It yields a

8In the conference proceedings [87] by the NA60 Collabora-
tion a further analysis even claimed a precision of 3.7% for the
slope.
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rather precise prediction for the form factor and agrees well
with the most precise measurements by NA60 [86,87] and
A2 [88] up to 0.25 GeV2 in the timelike region. A
prediction for the slope with a precision of 11% was given
in Ref. [45], but it was later pointed out in Ref. [46] that
there are effects of the a2-tensor meson in the left-hand cut
of the form factor, which shift the slope down by about
7%. A recent reanalysis [47] then leads to the result
bη½DR� ¼ 1.9þ0.2

−0.1 GeV−2, i.e. with about 11% precision,
neglecting the tiny effects −0.04 GeV−2 from the isoscalar
contribution. This value is compatible with the experimen-
tal results by NA60 and A2 and with the recent analysis
using Padé approximants [40,89], but bigger than older
theoretical estimates [93], using ChPT (one-loop with
resonance saturation for the low-energy constants),
VMD, quark-loop models, and the Brodsky-Lepage inter-
polation formula for the TFF.
From these observations, we deduce the values for the

measurement errors δ1;ηðQÞ for the single-virtual TFF
F ηγ�γ� ð−Q2; 0Þ shown in Table VI. We assume an error
in the lowest bin, 0 ≤ Q ≤ 0.5 GeV, as done already for the
pion. There is one data point available from a measurement
by the TPC=2γ Collaboration [90], with a bin starting at
0.3 GeV, but it is difficult to estimate the uncertainty. We
hope that the information on the normalization, the slope at
zero, and the data in the timelike region can be used to
obtain some reliable estimate in that low-momentum
region. In the bin 0.5 ≤ Q ≤ 1 GeV, data are available
from TPC=2γ and from CELLO [66], but they are not very
precise. It would be very helpful if BESIII could measure
the η-TFF in that region in the near future. In the bin
1–2 GeV, data are available from CLEO [67] with about the
given precision, and for 2–3 GeV the data by BABAR [91]
are the most precise.
Concerning the double-virtual form factor

F ηγ�γ� ð−Q2
1;−Q2

2Þ, there are no measurements in the
spacelike region yet. The branching ratio of the double
Dalitz decay η → eþe−eþe− has been measured [94], but
no attempt was made to extract the TFF in the timelike
region. Again, there are some indirect constraints from the
loop-induced decay η → μþμ− [4,80]; see also the recent
analysis in Ref. [95]. The dispersive approach was recently
extended to the double-virtual TFF F ηγ�γ� ðq21; q22Þ in
Ref. [47]. Because of limited input data for the DR, it
could not be evaluated for general momenta. It was
shown, however, that for q21 ≪ 1 GeV2 and 1 GeV2 ≤
q22 ≤ ð4.5 GeVÞ2 the form factor is compatible with the
factorization ansatz, if the effects of the a2 meson are taken
into account.
We therefore use again the results of the MC simulation

[42] for BESIII, but now with the VMD model in
EKHARA [84], and display the corresponding estimates
for the errors δ2;ηðQ1; Q2Þ in Fig. 6. For this simulation,
there are in total 345 events in the given momentum
region.

C. η0 transition form factor

For the η0 meson, one has the following experimental
information about the single-virtual TFF F η0γ�γ� ð−Q2; 0Þ.
The PDG average [4] Γðη0 → γγÞ ¼ ð4.28� 0.19Þ keV
leads to a 2.2% determination on the form-factor
normalization at zero momentum. As for π0 and η, the
uncertainty is driven mostly by one experiment, this time
by the L3 Collaboration [96]. Their value Γðη0 → γγÞ ¼
ð4.17� 0.29Þ keV leads to a 3.5% precision for the form
factor.
As for the η meson, now the single Dalitz decay

η0 → lþl−γ, l ¼ e, μ has enough phase space so that
the slope and the form factor can be measured. The slope of
the form factor has been determined very recently with a
precision of 11.7% from a measurement of the form factor
jF η0γ�γ� ðq2; 0Þj in the timelike region by the BESIII
Collaboration [97]: bη0 ½BESIII� ¼ ð1.60� 0.19Þ GeV−2.
The Dalitz decay η0 → eþe−γ was measured in the momen-
tum range 0 ≤ jqj ≤ 0.8 GeV. If one uses a simple VMD
ansatz as in Eq. (B12), a pole appears in that momentum
region at the vector-meson mass. Therefore, a Breit-Wigner
ansatz with a pole mass Λ and a width γ has to be fitted (or a
sum of such terms with several vector mesons like ρ, ω, ϕ;
see also Ref. [34]). The BESIII data were fitted with a
single vector meson, and from this fit function the vector-
meson mass Λη0 ½BESIII� ¼ ð790� 40Þ MeV and the cor-
responding slope were calculated. Using instead for the
bins below 0.5 GeV—i.e. below the ρ pole—a VMD ansatz
without a width parameter leads to a value for the vector-
meson mass and a slope which is consistent with the first
method. Previously, the slope had only been determined
from a measurement of the form factor jF η0γ�γ� ðq2; 0Þj of
the decay η0 → μþμ−γ by the Lepton-G Collaboration [98]
in the timelike region 0.2 ≤ jqj ≤ 0.9 GeV with a precision
of about 24% as quoted in Ref. [34], corresponding
to Λη0 ½Lepton-G� ¼ ð770� 90Þ MeV.
Again, there are also determinations of the slope by

measurements of the form factor F η0γ�γ� ð−Q2; 0Þ in the
spacelike region. The form factor was measured by the L3
Collaboration [96] in the region 0.1 ≤ Q ≤ 3.2 GeV.
The data were fitted with a VMD ansatz with
Λη0 ½L3� ¼ ð900� 51Þ MeV, which differs significantly
from the value obtained by BESIII. The L3
Collaboration did not translate their result into a determi-
nation of the slope, which would give a 11.3% precision.
Although there are three data points by L3 at rather low-
momentum values (two of them below 0.5 GeV), there are
also two data points with large momenta above 1 GeV,
which might distort the fit and the result for Λη0. The
CELLO Collaboration [66] has measured the form factor in
the spacelike region 0.5–4.5 GeV, and a VMD fit yielded
Λη0 ½CELLO� ¼ ð794� 44Þ MeV, which is rather close to
the value obtained by BESIII. This gives a 15.7% deter-
mination of the slope (assuming, as for the pion, that the
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systematic error is of the same size as the statistical error).
Shortly before CELLO, the TPC=2γ Collaboration [90]
measured the form factor at slightly lower spacelike
momenta 0.3–2.6 GeV and obtained Λη0 ½TPC=2γ� ¼
ð850� 70Þ MeV, i.e. a bit higher than CELLO, but with
similar precision. The TPC=2γ Collaboration did not
evaluate the slope. As for the pion and the η, the VMD
fit of the data measured by the CLEO Collaboration [67] in
the spacelike region 1.2–5.5 GeV yields the most precise
determination of the vector-meson mass parameter
Λη0 ½CLEO� ¼ ð859� 28Þ MeV. This result deviates by
about 2 standard deviations from the values obtained by
BESIII in the timelike region and by CELLO in the
spacelike region. Again, because of the large extrapolation
to zero momentum, CLEO did not quote a result for the
slope. Formally, their result would be a determination of the
slope with 6.6% precision. Note that we used the value of
Λη0 from the CLEO fit to fix the vector-meson mass in our
VMD model to obtain the result in Eq. (25).
The form factor F η0γ�γ� ð−Q2; 0Þ has been measured

in the spacelike region for the first time by the
PLUTO Collaboration [99] for 0.4 ≤ Q ≤ 1.0 GeV
ð0.2 ≤ Q2 ≤ 1 GeV2Þ. For the lowest bin, 0.4–0.6 GeV,
the precision was about 20%; for the two higher bins it was
only about 40%. Then there was the measurement by the
TPC=2γ Collaboration [90] in the region 0.3≤Q≤2.6GeV
ð0.1 ≤ Q2 ≤ 7 GeV2Þ. The measurement precision is
difficult to estimate from the logarithmic plot in their
paper. The CELLO [66] Collaboration measured the form
factor for 0.5 ≤ Q ≤ 4.5 GeV ð0.3 ≤ Q2 ≤ 20 GeV2Þ. The
precision for 0.5 ≤ Q ≤ 0.9 GeV is about 11% and
for 0.9 ≤ Q ≤ 1.1 GeV about 13%. In the two bins
1.1–1.8 GeV, the precision is 14% and 17%, respectively,
and above 1.8 GeV it is 30%. The CLEO Collaboration [67]
measured the form factor in the range 1.2 ≤ Q ≤ 4.5 GeV
ð1.5 ≤ Q2 ≤ 30 GeV2Þ. For 1.2–1.6 GeV the best precision
in some decay channels is about 7%, between 1.6–2 GeV
about 8%, and above 2 GeVabout 8%–12% (or much more
in some decay channels). The L3 Collaboration [96]
measured the form factor in the region 0.1≤Q≤3.2GeV
ð0.01 ≤ Q2 ≤ 10 GeV2Þ. There are three untagged
measurement points in the bins (0.1–0.4), (0.4–0.5),
(0.5–0.9) GeV with precisions of 5%, 8%, 11%. The
two bins with tagged events from 1.2–3.2 GeV have a
precision of about 15%. More recently, BABAR [91]
measured the form at higher momenta, 2≤Q≤6.3GeV
ð4 ≤ Q2 ≤ 40 GeV2Þ. Between 2 and 3 GeV, the precision
is about 4%. The measurement by BABAR at very large
timelike momenta q2 ¼ 112 GeV2 [92] is compatible with
the results for large spacelike momenta.
The precision of the measurement of the form factor

jF η0γ�γ� ðq2; 0Þj in the timelike region by BESIII [97] is
about 2.8% in the lowest bin, jqj ≤ 0.1 GeV. For
0.1–0.3 GeV it is about 7%, and for 0.3–0.5 GeV it is

11%. Just below the peak region 0.5–0.8 GeV, it is
about 14%. Since for the Lepton-G experiment [98] there
is only a logarithmic plot available in Ref. [34], it is not
really possible to give an estimate on the precision. Again,
one needs to perform an analytical continuation to
obtain the form factor F η0γ�γ� ð−Q2; 0Þ in the spacelike
region.
The dispersion relation for the single-virtual η-TFF

proposed in Ref. [45] can also be used for the η0 meson,
under the additional assumption that the slopes of the pion
spectra in η → ππγ and η0 → ππγ are identical. This then
yields bη0 ½DR� ¼ 1.53þ0.15

−0.08 GeV−2 with about 10% preci-
sion. As can be seen from the erratum of Ref. [45], the
assumption of an identical slope in the spectral shape is
compatible with the data, but it might not be fulfilled
completely. Furthermore, as pointed out in Ref. [46], there
could be the effect of the a2-tensor meson in the left-hand
cut of the form factor, which could be larger than for the
η-TFF. Therefore, this dispersive evaluation of the slope
needs to be scrutinized further when more precise data
become available in the future. The value for the slope itself
agrees well with the new result by BESIII [97]. A recent
determination of the slope using Padé approximants to
spacelike and timelike TFF data yields a somewhat smaller
central value: bη0 ½Padé� ¼ ð1.43� 0.04Þ GeV−2 [100],
with about 3% precision, improving considerably on
an earlier estimate that used only spacelike data:
bη0 ½Padé; spacelike� ¼ ð1.42� 0.18Þ GeV−2 [40]. Older
estimates based on ChPT, VMD and quark-loop models
give here similar results [93].
From all these experimental results, we obtain the values

for the measurement errors δ1;η0 ðQÞ for the single-virtual
TFF F η0γ�γ�ð−Q2; 0Þ shown in Table VI. For the η0-meson,
the experimental situation is a bit better than for π0 and η,
since there are in principle quite precise data available from
the L3 Collaboration [96] for 0.1 ≤ Q ≤ 0.5 GeV. Since
these measurements of the form factor are based on
untagged events, it would be good to have a cross check
by some other experiment with lepton tagging in the future,
like BESIII. In the bin 0.5 ≤ Q ≤ 1 GeV, there are mea-
surements with similar precision available from L3 and
CELLO [66]. Again, more precise data in this region from
BESIII or Belle 2 would be very useful. In the bin 1–2 GeV
there are measurements with the given precision from
CLEO [67], and for 2–3 GeV the data of BABAR [91]
have the precision listed in Table VI.
There are no measurements of the double-virtual form

factorF η0γ�γ� ð−Q2
1;−Q2

2Þ, neither in the spacelike nor in the
timelike region. According to Ref. [4], there are not even
measurements of the corresponding branching ratios of
the double Dalitz decays η0 → lþl−lþl−, l ¼ e, μ.
Furthermore, there is only an upper bound on the branching
ratio of the loop-induced decay η0 → eþe− [4]; see also the
discussion in Ref. [95]. For the errors δ2;η0 ðQ1; Q2Þ, we use
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therefore again the results of the MC simulation [42] for
BESIII with the VMDmodel in EKHARA [84] and display
them in Fig. 6. There are 902 events in the given
momentum region.

VI. IMPACT OF FORM-FACTOR
UNCERTAINTIES ON aHLbL;P

μ

Based on the discussion in the previous section, we
summarize in Table VI the precision δ1;PðQÞ that is
currently reached, or should soon be available, for the
single-virtual TFF F Pγ�γ� ð−Q2; 0Þ for all three light
pseudoscalars. In Fig. 6 we show the estimated
precision δ2;PðQ1; Q2Þ for the double-virtual form factor
F Pγ�γ� ð−Q2

1;−Q2
2Þ based on the MC simulation for

BESIII [42].
Taking again the LMDþ V and VMD models for

illustration, the assumed momentum-dependent errors from
Table VI and Fig. 6 impact the precision for the pseudo-
scalar-pole contributions to HLbL as follows:

aHLbL;π
0

μ;LMDþV ¼ 62.9þ8.9
−8.2 × 10−11

�þ14.1%

−13.1%

�
; ð31Þ

aHLbL;π
0

μ;VMD ¼ 57.0þ7.8
−7.3 × 10−11

�þ13.7%

−12.7%

�
; ð32Þ

aHLbL;ημ;VMD ¼ 14.5þ3.4
−3.0 × 10−11

�þ23.4%

−20.8%

�
; ð33Þ

aHLbL;η
0

μ;VMD ¼ 12.5þ1.9
−1.7 × 10−11

�þ15.1%

−13.9%

�
: ð34Þ

While for the pion the absolute variations are different for
the two models, as are the central values [already given in
Eqs. (22)–(25)], the relative uncertainty, which is our main
interest in this paper, is around 14% for both models. This
will also be visible in the following more detailed analysis.
We therefore expect that using other form-factor models,
and, eventually, using experimental data for the single- and
double-virtual form factors, will not substantially change
the following observations and conclusions. Of course, a
more sophisticated error analysis will be needed, once
experimental informations on the double-virtual form
factor become available, also taking into account correla-
tions between data points in different bins.
More details have been collected in Table VII, which

contains the results from Eqs. (31)–(34) in the first line. The
impact of the uncertainties in different momentum regions,
below and above 0.5 GeV, is shown in lines 2–5 in the table
and potential further improvements in the last five lines.
Line 6 shows the impact of the use of the DR for the single-
virtual TFF F π0γ�γ� ð−Q2; 0Þ for the pion in the two bins
below 1 GeV, as indicated in Table VI. The lines 7 and 8

TABLE VI. Relative error δ1;PðQÞ on the form factor
F Pγ�γ� ð−Q2; 0Þ for P ¼ π0; η; η0 in different momentum regions.
The errors for δ1;π0ðQÞ and δ1;ηðQÞ below 0.5 GeV are based on
assumptions; see discussions in the text. The percentages in
parentheses for π0 give the uncertainties with a dispersion relation
for the transition form factor.

Region [GeV] δ1;π0ðQÞ δ1;ηðQÞ δ1;η0 ðQÞ
0 ≤ Q < 0.5 5% [2%] 10% 6%

0.5 ≤ Q < 1 7% [4%] 15% 11%
1 ≤ Q < 2 8% 8% 7%
2 ≤ Q 4% 4% 4%

FIG. 6. (a) Assumed relative error δ2;π0ðQ1; Q2Þ of the pion TFF F π0γ�γ� ð−Q2
1;−Q2

2Þ in different momentum bins. Note the unequal
bin sizes. In parentheses the number of MC events Ni in each bin is given according to the simulation with the LMDþ V model for
BESIII. In total, there are 605 events. For the lowest bin, Q1;2 ≤ 0.5 GeV, there are no events in the simulation due to the detector
acceptance. In that bin, we assume as error the average of the three neighboring bins. ForQ1;2 ≥ 2 GeV, we take a constant error of 15%.
(b) Assumed relative error δ2;PðQ1; Q2Þ of the form factor F Pγ�γ� ð−Q2

1;−Q2
2Þ for P ¼ η; η0 in different momentum bins according to the

MC simulations with the VMD form factor for η (top line) and η0 (bottom line). The error in the lowest bin is obtained by averaging the
neighboring bins. For Q1;2 ≥ 2 GeV, we assume a constant error of 25% for η and 15% for η0.
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show the effect of an improvement of δ1;ηðQÞ in the two bins
below 1 GeV from 10%, 15% to 8%, 10% and of δ1;η0 ðQÞ
from 6%, 11% to 5%, 8%. Such a precision is similar to what
has already been achieved in the region 1–2 GeV and could
for instance come from future measurements at BESIII. Line

number 9 shows the precision on aHLbL;π
0;η;η0

μ from an
improvement in the lowest bin of δ2ðQ1; Q2Þ from 8%,
9%, 5% to 5%, 7%, 4%; i.e., what is obtained in the MC
simulation for the second bin along the diagonal in Fig. 6.
Finally, line 10 shows what would happen if the second bins
along the two axis in δ2 had the same precision as well; i.e.,
all four bins below 0.75 GeV would have the same precision
as the second bin along the diagonal.
For the pion, the largest uncertainty of about 5% comes

from the lowest bin Q1;2 ≤ 0.5 GeV in the ðQ1; Q2Þ plane
for δ2 in Fig. 6 (fourth line in the table). Some improvement
could be achieved, if the error in that lowest bin and the
neighboring bins (Q1;2 ≤ 0.75 GeV) could be reduced, to a
total error of about 12%; see lines 9 and 10 in Table VII. The
second-largest uncertainty of 4.4% for the pion stems from
the lowest binQ < 0.5 GeV in δ1 (second line in the table).
Here the use of a dispersion relation for the single-virtual
form factor F π0γ�γ�ð−Q2; 0Þ for Q < 1 GeV (see values in
brackets in TableVI) could bring the total error of 14%down
to 11%; see the sixth line. As seen from the plots of the
weight functions and the relative contribution to the total
from different momentum regions in Fig. 5, for the pion
more precise data for the single- and double-virtual form
factor in the region below 0.5 GeV would be very important
to reduce the error for the pion-pole contribution to HLbL.
For the ηmeson, the largest uncertainties of 7% originate

from the region of δ2 above 0.5 GeV (fifth line) and from

the lowest bin in δ1 (second line). For the η0, the largest
uncertainty of 5% comes again from the region of δ2 above
0.5 GeV (fifth line). The second largest uncertainty of 4.5%
comes from the bins in δ1 above 0.5 GeV (third line). For η
and η0, the errors go down to 20% and 13% if the
uncertainty in the two lowest bins in δ1 can be reduced;
see lines 7 and 8 in Table VII. There is only a small
reduction of the uncertainty by 1 percentage point if the
errors in the lowest few bins of δ2 with Q1;2 ≤ 0.75 GeV
can be reduced further; see lines 9 and 10. This is not
unexpected, since for the η and η0 that very-low momentum
region is not as important as for the π0; see Fig. 5. Here,
more precise data on the single- and double-virtual form
factors in some intermediate region 0.5–1.5 GeV would
be very important to reduce the uncertainty of the η- and
η0-pole contributions to HLbL.
The size of the uncertainties can be understood approx-

imately as follows. If the errors were independent of the
momenta and small, so that it was sufficient to take only the
terms linear in δ1;P and δ2;P, one would expect the following
uncertainty for the pseudoscalar-pole contribution:

δaHLbL;Pμ ≈ ðδ1;P þ δ2;PÞaHLbL;Pμ : ð35Þ

While the situation is more complicated with the given
momentum-dependent errors, one can observe the follow-
ing for the impact of the uncertainties in the region
below 0.5 GeV. We only discuss the case of the pion with
the LMDþ V form factor. The analysis is similar for the
pion with the VMD form factor and for η and η0 with the
VMD form factor. For the LMDþ V model, the region
Q1;2 < 0.5 GeV yields 59% of the total result; see Table V.

TABLE VII. Impact of assumed measurement errors δ1;PðQÞ and δ2;PðQ1; Q2Þ in the form factors F Pγ�γ� ð−Q2; 0Þ
and F Pγ�γ� ð−Q2

1;−Q2
2Þ on the relative precision of the pseudoscalar-pole contributions (first line). Lines 2–5 show

the effects of uncertainties in different momentum regions below and above 0.5 GeV. Lines 6–10 show the impact of
potential improvements of some of the assumed errors.

δaHLbL;π
0

μ;LMDþV

aHLbL;π
0

μ;LMDþV

δaHLbL;π
0

μ;VMD

aHLbL;π
0

μ;VMD

δaHLbL;ημ;VMD

aHLbL;ημ;VMD

δaHLbL;η
0

μ;VMD

aHLbL;η
0

μ;VMD

Comment

þ14.1%
−13.1%

þ13.7%
−12.7%

þ23.4%
−20.8%

þ15.1%
−13.9% Given δ1, δ2

þ4.3%
−4.2%

þ4.4%
−4.3%

þ6.9%
−6.8%

þ3.4%
−3.3% Bin Q < 0.5 GeV in δ1 as given, rest: δ1;2 ¼ 0

þ1.1%
−1.0%

þ1.0%
−0.9%

þ4.4%
−4.3%

þ4.5%
−4.4% Bins Q ≥ 0.5 GeV in δ1 as given, rest: δ1;2 ¼ 0

þ4.5%
−4.4%

þ4.9%
−4.8%

þ4.0%
−4.0%

þ1.7%
−1.7% Bin Q1;2 < 0.5 GeV in δ2 as given, rest: δ1;2 ¼ 0

þ3.9%
−3.8%

þ3.2%
−3.1%

þ7.0%
−6.8%

þ5.1%
−5.0% Bins Q1;2 ≥ 0.5 GeV in δ2 as given, rest: δ1;2 ¼ 0

þ10.9%
−10.5%

þ10.6%
−10.1% � � � � � � Given δ1, δ2, lowest two bins in δ1;π0 : 2%, 4%

� � � � � � þ20.4%
−18.5% � � � Given δ1, δ2, lowest two bins in δ1;η: 8%, 10%

� � � � � � � � � þ13.4%
−12.5% Given δ1, δ2, lowest two bins in δ1;η0 : 5%, 8%

þ12.4%
−11.6%

þ11.8%
−11.0%

þ22.4%
−20.0%

þ14.8%
−13.6% π0; η; η0: given δ1, δ2, lowest bin δ2: 5%, 7%, 4%

þ12.0%
−11.2%

þ11.4%
−10.6%

þ21.9%
−19.6%

þ14.4%
−13.4% In addition, bins in δ2 close to lowest: 5%, 7%, 4%
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Therefore, the effect of the lowest bin of δ2;π0 in the
ðQ1; Q2Þ plane with an assumed uncertainty of 8%
(see Fig. 6) translates with δ1;π0 ¼ 0 in Eq. (35) to about

8% × 0.59 ≈ 4.7% error in aHLbL;π
0

μ . This agrees quite well
with the4.5% in line 4 ofTableVII. In doing so,weneglected,
however, in the numerically dominating contribution in
Eq. (11), which involves the weight function w1 and the
double-virtual form factor F π0γ�γ� ð−Q2

1;−ðQ1 þQ2Þ2Þ,
the momentum dependence in δ2;π0ðjQ1j; jQ1 þQ2jÞ with

jQ1 þQ2j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

1 þ 2Q1Q2τ þQ2
2

p
; see Eq. (28). This

momentum dependence in δ2;π0 leads to an upper cutoff of
0.5 GeVonQ1 and to a cutoff onQ2 which varies between 0
and 1 GeVas a function ofQ1 and τ. However, as can be seen
fromFig. 5, summing up all the binswithQ1 < 0.5 GeV and
Q2 < 1 GeV adds at most a few percent to the 59%.
On the other hand, looking at the impact of a nonzero

δ1;π0ðQÞ for Q < 0.5 GeV in line 2 in Table VII [with
δ2;π0 ¼ 0 in Eq. (35)], one has to take into account that in
Eq. (11) the single-virtual form factor F π0γ�γ�ð−Q2

2; 0Þ
enters. Therefore, the corresponding nonzero δ1;π0ðQ2Þ
restricts only the integration region Q2 < 0.5 GeV, while
Q1 runs up to infinity. This amounts to summing up the
individual bins in Fig. 5 in the direction of Q1 with
Q2 < 0.5 GeV—i.e., the lowest two bins in the Q2 direc-
tion. This summation yields about 85% of the total. With a
precision of 5% in δ1;π0 , this gives 85% × 0.05 ≈ 4.2%, to
be compared with 4.3% in Table VII.

VII. CONCLUSIONS

Recently, a dispersive approach to HLbL in the muon
g − 2 has been proposed in Refs. [31,32], which connects
the presumably numerically dominant contributions from
the light pseudoscalars ðP ¼ π0; η; η0Þ and the two-pion
intermediate states to, in principle, measurable quantities,
like the single- and double-virtual pseudoscalar transition
form factor F Pγ�γ� ð−Q2

1;−Q2
2Þ and the scattering of two

off-shell photons into two pions.
In this paper we studied in detail the pseudoscalar-pole

contribution to HLbL in this dispersive framework. The
three-dimensional integral representation for aHLbL;Pμ from
Ref. [2], shown in Eqs. (11) and (12), allows one to separate
the generic kinematics, described by model-independent
weight functions w1;2ðQ1; Q2; τÞ, from the double-virtual
transition form factors F Pγ�γ� ð−Q2

1;−Q2
2Þ, which can, in

principle, be measured. From the weight functions one can
already identify which are the most important momentum
regions in the pseudoscalar-pole contribution to HLbL.
However, the weight function w1 has a slowly decreasing
ridge, and the corresponding integral for HLbL diverges
without form factors. We therefore used two simple form-
factor models (LMDþ V, VMD) to evaluate aHLbL;Pμ . From
this we deduced that the relevant momentum region for π0

is below about 1 GeV, irrespective of which of the two

models is used. For η and η0, we only used a simple VMD
model and showed that the region below about 1.5 GeV
gives the bulk of the result. However, since the double-
virtual VMD form factor falls off too fast at high momenta
compared to the predictions of the OPE, it might be that the
momentum region 1.5–2.5 GeV is cut off too much. It
would therefore be very useful if experimental data on the
double-virtual form factor, e.g., from planned measure-
ments at BESIII, could reduce this model dependence.
If the assumed measurement errors δ1;PðQÞ in Table VI

and δ2;PðQ1; Q2Þ in Fig. 6 on the single- and double-virtual
TFF can be achieved in the coming years, one could
obtain the following, largely data driven, uncertainties
for the pseudoscalar-pole contributions to HLbL [see
Eqs. (31)–(34) and Table VII]:

δaHLbL;π
0

μ

aHLbL;π
0

μ

¼ 14% ½11%�; ð36Þ

δaHLbL;ημ

aHLbL;ημ

¼ 23%; ð37Þ

δaHLbL;η
0

μ

aHLbL;η
0

μ

¼ 15%: ð38Þ

These estimates of the relative precision for aHLbL;Pμ are the
main results of this paper. For the pion, both models,
LMDþ V and VMD, which are used in the MC simu-
lations for BESIII [42] to estimate δ2;π0ðQ1; Q2Þ and in the

evaluation of aHLbL;π
0

μ , yield a similar relative precision. We
therefore hope that these estimates do not depend too much
on the models, also for η and η0 where only the VMDmodel
has been used. The result in brackets for the pion in Eq. (36)
uses the DR [44] for the single-virtual TFF F π0γ�γ�ð−Q2; 0Þ
below 1 GeV. Compared to the range of estimates in the
literature in Eqs. (9) and (10), this would definitely be some
progress, as it would be largely based on experimental input
data only. More work is needed, however, to reach a
precision of 10% for all three contributions, which is
envisioned in the data-driven approach to HLbL [31,32].
We have shown in Table VII what would be the impact of
further potential improvements in the measurement pre-
cision of the single-virtual TFF below 1 GeV and the
double-virtual form factor below about 0.75 GeV.
One should keep in mind that the MC simulation from

which the estimates for δ2;P are derived, only considered the
signal process and no backgrounds. On the other hand,
since the simulation was based on about half of the data
already collected at BESIII, it seems not unreasonable that
the assumed precision could be reached with the full,
almost doubled, data set in a few years, when appropriate
cuts are imposed or more sophisticated analysis tools are
used [42]. It remains to be seen how the unfolding of event
rates can be done to reconstruct the form factors, without
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introducing too much model dependence. Once this is
achieved, a much more refined analysis can be performed,
combining all existing data for the single- and double-
virtual TFF, also taking into account correlations. One can
then also combine this with the dispersive framework for
the TFF themselves [44–47].
We hope that our analysis of the relevant momentum

regions in HLbL will be a useful guide for the experimental
collaborations to look in more detail at the various
processes where the single- and double-virtual form factors
can be measured. For instance, measurements of the
double-virtual form factors, e.g., by KLOE-2 for π0 in
the low-momentum region Q ≤ 0.5 GeV, where BESIII
cannot detect any events, or by Belle 2 for η, η0 for higher
momenta, 1–1.5 GeV, would be very helpful.
We close by noting that similar three-dimensional integral

representations with corresponding weight functions have
been derived for the scalar-exchange contribution to HLbL
in Ref. [36] and for all contributions to HLbL in
Refs. [31,101]. They can be analyzed along the same lines
as shown here for w1 and w2 for the pseudoscalars to identify
the relevant momentum regions in a model-independent
way. This in turn can then help to plan future measurement,
e.g., for γ�γ� → πþπ−; π0π0, which is needed as input for the
dispersive framework [31,32]. As was already pointed out in
the Introduction, the dispersive approach to HLbL is
currently only dealing with the pseudoscalar-pole

contributions and the pion-loop, and most of the required
experimental input has not been measured yet. One will see
how successful and how precise this approach will be in the
end. There also remains the question how off-shell effects of
the intermediate states can be controlled without introducing
again a large model dependence or how to perform a proper
matching with perturbative QCD at high momenta without
double-counting. Hopefully, a concerted effort of theory and
experiment can reduce and better control the uncertainty in
the HLbL contribution to the muon g − 2, so that one can
fully profit from the upcoming future experiments at
Fermilab and J-PARC [16].
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APPENDIX A: WEIGHT FUNCTIONS IN THE INTEGRAL REPRESENTATIONS FOR aHLbL;π0
μ

The kinematic functions in the two-loop integral for aHLbL;π
0

μ in Eqs. (7) and (8) have been evaluated in Ref. [21] and read
as follows:

~T1ðq1; q2;pÞ ¼ ð−64π6Þ
�
16

3
ðp · q1Þðp · q2Þðq1 · q2Þ −

16

3
ðp · q2Þ2q21 −

8

3
ðp · q1Þðq1 · q2Þq22 þ 8ðp · q2Þq21q22

−
16

3
ðp · q2Þðq1 · q2Þ2 þ

16

3
m2

μq21q
2
2 −

16

3
m2

μðq1 · q2Þ2
�
; ðA1Þ

~T2ðq1; q2;pÞ ¼ ð−64π6Þ
�
16

3
ðp · q1Þðp · q2Þðq1 · q2Þ −

16

3
ðp · q1Þ2q22 þ

8

3
ðp · q1Þðq1 · q2Þq22 þ

8

3
ðp · q1Þq21q22

þ 8

3
m2

μq21q
2
2 −

8

3
m2

μðq1 · q2Þ2
�
: ðA2Þ

Recall that the muon momentum is on shell: p2 ¼ m2
μ.

The model-independent weight functions from the three-dimensional integral representation for aHLbL;π
0

μ in Eqs. (11)
and (12) read [2]

w1ðQ1; Q2; τÞ ¼ −
2π

3

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p Q3
1Q

3
2

Q2
2 þm2

π
I1ðQ1; Q2; τÞ; ðA3Þ

w2ðQ1; Q2; τÞ ¼ −
2π

3

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p Q3
1Q

3
2

Q2
3 þm2

π
I2ðQ1; Q2; τÞ; ðA4Þ
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with

I1ðQ1; Q2; τÞ ¼ XðQ1; Q2; τÞ½8P1P2ðQ1 ·Q2Þ − 2P1P3ðQ4
2=m

2
μ − 2Q2

2Þ þ 4P2P3Q2
1 − 4P2

− 2P1ð2 −Q2
2=m

2
μ þ 2ðQ1 ·Q2Þ=m2

μÞ − 2P3ð4þQ2
1=m

2
μ − 2Q2

2=m
2
μÞ þ 2=m2

μ�
− 2P1P2ð1þ ð1 − Rm1ÞðQ1 ·Q2Þ=m2

μÞ þ P1P3ð2 − ð1 − Rm1ÞQ2
2=m

2
μÞ

þ P2P3ð2þ ð1 − Rm1Þ2ðQ1 ·Q2Þ=m2
μÞ þ P1ð1 − Rm1Þ=m2

μ þ 3P3ð1 − Rm1Þ=m2
μ ðA5Þ

and

I2ðQ1; Q2; τÞ ¼ XðQ1; Q2; τÞ½4P1P2ðQ1 ·Q2Þ þ 2P1P3Q2
2 − 2P1 þ 2P2P3Q2

1 − 2P2 − 4P3 − 4=m2
μ�

− 2P1P2 − 3P1ð1 − Rm2Þ=ð2m2
μÞ − 3P2ð1 − Rm1Þ=ð2m2

μÞ − P3ð2 − Rm1 − Rm2Þ=ð2m2
μÞ

þ P1P3ð2þ 3ð1 − Rm2ÞQ2
2=ð2m2

μÞ þ ð1 − Rm2Þ2ðQ1 ·Q2Þ=ð2m2
μÞÞ

þ P2P3ð2þ 3ð1 − Rm1ÞQ2
1=ð2m2

μÞ þ ð1 − Rm1Þ2ðQ1 ·Q2Þ=ð2m2
μÞÞ; ðA6Þ

where9

Q2
3 ¼ ðQ1 þQ2Þ2 ¼ Q2

1 þ 2Q1 ·Q2 þQ2
2; ðA7Þ

Q1 ·Q2 ¼ Q1Q2τ; ðA8Þ

τ ¼ cos θ; ðA9Þ

and we introduce the notation P1 ¼ 1=Q2
1; P2 ¼ 1=Q2

2; P3 ¼ 1=Q2
3 for the photon propagators. Furthermore,

XðQ1; Q2; τÞ ¼
1

Q1Q2x
arctan

�
zx

1 − zτ

�
; ðA10Þ

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p
; ðA11Þ

z ¼ Q1Q2

4m2
μ
ð1 − Rm1Þð1 − Rm2Þ; ðA12Þ

Rmi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

μ

Q2
i

s
; i ¼ 1; 2: ðA13Þ

Note that w2ðQ1; Q2; τÞ in Eq. (A4) and I2ðQ1; Q2; τÞ in Eq. (A6) are symmetric under Q1 ↔ Q2.
For small momenta, these weight functions have the following behavior:

lim
Q1→0

w1ðQ1; Q2; τÞ ¼
16π

3m2
μ

mμQ2x3 þ ðQ2
2 − 2m2

μÞx2AðQ2; τÞ
Q2

2 þm2
π

Q2
1 þOðQ3

1Þ; ðA14Þ

lim
Q2→0

w1ðQ1; Q2; τÞ ¼ −
32π

3m2
π
x2AðQ1; τÞQ2

2 þOðQ3
2Þ; ðA15Þ

lim
Q→0

w1ðQ;Q; τÞ ¼ −
16π

3m2
π
ð1 − τÞarccot

�
−1þ τ

x

�
Q2 þOðQ3Þ; ðA16Þ

9Except in Q1 ·Q2, we always use the notation Qi ≡ jðQiÞμj, i ¼ 1, 2, for the length of the Euclidean four-momenta.
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lim
Q1→0

w2ðQ1; Q2; τÞ ¼ −
4π

3m2
μ

Q2xð2mμ −Q2τð1 − Rm2ÞÞ þ 2ðQ2
2 þ 2m2

μx2ÞAðQ2; τÞ
Q2

2 þm2
π

Q2
1 þOðQ3

1Þ; ðA17Þ

lim
Q2→0

w2ðQ1; Q2; τÞ ¼ −
4π

3m2
μ

Q1xð2mμ −Q1τð1 − Rm1ÞÞ þ 2ðQ2
1 þ 2m2

μx2ÞAðQ1; τÞ
Q2

1 þm2
π

Q2
2 þOðQ3

2Þ; ðA18Þ

lim
Q→0

w2ðQ;Q; τÞ ¼ −
8π

3m2
π
ð1 − τÞarccot

�
−1þ τ

x

�
Q2 þOðQ3Þ; ðA19Þ

where we introduce the abbreviation

AðQi; τÞ ¼ arctan

�
Qixð1 − RmiÞ

Qiτð1 − RmiÞ þ 2mμ

�
; i ¼ 1; 2: ðA20Þ

One observes that not only do the weight functions w1;2ðQ1; Q2; τÞ vanish for small momenta, but also the slopes along
the two axes and along the diagonal Q1 ¼ Q2 ¼ Q are zero:

∂w1;2ðQ1; Q2; τÞ
∂Q1

����
Q1¼0

¼ ∂w1;2ðQ1; Q2; τÞ
∂Q2

����
Q2¼0

¼ ∂w1;2ðQ;Q; τÞ
∂Q

����
Q¼0

¼ 0: ðA21Þ

On the other hand, for large momenta we get

lim
Q1→∞

w1ðQ1; Q2; τÞ ¼
8π

3m2
μ

Q3
2ðQ2

2 − Rm2ðQ2
2 − 2m2

μÞÞx3
ðQ2

2 þm2
πÞ

1

Q1

þO
�

1

Q2
1

�
; ðA22Þ

lim
Q2→∞

w1ðQ1; Q2; τÞ ¼ −
8π

3m2
μ
Q2

1ð2m2
μ þQ2

1ð1 − Rm1ÞÞτx3
1

Q2
2

þO
�

1

Q3
2

�
; ðA23Þ

lim
Q→∞

w1ðQ;Q; τÞ ¼ 8πm2
μ

3
ð3 − τÞð1 − τÞx 1

Q2
þO

�
1

Q4

�
; ðA24Þ

lim
Q1→∞

w2ðQ1; Q2; τÞ ¼ −
8π

9m2
μ
Q3

2ðm2
μð3 − Rm2Þ þQ2

2ð1 − Rm2ÞÞx3
1

Q3
1

þO
�

1

Q4
1

�
; ðA25Þ

lim
Q2→∞

w2ðQ1; Q2; τÞ ¼ −
8π

9m2
μ
Q3

1ðm2
μð3 − Rm1Þ þQ2

1ð1 − Rm1ÞÞx3
1

Q3
2

þO
�

1

Q4
2

�
; ðA26Þ

lim
Q→∞

w2ðQ;Q; τÞ ¼ 4πm4
μ

9

ð2 − τÞð1 − τÞ3=2ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p 1

Q4
þO

�
1

Q6

�
: ðA27Þ

The slower falloff of w1ðQ1; Q2; τÞ for large Q1 in Eq. (A22), compared to the behavior for large Q2 in Eq. (A23), leads to
the ridge seen in Fig. 2 and, for a constant Wess-Zumino-Witten form factor, to the ln2Λ divergence for some momentum
cutoff Λ. Of course, the symmetric function w2ðQ1; Q2; τÞ cannot show such a behavior.
Finally, for τ → �1, the weight functions behave as follows:

lim
τ→1

w1ðQ1; Q2; τÞ ¼
16

ffiffiffi
2

p
π

3m2
μ

ð1 − Rm1ÞQ3
1Q

3
2

ðQ2
2 þm2

πÞðQ1 þQ2Þ2ð4m2
μ −Q1Q2ð1 − Rm1Þð1 − Rm2ÞÞ

× ½−4m2
μRm2 þ ðQ2ð1 − Rm2ÞðQ1ð1 − Rm1Þ − 2Q2ÞÞ�ð1 − τÞ3=2

þOðð1 − τÞ5=2Þ; ðA28Þ

lim
τ→1

w1ðQ;Q; τÞ ¼ −
8

ffiffiffi
2

p
π

3

Q2ð1 − RmÞ
Q2 þm2

π
ð1 − τÞ3=2 þOðð1 − τÞ5=2Þ; ðA29Þ
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lim
τ→−1

w1ðQ1; Q2; τÞ ¼
16

ffiffiffi
2

p
π

3m2
μ

ð1 − Rm1ÞQ3
1Q

3
2

ðQ2
2 þm2

πÞðQ1 −Q2Þ2ð4m2
μ þQ1Q2ð1 − Rm1Þð1 − Rm2ÞÞ

× ½−4m2
μRm2 − ðQ2ð1 − Rm2ÞðQ1ð1 − Rm1Þ þ 2Q2ÞÞ�ð1þ τÞ3=2

þOðð1þ τÞ5=2Þ; ðA30Þ

lim
τ→−1

w1ðQ;Q; τÞ ¼ 32
ffiffiffi
2

p
π

3m2
μ

Q2ð2m4
μ − 2m2

μQ2 −Q4ð1 − RmÞÞ
ðQ2 þm2

πÞð4m2
μ þQ2ð1 − RmÞÞ

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p þOðð1þ τÞ3=2Þ; ðA31Þ

lim
τ→1

w2ðQ1; Q2; τÞ ¼ −
16

ffiffiffi
2

p
π

9m2
μ

Q2
1Q

2
2

ððQ1 þQ2Þ2 þm2
πÞðQ1 þQ2Þ3

× ½Q3
1ð1 − Rm1Þ þQ3

2ð1 − Rm2Þ þm2
μðQ1ð3 − Rm1Þ þQ2ð3 − Rm2ÞÞ�ð1 − τÞ3=2

þOðð1 − τÞ5=2Þ; ðA32Þ

lim
τ→1

w2ðQ;Q; τÞ ¼ −
4

ffiffiffi
2

p
π

9m2
μ

Q2ðm2
μð3 − RmÞ þQ2ð1 − RmÞÞ

4Q2 þm2
π

ð1 − τÞ3=2 þOðð1 − τÞ5=2Þ; ðA33Þ

lim
τ→−1

w2ðQ1; Q2; τÞ ¼
16

ffiffiffi
2

p
π

9m2
μ

Q2
1Q

2
2

ððQ1 −Q2Þ2 þm2
πÞðQ1 −Q2Þ3

× ½Q3
1ð1 − Rm1Þ −Q3

2ð1 − Rm2Þ þm2
μðQ1ð3 − Rm1Þ −Q2ð3 − Rm2ÞÞ�ð1þ τÞ3=2

þOðð1þ τÞ5=2Þ; ðA34Þ

lim
τ→−1

w2ðQ;Q; τÞ ¼ 8
ffiffiffi
2

p
π

3m2
μm2

π

Q2ð4m4
μ þm2

μQ2ð5 − 3RmÞ þQ4ð1 − RmÞÞ
4m2

μ þQ2

ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p þOðð1þ τÞ3=2Þ; ðA35Þ

where

Rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

μ

Q2

s
: ðA36Þ

The weight functions w1;2ðQ1; Q2; τÞ vanish for τ → �1.
However, forQ1 ¼ Q2 ¼ Q and τ → −1, when the original
four-vectors ðQ1Þμ and ðQ2Þμ become more and more
antiparallel, the approach to zero is much steeper, even with
infinite slope; compare Eqs. (A31) and (A35) to the other
equations, and see also Fig. 3.

APPENDIX B: FORM-FACTOR MODELS

For illustration, we present in this appendix briefly the
definitions of the two form-factor models used in the main
text. Many more details and all the derivations can be found
in Refs. [11,21,52]. We use these form-factor models only
for illustration, since we are interested in the impact of
current and future experimental form-factor uncertainties
on the pseudoscalar-pole contribution to HLbL in the muon
g − 2. Those uncertainties have been parametrized by the
functions δ1;PðQÞ and δ2;PðQ1; Q2Þ introduced in Eqs. (27)

and (28). Therefore, we list in the following only the central
values of the model parameters and not their uncertainties,
which are related to their extraction from experimental data
or by imposing theoretical constraints and assumptions.
We first discuss the pion. The form factor is normalized

to the decay width Γðπ0 → γγÞ ¼ 7.63 eV [4], which is
quite well reproduced by the chiral anomaly (constant
Wess-Zumino-Witten form factor)

F π0γ�γ� ð0; 0Þ ¼ FWZW
π0γ�γ� ðq21; q22Þ≡ −

Nc

12π2Fπ
; ðB1Þ

if one sets Nc ¼ 3 and uses the pion decay constant Fπ ¼
92.4 MeV obtained from the weak decay of the charged
pion.

1. LMDþ V model

The LMDþ V model for the pion-photon form factor
F π0γ�γ�ðq21; q22Þ is rooted in the minimal hadronic approxi-
mation (MHA) [53] to Green’s functions in large-Nc QCD.
One starts with an ansatz for the three-point function
hVVPi, and thus the form factor F π0γ�γ� ðq21; q22Þ in the
chiral limit with one multiplet of the lightest pseudoscalars
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(Goldstone bosons) and two multiplets of vector resonan-
ces ρ and ρ0: lowest meson dominance ðLMDÞ þ V. The
functions hVVPi and F π0γ�γ� ðq21; q22Þ fulfill all leading and
some subleading QCD short-distance constraints from the
operator product expansion (OPE) [55].10

In particular, in the chiral limit, one obtains from the
OPE a condition for the form factor when both momenta
are equal and large in the Euclidean [56,57]

lim
Q2→∞

F π0γ�γ�ð−Q2;−Q2Þ ¼−
2Fπ

3

�
1

Q2
−
8

9

δ2

Q4
þO

�
1

Q6

�	
;

ðB2Þ

where OðαsÞ corrections are neglected and the quantity
δ2 ¼ ð0.2� 0.02Þ GeV2 parametrizes the higher-twist
matrix element in the OPE in the chiral limit. It was
determined in Ref. [57] using QCD sum rules.
Furthermore, one demands that the form factor repro-

duces the Brodsky-Lepage (BL) [72] behavior for the
single-virtual pion-photon transition form factor

lim
Q2→∞

F π0γ�γ� ð−Q2; 0Þ ¼ −
2Fπ

Q2
þO

�
1

Q4

�
: ðB3Þ

The LMDþ V form factor then reads [11,21,52]

FLMDþV
π0γ�γ� ðq21; q22Þ ¼

Fπ

3

q21q
2
2ðq21 þ q22Þ þ h1ðq21 þ q22Þ2 þ h̄2q21q

2
2 þ h̄5ðq21 þ q22Þ þ h̄7

ðq21 −M2
V1
Þðq21 −M2

V2
Þðq22 −M2

V1
Þðq22 −M2

V2
Þ ; ðB4Þ

where we use for the vector-meson masses that appear in
Eq. (B4) the values from Refs. [11,21,52]:

MV1
¼ Mρ ¼ 775.49 MeV; ðB5Þ

MV2
¼ Mρ0 ¼ 1.465 GeV: ðB6Þ

On the other hand, the constants hi, h̄i are the free
parameters of the LMDþ V model and have been deter-
mined in Refs. [11,21,22,52] by several experimental and
theoretical constraints:

h1 ¼ 0 ½to reproduce the BL behavior ðB3Þ�; ðB7Þ

h̄2 ¼ −4ðM2
V1

þM2
V2
Þ þ ð16=9Þδ2 ¼ −10.63 GeV2

ðfollowingRef: ½22�Þ; ðB8Þ

h̄5 ¼ ð6.93� 0.26Þ GeV4

ðfrom fit to CLEOdata ½67� in Ref: ½52�Þ; ðB9Þ

h̄7 ¼ −
NcM4

V1
M4

V2

4π2F2
π

¼ −14.83 GeV6

ðfrom the chiral anomalyÞ: ðB10Þ

The OPE condition when all momenta in hVVPi are
large and all the currents approach one point uniquely
fixes the first term in the numerator in Eq. (B4). This also
shows that the form factor cannot factorize in QCD:
F π0γ�γ�ðq21; q22Þ ≠ fðq21Þ × fðq22Þ. Note that the OPE (B2)
and BL (B3) conditions cannot be simultaneously satisfied

with only one vector-meson multiplet (LMD form factor);
see Ref. [52].
We note that unless δ2 would be much different from the

estimate given below Eq. (B2), the size and in particular the
negative sign of h̄2 are determined almost completely by
the first term in Eq. (B8) involving the masses MV1

and
MV2

. This leads to tensions to reproduce the decay rate
π0 → eþe−; see Refs. [21,80].
For completeness, the result for the single-virtual pion-

photon transition form factor is given by

FLMDþV
π0γ�γ� ð−Q2; 0Þ ¼ Fπ

3M2
V1
M2

V2

h1Q4 − h̄5Q2 þ h̄7
ðQ2 þM2

V1
ÞðQ2 þM2

V2
Þ :

ðB11Þ

2. VMD model

The well-known VMD form factor is given by

FVMD
π0γ�γ�ðq21;q22Þ¼−

Nc

12π2Fπ

M4
V

ðq21−M2
VÞðq22−M2

VÞ
: ðB12Þ

Here the two free model parameters are Fπ (normalization
of the form factor) and the vector-meson mass MVð¼MρÞ.
Note that the VMD model factorizes FVMD

π0γ�γ� ðq21; q22Þ ¼
fðq21Þ × fðq22Þ. This might be a too-simplifying assumption
and also contradicts the OPE in QCD. Furthermore, the
VMD model has a wrong short-distance behavior:

FVMD
π0γ�γ� ð−Q2;−Q2Þ ∼ 1

Q4
; for largeQ2; ðB13Þ

i.e., it falls off too fast compared to the OPE prediction
in Eq. (B2).

10Recently, the ansatz for hVVPi was generalized to two-
multiplets of pseudoscalars π; π0 and two-multiplets of vector
mesons ρ; ρ0 in Ref. [102].
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The single-virtual pion-photon transition form factor is
given by

FVMD
π0γ�γ� ð−Q2; 0Þ ¼ −

Nc

12π2Fπ

M2
V

Q2 þM2
V
: ðB14Þ

3. Comparison of the two form-factor models

In order to compare the two form-factor models, we
introduce the abbreviation

ΔF ðQ2
1; Q

2
2Þ ¼ FLMDþV

π0γ�γ� ð−Q2
1;−Q2

2Þ
− FVMD

π0γ�γ�ð−Q2
1;−Q2

2Þ: ðB15Þ

In Fig. 7, we plot the LMDþ V form factor normalized to
F π0γ�γ�ð0; 0Þ as a function ofQ1 andQ2 for the given model

parameters in the region Q1;2 ≤ 2 GeV, which is the most
relevant for the pion-pole contribution to the muon g − 2.
As expected, one sees a damping for large momenta. We
also plot the difference between the LMDþ V and the
VMD form factors, expressed through ΔF ðQ2

1; Q
2
2Þ, rela-

tive to the LMDþ V model. In Table VIII we give, for a
selection of values of Q1 and Q2, the values for the
normalized form factors for the two models and their
comparison.
Note that the form factors in both models reproduce

equally well the CLEO data [67] for the single-virtual pion-
photon transition form factor, once one puts h1 ¼ 0 in the
LMDþ V model and fits the constant h̄5 [52]. See Ref. [58]
for recent fits to more experimental data. Therefore,

FLMDþV
π0γ�γ� ð−Q2; 0Þ ≈ FVMD

π0γ�γ� ð−Q2; 0Þ: ðB16Þ

TABLE VIII. Values of the normalized form factors in the LMDþ V and VMD models and their absolute and
relative difference for some selected momenta.

Q1 [GeV] Q2 [GeV]
FLMDþV

π0γ�γ� ð−Q2
1
;−Q2

2
Þ

F π0γ�γ� ð0;0Þ
FVMD

π0γ�γ� ð−Q
2
1
;−Q2

2
Þ

F
π0γ�γ� ð0;0Þ

ΔF ðQ2
1
;Q2

2
Þ

F π0γ�γ� ð0;0Þ
ΔF ðQ2

1
;Q2

2
Þ

FLMDþV

π0γ�γ� ð−Q2
1
;−Q2

2
Þ

0.25 0 0.906 0.906 0.00008 0.00009
0.5 0 0.707 0.706 0.0002 0.0003
0.75 0 0.517 0.517 0.0003 0.0006
1 0 0.376 0.376 0.0004 0.001
1.5 0 0.211 0.211 0.0003 0.002
2 0 0.131 0.131 0.0003 0.002
0.25 0.25 0.822 0.821 0.002 0.002
0.5 0.5 0.513 0.499 0.014 0.027
0.75 0.75 0.298 0.267 0.031 0.10
1 1 0.183 0.141 0.042 0.23
1.5 1.5 0.088 0.044 0.043 0.49
2 2 0.052 0.017 0.035 0.67
0.5 0.25 0.645 0.640 0.005 0.007
0.75 0.25 0.475 0.468 0.007 0.015
1 0.25 0.349 0.340 0.008 0.024

FIG. 7. (a) Normalized LMDþ V form factor as a function ofQ1 andQ2. Note the linear scale inQ1;2. (b) Relative difference between
the LMDþ V and VMD form factors.
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Since the double-virtual LMDþ V and VMD form
factors F π0γ�γ� ð−Q2

1;−Q2
2Þ differ for Q1¼Q2¼1½1.5�GeV

by 23% [49%], it might be possible to distinguish the two
models experimentally at BESIII [42], if the binning is
chosen properly; see also Fig. 6 concerning the expected
(statistical) measurement precision of the double-virtual
form factor. For lower values of Q1;2, which are more
relevant for the pion-pole contribution to the muon g − 2, it
might not be possible to really distinguish the two models
with the currently envisioned data set at BESIII. For
instance, for Q1 ¼ Q2 ¼ 0.5 GeV, the two models differ
only by about 3%.

4. Form factors for η and η0

The short-distance analysis in Ref. [52] for the QCD
three-point function hVVPi and the corresponding transition

form factor F Pγ�γ�ðq21; q22Þ for the LMDþ V ansatz in large-
Nc QCD was performed in the chiral limit and assuming
octet symmetry. These are certainly not good approxima-
tions for the more massive η and η0 mesons, where also the
nonet symmetry, the effect of the Uð1ÞA anomaly, and the
η − η0 mixing have to be taken into account.
Following Refs. [11,21], we will therefore use a simple

VMD model for η and η0, as for the pion in Eq. (B12), but
with the decay constant FP fixed from the decay width
ΓðP → γγÞ and the value of MV obtained from a fit to the
CLEO data [67] for the single-virtual transition form factor
F Pγ�γ� ð−Q2; 0Þ:

ηmeson∶ Fη ¼ 93.0 MeV; MV ¼ 774 MeV; ðB17Þ

η0 meson∶ Fη0 ¼ 74.0 MeV; MV ¼ 859 MeV: ðB18Þ
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