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Scale-invariant models with one-loop neutrino mass
and dark matter candidates
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We construct a list of minimal scale-invariant models at the TeV scale that generate one-loop neutrino
mass and give viable dark matter candidates. The models generically contain a singlet scalar and a Z,-odd
sector comprised of singlet, doublet, and/or triplet SU(2) multiplets. The dark matter may reside in a single
multiplet or arise as an admixture of several multiplets. We find 15 independent models, for which the dark
matter is a viable candidate and neutrino mass results from a diagram with just one of the irreducible scale-
invariant one-loop topologies. Further “nonpure” cases give hybrid one-/two-loop masses. All models
predict new TeV scale physics, including a singlet scalar that generically mixes with the Higgs boson.
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I. INTRODUCTION

A number of the remaining puzzles in particle physics
relate to our incomplete understanding of the mechanisms of
mass in the Universe. Such puzzles include the nature of dark
matter (DM), the mechanism of neutrino mass, and the origin
of the O(100) GeV Higgs mass-parameter that determines
the weak scale in the standard model (SM). With regard to
the last issue, a number of recent works have studied
extensions of the SM that possess a scale-invariance (SI)
symmetry, such that the Higgs mass arises as a quantum
effect via radiative (Coleman-Weinberg [1]) symmetry
breaking [2]. These models can have interesting phenom-
enology and generally predict new particles at or around the
TeV scale (for recent analyses, see, e.g., Ref. [3]).

Adopting an SI symmetry modifies the way in which
candidate solutions to outstanding problems are implemented
and opens up new approaches. For example, the origin of
neutrino mass can find interesting explanations within SI
models [4-7] (for a detailed discussion, see Ref. [8]). Among
the available possibilities, it is perhaps an obvious marriage to
employ a radiative mechanism for neutrino mass within the
SI context, giving a common radiative origin for both
neutrino mass and the weak scale. Such models typically
require beyond-SM fields to both trigger electroweak sym-
metry breaking and allow radiative neutrino mass. An
interesting approach is to consider extensions of the SM
where the new multiplets permitting radiative symmetry
breaking also give rise to neutrino mass and DM.
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Motivated by these considerations, in this work, we
compile a list of minimal SI models that generate one-loop
radiative neutrino mass while giving a viable DM candi-
date. In the process we catalogue the minimal irreducible SI
one-loop topologies for neutrino mass (defined in the text).
We focus primarily on models where neutrino mass results
from just one of the minimal irreducible SI one-loop
topologies; models generating topologically distinct one-
loop diagrams can be considered as generalized versions of
the model realizing the simpler topology. We find 15
independent models realizing neutrino mass via a single
SI one-loop topology, the simplest of which is the SI
scotogenic model (recently studied in detail [6]). The 15
independent models are listed in Tables I-III in the text.
Further models employ a one-loop topology that also
allows a two-loop diagram with lower mass-dimension,
meaning they are not “pure” one-loop models. This differs
from the non-SI case, where the analogous topology gives
pure one-loop models. In addition, the SI models generi-
cally contain a singlet scalar that participates in electroweak
symmetry breaking and births the requisite lepton number
symmetry breaking. This field mixes with the SM Higgs.
The models also contain a TeV scale sector comprised of
singlets, doublets, and/or triplets, which participate in the
neutrino mass diagram and include a DM candidate.

The structure of this paper is as follows. In Sec. II we
provide general preliminaries for our analysis. The min-
imal irreducible SI one-loop topologies for neutrino mass
are described in Sec. III, where corresponding lists of
viable models with DM candidates are presented.
Conclusions are drawn in Sec. IV. Before proceeding,
we note that earlier authors have studied relationships

© 2016 American Physical Society
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TABLE I. Models with dark matter candidates and one-loop neutrino mass via the scale-invariant type T3
topology (see Fig. 2). All models contain a singlet scalar ¢~ (1,1,0) and a discrete symmetry
{F,S12} = —{F.Si,}. Here, F is a vector-like (chiral) fermion for ¥ # 0 (¥ = 0), and S; = S, for models
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with chiral fermions.

SI type T3 models F Si S, Dark matter Related non-SI model
SI scotogenic (1,1,0) (1,2,1) - Singlet fermion 9]

SI triplet scotogenic (1,3,0) (1,2,1) - Triplet fermion [10]

(a) (1,1,-2) (1,2,1) (1,2,3) Doublet scalar [11]

) (1,3,-2) (1,2,1) (1,2,3) Doublet scalar [12]

(c) (1,2,-1) (1,1,0) (1,3,2) Singlet-triplet scalar [12]

(d) (1,2,-1) (1,3,0) (1,1,2) Triplet scalar [12,13]

(e) (1,2,-1) (1,3,0) (1,3,2) Triplet scalar [12]

TABLE II. Scale-invariant models with dark matter candidates and one-loop neutrino mass via the type T1-ii

topology (Fig. 4). All models contain a

singlet

scalar ¢~ (1,1,0) and a discrete

symmetry

{F,F,8,8}—>—{F,F. S8}, where F and F’ are vector-like fermions.

SI type T1-ii models F F' S S, Dark matter

(a) (1,1,-2) (1,2,-1) (1,2,1) (1,1,2) Doublet scalar

(b) (1,1,-2) (1,2,-1) (1,2,1) (1,3,2) Doublet-triplet scalar
© (1,2,1) (1,3,2) (1,1,-2) (1,2,-1) Doublet scalar

() (1,2,1) (1,3,2) (1,3,-2) (1,2,-1) Doublet scalar
TABLE III. Scale-invariant models with dark matter candidates and one-loop neutrino masses via the type

T1-iii topology (Figure 5). All models contain a singlet scalar ¢ ~ (1,1,0), and a discrete symmetry
{F,y,S} - —{F,y,S}, where y is a vector-like fermion.

SI Type T1-iii Models F 7 S Dark Matter

(a) (1,1,0) (1,2,-1) (1,1,0) Singlet-Doublet Fermion
(b) (1,1,0) (1,2,-1) (1,3,0) Singlet-Doublet Fermion
(c) (1,3,0) (1,2,-1) (1,3,0) Triplet-Doublet Fermion
(d) (1,3,0) (1,2,-1) (1,1,0) Triplet-Doublet Fermion

between neutrino mass and DM; see, e.g., Refs. [9-11,
14,15] and Refs. [12,13,16-18].

II. GENERAL PRELIMINARIES

A recent paper performed a detailed analysis of the
minimal SI scotogenic model [6], demonstrating the
existence of viable parameter space, consistent with both
flavor and direct-detection constraints. The model is
implemented by extending the SM to include three gen-
erations of gauge-singlet fermions, F;z ~ (1, 1,0), where
i=1, 2, 3, labels generations, a second SM-like scalar
doublet, S ~ (1,2, 1), and a singlet scalar ¢ ~ (1, 1,0). In
addition to the SI symmetry, a Z, symmetry, with action
{Fgr,S} = —{Fg, S}, is imposed, with the scalar ¢ and
the SM fields transforming trivially under this symmetry.
The lightest Z,-odd particle is a stable DM candidate; this
should be taken as either the lightest singlet fermion ' or a
neutral component of the doublet S. However, viable
symmetry breaking requires one of the beyond-SM scalars

to be the heaviest exotic multiplet, making fermionic DM
more likely. The scalar ¢ plays the dual roles of sourcing
lepton number symmetry breaking, to allow neutrino
masses, and triggering electroweak symmetry breaking.
Neutrinos acquire mass via the one-loop diagram shown in
Fig. 1 (here, H ~ (1,2, 1) denotes the SM scalar doublet).
The SI scotogenic model was also mentioned in Refs. [7,8].

The SI scotogenic model belongs to a larger family of SI
models with one-loop neutrino mass and DM. In this work
we catalogue the minimal implementation of these related
models. There are four distinct classes of models, catego-
rized by the topology of the corresponding one-loop
diagram. The representative mass diagrams for these
classes of models comprise the set of minimal SI one-loop
topologies for neutrino mass. One class contains the SI
scotogenic model and its related variants, while the others
employ distinct one-loop diagrams.

Before describing the variant models, we outline some of
their general features. The minimal SI implementation of
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FIG. 1. One-loop diagram for neutrino mass in the scale-
invariant scotogenic model.

all models includes a singlet scalar ¢, which, similar to the
SI scotogenic model, continues to play a role in electro-
weak symmetry breaking and in allowing lepton number
symmetry violation. In addition, the models employ a set of
beyond-SM fermions F and scalars S, which are odd under
a Z, symmetry, and thus contain a DM candidate. The
Z,-0dd scalars must have a vanishing vacuum value (VEV),
(S) =0, to preserve the Z, symmetry and ensure DM
longevity. The ground state has (H) # 0 and (¢) # 0, with
both VEVs playing a role in the neutrino mass diagram.
The analysis of the full one-loop potential is somewhat
involved (see, e.g., [6]), though, in general, absent param-
eter hierarchies, one expects (¢) ~ (H), as the VEVs are
related via dimensionless couplings. The SM Higgs and ¢
mix, so the spectrum contains two physical Z,-even scalars
hy 5, one of which has mass M) =125 GeV, and is the
SM-like scalar, while the other is the pseudo-Goldstone
boson (or dilaton) associated with broken SI symmetry. The
latter acquires mass at the one-loop level and the demand
that M;, > 0 exhibits a constraint on the spectrum. The
dilaton mass is well approximated by [19]

M; = 1
"8 ((9) + (H)?)

+ZnsM§—anM4f}, (1)
S F

{Mﬁl + 6M7, + 3M% — 12M}

where the sum is over all beyond-SM particles (except the
dilaton) and ng » are multiplicity factors. One of the scalars
S must be the heaviest exotic in the spectrum to overcome
negative loop-corrections from both the top quark and the
exotic fermions F. In models with a single exotic scalar S,
the DM should be fermionic.

The mixing between H and ¢ has important conse-
quences. Any field that couples to ¢ inherits a coupling to
the SM sector via the mixing with H. This includes the DM,
which typically acquires its mass via a coupling to ¢, due to
the absence of bare mass terms in the SI theory. This can
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give additional annihilation channels for the DM (into /A,
final states) and additional couplings between the DM and
quarks of immediate relevance for direct-detection experi-
ments. The mixing between ¢ and H is typically controlled
by the ratio of VEVs and cannot be made arbitrarily small
without introducing parameter hierarchies. Thus, the mod-
els are typically subject to stringent direct-detection con-
straints, as analyzed in detail for the SI scotogenic model in
Ref. [6] and the ST KNT model in Ref. [20]. Consequently,
ongoing and future direct-detection experiments will pro-
vide useful information on the models.

The DM should typically be the neutral component of a
hypercharge-less multiplet to avoid exclusion via direct-
detection constraints (due to Z boson exchange). This
demand can be alleviated if, e.g., the CP odd and CP even
components of a complex DM candidate can be split. In this
regard, models in which the DM has nonzero hypercharge
are generally disfavored by direct-detection experiments,
with the following exceptions: Models with an SM-like
scalar, S~ (1,2,—1), can be viable due to the splitting
induced by the term (SH)?, which is always allowed by
both the SI and Z, symmetries. Models with a complex
scalar triplet can be allowed, provided the triplet mixes with
either a real scalar or a doublet scalar, as both can induce
the requisite splitting of the neutral component. Models
with a complex fermion can be allowed, if the neutral
component of the complex fermion mixes with a real
fermion to provide the splitting (whereas models with two
complex fermions that mix to give U(1),-charged Dirac
DM are generally not viable).

The models generically contain a vertex of the form
LSZF for an exotic scalar § and fermion F. Such vertices
can induce lepton flavor violating (LFV) effects, like
u — e+y. The existence of charged scalars and new
fermions that couple to the Higgs (through the mixing
of H and ¢) also affects the electroweak precision observ-
ables and the Higgs decay width T'(h — yy). Thus, LFV
searches, electroweak precision measurements, and 7 — yy
decays all provide useful ways to test the models and/or
constrain the parameter space. The severity of the con-
straints are subject to model dependencies, though, in
general, the analyses are similar to those detailed in
Ref. [6] for the SI scotogenic model.

In categorizing the models, in what follows, we exclude
cases with complex DM unless the requisite splitting is
automatically achieved by the minimal particle content
needed for the neutrino mass diagram. We also exclude
cases where the particle content required to generate a
given one-loop neutrino mass diagram includes a real
fermion and a scalar doublet S~ (1,2,1). Such models
also generate the one-loop diagram from the SI scotogenic
model (or the related triplet variant) and can be considered
as generalized versions of the model defined by the simpler
subset of particles. Furthermore, we restrict our attention
to new multiplets no larger than the adjoint representation
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and fields whose electric charge is no higher than doubly
charged (in units of the proton charge). We now turn to our
classification, beginning with the models most closely
related to the SI scotogenic model.

III. MINIMAL SCALE-INVARIANT
ONE-LOOP MODELS

A. Scale-invariant type T3 models

There exist generalizations of the scotogenic model that
generate neutrino mass via a one-loop diagram with the same
topology [12]. One can consider minimal ST implementations
of these variant models. The general one-loop diagram for
neutrino mass in such models is shown in Fig. 2, with model-
dependent quantum numbers for the intermediate fields.
Precluding cases where the DM is already excluded, the
particle content for viable implementations is given in
Table I. The fermion F is taken as vector-like in cases
where it is complex-valued, and all cases utilize a Z,
symmetry with action {F,S;,S,} - —{F,S;,S,}. Note
that the diagram for neutrino mass in the SI case has mass-
dimension six.

One observes that, in addition to the triplet variant of the
SI scotogenic model, there are models with singlet, doublet,
or triplet scalar DM candidates. Models with doublet scalar
DM () utilize the mixing term (H'S,)? to split the neutral
components of S; and allow consistency with direct-
detection constraints. If the DM is a real singlet or triplet
scalar, it does not couple to the Z boson and direct-
detection constraints can typically be evaded. For complex
triplet DM, S, ~ (1,3,2), the DM would usually be
excluded. However, the models generate mixing between
the complex triplet S, and the real scalar S; to split the
neutral components of S, [12]. Thus, one cannot rule out
these cases, a priori.

The table shows that a number of the variant models have
DM candidates that belong to an SU(2), triplet. Due to the
nontrivial SU(2), gauge interactions, such DM candidates
require heavier masses of Mpy = 2-3 TeV. Although it is
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FIG. 2. One-loop diagram for neutrino mass via the scale-
invariant type T3 topology. The scale-invariant scotogenic model
gives the simplest realization.
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possible to generate these larger masses in SI models, a
degree of tuning is required to retain a Higgs mass of
125 GeV with electroweak triplets above the TeV scale.
This is understood as follows. The heavier exotics do not
decouple from the SM sector in the limit that one (or more)
Yukawa and/or scalar couplings vanish [21]. Thus, one
cannot sequester the exotics from the SM to shield the
Higgs mass. Consequently, higher-order corrections
involving the heavy fields give naturalness constraints that
typically require My,,, < TeV, in tension with the demand
of Mpy = few TeV. Of course, the amount of fine-tuning
is not severe for Mpy; = few TeV, and such models may be
of phenomenological interest.

Alternatively, models (a), (b), and (c¢) contain DM
candidates whose mass need not exceed the TeV scale.
Models (a) and (a) give inert-doublet DM, which does not
require heavy fields with nontrivial electroweak quantum
numbers. Similarly, model (¢) admits inert-singlet DM.
These models contain Dirac fermions, as evidenced by the
nonzero hypercharge values in Table 1. The DM must be a
scalar, and the mass ordering should be

Mpy <My, < M., (2)

where M. denotes the (approximately) common mass for
the scalar multiplet that does not contain the DM. The
heaviest exotic must be a scalar to ensure M;,, > 0. These
models are not obviously excluded and may deserve
further study.

The set of models with particle content in Table I, which
achieve one-loop neutrino mass via Fig. 2, could be called
the SI type T3 one-loop models as they are the minimal
SI implementation of the type T3 one-loop topology for
neutrino mass (we refer to the labeling scheme of Ref. [22]).
This set includes the SI scotogenic model and its triplet
variant, in addition to five models with Dirac fermions. These
SI models are related to non-SI models that exist in the
literature, as listed in the final column of Table I. In addition
to these minimal SI T3 models, one can also consider
minimal SI implementations of the alternative irreducible
one-loop topologies, as we now discuss.

B. Scale-invariant type T1-i models

First, we consider the minimal SI implementation of the
type T1-i models, for which neutrino mass arises via the
one-loop diagram in Fig. 3. Comparison of Figs. 2 and 3
reveals that the loop diagrams have some similarities. In
particular, the SI T1-i diagram in Fig. 3 can be generated by
“opening up” the top vertex in Fig. 2, attaching two
external ¢ VEVs, and including an extra internal scalar
particle (labeled as S, in Fig. 3). Thus, the minimal particle
content required to generate an SI T1-i model always
contains a subset of particles that generates an SI T3
diagram. Consequently, one can consider the type T1-i
models as generalized versions of the T3 models; for an SI
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FIG. 3. One-loop diagram for neutrino mass via the scale-
invariant type T1-i topology.

T1-i model, neutrino mass always receives contributions
from both the T3 and T1-i diagrams: m, = my3 + my;_;.
Nonetheless, the T1-i models may still be of phenomeno-
logical interest, as one can always select parameter space in
which the T1-i diagram is dominant, namely, by taking the
coupling for the S;S,H? vertex in Fig. 2 to be very small,
such that mpy << my_;, which gives m, = mp3 +myp_; &
mri_;. Given the relationship between the T3 and T1-i
models, we do not list explicit quantum numbers for
candidate models; these can be obtained by selecting a
T3 model from Table I and finding the quantum numbers
for the requisite additional multiplet labeled as S, in Fig. 3.
We note that the SI T1-i diagram has mass-dimension eight;
we discuss this matter below.

C. Scale-invariant type T1-ii models

Next, we consider models that give neutrino mass via the
SIT1-ii one-loop topology, as shown in Fig. 4. We find four
independent models with this topology, as listed in Table II.
The models have vector-like fermions F and F’ and two
beyond-SM scalar multiplets S;,, all odd under a Z,
symmetry. The fermions need not be vector-like to generate
the one-loop diagram, but using vector-like fermions is the
simplest way to avoid anomalies. The scalar S, should be
the heaviest exotic, while the DM multiplet S; ~ (1,2, 1) is
the lightest. Additional variant models which contain either
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FIG. 4. One-loop diagram for neutrino mass via the scale-
invariant type T1-ii topology.
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FIG. 5. One-loop diagram for neutrino mass via the scale-
invariant type T1-iii topology.

fermion triplets or singlets with vanishing hypercharge are
not considered, as they automatically contain a doublet
scalar and consequently also generate the SI type T3
diagram. All four models in Table II give scalar DM and
contain an SM-like doublet scalar, which can be the DM. In
addition, model T1-ii(b) can give doublet-triplet DM,
while models T1-ii(c) and T1-ii(d) can give singlet or
singlet-doublet DM. We note that if one does not seek to
include a DM candidate, such that SM fields may propagate
in the loop diagram, the SI T1-ii topology describes the SI
implementation of the Zee model [4,8]. We also note that
non-SI versions of the models in Table II appeared
in Ref. [18].

D. Scale-invariant type T1-iii models

Finally, we consider models with the SI type T1-iii one-
loop topology, as shown in Fig. 5. In this case the mass
diagram has mass-dimension six. In addition to ¢, these
models include a single beyond-SM scalar S. Even if this
multiplet contains a DM candidate, one must restrict
attention to parameter space in which § is the heaviest
exotic, in order to dominate the fermionic contributions to
the effective potential and ensure a non-negative dilaton
mass. This preferences cases with fermionic DM. Including
this consideration, we find four models, listed as T1-iii(a)
through T1-iii(d) in Table III. These contain two real
fermions F and y, both odd under the Z, symmetry (along
with §). All have real fermionic DM, with either triplet or
singlet fermions possible, which, in general, mix with the
doublet fermion. There may appear to be additional models
to those listed in Table III. However, these contain an
SM-like doublet scalar S~ (1,2,1) and a fermion trans-
forming as either a singlet (1, 1,0) or a triplet (1,3,0). Thus,
these models include the same particle content as the first
two models in Table I and automatically generate a diagram
with the SI type T3 topology.

One can also consider models with the real fermion F in
Fig. 5 replaced by a complex fermion and w4 replaced by
an independent field y}. However, we find no viable
realizations in this case. There are candidate theories
containing neutral fields, which could give DM, though
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FIG. 6. Two-loop diagrams obtained by closing scalar lines on the scale-invariant type T1-i diagram. Diagram (a)/(c) is the right-/

left-leaning two-loop diagram, diagram (b) is the Robotman.

in all instances the DM is excluded by direct-detection
constraints, or the model also gives a T3 diagram. Note that
non-SI versions of the models in Table III appeared
in Ref. [18].

E. Discussion

We observed earlier that the SI type T1-i topology gives
a neutrino mass diagram with mass-dimension eight,
different from the other topologies, whose diagrams have
mass-dimension six. This allows one to close pairs of
external ¢ lines to form the two-loop diagrams in Fig. 6.
These diagrams have mass-dimension six, which is less
than the one-loop diagram, so it is not a priori evident that
they are suppressed relative to the one-loop diagram
(higher-loop diagrams with lower mass-dimension can
be comparable to diagrams with higher mass-dimension,
see, e.g., Ref. [23]). The d = 8 one-loop diagram contains
an additional factor of ~({(¢)/M)?, where M denotes a
generic mass for exotics in the loop. In a general theory,
such factors could suppress the d = 8 one-loop diagram
relative to the d =6 two-loop diagram, such that the
additional loop-suppression of the latter is overcome.
However, in our SI models all mass scales are related to
the scalar VEVS, and one has M < (¢), so the factor
~({¢p)/M)* should not give a significant suppression.
Thus, we naively expect the one-loop diagram to dominate
the two-loop diagrams.1 Nonetheless, strictly speaking the
SI T1-i models generate neutrino mass by a combination of
one-loop diagrams of mass-dimension eight and two-loop
diagrams of mass-dimension six. Depending on taste, one
may wish to use a labeling scheme that distinguishes the SI
T1-i topology from the other one-loop topologies, as they
are not “pure” one-loop models. For our purposes we retain
the labeling scheme of Ref. [22] for ease of comparison,
though we note the difference.

More generally, promoting any n-loop non-SI neutrino
mass diagram to a minimal SI implementation will also
allow diagrams with > n loops if the non-SI diagram

'For completeness, we note that the two-loop diagram ob-
tained from Fig. 3 by closing the external Higgs lines via the |H|*
vertex still has mass-dimension d = 8 and is thus suppressed by
an additional loop factor relative to the one-loop d = 8 diagram
in Fig. 3.

contains more than one fermion mass insertion or cubic
scalar coupling. On the other hand, if one restricts attention
to pure one-loop models, then only three minimal topol-
ogies count, namely, SI T3, T1-ii, and Tl-iii, giving 15
distinct models with DM candidates.

In a related matter, note that we did not include the SI
implementation of the model in Ref. [24], with real scalar
triplet, in our lists. That model is similarly a hybrid one-
and two-loop model, giving a d = 7 one-loop diagram and
a d =5 two-loop diagram. It appears that the SI imple-
mentation would amount to adding a real scalar triplet to
the ST model T1-ii(a) if the triplet is Z,-even, while for a
Z,-0dd triplet one arrives at the SI model T3(d).

This concludes the classification of minimal SI one-
loop diagrams. Inspection of the lists reveals that the
simplest cases are the SI scotogenic model and the related
triplet variant (see Table I), both of which require three
beyond-SM multiplets (five, if one includes generation
structure for F). The SI T3 models with complex fermions
and the SI T1-iii models both require four new multiplets,
while the SI T1-i and TI-ii models require five new
multiplets.

Before concluding, we note that, in general, one could
ask whether additional distinct SI diagrams can be
obtained by attaching ¢ VEV insertions to particle lines
in the SI T1 and T3 diagrams or if other variations are
possible. If one adds a single insertion of (¢) to a scalar
line, SI demands that the new vertex includes another new
scalar, which can only be closed by forming a diagram
with more than one loop. Alternatively, adding two (¢)
insertions at a single vertex requires that the other scalars
at that vertex have the same quantum numbers, making the
loop diagram essentially the same but with a higher mass-
dimension (and number of fields, if new fields are added).
Similarly, one can add two individual (¢) insertions on a
fermion line (two are needed to flip chirality twice),
giving the same diagram but with higher mass-dimension.
We found no other one-loop structures that correspond to
effective operators with mass-dimension six. Thus, in
summary, the minimal SI one-loop diagrams have a single
singlet-VEV insertion, corresponding to the SI T3, T1-ii,
and T1-iii topologies, while the SI T1-1 diagram has three
insertions (equivalently, it gives two-loop diagrams with a
single insertion).
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IV. CONCLUSION

We have categorized the minimal irreducible SI one-loop
topologies for neutrino mass and described the particle
content for models that contain viable DM candidates. In
all, we presented 15 distinct SI models for one-loop
neutrino mass with DM. The models generically predict
a new scalar ¢ that fulfills the dual roles of triggering
electroweak symmetry breaking and allowing lepton num-
ber symmetry violation to give radiative neutrino mass.
This scalar also mixes with the SM Higgs, with important
phenomenological consequences. The DM is part of a
Z,-0dd sector, the content of which is model dependent.
There are cases with singlet, doublet, and triplet DM, and
all predict new physics at the TeV scale. Models with triplet
DM may require a degree of tuning, as the DM is typically
Mpy = few TeV, and all other Z,-odd exotics must be
heavier than this scale. However, even if one neglects
models with triplets, multiple cases with singlet and/or
doublet DM were found.

If one restricts attention to pure one-loop models, only
three minimal irreducible SI one-loop topologies appear
possible, namely, the SI T3, T1-ii, and T1-iii topologies.
This differs from the non-SI case, where four distinct
irreducible one-loop topologies are found [22]. Unlike
the non-SI case, the SI implementation of the type T1-i
topology has mass-dimension eight and generically
allows for a two-loop neutrino mass diagram of lower
mass-dimension, in addition to the SI TI1-i diagram,
producing a hybrid model. The T1-i models also contain
a subset of particles that generates the simpler SI T3
diagram.

As a check of our results, one can compare our list
of models with irreducible SI one-loop topologies to the
non-SI one-loop models with DM [18]. Retaining the
SI T1-i models, for comparison, our list remains consid-
erably shorter than the corresponding non-SI result, where
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more than 30 models were found.” There are important
differences between the SI and non-SI cases; for example,
with the SI type T1-iii topology, scalar DM is generally not
viable, whereas the corresponding non-SI T1-iii models
admit scalar DM. However, such differences do not account
for the discrepancy in the overall number of models; all such
cases retain a viable DM candidate for both the SI and non-
SI models and thus appear on both lists. Instead, the
discrepancy results from our neglect of type T1 models
in which a type T3 diagram is also generated, as these were
considered as generalized versions of the T3 models.

Finally, we note that we categorized the minimal irreduc-
ible SI one-loop topologies for neutrino mass, giving explicit
quantum numbers for exotics that include a viable DM
candidate. However, our classification of the distinct SI
one-loop diagrams is not dependent on whether the loop
diagram contains a DM candidate. If one is not considering a
relationship between DM and neutrino mass, the fields in the
loop diagram need not transform under a discrete symmetry
and thus may include SM fields. In such cases, the diagrams in
Figs. 2, 4, and 5 would simply show the minimal irreducible
ST one-loop topologies for neutrino mass,” while Fig. 3 would
give a further irreducible one-loop topology that permits a
two-loop diagram with lower mass-dimension.
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We neglect model T1-i-C in Ref. [18], with @ = 1, as it fails to
realize neutrino mass.

3Presumably the quantum numbers of the exotics would be
selected to prevent tree-level neutrino mass, though this is a
model-dependent issue.
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