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We report on the results of the E06-014 experiment performed at Jefferson Lab in Hall A, where a
precision measurement of the twist-3 matrix element d2 of the neutron (dn2) was conducted. The quantity d

n
2

represents the average color Lorentz force a struck quark experiences in a deep inelastic electron scattering
event off a neutron due to its interaction with the hadronizing remnants. This color force was determined
from a linear combination of the third moments of the 3He spin structure functions, g1 and g2, after nuclear
corrections had been applied to these moments. The structure functions were obtained from a measurement
of the unpolarized cross section and of double-spin asymmetries in the scattering of a longitudinally
polarized electron beam from a transversely and a longitudinally polarized 3He target. The measurement
kinematics included two average Q2 bins of 3.2 GeV2 and 4.3 GeV2, and Bjorken-x 0.25 ≤ x ≤ 0.90
covering the deep inelastic and resonance regions. We have found that dn2 is small and negative for
hQ2i ¼ 3.2 GeV2, and even smaller for hQ2i ¼ 4.3 GeV2, consistent with the results of a lattice QCD
calculation. The twist-4 matrix element fn2 was extracted by combining our measured dn2 with the world
data on the first moment in x of gn1 , Γn

1 . We found fn2 to be roughly an order of magnitude larger than dn2 .
Utilizing the extracted dn2 and fn2 data, we separated the Lorentz color force into its electric and magnetic
components, Fy;n

E and Fy;n
B , and found them to be equal and opposite in magnitude, in agreement with the

predictions from an instanton model but not with those from QCD sum rules. Furthermore, using
the measured double-spin asymmetries, we have extracted the virtual photon-nucleon asymmetry on the
neutron An

1 , the structure function ratio gn1=F
n
1 , and the quark ratios ðΔuþ ΔūÞ=ðuþ ūÞ and

ðΔdþ Δd̄Þ=ðdþ d̄Þ. These results were found to be consistent with deep-inelastic scattering world data
and with the prediction of the constituent quark model but at odds with the perturbative quantum
chromodynamics predictions at large x.

DOI: 10.1103/PhysRevD.94.052003

I. INTRODUCTION

A. Overview of nucleon structure

Experiments utilizing the scattering of leptons from
nucleons have been instrumental in uncovering the com-
plex structure of subatomic matter over the past half
century. In the mid-1950s, elastic scattering of electrons
from hydrogen revealed that the proton is not a pointlike
particle but has internal structure [1]; in the 1970s, deep-
inelastic scattering (DIS) of electrons from hydrogen
showed that pointlike particles, labeled “partons,” are the
underlying constituents of the proton [2]. These partons
were later identified as quarks and gluons in the modern
theory of strong interactions, quantum chromodynamics
(QCD) [3].
Since the late 1970s, scattering of polarized lepton

beams from polarized nucleons and polarized light nuclear
targets (deuterium and 3He) has given us the opportunity to
probe the spin structure of the nucleon encoded in the g1
and g2 spin-structure functions. In particular, worldwide
DIS studies focusing on g1 as a function of both Bjorken-x
and Q2 allowed the determination of the fraction of the
proton spin that is carried by the quarks [4,5] and by the
gluons [6,7]. Here, x is interpreted as the fractional
momentum of the parent nucleon carried by the struck
quark in the infinite momentum frame, andQ2 ≡ −q2 is the
four-momentum transferred to the target squared.
Early theoretical work [8] has shown that the g1ðx;Q2Þ

and g2ðx;Q2Þ spin-structure functions contain information
on quark-gluon correlations. These dynamical effects are

accessible through the Q2-variations of these functions
beyond those of the calculable perturbative QCD (pQCD)
radiative corrections [9]. In fact, they appear in an expansion
of both the measured g1 spin-structure function and its
moments in x in powers of 1=Q2, but only at higher order. In
contrast, in the measured g2 spin-structure function, quark-
gluon interactions are accessible at leading order in a similar
expansion and thus suffer no 1=Q2 suppression. This makes
measurements of g2 particularly sensitive and important for
studying multiparton correlations in the nucleon.
Studies of the moments in x of spin-structure functions

have resulted in fundamental tests of QCD like that of the
Bjorken sum rule [10]; here, not only do they offer an
opportunity to test our understanding of pQCD beyond the
simple partonic picture, but they also allow for measured
observables to be tested againstab initio calculations of lattice
QCD. While there is a wealth of data available for g1, fewer
data exist for g2—especially in thevalence region.This region
provides the dominant contribution to highermoments. These
moments are of interest because the contribution arising from
the lower-x region of integration, where the structure func-
tions are unknown, is small. Thus these higher moments offer
robust experimental results relevant for a comparison with
lattice QCD, for example. Finally, it is worth noting that high-
precision data of the g1 nucleon structure function in the
valence region of deep inelastic scattering—namely
x ≥ 0.6—are still sparse, and every new data set with good
precision offers a real possibility to test nucleon models in a
domain sensitive to those models’ parameters.
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B. The g2 structure function and quark-gluon
correlations

While the polarized structure function g2 has no clear
interpretation in the quark-parton model [11], it is known to
contain quark-gluon correlations and can be decomposed as

g2ðx;Q2Þ ¼ gWW
2 ðx;Q2Þ þ ḡ2ðx;Q2Þ; ð1Þ

where ḡ2 is the component of g2 that contains the quark-
gluon correlations [8], given by [12]

ḡ2ðx;Q2Þ ¼
Z

1

x

∂
∂y

�
mq

M
hTðx;Q2Þ þ ξðy;Q2Þ

�
dy
y
: ð2Þ

Here, hT denotes the transversity distribution in the nucleon
[13], ξ the quark-gluon correlation function, mq the quark
mass of flavor q, and M the nucleon mass. The quantity
gWW
2 in Eq. (1) is the Wandzura-Wilczek term, which is
fully determined from the knowledge of the g1 structure
function [14],

gWW
2 ðx;Q2Þ ¼ −g1ðx;Q2Þ þ

Z
1

x

g1ðy;Q2Þ
y

dy: ð3Þ

Under the operator product expansion (OPE) [15], one
can access the effects of quark-gluon correlations via the
third moment of a linear combination of g1 and g2,

d2ðQ2Þ ¼ 3

Z
1

0

x2ḡ2ðx;Q2Þdx

¼
Z

1

0

x2½2g1ðx;Q2Þ þ 3g2ðx;Q2Þ�dx: ð4Þ

Because of the x2-weighting, d2 is particularly sensitive to
the large-x behavior of ḡ2. The quantity d2 is related to a
specific twist-3 (τ ¼ 3) matrix element consisting of local
operators of quark and gluon fields [13,16,17],

2MPþPþSxd2 ¼ ghP; Sjψ̄ð0ÞγþGþyð0Þψð0ÞjP; Si; ð5Þ

where P denotes the nucleon momentum, S its spin, ψ the
quark field, and g the QCD coupling constant. The þ
superscript indicates the equation is expressed in light-cone
coordinates. In analogy to the electromagnetic Lorentz
force Fy that acts on a charged particle, the gluon field
Gþy ¼ ðBx − EyÞ= ffiffiffi

2
p ¼ Fy, where Bx and Ey are the

transverse components of the color magnetic and color
electric field, respectively; the z direction is defined by the
three-momentum transfer of the virtual photon [17].
There are two interpretations of d2 in the literature. The

first connects d2 with color electromagnetic fields induced
in a transversely polarized nucleon probed by a virtual
photon. These induced color fields [appearing in Eq. (5)]
are represented as color polarizabilities χ [13],

χE~S ¼ 1

2M2
hP; Sjψ†g~a × ~Eψ jP; Si; ð6Þ

χB~S ¼ 1

2M2
hP; Sjψ†g~Bψ jP; Si; ð7Þ

where ~a denotes the velocity of the struck quark. Then, d2
can be expressed as

d2 ¼
1

4
ðχE þ 2χBÞ: ð8Þ

A second, more recent interpretation shows that the
matrix element connected to d2 represents an average color
Lorentz force Fy acting on the struck quark due to the
remnant diquark system at the instant it is struck by the
virtual photon [cf. Eq. (5)],

Fyð0Þ≡ hP; Sjψ̄ð0ÞγþGþyð0Þψð0ÞjP; Si ð9Þ

¼ −M2d2; ð10Þ

where the last equality is true only in the rest frame of the
nucleon [17].
Combining measurements of d2 with the twist-4 matrix

element f2 allows the extraction of the color electric and
magnetic forces Fy

E and Fy
B [17],

d2 ¼ −
1

M2
ðFy

E þ Fy
BÞ; ð11Þ

f2 ¼ −
2

M2
ð2Fy

E − Fy
BÞ: ð12Þ

The quantity f2 is sensitive to quark-gluon correlations,
since it is expressed as a matrix element similar to d2,
containing a mixed quark-gluon field operator [8,18–20].
The f2 matrix element cannot be measured directly, but can
be extracted from g1 data by utilizing a twist expansion of
Γ1, the first moment of g1,

Γ1 ≡
Z

1

0

g1dx

¼ μ2 þ
M2

9Q2
ða2 þ 4d2 þ 4f2Þ þ

μ6
Q4

þO
�

1

Q6

�
þ � � � : ð13Þ

For simplicity the Q2 dependence of the structure func-
tions, matrix elements, and μn terms has been omitted in
Eq. (13). The quantity a2 ¼

R
x2g1dx is the third moment

of g1, a twist-2 matrix element that has connections to target
mass corrections. The term μ6 is a higher-twist (τ > 4)
term. The quantity μ2 is the twist-2 contribution, given as
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μ2ðQ2Þ ¼ CnsðQ2Þ
�
−

1

12
gA þ 1

36
a8

�
þ CsðQ2Þ 1

9
ΔΣ;

ð14Þ

where Cns and Cs denote the nonsinglet and singlet Wilson
coefficients [21], gA the flavor-triplet axial charge, a8 the
octet axial charge, and ΔΣ≡ ΔΣðQ2 ¼ ∞Þ, the renorm-
alization group invariant definition of the singlet axial
current. This definition of ΔΣ is used to factorize all of the
Q2 dependence into the Wilson coefficients, as was done in
Refs. [20,22]. The f2 matrix element can be extracted from
Eq. (13) by first subtracting μ2 from Γ1 and then fitting the
result as a function of 1=Q2.
In practice, in order to access the spin-structure functions

g1 and g2, we measure experimental asymmetries,

A∥ ≡ σ↓⇑ − σ↑⇑

σ↓⇑ þ σ↑⇑

¼ 4α2

MQ2

ð1 − yÞð2 − yÞ
2y2σ0

×
ð1 − yÞ sin θ

1þ ð1 − yÞ½cos θ þ tan ðθ=2Þ sin θ�

×

�
y
1þ ð1 − yÞ cos θ
ð1 − yÞ sin θ g1 − 2 tan ðθ=2Þg2

�
ð15Þ

and

A⊥ ≡ σ↓⇒ − σ↑⇒

σ↓⇒ þ σ↑⇒

¼ 4α2

MQ2

ð1 − yÞð2 − yÞ
2y2σ0

×
ð1 − yÞ sin θ

1þ ð1 − yÞ½cos θ þ tan ðθ=2Þ sin θ�
× fyg1 þ 2g2g: ð16Þ

The quantity σsS denotes the polarized cross section for
electron spin s and target spin S. The ↑ (↓) indicates the
electron spin parallel (antiparallel) to its momentum, and⇑
(⇓) indicates the target spin parallel (antiparallel) to the
electron beam momentum. The⇐ (⇒) indicates the target
spin perpendicular to the beam momentum, pointing away
from (toward) the side of the beam line on which the
scattered electron is detected. The quantity y ¼ ðE − E0Þ=E
is the fractional energy transferred to the target, with E
being the electron beam energy and E0 the scattered
electron energy, with E and E0 measured in the laboratory
frame. The quantity α denotes the electromagnetic coupling
constant and θ the electron scattering angle. The quantity σ0
is the unpolarized electron scattering cross section. The
dependence of g1, g2, and σ0 on x and Q2 has been
suppressed for simplicity.

The two spin structure functions g1 and g2 can be
expressed in terms of the experimental observables A∥,
A⊥, and σ0 by combining and inverting Eqs. (16) and (17).
Then the expression for d2 in Eq. (4) can be rewritten in
terms of those experimental observables,

d2 ¼
Z

1

0

dx
MQ2

4α2
x2y2

ð1 − yÞð2 − yÞ σ0

×

��
3
1þ ð1 − yÞ cos θ
ð1 − yÞ sin θ þ 4

y
tan ðθ=2Þ

�
A⊥

þ
�
4

y
− 3

�
A∥

�
: ð17Þ

The prior world data for dn2 as a function of Q2 [23] are
presented in Fig. 1. The top panel shows measured data and
model calculations without the elastic contribution, while
the bottom panel shows the same data and models with the
elastic contribution included. Resonance measurements
from JLab E94-010 [24] and RSS [25], along with
resonance plus DIS data from E01-012 [26], are shown

FIG. 1. The world dn2 data as a function of Q2. Upper panel:
Data and models without the elastic contribution. Bottom panel:
Data and models with the elastic contribution included. The
experimental resonance data from JLab E94-010 [24] and RSS
[25], along with resonance plus DIS data from E01-012 [26], are
shown at Q2 ≲ 3 GeV2, while at larger Q2 DIS data from SLAC
E155x [27] and combined data from JLab E99-117 and SLAC
E155x [28] are shown. The solid curve is from a MAID [29]
calculation, which is dominated by the resonance contribution.
Model calculations for Q2 ≈ 1 GeV2 from a QCD sum rule
approach from Ref. [30] (offset lower in Q2) and Ref. [31] are
shown. A chiral soliton model [32] and a bag model [33] are also
given. Additionally, a lattice QCD [34] calculation is shown. The
model calculations that include the elastic contribution are shown
in the lower panel only. We added the elastic contribution to the
MAID model in the lower panel. The elastic contribution to dn2 is
given in the lower panel by the dashed curve, evaluated using the
Cornwall-Norton (CN) moments (see Appendix B) where the
Riordan [35] and Kelly [36] parametrizations are used forGn

E and
Gn

M, respectively.
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at Q2 ≲ 3 GeV2. At large Q2 toward 5 GeV2 are DIS
measurements from SLAC E155x [27] and the combined
data from JLab E99-117 and SLAC E155x [28]. In the
latter data set, dn2 was evaluated by combining the gn2 data
from JLab E99-117 with the g2 data of SLAC E155x, and
ḡ2 was assumed to be Q2-independent and to follow ḡ2 ∝
ð1 − xÞm withm ¼ 2 or 3 for x≳ 0.78 [27], for which there
were no data from either experiment [28].
The solid curve in Fig. 1 is from a MAID [29] calculation,

which uses phenomenological fits to electro- and photo-
production data for the nucleon, extending from the single-
pion production threshold to the resonance/DIS boundary
at W ¼ 2 GeV. The major resonances are modeled using
Breit-Wigner functions to construct the production chan-
nels. The bottom panel displays the results of additional
model calculations from a QCD sum rule approach [30,31],
which in general uses dispersion relations, combined with
the OPE, to interpolate between the perturbative and
nonperturbative regimes of QCD. The two calculations
presented at Q2 ≈ 1 GeV2 use a three-quark field with [30]
(offset lower inQ2 in Fig. 1) and without [31] a gluon field.
A chiral soliton model [32] is shown, where the nucleon is
described as a nonlinear dynamical system consisting of
“mesonic lumps” [32] governed by a Uð1Þ × SUð2ÞL ×
SUð2ÞR chiral symmetry. Another model displayed is a bag
model, in which the quarks are confined to a nucleon “bag.”
Here, the confinement mechanism of QCD is simulated
using quark-gluon and gluon-gluon interactions [33]. The
model also includes generalized spin-dependent effects via
an explicit symmetry-breaking parameter [37]. A lattice
QCD calculation [34] is also presented, which solves the
dynamical QCD equations nonperturbatively on a discre-
tized lattice. The model calculations that include the elastic
contribution are shown in the lower panel only. We added
the elastic contribution to the MAID model in the lower
panel. Our measurement focused on the moderately large-
Q2 region of 3 < Q2 < 5 GeV2, where the elastic contri-
bution is seen to be small (lower panel of Fig. 1) and where
a theoretical interpretation in terms of twist-3 contributions
is cleaner.
While bag [33,38,39] and soliton [32] model calcula-

tions of d2 for the neutron yield numerical values consistent
with those of lattice QCD [34], prior experimental data
differ by roughly 2 standard deviations in the large Q2-
range. This is illustrated by the data for Q2 ≈ 5 GeV2 in
Fig. 1. This situation called for a dedicated experiment
for the neutron, JLab E06-014. For the proton d2, the
measurements and models are in better agreement
[27,30–34,40]. These data sets will be further extended
by a recent measurement [41] whose precision results are
expected in the near future. Under the assumption of
isospin symmetry, combining the neutron and proton data
would then allow a flavor decomposition to determine the
average color force felt by the up and down quarks in the
proton. Measurements of d2 access similar forces as those

that cause quark confinement. Consequently, such mea-
surements are important for understanding the dynamics of
the constituents of the nucleon.
Our measurements of the unpolarized cross section σ0

and the double-spin asymmetries A∥ and A⊥ allow the
extraction of d2, and in turn, f2. Combining our results for
these higher-twist matrix elements, we obtain the color
electric and magnetic forces Fy

E and Fy
B. Utilizing our data

on g1, we also evaluate the twist-2 matrix element a2 and
test it against lattice QCD calculations.

C. A1 and flavor decomposition

The measurement of the double-spin asymmetries A∥
and A⊥ required for the extraction of d2 also gives access to
the virtual photon-nucleon asymmetry A1 and the polarized
to unpolarized structure-function ratio g1=F1,

A1 ¼
1

Dð1þ ηξÞA∥ −
η

dð1þ ηξÞA⊥; ð18Þ

g1
F1

¼ 1

d0

�
A∥ þ tan

θ

2
A⊥

�
; ð19Þ

where F1ðx;Q2Þ denotes the unpolarized structure function
and D the virtual photon depolarization factor. This
quantity, along with η, d, ξ, and d0 are defined as

D ¼ E − ϵE0

Eð1þ ϵRÞ ; ð20Þ

η ¼ ϵ
ffiffiffiffiffiffi
Q2

p
E − ϵE0 ; ð21Þ

d ¼ D

ffiffiffiffiffiffiffiffiffiffiffi
2ϵ

1þ ϵ

r
; ð22Þ

ξ ¼ η
1þ ϵ

2ϵ
; ð23Þ

d0 ¼ ð1 − ϵÞð2 − yÞ
yð1þ ϵRÞ ; ð24Þ

where R≡ σL=σT , the ratio of longitudinally to trans-
versely polarized photoabsorption cross sections [42], and ϵ
denotes the ratio of the longitudinal to transverse polari-
zation of the virtual photon,

ϵ ¼
�
1þ 2ð1þ γ2Þtan2 θ

2

�
−1
; ð25Þ

with γ2 ¼ ð2MxÞ2=Q2.
The A1 asymmetry is particularly sensitive to the way

that the quark spins combine to give the nucleon spin.
Therefore, A1 is a good discriminator for various model
calculations that aim to describe the spin structure of the
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nucleon. Figure 2 shows the previous world data using 3He
targets from SLAC E142 [43] and E154 [44], HERMES
[45], and JLab E99-117 [28,46] compared to various
models. The SLAC E143 [47] data, which used NH3

and ND3 targets, have been omitted from the plot due to
their large uncertainties. It is seen that the relativistic
constituent quark model (CQM) [48] describes the trend
of the data reasonably well. The pQCD parametrization
with hadron helicity conservation [49] (dashed curve)—
assuming quark orbital angular momentum to be zero—
does not describe the data adequately. However, the pQCD
parametrization allowing for quark orbital angular momen-
tum to be nonzero [50] (dash-dotted curve) is in good
agreement with the data, suggesting the importance of
quark orbital angular momentum in the spin structure of the
nucleon. The statistical quark model (solid curve) [51],
which interprets the constituent partons as fermions
(quarks) and bosons (gluons), adequately describes the
trend of the world data after fitting its parameters to a subset
of the available data. A modified Nambu-Jona-Lasinio
(NJL) model from Cloët et al. (dash triple-dotted curve)
[52] is shown to fit the data accurately in the large-x region.
This NJL-type model imposes constraints for confinement
such that unphysical thresholds for nucleon decay into
quarks are excluded. Nucleon states are obtained by
solving the Faddeev equation using a quark-diquark
approximation, including scalar and axial-vector diquark
states. Relatively recent predictions come from Dyson-
Schwinger equation (DSE) treatments by Roberts et al.
[53], which reveal nonpointlike diquark correlations in the

nucleon due to dynamical chiral symmetry breaking. In
these calculations Roberts et al. employ two different types
of dressed-quark propagators for the Faddeev equation: one
where the mass term is momentum independent, and the
other where the mass term carries a momentum depend-
ence. This yields two different sets of results, referred to as
contact and realistic, respectively. The predictions for the
two approaches are shown at x ¼ 1 (Fig. 2). We note the
contrast between the DSE predictions and those from
pQCD and CQMs, where the latter two predict An

1 → 1

as x → 1. The measurement presented here provides more
contiguous coverage over the region of 0.27 < x < 0.60
compared to the JLab E99-117 measurement [28,46].
Even more than A1, the polarized-to-unpolarized quark

parton distribution function (PDF) ratios for the up quark
(u), given by ðΔuþ ΔūÞ=ðuþ ūÞ, and the down quark (d),
given by ðΔdþ Δd̄Þ=ðdþ d̄Þ, allow a high level of
discrimination between theoretical models that describe
the quark-spin contribution to nucleon spin. Such ratios
may be extracted from measurements of g1=F1 at leading
order in Q2 according to
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where Rdu ≡ ðdþ d̄Þ=ðuþ ūÞ. Earlier experimental data
for ðΔuþ ΔūÞ=ðuþ ūÞ and ðΔdþ Δd̄Þ=ðdþ d̄Þ are
shown in Fig. 3, where the data in the upper (lower) part
of the figure represent the up (down) quark ratio. The data
shown are from HERMES [54] and COMPASS [55], both
semi-inclusive DIS measurements, and JLab experiments
E99-117 [28] and CLAS EG1b [56], both of which are
inclusive DIS measurements. The semi-inclusive DIS data
from HERMES and COMPASS are constructed from their
published polarized PDF data, where we used the same
unpolarized PDF parametrizations as were applied in the
original analyses: CTEQ5L [57] for the HERMES data, and
MRST2006 [58] for the COMPASS data. The uncertainties
are thus slightly larger than could be achieved from the raw
data. The dashed curve represents a next-to-leading order
(NLO) QCD global analysis that includes target mass
corrections and higher-twist effects [59], and the dash-
dotted curve represents a pQCD calculation that includes
orbital angular momentum effects [50]. The solid curve
shows the statistical quark model [51], and the dash–triple-
dotted curve is a modified NJL model [52]. At x ¼ 1, DSE
calculations [53] are indicated by open stars (crosses) for

FIG. 2. World data for An
1 from SLAC E142 [43] and E154 [44],

HERMES [45], and JLab E99-117 [28,46], compared to various
models, including a pQCD-inspired global analysis (dashed
curve) [49], a statistical quark model from Bourrely et al. (solid
curve) [51], a pQCD parametrization including OAM from
Avakian et al. (dash-dotted curve) [50] and a CQM model from
Isgur (gray band) [48]. Also plotted is an NJL-type model
from Cloët et al. (dash triple-dotted curve) [52]. Predictions
from Dyson-Schwinger equation treatments by Roberts et al. [53]
are shown at x ¼ 1.
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the up (down) quark ratios. Clearly, both pQCD models
predict that Δq=q → 1 at large x, which implies that the
positive helicity state of the quark (quark spin aligned with
the nucleon spin) must dominate as x → 1. The data for
ðΔuþ ΔūÞ=ðuþ ūÞ are consistent with this prediction;
however, we note that the current ðΔdþ Δd̄Þ=ðdþ d̄Þ data
show no sign of turning positive as we approach the large x
region. The calculation of Avakian et al. fits the down quark
data better, but still has a zero crossing at x ∼ 0.75. The data
in Fig. 3 imply that in general, the up quark spins tend to be
parallel to the nucleon spin, whereas the down quark spins
are antiparallel to the nucleon spin. The trend of the down
quark data, supported by the model of Avakian et al.,
suggests that quark orbital angular momentum might play
an important role in the spin of the nucleon. The experiment
presented here aims to provide more complete kinematic
coverage for the down quark, especially in the large-x
region approaching x ∼ 0.6, where the predictions of the
pQCD models start to contrast with those of the CQMs and
the DSE calculations.

D. Outline of the paper

The body of this paper is structured as follows: in Sec. II
we discuss the experimental setup and the performance of
the polarized electron beam and of the particle detectors for
JLab E06-014; in Sec. III, we discuss the polarized 3He
target; in Sec. IV, the data analysis to obtain the cross
sections and asymmetries is presented. The nuclear cor-
rections required to extract the neutron results for d2, a2,
A1, and g1=F1 are also discussed. In Sec. V the results of

the experiment are presented. In particular, 3He results for
the unpolarized cross section, double-spin asymmetries, g1,
g2, A1, and g1=F1 are given in Sec. VA. In Sec. V B the
results for the neutron d2 and a2 are presented. Following
this, the analysis necessary to obtain the twist-4 matrix
element f2, leading to the extraction of the color forces Fy

E
and Fy

B on the neutron, is discussed in Sec. V B 3. The
quantities A1 and g1=F1 on the neutron are presented
in Secs. V B 4 and V B 5, respectively. The flavor separa-
tion analysis to obtain ðΔuþΔūÞ=ðuþ ūÞ and ðΔdþ Δd̄Þ=
ðdþ d̄Þ is discussed, and the results are presented in
Sec. V C. Concluding remarks are given in Sec. VI.
Appendix A gives an overview of the DIS kinematics,
structure functions, and cross sections, while Appendix B
discusses the details of the operator product expansion. Fits
to unpolarized nitrogen cross sections and positron cross
sections measured in this experiment, used in correcting
the measured e−3He cross section, are presented in
Appendix C. Also presented in that appendix are fits to
world proton data on g1=F1 and A1, needed for the nuclear
corrections. Details for the world Γn

1 data and fitting the
higher-twist component of Γn

1 are given in Appendix D.
The systematic uncertainties for all results presented in this
paper are tabulated in Appendix E.

II. THE EXPERIMENT

The E06-014 experiment ran in Hall A of Thomas
Jefferson National Accelerator Facility (Jefferson Lab or
JLab) for six weeks in five run periods from February to
March 2009, consisting of a commissioning run using
1.2 GeV electrons, a 5.89 GeV run using polarized
electrons, a 4.74 GeV run using unpolarized electrons,
and finally runs using polarized electrons at energies of
5.89 GeV and 4.74 GeV. The data at 4.74 GeV and
5.89 GeV were the production data sets, which covered
the resonance and deep inelastic valence quark regions, in a
kinematic region of 0.25 ≤ x ≤ 0.9 and 2 GeV2 ≤ Q2 ≤
6 GeV2, shown in Fig. 4.
Polarized electrons were scattered from a polarized 3He

target, which acts as an effective polarized neutron target
[60]. The scattered electrons were detected independently in
the left high-resolution spectrometer (LHRS) and in the
BigBite spectrometer, which were oriented at a scattering
angle of θ ¼ 45° to the left and right of the beam line,
respectively. The unpolarized cross section σ0 was extracted
from the LHRS data, and the double-spin asymmetries A∥
and A⊥ were obtained from the BigBite data. The matrix
element d2 was computed using Eq. (17), and the virtual
photon asymmetry A1 and structure function ratio g1=F1

were extracted according to Eqs. (18) and (19), respectively.
The measurement with the BigBite spectrometer con-

sisted of 20 evenly spaced, continuous bins in x with a bin
width of 0.05 for each beam energy; of these, seven were
discarded because of insufficient statistics. The statistics in

FIG. 3. The world data for the up- and down-quark polarized-
to-unpolarized PDF ratios. The data shown are from HERMES
[54] and COMPASS [55], both of which are semi-inclusive DIS
measurements, and JLab E99-117 [28] and CLAS EG1b [56],
both of which are DIS measurements. Theoretical curves are from
an NLO QCD analysis from Leader et al. [59] (dashed curves)
and pQCD-inspired fit from Avakian et al. [50] (dash-dotted
curves). The solid curve shows a statistical quark model from
Bourrely et al. [51], and the dash–triple-dotted curve shows a
modified NJL model calculation from Cloët et al. [52]. The open
stars (crosses) at x ¼ 1 indicate the DSE calculations from
Roberts et al. [53] for up (down) quarks.
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all bins for a given beam energy were recorded simulta-
neously. The LHRS data were acquired in 9 unevenly
spaced bins in the scattered electron momentum p for the
E ¼ 4.74 GeV run and 11 unevenly spaced bins for the
E ¼ 5.89 GeV run, covering a range of 0.6 ≤ p ≤
1.7 GeV as listed in Tables I and II. The statistics in the
LHRS were recorded sequentially. For the d2 extraction,
the measured cross sections were interpolated and extrapo-
lated to match the binning of the BigBite data.
The experimental run plan optimized its statistics on the

d2 integral [Eq. (17)] in order to minimize the error on d2,
not on the structure functions g1 and g2. After the extraction

of d
3He
2 , nuclear corrections were applied (Sec. IV D) to

obtain dn2 .

A. The polarized electron beam

The high-energy longitudinally polarized electron beam
is provided by the Continuous Electron Beam Accelerator

Facility (CEBAF) at JLab [61]. Polarized electrons are
produced by shining circularly polarized laser light on a
strained superlattice gallium arsenide (GaAs) photoca-
thode. This produces electrons with a polarization of up
to ∼85% at currents up to ∼200 μA. High-energy electrons
are achieved by two superconducting radio-frequency (RF)
linear accelerators connected by two magnetic recirculating
arcs. The beam may be circulated around the racetrack
accelerator up to a maximum of 5 times to achieve an
energy of ∼6 GeV [61].

B. Beam helicity

To control certain systematic errors associated with the
electron beam polarization during the experiment, the
helicity of the electrons was flipped every 33 ms. This
time frame was referred to as a helicity window, and
successive windows were separated by master pulse sig-
nals. Each window had a definite helicity state in which the
electron spin was either parallel (þ) or antiparallel (−) to
the beam direction. Helicity windows were organized into
quartets, taking the form þ − −þ or −þþ−. The helicity
state of the first window of the quartet was decided by a
pseudorandom number generator, and in turn defined the
helicity state for the remaining windows. A signal indicat-
ing the helicity of each window was sent to the data
acquisition (DAQ) systems.
At the electron source an insertable half-wave plate

(IHWP) can be placed in the path of the laser illuminating
the strained GaAs source to reverse the helicity of the
extracted polarized electrons relative to the helicity signal.
This was done for about half of the statistics to minimize
possible systematic effects due to the helicity bit. The
asymmetry in the amount of charge delivered with the two
helicity states was found to be negligible [62]; this was
accomplished using a feedback loop and a specialized
data acquisition system developed by a previous JLab
experiment [63].
To determine the actual sign of the electrons’ helicity state

for eachwindow type, ameasurement of the quasielastic 3He

FIG. 4. The E06-014 kinematic coverage in Q2 and x. The
lower band represents the E ¼ 4.74 GeV data set and the upper
band the E ¼ 5.89 GeV one. The black dashed line shows
W ¼ 2 GeV. The regions to the left and right of this line
correspond to DIS and resonance kinematics, respectively.

TABLE II. Kinematic bins for the LHRS for the 5.89 GeV run.
The LHRS momentum setting is labeled as p0.

p0 [GeV] x Q2 [GeV2]

0.60 0.209 2.07
0.70 0.248 2.42
0.90 0.332 3.11
1.13 0.437 3.90
1.20 0.471 4.14
1.27 0.506 4.38
1.34 0.542 4.62
1.42 0.584 4.90
1.51 0.634 5.21
1.60 0.686 5.52
1.70 0.746 5.87

TABLE I. Kinematic bins for the LHRS for the 4.74 GeV run.
The LHRS momentum setting is labeled as p0.

p0 [GeV] x Q2 [GeV2]

0.60 0.215 1.66
0.80 0.301 2.22
1.12 0.458 3.10
1.19 0.496 3.30
1.26 0.536 3.49
1.34 0.584 3.71
1.42 0.634 3.93
1.51 0.693 4.18
1.60 0.755 4.43
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asymmetry was made and compared to a theoretical calcu-
lation [64]. For more details, see Sec. IV C.

C. Hall A overview

The layout of the Hall A hardware for this experiment is
shown in Fig. 5. Along the beam line are beam diagnostic
tools, like the beam current monitors (BCMs), beam
position monitors (BPMs), and the Møller and Compton
polarimeters. A polarized 3He target was utilized as an
effective polarized neutron target. Scattered electrons were
measured independently in the LHRS and the BigBite
spectrometers, each equipped with a gas Čerenkov detector
and electromagnetic calorimeters for particle identification
(PID) purposes. In the LHRS quadrupole and dipole
magnets are used to focus charged particles into the
detector stack, while a single dipole magnet bends charged
particles into the BigBite detector stack. In each spectrom-
eter wire drift chambers are used to reconstruct particle
tracks. Each of these elements will be described in the
following sections.

D. The Hall A beam line

The beam line in Hall A contains a number of important
diagnostic components: BCMs, BPMs, and the polarimetry
apparatus. We first discuss the BCMs and BPMs in
Sec. II D 1, followed by the beam polarization measure-
ments in Sec. II D 2. The measurement of the beam energy
is presented in Sec. II D 3.

1. Beam charge and position monitoring

The experiment ran at beam currents of ∼15 μA.
Fluctuations about the required value and beam trips,
due to difficulties in the accelerator or in the other two
experimental halls, make it important to monitor the beam

current. To this purpose two BCMs, which are resonant RF
cavities, are utilized. These cavities, stainless-steel cylin-
ders with a Q factor of ∼3000, were tuned to the
fundamental beam frequency of 1.497 GHz. The two
BCMs were located 25 m upstream of the target, where
one cavity was denoted as upstream and the other as
downstream, based on their relative positions along the
beam line. Each produced a voltage signal that was
proportional to the measured current. Three copies of the
signal were recorded, each amplified by a different gain
factor (1, 3, or 10), resulting in six signals altogether (three
for each cavity) [65]. Each copy of the signal was amplified
by its assigned gain and then sent to a voltage-to-frequency
converter. These signals were calibrated using a Faraday
cup [64]. Each signal was read out by scalers in the LHRS
and BigBite spectrometers.
For accurate vertex reconstruction and proper momen-

tum calculation for each detected electron, the position of
the electron beam in the plane transverse to the nominal
beam direction at the target was needed. The measurement
of the beam position was accomplished through the use of
two BPMs. They each consisted of four antenna arrays
placed ∼7.5 m and ∼1.3 m upstream of the target. Pairs of
wires were positioned at�45° relative to the horizontal and
vertical directions in the hall. The signal induced in the
wires by the beam was inversely proportional to the
distance from the beam to the wires and was recorded
by analog-to-digital converters (ADCs). The differences
between the signals in pairs of wires in a given plane
yielded a positional resolution of 100 μm [66]. Combining
the measurements of the two BPMs yielded the trajectory
of the beam; extrapolating these data gave the position at
the target. The BPMs were calibrated using wire scanners
called harps. A single harp was located immediately
downstream of each BPM. Harp measurements allow the
relative position measurements from the BPMs to be tied to
the Hall A coordinate system. They interfered with the
beam, so dedicated runs called “bull’s eye” scans were
needed. A bull’s eye scan consisted of five measurements
with ðx; yÞ data points in the plane perpendicular to the
beam momentum with the beam positioned at different
locations. Four of these points described the corners of a
4 mm by 4 mm square, and the fifth data point measured the
square’s center [64].
In order to avoid damage to the glass target cell due to

beam heating, the beam was rastered (scanned) at high
speeds (17–24 kHz) across a large rectangular cross section
ð≈4 × 6 mm2Þ at the target. This rectangular distribution
was achieved by two dipole magnets (one for vertical, one
for horizontal) located 23 m upstream of the target [65].

2. Beam polarization measurement

The polarization of the electron beam was measured
using two different polarimeters, a Møller and a Compton
polarimeter. Møller polarimetry utilizes scattering the

FIG. 5. Overhead view of the experimental setup for E06-014.
The longitudinally polarized electron beam enters from the left
and scatters from the longitudinally or transversely polarized 3He
target, which is discussed in Sec. III. The Møller and Compton
polarimeters provide beam polarization measurements, presented
in Sec. II D 2. The LHRS and BigBite spectrometers are
positioned at 45° with respect to the beam line and detect
scattered electrons.
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polarized electron beam from polarized atomic electrons in
a magnetized iron foil. The scattering rate is proportional to
the beam and foil polarizations [65,67,68]. Such a meas-
urement required the insertion of a magnetized foil into the
beam path which inhibited normal data taking. A total of
seven Møller measurements were made during the course
of the experiment. This method has subpercent statistical
accuracy, but a sizable systematic uncertainty mainly due to
uncertainty in the target foil polarization. The total relative
systematic uncertainty on the Møller measurement during
this experiment was ∼2%.
The Compton polarimeter utilized ~e − ~γ scattering to

determine the polarization of the electron beam as the
interaction is sensitive to the relative polarizations of the
electrons and photons [69,70]. The newly commissioned
polarimeter consisted of a magnetic chicane which
deflected the electron beam toward a photon source and
deflected unscattered electrons back toward the original
beam path. At the center of the chicane was the photon
source, a 700 mW laser at a wavelength of 1064 nm. The
laser output was 400–500 W with a resonant Fabry-Pérot
cavity [71]. The laser polarization for the left- and right-
circular polarization states was 99%� 0.02% during the
experiment [64]. There was also an electromagnetic calo-
rimeter, a Gd2SiO5 crystal doped with cerium, for detecting
scattered photons [72]. The electron detector was not used
in this experiment.
The electron polarization was extracted from an asym-

metry in the rate of scattering circularly polarized photons
from the longitudinally polarized electrons, between two
unique spin configurations: electron and photon spins
parallel and antiparallel. The energy-weighted, integrated
asymmetry was measured in a new integrating DAQ and
then combined with the polarimeter’s theoretically calcu-
lated analyzing power to determine the electron beam
polarization [72,73]. Since Compton polarimetry is a
noninvasive measurement, polarization measurements
could be performed in parallel with data taking.
Combining the results of the Møller and Compton

measurements for the three production run periods with
polarized beam resulted in a beam polarization of 74%�
1% (E ¼ 5.89 GeV), 79%� 1% (E ¼ 5.89 GeV), and
63%� 1% (E ¼ 4.74 GeV) [64].

3. Beam energy measurement

The beam energy was monitored throughout the experi-
ment using the so-called Tiefenback method [74], which
combined BPMmeasurements and the estimated integral of
the magnetic field produced by the Hall A arc magnets.
This method was calibrated against an invasive “arc
energy” measurement. This measurement used the results
of a detailed field mapping of all nine arc dipoles (including
the reference one) after following a controlled excitation. In
the actual arc energy measurement, all nine dipoles were
excited following the same curve and the field was

measured in the ninth dipole. The actual deflection of
the beam was then measured, and the beam energy was
computed from the deviation from the nominal bend angle
of 34.3°. The uncertainty on such a measurement was
δE=E ≈ 2 × 10−4 [75]. Arc measurements were not per-
formed during this experiment but were done for the
immediately preceding experiment, E06-010 [76]. Their
arc measurement was used as a reference for the Tiefenback
measurements. The arc measurement conducted during
E06-010 for ∼6 GeV beam energies yielded a value of
5889.4� 0.5stat � 1syst MeV, while the Tiefenback meas-
urement yielded 5891.3� 2.5syst MeV [76]. In our data
analysis we used the Tiefenback measurements without
correcting for the difference relative to the arc measure-
ment, which was ≪ 1%.

E. The spectrometers

1. The left high-resolution spectrometer

The Hall A high-resolution spectrometers were designed
for in-depth studies of the structure of nuclei and nucleons.
The LHRS has high resolution in both the momentum and
angle reconstruction of the scattered particles, in addition to
the capability of running at high luminosity.
At the entrance of the LHRS there are two super-

conducting quadrupoles, for focusing the charged particles,
followed by a superconducting dipole magnet that bends
the charged particles upwards through a nominal 45°
bending angle. After this, the particles pass through a third
quadrupole before entering the detector stack. The LHRS
has an angular acceptance of 6 msr, for a horizontal
(vertical) angular resolution of 0.5 mrad (1 mrad). The
momentum acceptance is 10% with a momentum resolu-
tion of 10−4. The designed maximum central momentum is
4 GeV [65].
For E06-014 the LHRS detector stack was composed of

a number of subpackages, located in the shield hut at the
end of the magnet configuration. The detector subpackages
included vertical drift chambers (VDCs), which provided
tracking information for scattered particles, and the S1 and
S2m scintillating planes served as the main trigger. Finally,
the gas Čerenkov and the pion rejector yielded PID
capabilities. The layout of the spectrometer is shown
in Fig. 6.
The VDCs allowed precise reconstruction of particle

trajectories. Each chamber had two wire planes containing
368 sense wires, spaced 4.24 mm apart [65]; the wires of a
given plane were oriented orthogonally with respect to
those in the other plane. The two wire planes lay in the
horizontal plane of the laboratory, thus oriented at 45° with
respect to the central (scattered) particle trajectory. Gold-
plated Mylar high-voltage planes were placed above and
below each wire plane at an operating voltage of −4 kV,
thus setting up an electric field between the high-voltage
planes. This defined a “sense region” for each wire plane.
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The chambers were filled with a mixture of 62% argon and
38% ethane by weight. Traversing particles ionized the gas
mixture; the ionization electrons drifted along the field lines
to the closest sense wires, triggering a “hit” signal in the
wires. A central track passing through at an angle of 45°
fired five sense wires on average, resulting in a positional
resolution of ∼100 μm and an angular resolution of
∼0.5 mrad [65].
The gas Čerenkov had ten spherical mirrors, each with a

focal length of 80 cm, stacked in two columns of five. Each
mirror was viewed by a photomultiplier tube (PMT), placed
45 cm from the mirror. The chamber was filled with CO2

gas at standard temperature and pressure with an index of
refraction of 1.00043 [77]. This yielded a momentum
threshold for triggering the gas Čerenkov of ∼17 MeV
for electrons and ∼4.8 GeV for pions.
Incident particles were also identified using their energy

deposits in the lead glass shower calorimeter, called a pion
rejector. It was composed of two layers of 34 lead-glass
blocks, the first 14.5 cm × 14.5 cm × 30 cm and the sec-
ond 14.5 cm × 14.5 cm × 35 cm, made of the material
SF-5, which has a radiation length of 2.55 cm [78]. The
blocks were stacked so that the long dimensions of the
blocks were transverse with respect to the direction of
the scattered particle from the target. The gaps between
the blocks in the first layer were compensated for by a
slight offset in the second layer of blocks.
Since electrons and heavier particles like pions have

different energy deposition distributions in electromagnetic
calorimeters, we can distinguish between the two particle
distributions. Electrons tend to leave most (if not all) of
their energy in the calorimeter, while pions act like
minimum ionizing particles (MIPs), leaving only a small
amount of energy in the calorimeter. The energy loss of a
MIP can be approximated by 1.5 MeV per g=cm2 traversed
[79]. With the density of SF-5 being ∼4 g=cm3 [77], pions

deposited ∼175 MeV in the calorimeter (both layers of the
pion rejector taken together). As a result there are two
distinct peaks in the energy distribution with good sepa-
ration in the calorimeter: one due to pions and the other due
to electrons. This allows the selection of electrons in the
analysis while rejecting pions.
Figure 7 shows a typical signal distribution in the gas

Čerenkov. Electron (pion) candidates are indicated by the
distributions centered at ∼6.5 photoelectrons (≲2 photo-
electron) in Fig. 7, that are obtained by placing cuts on the
pion rejector signals. While scattered electrons yielded an
ADC signal corresponding to the main photoelectron peak
in the gas Čerenkov, pions may also influence the ADC
spectrum. This occurs because pions could have ionized the
atoms of the gaseous medium in the Čerenkov, producing
electrons with enough energy to trigger the detector. Such
electrons are called δ rays, or knock-on electrons. The
distribution of these electrons has a peak at the one-
photoelectron peak (leftmost peak in Fig. 7) with a long
tail underneath the multiple (main) photoelectron peak.
These knock-on electrons can effectively be removed in the
analysis because on average they deposited a small amount
of energy in the pion rejector. To identify electrons the ratio
E=p of the energy deposited in the pion rejector and the
reconstructed momentum was required to be greater than
0.54, as illustrated in Fig. 8 (Sec. II G). Additionally, events
that deposited less than 200 MeV in the first layer of the
pion rejector were removed from the analysis, as they were
likely to be pions or knock-on electrons.
There were two planes of plastic scintillating material,

labeled S1 and S2m. S1 was composed of six horizontal

FIG. 6. The layout of the left high-resolution spectrometer in
Hall A of Jefferson Lab during E06-014. Drawing not to scale.

FIG. 7. A typical signal distribution in the LHRS gas Čerenkov
(black curve). Electron (pion) candidates were selected by
placing cuts on the energy deposited in the pion rejector,
described by E=p > 0.54 (E=p < 0.54) and for the energy
deposited in the first layer of the pion rejector to be greater than
(less than) 200 MeV. Electrons are indicated by the distribution
centered at ∼6.5 photoelectrons, while pion candidates have their
distribution peaked at ∼1 photoelectron.
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scintillating paddles with 36 cm × 29.3 cm × 0.5 cm
active volume. Each paddle was viewed by a 5.1 cm-
diameter PMT on each end. The paddles overlapped by
10 mm, oriented at a small angle with the S1 plane. The
S2m plane consisted of 16 nonoverlapping paddles with
dimensions of 43.2 cm × 14 cm × 5.1 cm. The timing
resolution of the PMTs used for each plane was
∼50 ps [80].
When a paddle absorbed ionizing radiation, it emitted

light which traveled down the length of the paddle and was
collected by the PMTs attached at each end. The timing
information encoded in the PMTs’ time-to-digital convert-
ers (TDCs) is utilized in the formation of the LHRS main
trigger, discussed in Sec. II F.

2. The BigBite spectrometer

The BigBite spectrometer is a large-acceptance spec-
trometer, able to detect particles over a wide range in
scattering angle and momentum. BigBite consists of one
large dipole magnet, capable of producing a maximum
magnetic field of ∼1.2 T. The magnet entrance was located
1.5 m from the target center, resulting in an angular
acceptance of about 64msr.Charged particleswithmomenta
of ∼0.5 GeV entering the magnet near its optical axis are
then deflected roughly 25° for a total trajectory of 64 cm
when the field is 0.92 T [81]. The momentum range covered
by the spectrometer at full field had a lower bound of roughly
0.6 GeV. In its standard configuration, the magnet bent
negatively charged particles upwards into the detector stack,
while positively charged particles were deflected down-
wards. The large acceptance of the spectrometer allowed the
detection of both negatively andpositively charged particles.
The detector stack for E06-014 included multiwire drift
chambers for particle tracking, a newly installed gas

Čerenkov, a scintillator plane, and an electromagnetic
calorimeter, composed of a preshower and shower calorim-
eter. The gasČerenkov, scintillator plane, and the preshower
and shower calorimeters were used for PID purposes. The
schematic layout of BigBite is shown in Fig. 9.
The multiwire drift chambers were utilized for particle

tracking, in much the same way as described for the VDC
planes in the LHRS. There were three chambers, each filled
with a 50–50 mixture of argon and ethane gas. Each
chamber had three pairs of wire planes, giving a total of
18 planes in all. Each of the 18 planes was perpendicular to
the detector’s central ray (Fig. 9), bounded by cathode
planes 6 mm apart from one another. Halfway between the
cathode planes was a plane of wires, composed of alter-
nating field and sense wires. The field wires and the
cathode planes were held at the same constant high voltage,
producing a nearly symmetric potential in the region close
to the sense wires. Each pair of wire planes had a different
orientation so as to optimize track reconstruction in three
dimensions. The two so-called X planes (X, X’) ran
horizontally (in detector coordinates), while the U and V
planes were oriented atþ30° and−30° with respect to the X
planes, respectively. The wires in each plane were 1 cm
apart and the primed planes (X’, U’, V’) were offset from
their unprimed counterparts by 0.5 cm. This allowed the
tracking algorithm to determine if the track passed above or
below a given wire in the X plane based upon which wire
registered a hit in the X’ plane, for example. This alignment
resulted in a positional resolution of less than 300 μm [62].
The gas Čerenkov, which was constructed by Temple

University specifically for this experiment [82], included
20 spherical mirrors, each with a focal length of 58 cm,
stacked in two columns of ten. The chamber was filled with
the gas C4F8O, which has an average index of refraction of
1.00135 [62]. Čerenkov light incident on each mirror was
reflected onto a corresponding secondary flat mirror. This
mirror then directed the Čerenkov light onto the face of a
corresponding PMT. To boost the amount of light collected,
each PMTwas fitted with a cone similar to a Winston cone

FIG. 8. A typical signal distribution in the LHRS pion rejector
layers, where the particle’s total deposited energy divided by its
reconstructed momentum is plotted. Electron (pion) candidates
are shown by the distributions on the right (left), as selected by
placing a cut on the gas Čerenkov signal to be greater than (less
than) two photoelectrons.

FIG. 9. The layout of the BigBite spectrometer in Hall A of
Jefferson Lab. Drawing not to scale. The central ray drawn here is
for a path similar to what a 1.7 GeV electron would take through
the magnet. Figure modified from [80].
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[83]. This extended the effective diameter of each PMT
collection area from 5 in. to 8 in. The PMTs were recessed
5 in. within their shielding in order to reduce the effects of
the BigBite magnetic field. The resulting gap between the
PMT face and the edge of the shielding was filled with a
cylindrical lining of Anomet UVS reflective material, so as
to direct light incident upon this region onto the PMT face.
Figure 10 shows a typical signal distribution in the gas
Čerenkov. Electron (pion) events are indicated by the right
(left) distributions. Electron events for a given PMT were
identified by selecting those events that had a hit in their
corresponding TDC with a projected track from the target
that fell within the PMT’s geometrical acceptance.
The calorimeter was composed of two layers of lead-

glass blocks. The first layer was the preshower, composed
of the material TF-5, which has a radiation length of
2.74 cm. The preshower was located 85 cm from the first
drift chamber plane. It contained 54 blocks of dimensions
35 cm × 8.5 cm × 8.5 cm. They were organized in two
columns of 27 rows. The long dimension of each block was
oriented transverse with respect to scattered particles
coming from the target. The shower layer was composed
of the material TF-2, which has a radiation length of
3.67 cm and was located 15 cm behind the preshower and
1 m from the first drift chamber. It had 189 blocks of the
same dimensions as the blocks in the preshower, but they
were organized in seven columns and 27 rows. The long
dimension of the block was oriented along the scattered
particle path, ensuring the capture of a large amount of the
electromagnetic shower of the particle [84].
The plane located between the preshower and the shower

was a scintillator plane composed of 13 paddles of plastic
scintillator, each of which had a PMT at each end with a
timing resolution of 0.3 ns. Each paddle had the dimensions
17 cm × 64 cm × 4 cm. The first dimension was trans-
verse with respect to the scattered particles, while the short
dimension was along the scattered particle path. This
resulted in an active area of 221 cm × 64 cm. This plane
provided an additional source of pion rejection to

complement the gas Čerenkov and the shower calorimeter,
as the charged pions left a significant signal in the low end
of the ADC spectrum via knock-on electrons [62].

F. Data acquisition and data processing

In this experiment, the CEBAF Online Data Acquisition
[85] system was used to process the various trigger signals
and data coming from the LHRS and BigBite spectrom-
eters, beam line, and target equipment. The LHRS and the
BigBite detector systems were run independently with a
total of 5 TB of data recorded.
Eight triggers were configured for E06-014, summarized

in Table III. The T8 trigger was used for troubleshooting
purposes only. It was a 1024 Hz clock, injected into the data
stream to ensure that the electronics were working cor-
rectly. The T5 trigger was the coincidence (coin.) trigger
between the LHRS and BigBite, used for optics calibration
purposes.
The generation of the main LHRS trigger (T3) required a

hit in both scintillating planes S1 and S2m, where a hit in a
single plane corresponded to a signal in the two PMTs
affixed to a paddle (left and right sides) in a plane. Thus, a
T3 trigger corresponded to a pulse detected in four PMTs,
two in the S1 plane and two in the S2m plane. The timing of
this trigger was set by the leading edge of the TDC signal
recorded in the PMT attached to the right side of the S2m
scintillator paddles [66]. The second LHRS trigger was the
T4 trigger. The only difference between the T3 and T4
triggers was that a T4 was generated when there was a
coincidence between either S1 or S2m and the gas
Čerenkov detector, without generating a T3 trigger. The
T4 trigger was used to study the efficiency of the T3 trigger,
as these events were potentially good events since they
generated a signal in the gas Čerenkov. It was found that the
efficiency of the T3 trigger was 99.95% over the course of
the experiment [86].
The BigBite spectrometer had four dedicated triggers,

T1, T2, T6, and T7. The T1 and T6 triggers involved taking
the hardware (voltage) sum of the calorimeter blocks
belonging to the cluster with the largest signal, where a
cluster for the preshower and shower calorimeters was
defined as two adjacent rows of calorimeter blocks. There

FIG. 10. Signal distributions in the BigBite gas Čerenkov.
Electron (pion) events are shown by the right (left) distributions.

TABLE III. Triggers used during E06-014.

Trigger Spectrometer(s) Description

T1 BigBite Low shower threshold
T2 BigBite Coin. of T6 and T7
T3 LHRS Coin. of S1 and S2m
T4 LHRS Coin. of either S1

or S2m and Čerenkov
T5 LHRS, BigBite Coin. of T1 and T3
T6 BigBite High shower threshold
T7 BigBite Gas Čerenkov
T8 LHRS, BigBite 1024 Hz Clock
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are 26 clusters each for the preshower and shower calo-
rimeters. The sum of the preshower and shower signals was
then formed and sent to a discriminator. If this signal was
greater than ∼300–400 MeV (∼500–600 MeV), then the
T1 (T6) trigger was formed. The T7 trigger was formed in a
manner similar to the T1 and T6 triggers, but using the
Čerenkov detector instead of the preshower or shower
calorimeter. The Čerenkov signals from two adjacent rows
of mirrors (four mirrors in total) were summed, resulting in
nine overlapping mirror clusters. If this sum was larger than
the set threshold value (> 1–1.5 photoelectrons), then the
T7 trigger was formed. The main trigger for the BigBite
spectrometer, T2, imposed a geometric constraint on the
incident particle track by requiring a coincidence between
the geometrically overlapping regions in the gas Čerenkov
and the calorimeter. An example of an event that generated
a T2 trigger is illustrated in Fig. 11: a particle that triggered
cluster C1 in the gas Čerenkov would also have to trigger at
least one of the clusters A–D in the calorimeter. Similar
coincidences were imposed for the eight other groupings
that could form a T2 trigger.
The raw data were processed by the Hall A Analyzer

[87], which is based on ROOT [88]. Specific C++ classes
were written to interpret the data recorded by the various
detectors and their subdetectors. For instance, there are
classes that convert the ADC signals registered in a
calorimeter block into the corresponding amount of energy
deposited. There are also classes that handle the compu-
tation of a particle’s path (or track) through the LHRS (and
BigBite) up to its focal plane and its reconstructed vertex
position back at the target. The optics for BigBite required
special attention, as discussed in [62,64,80].

G. Particle identification

The LHRS and the BigBite spectrometers each utilized a
gas Čerenkov detector and a double-layered lead-glass
shower calorimeter for PID purposes. In this experiment,
PID corresponds to distinguishing electrons from pions,
which constituted the primary background.
The PID performance of each detector was character-

ized by the efficiencies of the conditions (or cuts) placed
on the corresponding observable. Before PID cut effi-
ciencies were evaluated, the sample distribution of events
to be studied was selected using data quality criteria (such
as removing beam trips) and conditions to remove events
that may have originated in the target’s glass end caps
[62,86]. The electron cut efficiency εe is defined as the
ratio of the number of events that pass a given cut to the
size of the electron event sample defined by another
detector. For the gas Čerenkov, the electron sample was
chosen by using the calorimeter, and vice versa. To
characterize how well a given detector can reject pions,
the rejection factor fπ;rej is evaluated. It is defined as the
ratio of the size of the selected pion sample to the number
of events misidentified as electrons for a given cut. The

PID cuts were chosen such that the pion rejection was
maximized while the highest electron efficiency was
maintained.
In the momentum acceptance range of the experiment,

0.6 GeV ≤ p ≤ 1.7 GeV, the electron cut efficiency for the
LHRS gas Čerenkov was found to be εcere ≈ 96% for a cut
of greater than two photoelectrons in the ADC. For the
LHRS pion rejector, εpre ≈ 99% for E=p > 0.54. These
efficiencies are critical for the LHRS data since they
contribute directly in the determination of the unpolarized
cross section (Sec. IV B). The pion rejection factor was
found to be ∼660 for both the gas Čerenkov and pion
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FIG. 11. The geometrical overlap for the main trigger for the
BigBite spectrometer. The Čerenkov mirrors are represented by
the leftmost column, where the cluster groupings are labeled by
Ci, with i ¼ 1;…; 9. The preshower blocks are shown as the
middle column of colored blocks, while the shower blocks are the
long blocks in the rightmost column. The calorimeter cluster
groupings are labeled with the letters A–Z. The dashed lines
indicate typical electron paths at the extremes of the acceptance of
the BigBite spectrometer.
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rejector, resulting in a combined rejection of fπ;rej ≈ 4 ×
105 [86]. As a result, the pion contamination in the final
electron sample was negligible.
PID studies were also conducted for the data recorded by

BigBite. Here, the pion rejection factor was determined to
be better than 2 × 104 when combining the pion rejection
capabilities of the gas Čerenkov [89], preshower and
shower calorimeters, and the scintillator plane [62].
Unlike the cross section analysis using the LHRS data,
the electron cut efficiencies do not play a role in the
asymmetry extraction that is performed using the BigBite
data; the efficiencies cancel in the asymmetry definition
(Sec. IV C).

III. POLARIZED 3He TARGET

Since the lifetime of the neutron is less than 15 min [90]
outside the nucleus, a free-neutron target is not practical.
3He, a spin-1=2 nucleus consisting of two protons and a
neutron, is a candidate for a polarized neutron target.
Deuterium, a spin-1 nucleus consisting of a proton and a
neutron, is another option. Both nucleons in deuterium
have their spins aligned with the nuclear spin. However,
large corrections due to the proton result in large uncer-
tainties when using a deuterium target. When 3He is
polarized, there are three principal states in play: ∼90%
of the time the nucleus is in the symmetric S state; ∼1.5%
of the time the nucleus is in the S0 state; and ∼8% of the
time the nucleus is in theD state; see Fig. 12. In the S state,
the spins of the protons are antiparallel to one another,
resulting in the neutron carrying the majority of the 3He
polarization [60]. As a result, a polarized 3He target can be
used as an effective polarized neutron target.

In this experiment, polarized 3He ð ~3HeÞ was used to
study the electromagnetic structure and the spin structure of
the neutron. Two major methods exist to polarize 3He
nuclei. The first one uses the metastable-exchange optical
pumping technique [91], while the second method utilizes
both spin-exchange [92] and optical pumping [93], dubbed
hybrid spin-exchange optical pumping.

85Rb atoms were optically pumped using 795 nm
circularly polarized laser light, inducing the D1 transition
in 85Rb: 52S1=2 (m ¼ −1=2) → 52P1=2 (m ¼ þ1=2), in
accordance with the selection rule of ΔL ¼ þ1. The

excited 85Rb electrons decay from the p orbital to the s
orbital with equal probabilities for them ¼ �1=2 substates,
but the excitation occurs only for them ¼ −1=2 initial state
of the s orbital; this results in the selective population of the
m ¼ 1=2 state of the s orbital. Second, the polarization of
the 85Rb atoms was transferred to 39K atoms via spin-
exchange binary collisions [92]. In the third and final step,
the polarization of the 85Rb and 39K atomic electrons was
transferred to the 3He nuclei via the hyperfine interaction,
where the nuclear spin of 3He takes part in the process [94].
The use of 39K greatly decreases the spin-relaxation rate for
collisions involving 3He, resulting in an increase in the
spin-exchange efficiency of the polarization process [95].
As the atomic electrons decayed to the ground state,

photons were emitted. These photons were typically
unpolarized, and therefore reduced the efficiency of the
pumping process. To minimize this effect for the alkali
atoms, a small amount of N2 buffer gas was added to the
cell. The excitation energy of the alkali atoms was passed to
the rotational and vibrational modes of the buffer gas via
collisions, reducing the emission of photons [92].

A. Setup

The target apparatus was composed of a number of
different elements: the target cells, target oven, target ladder
system, Helmholtz coils for the holding magnetic field, RF
coils, and polarizing lasers. The layout of the target system
is shown in Fig. 13. The outer circle and large straight lines
intersecting at right angles inscribed in the large circle
represent Helmholtz coils. The smaller vertical straight
lines and circle overlapping with the Helmholtz coils
signify the RF coils. Pickup coils mounted near the target
cell are also shown.
Two pairs of Helmholtz coils, capable of producing

magnetic fields in two orthogonal directions, were utilized
in E06-014: longitudinal (along the direction of the beam),

FIG. 13. The target setup. The Helmholtz coils for the holding
magnetic field and coils for the RF field are shown. The pickup
coils near the target cell are used for nuclear magnetic resonance
(NMR) measurements. Figure reproduced from [65].

FIG. 12. 3He ground states. The dominant state is the S state,
where ∼90% of the polarization is carried by the neutron. In this
state, the protons pair to s ¼ 0.
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and transverse in-plane (perpendicular and horizontal to the
beam). The field reached a magnitude of 25 G, requiring∼7
A of current in each coil. The RF coils and pickup coils are
important for the measurement of the target polarization, as
presented in Secs. III D and III E.

B. Target cells

The production target cell, named Samantha, is shown
schematically in Fig. 14. The upper chamber, called the
pumping chamber, contained 3He, alkali metals (85Rb and
39K at equal densities), and N2, with number densities of
1020 cm−3, 1014 cm−3, and 1018 cm−3, respectively [96].
This chamber was heated to ∼265 °C in order to keep the
Rb and K in a gaseous state. The polarization process
took place in this chamber. The polarized 3He gas (with
the N2 mixture) flowed through a thin transfer tube to the
target chamber, thanks to the temperature gradient
between the pumping chamber and the target cell that
was kept at room temperature. This chamber was 40 cm
long and contained ∼8 atm of 3He and ∼0.13 atm of N2

during the experiment. The temperature of the cell was
monitored via resistive temperature devices (RTDs),
which were placed equidistant from one another along
the length of the target chamber, along with two more
placed on the pumping chamber; one at the top and the
other at the base. The production cell was made out of
aluminoscilicate glass (GE-180), which was filled and
characterized at the University of Virgina and the College
of William and Mary [66]. This characterization consisted
of measuring the polarization, gas density, glass thickness
of the cell, and rate of polarization.
An additional reference cell was used [97], which

could be filled with H2, N2, or 3He. This allowed the
determination of the dilution factors that contribute to the
cross sections and asymmetries. RTDs were also mounted

on the reference cell to monitor its temperature, in a
similar configuration as was done for the target cell. A
multicarbon foil (“optics”) target—as well as the refer-
ence cell filled with hydrogen gas—was used for the
calibration of the optics for the two spectrometers. All of
these targets were mounted on a target ladder, which
could be moved vertically up and down to select the
target needed. In addition to these targets, a “no target”
position was available, corresponding to a hole in the
target ladder. It was used during Møller polarimeter
measurements, so that the target assembly would not
be damaged in the process.

C. Laser system

Our experiment utilized an upgraded laser system that
had been installed for the immediately preceding experi-
ment, E06-010 [76]. These new COMET lasers had a
linewidth of 0.2 nm, a factor of 10 less than that of their
predecessors (FAP lasers [98–100]). This dramatically
improved the optical pumping efficiency, since a narrower
linewidth results in proportionately more photons exciting
the desired atomic transitions in 85Rb, so that a higher
polarization of 3He atoms could be attained in a shorter
time frame [96].
The laser setup is shown in Fig. 15. It consisted of three

COMET lasers, each with a power of 25 W and a wave-
length of 795 nm, used to optically pump the 85Rb in the
pumping chamber. The lasers were installed in a separate
laser building behind the counting house on the accelerator

FIG. 14. The production target cell used in our experiment. The
top spherical chamber is the pumping chamber where the
polarization of 3He takes place. The long cylindrical chamber
is the target cell, through which the electron beam passes
longitudinally. The thin tube connecting these two chambers is
the transfer tube, which allows polarized 3He to drift down into
the target chamber. Drawing not to scale.

FIG. 15. The laser system used to polarize 85Rb atoms. The
symbols labeled L1 and L2 are lenses, while symbols labeled as
M and ML are mirrors. Light reflected fromML2 is incident upon
another mirror (not shown) which is attached to the oven. Quarter
wave plates are indicated by Q1, Q2, and Q3. The beam-splitting
polarization cube (BSPC) is represented by the rectangle with a
slash through it. The initial unpolarized laser light is split by the
BSPC into S- and P-wave components, where the P-wave
component has linear polarization and passes through the beam
splitter. The S-wave component is converted into a P-wave by Q1.
The motorized quarter-wave plates Q2 and Q3 convert P-wave
light into circularly polarized light, labeled C. Figure reproduced
from [62].
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site at JLab. The fiber coming out of each COMET control
unit was connected to a 75-m-long fiber that ran from
the laser building to the hall. Then the fiber was connected
to a 5-to-1 combiner. The output of the combiner was sent
to a beam splitter, yielding two linearly polarized compo-
nents. One component passed twice through a quarter-wave
plate, after which both had the same linear polarization.
Sending each component through another quarter wave
plate converted the linear polarization into circular polari-
zation. The resulting beams were then combined into one,
with a spot size of 7.5 cm in diameter, the size of the
pumping chamber [96]. There were three optics lines
corresponding to the longitudinal, transverse, and vertical
polarization directions. The polarizing optics were set up in
an antiparallel pumping configuration such that the target
spin was always oriented opposite to the magnetic holding
field [62].

D. EPR measurements

The target polarization was measured in an absolute
sense through an electron paramagnetic resonance (EPR)
measurement that utilized Zeeman splitting of the electron
energy levels when an atom was placed in an external
magnetic field. This phenomenon occurred for the 85Rb and
39K atoms, which were present in the pumping chamber.
The ground states of the alkali metals split into 2F þ 1
energy levels, where F is the total angular momentum
quantum number. Specifically, for 85Rb, the F ¼ 3 ground
state split into seven sublevels corresponding to mF ¼
−3;…; 3. For 39K, the F ¼ 2 ground state split into five
energy levels, given by mF ¼ −2;…; 2. The splitting
corresponded to a frequency that is proportional to the
holding field. This frequency was shifted due to the small
effective magnetic field created by the spin-exchange
mechanism of 85Rb-39K and 39K-3He, in addition to the
polarization of the 3He nuclei.
When the EPR transition was excited, an alkali metal

(either Rb or K as chosen by the excitation frequency) lost
its polarization. When one of the metals was depolarized,
so was the other due to the fast spin-exchange mechanism.
Upon repolarization of the Rb atoms, there was an increase
in the photons emitted corresponding to the P1=2 → S1=2
(D1) transition (795 nm). However, because of thermal
mixing between the P1=2 and P3=2 energy states and
occasional collisional mixing with N2 in the cell, the
P3=2 → S1=2 (D2) transition (780 nm) was possible.
While the amount of D1 and D2 fluorescence was roughly
the same [96], the D1 light was suppressed due to a large
background component corresponding to the polarizing
laser light. Therefore, a filter was attached to a photodiode
to identify the D2 light. During the measurement, the RF
was modulated with a 100 Hz sine wave, and the D2
transition was synchronized to this modulating signal
and measured by a lock-in amplifier. The signal from

the lock-in output was proportional to the derivative of the
EPR fluorescence curve as a function of the RF; the EPR
resonance occurred when the derivative was equal to zero
[96,101]. EPR measurements were performed every few
days.
To determine the polarization in the target chamber, a

model [102–105] was used to describe the diffusion of the
3He polarization from the pumping chamber to the target
chamber. The relative systematic error of the measurement
was ∼4%, dominated by the uncertainties on the dimen-
sionless constant κ0 [106] and the number density of the gas
in the pumping chamber [62].

E. NMR measurements

Another method we used for measuring the polarization
of the 3He nuclei was measuring the 3He nuclear magnetic
resonance signal. The magnetic moments of 3He nuclei
aligned along the direction of an external magnetic holding
field had their direction reversed by applying an RF field in
the perpendicular direction. Sweeping the frequency of the
RF field through the resonance of the 3He nucleus flipped
the spins of the nuclei. This spin flip changed the field flux
through the pick-up coils (Fig. 13), inducing an electro-
motive force. The signals from the coils were preamplified
and combined, and then sent to a lock-in amplifier. The
magnitude of the final signal was proportional to the 3He
polarization.
The RF is swept according to the adiabatic fast passage

technique [107], in which the sweep through the resonant
frequency is done faster than the spin-relaxation time, but
slowly enough so that the nuclear spins can follow the
sweep of the RF field. This minimizes the effect of these
NMR measurements on the target polarization.
An NMR measurement is a relative measurement, so it

needs to be compared against a known reference. A
measurement of NMR on water is typically used, for
which the polarization can be calculated exactly from
statistical mechanics [108]. However, in E06-014, water-
cell measurements were available only for the longitudinal
target polarization configuration, as conversion factors
needed to account for the different positions of the water
and 3He cells could not be measured for the transverse
configuration [62]. Because of this, the NMR measure-
ments were calibrated against EPR measurements
(Sec. III D) that were done close in time relative to the
NMR measurements. The NMR water measurements in the
longitudinal configuration were used as a cross-check
against the EPR measurements and were found to be
consistent to the 1% level. NMR measurements were
performed every four hours on the production 3He target.
The systematic error on the NMRmeasurement was ∼3.9%
(relative), dominated by the uncertainties on the EPR
calibration and on the computed magnetic flux through
the pickup coils [62].
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F. Target performance

The target polarization over the course of the experiment,
extracted from NMR measurements, is shown in Fig. 16. In
the data analysis (Sec. IV C), the target polarization data
were utilized on a run-by-run basis. On average, the target
polarization achieved was 50.5% with a relative uncertainty
of 7.2% (3.6% absolute). The dominant contribution to the
uncertainty was from the calibration of the NMR measure-
ments against the EPR measurements (3.9% relative) and
the loss of polarization due to the diffusion of polarized 3He
from the pumping chamber to the target chamber (6%
relative).

IV. DATA ANALYSIS

A. Analysis procedure

The analysis procedure is outlined in Fig. 17, which
shows that the raw data were first replayed, followed by the
calibration and data quality checks. Data calibrations
included gain-matching ADC readings within the gas
Čerenkov and shower calorimeters to have the same
responses for a given type of signal. Calibrations also
involved optimizing the software packages that describe the
optics of the two spectrometers. Multifoil carbon targets, a
sieve slit collimator, and elastic 1Hðe; e0Þp data at an
incident energy of E ¼ 1.23 GeV were used to calibrate
the optics software package for the LHRS [76] and for the
BigBite spectrometer. The momentum resolution achieved
for the BigBite spectrometer was ∼1% [62]. Data quality
checks implied checking the calibration results and remov-
ing beam trips from the data. Faulty runs (e.g., those having
poor beam quality, detector live times≲80%, run times less
than a few minutes) were also identified and discarded from
the analysis.
Following calibration and data quality checks, the

electron sample was cleaned up by removing events that
did not generate a good trigger or had poor track
reconstruction. Cuts were also made to remove pion tracks

and events originating in the target window. In the BigBite
data set, geometrical cuts had to be implemented to remove
events that rescattered from the BigBite magnet pole
pieces. After all cuts had been applied to the data, the
raw physics observables consisting of cross sections and
asymmetries were then extracted. Corrections were applied
to account for the nitrogen target contamination and
background due to pair-produced electrons, neither of
which could be removed by cuts. After these corrections
were applied, we obtained the experimental cross sections
(Sec. IV B) and the experimental asymmetries (Sec. IV C).
Applying radiative corrections yielded the final quantities
for each of those, from which the spin structure functions g1
and g2 on 3He were extracted as described in Appendix A 6.
The 3He results for the unpolarized cross sections, double-
spin asymmetries, and spin structure functions g1 and g2 are

presented in Sec. VA. The Lorentz color force d
3He
2 was

obtained from Eq. (17), after which nuclear corrections
(Sec. IV D) were applied to obtain dn2 (Sec. V B 1). From

the g
3He
1 data the a2 matrix element on 3He (given as the

third moment of g1) was extracted. Nuclear corrections,
similar to those used for d2, were applied to obtain an2
(Sec. V B 2). From a twist expansion of world data for Γn

1,
the twist-4 matrix element fn2 was obtained using our dn2
data as input (while the value of an2 was taken from
an average over the available model calculations; see

Sec. V B 3). Additionally, A
3He
1 and g

3He
1 =F

3He
1 were

extracted with the aid of Eqs. (18) and (19). Nuclear
corrections were then applied to the 3He results to obtain
the neutron quantities (Secs. V B 4 and V B 5). Using the
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FIG. 16. The 3He target polarization as a function of BigBite
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FIG. 17. The data analysis procedure.
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gn1=F
n
1 data obtained, we then extracted the flavor-separated

ratios ðΔuþΔūÞ=ðuþūÞ and ðΔdþΔd̄Þ=ðdþd̄Þ (Sec. V C).

B. Cross sections

1. Extraction of raw cross sections from data

The unpolarized differential cross section was calculated
from the data for a given run as follows:

d3σraw
dΩdE0 ¼

tpsNcut

ðQ=eÞntLTε
1

ΔE0ΔΩΔZ
; ð28Þ

where tps denotes the prescale value for the T3 trigger
[109], Ncut the number of electrons that pass all cuts, Q=e
the number of beam electrons delivered to the target, n
the target number density in amagats [110], tLT the live
time [111], and ε the product of all detector (cut) efficien-
cies. The quantity ΔE0 ¼ δp=p0 · p0, where δp=p0 ¼
ðp − p0Þ=p0 is the scattered momentum of the electron
p relative to the LHRS momentum setting p0. Electrons
were selected according to the criterion jδp=p0j < 3.5%,
which was based on the agreement of the Monte Carlo
simulation of the spectrometer (see below) with the data
[86]. The quantity ΔZ denotes the effective target length
seen by the spectrometer, measured in meters. The cut on
the effective target length was chosen such that the target
windows and edge effects due to scattering from the
magnets in the LHRS are removed. The term ΔΩ denotes
the solid-angle acceptance, measured in steradians; it is
defined as the product of the in-plane scattering angle Δθ
and out-of-plane scattering angle Δϕ. The cut chosen for
Δθ (Δϕ) was �40 mrad (�20 mrad), which amounts to a
solid angle of 3.2 msr. The cuts on δp=p0, ΔZ, Δθ, and Δϕ
were informed by looking at a Monte Carlo simulation of
the LHRS.
The effective acceptance was determined with the

Single-Arm Monte Carlo (SAMC) simulation [112]. To
determine how the geometrical acceptance of the LHRS
deviates from the ideal rectangular acceptance, SAMC began
by generating events originating from the target that were
uniformly distributed over the kinematical phase space.
Each event was then transported to the focal plane using an
optical model of the LHRS [113]. As the particle encoun-
tered each magnet aperture in the LHRS, a check was
performed to see if it successfully passed through the
known apertures. If the simulated particle successfully
made it through all geometrical apertures, it was then
reconstructed back to the target using the optics matrix
optimized during the experiment. The ratio r of the number
of reconstructed events to the number of generated events
was used to determine the effective acceptance, written as
r ¼ ΔE0ΔΩΔZ=ΔE0

MCΔΩMCΔZMC. The subscript MC
refers to the initially generated kinematic phase space in
the simulation, chosen to be larger than the apertures of the
LHRS, so as to avoid edge effects.

The cross sections extracted for each run of a given
momentum bin were then averaged, weighted by their
statistical errors,

hσi ¼
P

n
i¼0 σi

1
δσ2iP

n
i¼0

1
δσ2i

; ð29Þ

where δσi is the statistical error on the cross section for the
ith run.

2. Background corrections

The raw 3He cross section measured in the LHRS, σraw,
contains contributions from electrons that were not scat-
tered from 3He, but were produced in processes corre-
sponding to electron-positron (pair) production (arising
from π0 mesons decaying predominantly to photons), or
scattering from nitrogen nuclei.
To remove the pair-production contributions from σraw,

several runs were taken with the LHRS in positive polarity
mode (i.e., detecting positrons) to measure the positron
cross section, σe

þ
. The nitrogen electron cross section σe

−

N2

was measured by filling the additional reference target cell
(Sec. III B) with nitrogen gas and exposing it to the beam.
Pair production also occurs when scattering from nitrogen
nuclei, so a nitrogen positron cross section, σe

þ
N2
, was also

measured with the LHRS in positive polarity mode. The
positron cross section on nitrogen σe

þ
N2

was subtracted from
σe

−

N2
to avoid double counting the pair-produced events in

the measurement that were already accounted for in σe
þ
. In

principle, one has to consider pion background contribu-
tions; however, given the high pion suppression in the
LHRS (Sec. II G), this component was found to be
negligible. Combining the measurements for σraw, σe

þ
,

σe
−

N2
, σe

þ
N2

yielded the experimental 3He cross section, σexp,

σexp ¼ σraw − σe
þ − σdilN2

; ð30Þ

σdilN2
¼ nN2

nN2
þ n3He

ðσe−N2
− σe

þ
N2
Þ; ð31Þ

where nN2
is the number density of nitrogen in the

production cell and n3He is the number density of 3He in
the production cell.
When the nitrogen reference cell was in the beam, the

number density for the cell was extracted using the
measured temperature and pressure of the cell. This number
density was used when extracting a nitrogen cross section
[Eq. (28)]. A systematic uncertainty of 2.2% was estimated
by computing the number densities while varying the
temperature and pressure by up to 2° C and 2 psig,
respectively [62]. In the 3He production cell, the number
density of nitrogen nN2

was taken to be 0.113 amg
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[Eq. (31)]. This value was recorded as the target was
initially filled, and it is accurate to 3% from a pressure
curve analysis.
Because of time constraints and hardware problems

encountered during the experiment, there were not enough
data to map out the background contributions to the raw
cross section for all kinematic bins. To resolve this issue,
empirical fits to the positron and nitrogen data (see
Appendix C 1) were used to subtract those contributions.
Figures 18 and 19 show the raw electron cross section, the
positron and nitrogen cross sections (scaled by the ratio of
the nitrogen number density to that of 3He in the production
target cell), and the background-subtracted electron cross
section, σexp. The error bars on the data points represent the
statistical uncertainties. The largest correction was due to
the positrons, at ∼53% in the lowest x bin, and fell to a few
percent for x≳ 0.5.

3. Radiative corrections

A first correction that must be done before carrying out
the radiative corrections is to subtract the elastic and
quasielastic radiative tails, since they are long and affect
all states of higher invariant mass W [114]. For these
kinematics, the elastic tail was small and affected the
lowest bins in scattered electron energy E0 at the ≲1%
level only. The elastic tail was computed following the
exact formalism given by Mo and Tsai [114], and using
elastic 3He form factors from Amroun [115]. The 3He

quasielastic tail, however, was much larger, at
∼25%–30% in the lowest x bin. The quasielastic radiative
tail was computed by utilizing an appropriate model of
the 3He quasielastic cross section [116] and applying
radiative effects [117]. The tail was then subtracted from
the data. The model was checked against existing
quasielastic 3He data [118–120] covering a broad range
of kinematics.
After the elastic and quasielastic tails had been sub-

tracted from the data, radiative corrections were applied
according to Refs. [114,121], where the internal corrections
were calculated using the equivalent radiator method and
the external corrections were performed using the energy
peaking approximation. In the experiment, we took pro-
duction data for only two beam energies of 4.74 GeV and
5.89 GeV. However, we needed enough data to properly
calculate the integrals involved in the radiative correction
procedure. Therefore, we used the F1F209 cross section
parametrization [122] to fill in the rest of the phase space
for each data set. The radiative corrections were as large as
∼50% in the lowest measured x bin, and fell off to a few
percent at the large x bins.
The resulting final 3He cross sections for E ¼ 4.74 GeV

and 5.89 GeV are presented in Fig. 20. The data are
tabulated in Tables IV and V. The uncertainty on the final
cross section arising from the radiative corrections was
determined by varying the contributions to the radiative
correction calculations, including the radiation thicknesses
in the incident and scattered electron path, and considering
different models for the elastic and quasielastic tail calcu-
lations. Of these, the quasielastic tail gave the biggest
uncertainty, ∼5%–6% for the lowest x bin, falling to ∼1%
for all other bins. A full breakdown of the uncertainties on
the final results is given in Tables XXIII and XXIV in
Appendix E 1.

FIG. 18. Cross sections as a function of Bjorken-x at
E ¼ 4.74 GeV. The squares show the raw electron cross section,
and the circles (and fit) show the positron cross section measured
on the 3He target. The cross data (and fit) represent the diluted
nitrogen cross section measured on the N2 target, and the up-
triangle data (and fit) show the diluted nitrogen cross section
measured in positive polarity mode on the N2 target. The down-
triangle data points are the final background-subtracted data, σexp.
The error bars on the data points represent the statistical
uncertainties.

FIG. 19. Cross sections as a function of Bjorken-x at
E ¼ 5.89 GeV. The description of the various data sets is the
same as in Fig. 18.
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C. Asymmetries

1. Extraction of raw asymmetries from data

The raw double-spin asymmetries were extracted from
the data recorded in the BigBite detectors according to

Araw
∥ ¼ N↓⇑ − N↑⇑

N↓⇑ þ N↑⇑ ; ð32Þ

Araw⊥ ¼ 1

hcosϕi
N↓⇒ − N↑⇒

N↓⇒ þ N↑⇒ ; ð33Þ

where N denotes the number of electron counts after
applying data quality and PID cuts for a particular beam
and target spin configuration, ↓ (↑) corresponds to the
electron’s spin polarized antiparallel (parallel) to its
momentum, ⇑ indicates that the target was polarized
parallel to the electron momentum, and ⇒ indicates that
the target was polarized transverse to the electron
momentum.
In E06-014, there were three target-spin configurations,

either parallel (∥, referred to here as longitudinal) or

transverse (⊥, in two orientations: ⇐, 90° and ⇒, 270°)
to the electron beam momentum. The quantity ϕ is the
angle between the electron scattering plane (defined by

incident and scattered electron momenta ~k and ~k0) and the

polarization plane (defined by ~k and the target polarization
~S). The transverse data were normalized by hcosϕi, since
this term is not necessarily equal to unity. This correction
was found to be very small. There is no hϕi correction for
parallel asymmetry data since the electron spin is aligned
along the target spin direction.
For the spin asymmetry analysis, one needs to correctly

classify the data according to the relation between the
digital helicity signal and the physical helicity of the
electrons in the beam. Møller polarimetry measurements
(Sec. II D 2) were performed after each beam configuration
change, to check the consistency of the electron helicity
assignment in Hall A [64]. To confirm the relationship
between the digital helicity signal and the physical helicity
of the electrons in the beam, measurements of the 3He
longitudinal quasielastic asymmetry were conducted at
E ¼ 1.23 GeV and θ ¼ 45°. The sign of the extracted
raw quasielastic asymmetry was verified to be consistent
with our understanding of the relationship between the
digital helicity signal and the physical electron helicity.
Since there were two transverse target spin configura-

tions, care must be taken when combining the results for the
90° and 270° data sets since they will have opposite signs
relative to one another. To determine which target con-
figuration should carry which sign, one can consider the dot

product of the scattered electron momentum vector ~k0 and
the target spin vector ~S. With the target polarized transverse

to the incident electron momentum ~k, the target spin only

enters the cross section through the dot product of ~k0 and ~S

[123]. Their dot product is ~k0 · ~S ¼ E0 sin θ cosϕ, where θ is
the electron scattering angle. For the transverse spin
configurations, ϕ is nearly 0. The positive sense of the

FIG. 20. The final 3He unpolarized cross sections as a function
of Bjorken-x. The left (right) panel shows E ¼ 4.74 GeV
(5.89 GeV) data. The error bars show the statistical uncertainty,
while the bands represent the systematic uncertainty.

TABLE IV. The final 3He unpolarized cross sections for
4.74 GeV data. The uncertainties listed are statistical and
systematic, respectively.

hxi hQ2i [GeV2] d3σ
dΩdE0 [nb=GeV=sr]

0.214 1.659 6.191� 0.365� 0.561
0.299 2.209 5.374� 0.178� 0.281
0.456 3.094 2.544� 0.048� 0.121
0.494 3.285 2.223� 0.034� 0.103
0.533 3.472 1.762� 0.026� 0.084
0.579 3.694 1.353� 0.027� 0.065
0.629 3.909 1.021� 0.018� 0.050
0.686 4.149 0.718� 0.012� 0.035
0.745 4.387 0.536� 0.012� 0.028

TABLE V. The final 3He unpolarized cross sections for
5.89 GeV data. The uncertainties listed are statistical and
systematic, respectively.

hxi hQ2i [GeV2] d3σ
dΩdE0 [nb=GeV=sr]

0.208 2.064 4.069� 0.440� 0.492
0.247 2.409 4.322� 0.116� 0.310
0.330 3.095 2.488� 0.099� 0.130
0.434 3.882 1.596� 0.038� 0.079
0.468 4.124 1.234� 0.030� 0.063
0.503 4.360 1.067� 0.020� 0.052
0.539 4.603 0.846� 0.016� 0.042
0.580 4.873 0.679� 0.012� 0.033
0.629 5.173 0.472� 0.010� 0.022
0.679 5.478 0.331� 0.007� 0.016
0.738 5.811 0.250� 0.006� 0.013
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target spin is then the direction that points to the side of the
beam line where the scattering electron is detected (con-
sistent with JLab E99-117 [28]). In this experiment, the
asymmetry measurement was done using BigBite; there-
fore, when the target spin was pointing toward BigBite
(270°), the asymmetry carried a positive sign. If the target
spin was pointing toward the LHRS (90°), it carried a
negative sign. Using this convention, the results for 270°
and 90° were averaged together using their statistical errors
as a weight.

2. Experimental asymmetries

The raw asymmetry definitions shown in Eqs. (32)
and (33) do not account for dilution effects due to the
presence of nitrogen in the target or the imperfect beam and
target polarizations. Therefore, the raw asymmetries must
be corrected to yield the experimental asymmetries,

Aexp
∥;⊥ ¼ 1

DN2
PbPt

Araw
∥;⊥; ð34Þ

where Pb and Pt denote the beam and target polarizations,
respectively (Secs. II D 2 and III F) and DN2

the nitrogen
dilution factor. Experimental asymmetries for one target-
spin configuration were averaged in the sameway as shown
in Eq. (29), where the ith cross section σi is replaced by the
ith experimental asymmetry Aexp

i .
The nitrogen dilution factor was determined by compar-

ing the rates from the nitrogen reference cell against those
from the 3He production cell,

DN2
¼1−

ΣN2
ðN2Þ

Σtotalð3HeÞ
tpsðN2Þ
tpsð3HeÞ

Qð3HeÞ
QðN2Þ

tLTð3HeÞ
tLTðN2Þ

nN2
ð3HeÞ

nN2
ðN2Þ

;

ð35Þ

where ΣN2
and Σtotal denote the total number of counts that

pass data quality and PID cuts detected during the N2 and
3He production target runs, while nN2

ðN2Þ and nN2
ð3HeÞ

denote the nitrogen number densities present in the two
targets. Because the nitrogen and 3He production runs have
different characteristics (e.g., scattering rates, running
time), the measured electron counts must be normalized
by the total charge deposited on the two targets, given by
QðN2Þ and Qð3HeÞ; the trigger prescale factors for the
nitrogen and 3He runs, given as tpsðN2Þ and tpsð3HeÞ; and
finally, the live times for the nitrogen and 3He runs, given as
tLTðN2Þ and tLTð3HeÞ.
The nitrogen dilution factor was extracted on a run-by-

run basis and the results were averaged, weighted by their
statistical uncertainties for a given run configuration. The
resulting dilution factor was applied bin-by-bin in x
and was found to be roughly constant at DN2

≈ 0.920�
0.003 [62].

3. Background corrections

As described in Sec. IV B, the main sources of
background contamination were charged pions and pair-
produced electrons. To quantify the charged pion contami-
nation in the electron sample, the pion peak in the
preshower energy spectrum was fitted with a Gaussian
function convoluted with a Landau function, and the
electron peak with a Gaussian function, as shown in
Fig. 21. The ratio of the pion counts to the electron counts
was then evaluated from the integrals of the two fits above a
threshold of 200 MeV [62]. This ratio was evaluated for the
π− (Nπ−=Ne− ) and πþ (Nπþ=Neþ) mesons. The πþ ratio was
evaluated after reversing the polarity of BigBite so that
particles with similar trajectories could be compared. The
Nπ−=Ne− ratio was largest in the lowest x bin of 0.277, at
∼2.7%, and dropped quickly to below 1% by x ¼ 0.425.
The Nπþ=Neþ ratio was larger and consistently ∼6% across
the whole x range. A systematic uncertainty of 2.5% was
assigned to the Nπ=Ne ratios, the value determined in the
immediately preceding experiment, E06-010 [76], in which
a similar fitting procedure was used and checked inde-
pendently through a coincidence trigger between the
electrons in BigBite and pions in the LHRS. In E06-
010, it was found that these two methods were consistent to
around 2%–3% [66].
A spin asymmetry in the charged-pion production will

affect the measured electron asymmetries. To study this,
asymmetries in the pion sample were determined after
applying corrections for the nitrogen dilution and the beam
and target polarizations, yielding the π− and πþ exper-
imental asymmetries. The results are shown in Figs. 22
and 23 for E ¼ 5.89 GeV. After scaling these measured
pion asymmetries with the Nπ=Ne ratios, it was found that

Pre-shower Energy (MeV)

FIG. 21. A signal distribution in the BigBite preshower, where
the particle’s total deposited energy is plotted for the hxi ¼ 0.425
bin. Electrons (pions) are shown by the peak on the right (left).
The curves fitted to the data are used in the analysis to determine
the amount of pion contamination in the electron sample; see
the text.
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the π− (πþ) asymmetry contribution was less than 5% (3%)
of the statistical uncertainty in the asymmetries and there-
fore could be neglected.
To quantify the contamination due to pair-produced

electrons, the ratio of positrons to electrons, Neþ=Ne− ,
needed to be determined. Because of time constraints this
ratio could only be measured directly at 4.74 GeV. To
determine this ratio at 5.89 GeV, a parametrization was
made of the 4.74 GeV BigBite and LHRS data sets, the
5.89 GeV LHRS data set, and data from JLab CLAS EG1b
[124] with E ¼ 5.7 GeVand θ ¼ 41.1°. These data, plotted
as ð1=E2ÞðNeþ=Ne−Þ, as a function of kT ¼ k sin θ, where
kT is the transverse momentum. The data and the fit are
shown in Fig. 24. The error on the fit was propagated to be
5%–6% across the x range of the measurements. The lowest
x bin, x ¼ 0.23, was then excluded from further analysis
after the Neþ=Ne− ratio was found to be in excess of 80%.

At the first bin included in the analysis, x ¼ 0.277, that
ratio was ∼50% and fell to less than 10% by x ¼ 0.473.
Beyond x ¼ 0.5 the ratio had dropped to below 3% [62].
Just as with the pion contamination, pair-produced

electrons can affect or dilute the measured electron asym-
metry. Ideally, the asymmetry should be measured by
reversing the polarity of BigBite so that the positrons
are detected with the same acceptance as the electrons.
However, because of the same time constraints as men-
tioned previously, this could only be completed for one
target-spin orientation (270°) at 4.74 GeV. Because of this,
the positron asymmetries were measured bent down in
BigBite. The asymmetries measured in this configuration
were observed to be in good agreement with those when the
positrons were deflected upwards; however, the acceptance,
and hence the rate, was ∼60% lower. Therefore, for each
beam energy and each target-spin configuration a weighted
average was computed over all measured asymmetries. The
results are shown in Figs. 25 and 26. The measured electron
asymmetries for each beam energy and target spin con-
figuration were then corrected by the corresponding
weighted average positron asymmetry scaled by the
Neþ=Ne− ratio.
The effects of the charged-pion and pair-produced

electron asymmetries were corrected for through

Ae− ¼ Aexp
e− − f1A

exp
π− − f3A

exp
eþ þ f2f3A

exp
πþ

1 − f1 − f3 þ f2f3
; ð36Þ

where f1 ¼ Nπ−=Ne− ; f2 ¼ Nπþ=Neþ ; f3 ¼ Neþ=Ne− ;
Aexp
π� are the π� experimental asymmetries, and Aexp

eþ is
the positron experimental asymmetry. Since the corrections
for the pion experimental asymmetries were found to be
negligible, Eq. (36) can be simplified to

FIG. 24. The Neþ=Ne− data from this experiment measured in
the LHRS and BigBite and CLAS EG1b [124] plotted as
ð1=E2ÞðNeþ=Ne−Þ versus the transverse momentum kT . Our fit
function is shown by the solid curve, with its error given by the
band surrounding it. See text for additional details.
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FIG. 22. The π− experimental asymmetry on 3He for
E ¼ 5.89 GeV. The left (right) panel shows the data for the
target polarized longitudinal (transverse) to the electron beam
momentum. The error bars indicate the statistical uncertainty.
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FIG. 23. The πþ experimental asymmetry on 3He for
E ¼ 5.89 GeV. The left (right) panel shows the data for the
target polarized longitudinal (transverse) to the electron beam
momentum. The error bars indicate the statistical uncertainty.
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Ae− ≈
Aexp
e− − f3A

exp
eþ

1 − f1 − f3 þ f2f3
≡ Acor: ð37Þ

At this point, the bins for which x > 0.90 were removed
from the analysis, so as to exclude the quasielastic and Δ
resonance contributions.

4. False asymmetries

When measuring a scattering asymmetry, care must be
taken to ensure that the asymmetry was due to electron
spin-dependent scattering and not to helicity-correlated
changes in the electron beam, known as false asymmetries.
One potential false asymmetry arises from a difference in
the electron beam intensity between the two helicity states,
resulting in an asymmetry in the deposited charge on the

target. During the experiment, the beam charge asymmetry
was limited to ∼100 ppm through the use of a feedback
loop controlled by a specialized DAQ [125] and was
verified by measuring the charge asymmetry using the
Compton polarimeter [64]. Compared to the size of the
electron asymmetry measurements, Acor, the charge asym-
metry was negligible.
Helicity-dependent DAQ changes can also generate false

asymmetries, which can be observed through the measure-
ment of the detector’s live time. A helicity-dependent rate
change could lead to one helicity state having a larger live
time than the other, resulting in an asymmetry. BigBite
detector live times were recorded for each helicity gate for
each run of the experiment. The helicity-dependent live-time
asymmetry was extracted from the data and was found to be
< 100 ppm for the entire data set,whichwas negligible [62].
In addition to charge- and DAQ-induced false asymme-

tries, the analysis could also introduce a false asymmetry.
For example, if the data rates were high enough, it may be
more difficult to reconstruct good tracks related to the
higher-rate helicity state as compared to the lower-rate one,
resulting in an asymmetry [126]. However, the E06-014
data set was dominated by single-track events (∼96%), and
thus the rates were not high enough for such an asymmetry
to have a significant impact on the measured electron
asymmetries.
Potential sources of false asymmetries are limited by the

30 Hz helicity flipping rate of the electron beam.
Additionally, any false asymmetry that does not change
sign with respect to the IHWP state (Sec. IV C 1), such as
those due to electronic cross talk [127], would be canceled
when combining data from the two IHWP states. In
summary, no significant false asymmetries were observed.

5. Radiative corrections

Radiative corrections on the asymmetries were applied
utilizing a similar approach as on the cross sections in
Sec. IV B 3. We carried out the corrections on polarized
cross section differences, Δσ, related to asymmetries by

Ar
∥;⊥ ¼ Δσr∥;⊥

2σr0
; ð38Þ

where Ar
∥ (Ar⊥) indicates the longitudinal (perpendicular)

asymmetry which includes radiative effects. The unpolar-
ized cross section is σr0, where the r indicates that radiative
effects have been applied. We used the F1F209 para-
metrization [122] for the unpolarized cross section. The
input used to fill out the integration phase space fell into
three different kinematic regions: the DIS region, the
quasielastic region, and the Δ resonance region. For the
DIS region the de Florian-Sassot-Stratmann-Vogelsang
(DSSV) [128] PDF parametrization was used; for the
quasielastic region Bosted’s nucleon form factors [129],
smeared by a quasielastic scaling function [130], was used;
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FIG. 26. The positron experimental asymmetry for
E ¼ 5.89 GeV. The description of the data and fitted line with
its uncertainty is the same as Fig. 25.
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FIG. 25. The positron experimental asymmetry for
E ¼ 4.74 GeV. The left (right) panel shows the data for the
target polarized longitudinal (transverse) to the electron beam
momentum. The error bars indicate the statistical uncertainty. The
weighted average is indicated by the solid line, and its uncertainty
is indicated by the surrounding dashed lines. The numerical value
of the weighted average with its uncertainty is also shown.
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and for theΔ region the MAID model [29] was used. TheΔσ
obtained after putting these models together for the three
regions described the JLab E94-010 data [131] reasonably
well [86].
In the radiative correction procedure, the quasielastic tail

was not subtracted first but rather was included in the
integration. The elastic tail was found to be negligible and
was not subtracted. To minimize statistical fluctuations in
the radiative corrections, the corrections were performed on
a model of our data set. After obtaining the final Δσ, the
corresponding asymmetry was obtained by inverting
Eq. (38) (but using the Born σ0 from F1F209) to find A
with the size of the radiative correction given by

ΔA ¼ Ab − Ar: ð39Þ

The quantity Ab denotes the Born asymmetry and Ar the
radiated asymmetry. Here, Ar is the model input to the
radiative corrections program. This ΔA was applied to our
extracted asymmetries, Acor

∥;⊥ [see Eq. (37)], as an additive
correction. The size of the radiative correction was found to
be at most of the order of 45% (10−3 absolute) of the
uncorrected asymmetry. The radiative corrections in the
DIS region were checked against results obtained using
the formalism of Akushevich et al. [132]. The results of
both methods agreed to the 10−4 level in the asymmetry.
The asymmetries on 3He before and after radiative

corrections for the 4.74 and 5.89 GeV runs are shown in
Figs. 27 and 28 and tabulated in Tables VI and VII in
Sec. V. The systematic uncertainties for the radiatively-
corrected data were obtained by varying all input to
reasonable levels. The inputs varied included the electron
cuts, the nitrogen dilution factor, beam and target
polarizations, pion and pair-production contamination lev-
els, and the radiative corrections. The latter were observed
to change less than 5% when using various input models
and when the radiation thicknesses before and after

scattering were varied by up to �10%. Tables in
Appendix E 2 list the various contributions to the system-
atic uncertainties.

D. From 3He to the neutron

Free nucleons behave differently from those bound in
nuclei, primarily due to spin depolarization, Fermi motion,
nuclear binding, and nuclear shadowing and antishadowing
effects. Additionally, the characteristics of bound nucleons
can be altered by the presence of non-nucleonic degrees of
freedom and how far off-shell the nucleons are.
We utilized the work of Bissey et al. [133], which

provides a description of the g1 spin structure function on
3He over the range 10−4 ≤ x ≤ 0.8. It models the 3He wave
function incorporating the S, S0, and D states, and includes
a preexisting Δ (1232) component,

g
3He
1 ðxÞ ¼ Pngn1ðxÞ þ 2Ppg

p
1 ðxÞ − 0.014½gp1 ðxÞ − 4gn1ðxÞ�

þ aðxÞgn1ðxÞ þ bðxÞgp1 ðxÞ; ð40Þ

where Pp and Pn are the effective polarizations of the
proton and neutron in 3He [60], respectively. The third term
arises from the Δð1232Þ component in the 3He wave
function [133]. The functions aðxÞ and bðxÞ describe
nuclear shadowing and antishadowing effects. In the
present experiment, the x coverage does not drop below
x ∼ 0.2 so that shadowing and antishadowing effects can be
neglected. Therefore, Eq. (40) becomes

g
3He
1 ðxÞ≈Pngn1ðxÞþ2Ppg

p
1 ðxÞ−0.014½gp1 ðxÞ−4gn1ðxÞ�:

ð41Þ

The same formula applies for g2 data, with g2 replacing g1
in Eq. (41).

The nuclear corrections to our data for d
3He
2 were applied

to the integral (not bin by bin to the d2 integrand), which
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FIG. 27. The parallel and perpendicular asymmetries on 3He
for E ¼ 4.74 GeV before (square) and after (circle) radiative
corrections. The error bands indicate the systematic uncertainty
for the final asymmetries.
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FIG. 28. The parallel and perpendicular asymmetries on 3He
for E ¼ 5.89 GeV before (square) and after (circle) radiative
corrections. The error bands indicate the systematic error for the
final asymmetries.
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resulted in two average Q2 bins for each of the beam
energies 4.74 and 5.89 GeV. Thus, the correction followed
the formalism defined in Eq. (41),

dn2 ¼
1

~Pn

ðd3He
2 − ~Ppd

p
2 Þ; ð42Þ

for a given bin inQ2, where the quantity ~Pp ¼ 2Pp − 0.014
and ~Pn ¼ Pn þ 0.056. For the proton an effective polari-
zation Pp ¼ −0.028þ0.009

−0.004 was used, and for the neutron
Pn ¼ 0.86þ0.036

−0.020 [28]. The matrix element dp2 was evaluated
by considering various global analyses [49,128,134–136]
to construct gp1 . The Wandzura-Wilczek relation
[14,137,138] was used to obtain gp2 , which is valid if the
higher-twist effects are assumed to be small; this is a
reasonable assumption based on the results of SLAC E155
[139]. Using the average of the results for gp1 and gp2 , the d

p
2

integral was evaluated over the same x range of our

experiment at hQ2i ¼ 3.21 and 4.32 GeV2, and the result
was inserted into Eq. (42).
To obtain the nuclear corrections needed to extract

gn1=F
n
1 , we first divided Eq. (41) by F

3He
1 and then rewrote

F
3He
1 in terms of F

3He
2 following

F1ðx;Q2Þ ¼ F2ðx;Q2Þð1þ γ2Þ
2x½1þ Rðx;Q2Þ� ; ð43Þ

where R is taken to be target independent [133], which is a
reasonable assumption for Q2 > 1.5 GeV2 and x > 0.15
[140]. Solving for gn1=F

n
1 yielded

gn1
Fn
1

¼ 1

~Pn

F
3He
2

Fn
2

�
g
3He
1

F
3He
1

− ~Pp
Fp
2

F
3He
2

gp1
Fp
1

�
: ð44Þ

Using Eq. (44), we extracted gn1=F
n
1 from our 3He data. For

the unpolarized F
3He
2 structure function, we utilized the

TABLE VI. Asymmetry results for A
3He
∥ , A

3He
⊥ , A

3He
1 , and g

3He
1 =F

3He
1 for the 4.74 GeV data. The first uncertainty is statistical, while the

second is systematic.

hxi hQ2i [GeV2] A
3He
∥ A

3He
⊥ A

3He
1 g

3He
1 =F

3He
1

0.277 2.038 −0.008� 0.015� 0.007 −0.002� 0.008� 0.003 −0.008� 0.017� 0.004 −0.009� 0.016� 0.004
0.325 2.347 −0.009� 0.009� 0.003 −0.001� 0.005� 0.002 −0.010� 0.010� 0.001 −0.010� 0.009� 0.001
0.374 2.639 0.005� 0.007� 0.002 −0.011� 0.004� 0.002 0.008� 0.008� 0.001 0.001� 0.007� 0.001
0.424 2.915 −0.025� 0.007� 0.005 −0.003� 0.004� 0.002 −0.027� 0.008� 0.003 −0.026� 0.007� 0.002
0.473 3.176 −0.021� 0.008� 0.003 −0.005� 0.004� 0.001 −0.022� 0.009� 0.002 −0.023� 0.008� 0.002
0.523 3.425 0.002� 0.009� 0.002 −0.006� 0.005� 0.001 0.004� 0.010� 0.001 0.000� 0.009� 0.001
0.574 3.662 0.005� 0.010� 0.004 −0.008� 0.005� 0.002 0.008� 0.012� 0.002 0.002� 0.011� 0.002
0.623 3.886 0.029� 0.013� 0.003 0.005� 0.007� 0.002 0.031� 0.015� 0.002 0.031� 0.013� 0.002
0.673 4.099 0.025� 0.015� 0.005 −0.004� 0.009� 0.003 0.030� 0.018� 0.003 0.023� 0.016� 0.002
0.723 4.307 0.031� 0.019� 0.007 −0.014� 0.009� 0.002 0.041� 0.022� 0.004 0.026� 0.020� 0.003
0.773 4.504 −0.012� 0.024� 0.013 −0.025� 0.012� 0.005 −0.005� 0.028� 0.008 −0.023� 0.025� 0.007
0.823 4.694 −0.033� 0.030� 0.012 0.005� 0.016� 0.006 −0.041� 0.037� 0.007 −0.032� 0.032� 0.006
0.874 4.876 −0.014� 0.039� 0.017 −0.049� 0.020� 0.006 0.004� 0.048� 0.010 −0.035� 0.041� 0.009

TABLE VII. Asymmetry results for A
3He
∥ , A

3He
⊥ , A

3He
1 , and g

3He
1 =F

3He
1 for the 5.89 GeV data. The first uncertainty is statistical, while the

second is systematic.

hxi hQ2i [GeV2] A
3He
∥ A

3He
⊥ A

3He
1 g

3He
1 =F

3He
1

0.277 2.626 0.019� 0.027� 0.010 0.010� 0.008� 0.003 0.020� 0.029� 0.006 0.024� 0.028� 0.006
0.325 3.032 −0.017� 0.012� 0.003 0.004� 0.004� 0.001 −0.019� 0.013� 0.002 −0.016� 0.012� 0.002
0.374 3.421 −0.006� 0.009� 0.002 −0.001� 0.003� 0.001 −0.006� 0.010� 0.001 −0.006� 0.009� 0.001
0.424 3.802 −0.020� 0.009� 0.003 −0.004� 0.003� 0.001 −0.021� 0.010� 0.002 −0.022� 0.009� 0.002
0.474 4.169 −0.021� 0.010� 0.006 0.000� 0.003� 0.001 −0.022� 0.011� 0.003 −0.021� 0.010� 0.003
0.524 4.514 0.002� 0.012� 0.002 0.000� 0.004� 0.001 0.002� 0.013� 0.001 0.002� 0.012� 0.001
0.573 4.848 0.003� 0.015� 0.003 0.003� 0.004� 0.001 0.003� 0.016� 0.002 0.004� 0.015� 0.002
0.624 5.176 0.005� 0.018� 0.005 −0.004� 0.005� 0.001 0.006� 0.020� 0.003 0.003� 0.018� 0.003
0.674 5.486 −0.003� 0.022� 0.005 −0.002� 0.007� 0.002 −0.003� 0.024� 0.003 −0.004� 0.022� 0.002
0.723 5.777 0.003� 0.027� 0.005 −0.004� 0.008� 0.003 0.004� 0.031� 0.003 0.001� 0.028� 0.003
0.773 6.059 0.006� 0.035� 0.008 0.005� 0.010� 0.002 0.005� 0.039� 0.004 0.008� 0.035� 0.004
0.823 6.325 0.028� 0.047� 0.014 −0.044� 0.014� 0.004 0.045� 0.053� 0.008 0.009� 0.047� 0.013
0.873 6.585 0.015� 0.062� 0.017 −0.008� 0.019� 0.007 0.020� 0.072� 0.009 0.011� 0.064� 0.009
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F1F209 parametrization [122], which incorporates Fermi
motion and EMC effects [141,142], and for Fp

2 and Fn
2 , the

unpolarized PDF model CJ12 [143] was used. A fit to
world gp1=F

p
1 data [45,47,56,139,144] was performed and

used. The fit used a second-order polynomial in x with
three free parameters and assumed Q2 independence. Any
Q2 dependence would cancel in the ratio of g1=F1 to
leading order and next-to-leading order [123]. For more
details, see Appendix C 2.
For the nuclear corrections to obtain An

1 , we used the
expression for A1 in terms of the structure functions g1, g2,
and F1 (Appendix A 4). Solving for An

1 gave [cf. Eq. (44)]

An
1 ¼

1

~Pn

F
3He
2

Fn
2

�
A

3He
1 − ~Pp

Fp
2

F
3He
2

Ap
1

�
: ð45Þ

The same models used in the g1=F1 analysis for F2 on 3He,
the proton, and the neutron were used in the A1 analysis.
Similar to the g1=F1 analysis, a Q2-independent, second-
order polynomial in x was fit to world Ap

1 data
[47,56,139,145–149] and used in the analysis. For more
details, see Appendix C 3.
Other neutron extraction methods have been studied in

Ref. [150], where the full convolution formalism was used
at finite Q2, including the nucleon off-shell and Δ con-
tributions. Such calculations are consistent with our extrac-
tion of dn2 and A

n
1 following Eqs. (42) and (45), respectively.

V. RESULTS

A. 3He results

Results for the unpolarized e-3He scattering cross
section (Sec. IV B) for E ¼ 4.74 and 5.89 GeV are given
in Tables IV and V. All of the contributions to the
systematic uncertainty in the cross section are given in

Tables XXIII and XXIV. The biggest contribution to the
systematic uncertainty was the background subtraction, at a
relative uncertainty of ∼9% in the lowest bin in x. Our
extracted cross section values are in good agreement with
the F1F209 parametrization [122].

The ~e − ~3He electron asymmetries A
3He
∥ and A

3He
⊥

(Sec. IV C), the virtual photon asymmetry A
3He
1 , and the

structure function ratio g
3He
1 =F

3He
1 [Eqs. (18) and (19)] for

TABLE IX. The g1 and g2 spin-structure functions measured on
3He at an incident electron energy of 5.89 GeV. The first
uncertainty is statistical, while the second is systematic.

hxi g
3He
1 g

3He
2

0.277 0.026� 0.029� 0.012 0.046� 0.047� 0.019
0.325 −0.013� 0.010� 0.003 0.022� 0.015� 0.006
0.374 −0.004� 0.006� 0.002 0.000� 0.008� 0.002
0.424 −0.011� 0.005� 0.002 −0.002� 0.006� 0.002
0.474 −0.008� 0.004� 0.002 0.003� 0.004� 0.002
0.524 0.000� 0.003� 0.001 0.000� 0.003� 0.001
0.573 0.001� 0.003� 0.001 0.001� 0.003� 0.001
0.624 0.000� 0.002� 0.001 −0.002� 0.002� 0.000
0.674 0.000� 0.002� 0.000 0.000� 0.002� 0.000
0.723 0.000� 0.002� 0.000 −0.001� 0.002� 0.000
0.773 0.000� 0.002� 0.000 0.000� 0.001� 0.000
0.823 0.000� 0.002� 0.000 −0.003� 0.001� 0.001
0.873 0.000� 0.002� 0.000 0.000� 0.001� 0.000
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FIG. 29. Our measured result for A
3He
1 for 4.74 GeV (filled

squares) and 5.89 GeV (filled circles) data. The error bars on our
data points represent the statistical uncertainty. The bands at the
bottom of the plot indicate the systematic uncertainty for each
data set, where the upper (lower) band corresponds to the
4.74 GeV (5.89 GeV) data set. The DIS data set corresponds
to data for which x < 0.519 (x < 0.623) for E ¼ 4.74 GeV
(5.89 GeV); the data at larger x values correspond to the
resonance region. Also plotted are world DIS data from SLAC
E142 [43], HERMES [151], and JLab E99-117 [28,46], and
resonance data from JLab E01-012 [152].

TABLE VIII. The g1 and g2 spin-structure functions measured
on 3He at an incident electron energy of 4.74 GeV. The first
uncertainty is statistical, while the second is systematic.

hxi g
3He
1 g

3He
2

0.277 −0.009� 0.016� 0.009 −0.006� 0.034� 0.009
0.325 −0.009� 0.008� 0.002 −0.001� 0.014� 0.006
0.374 0.001� 0.005� 0.002 −0.026� 0.009� 0.005
0.424 −0.014� 0.004� 0.003 0.001� 0.006� 0.002
0.473 −0.010� 0.003� 0.002 −0.002� 0.004� 0.001
0.523 0.000� 0.003� 0.000 −0.005� 0.004� 0.001
0.574 0.000� 0.003� 0.001 −0.005� 0.003� 0.001
0.623 0.005� 0.002� 0.001 0.000� 0.002� 0.001
0.673 0.003� 0.002� 0.001 −0.002� 0.002� 0.001
0.723 0.002� 0.002� 0.001 −0.003� 0.002� 0.001
0.773 −0.001� 0.002� 0.001 −0.002� 0.001� 0.001
0.823 −0.001� 0.001� 0.001 0.001� 0.001� 0.000
0.874 −0.001� 0.001� 0.001 −0.002� 0.001� 0.001
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the 4.74 GeVand 5.89 GeV data are given in Tables VI and

VII. The polarized structure functions g
3He
1 and g

3He
2

[Eqs. (B3) and (B4)] are given in Tables VIII and IX.
All of the contributions to the systematic uncertainties are
given in Appendix E, with the dominant one being the
selection of the electron sample.

The asymmetry A
3He
1 is plotted in Fig. 29, compared to

the world DIS data from SLAC E142 [43], HERMES
[151], and JLab E99-117 [28,46]. Also plotted are reso-
nance data from JLab E01-012 [152]. We find that our
results reproduce the trend of existing data.

The spin-structure functions g
3He
1 and g

3He
2 are presented

in Figs. 30 and 31, in which the world DIS data from JLab
E99-117 [28,46] and SLAC E142 [43] are also shown.
Resonance data from JLab E01-012 [152] and E97-103
[153,154] are also presented. The gray band represents an
envelope encompassing a number of global analyses
[59,128,134–136]. Our data reproduce the trend seen in

existing g
3He
1 data. For g

3He
2 , our data have improved on the

uncertainty by about a factor of 2 relative to the JLab
E99-117 data set.

B. Neutron results

1. The matrix element dn2
Results for the dn2 matrix element [Eq. (17) and

Sec. IV D], first published in Ref. [155], are shown in
Fig. 32 and tabulated in Table X. The matrix element was
extracted using the Cornwall-Norton (CN) moments [156].
Since our measurement did not cover the full x range, a low-
x (x < 0.25) and a high-x (x > 0.90) contribution needed to
be evaluated from other sources. For the low-x region, a
third-order polynomial fit to the world data on x2gn1
[43,44,47,154] and x2gn2 [27,139,154] was used to evaluate
dn2 . This contribution is relatively small, considering the x2

weighting. The large-x contribution comes from the elastic
peak, which was modeled using the Riordan [35] and Kelly
[36] parametrizations. The contribution from the range
0.90 < x < 0.99 was considered to be negligible when
taking into account the size of our g1 and g2 data at
x ∼ 0.90. Nuclear corrections were applied to our 3He data
as described in Sec. IV D. Adding the low-x and high-x
(elastic) contributions to ourmeasured result gave the full dn2
integral. Target mass correctionswere checked by extracting
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)2/c2 = 3.0 GeV2E01-012 (Resonance, Q
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FIG. 30. Our results for g1 on 3He for 4.74 GeV (filled squares)
and 5.89 GeV (filled circles) data. The error bars on our data
points represent the statistical uncertainty. The bands at the
bottom of the plot indicate the systematic uncertainty for each
data set, where the upper (lower) band corresponds to the
4.74 GeV (5.89 GeV) data set. The DIS data set corresponds
to data for which x < 0.519 (x < 0.623) for E ¼ 4.74 GeV
(5.89 GeV); the data at larger x values correspond to the
resonance data. Our data are compared to world DIS data from
JLab E99-117 [28,46], SLAC E142 [43], and resonance data
from JLab E01-012 [152] and JLab E97-103 [153,154]. The gray
band represents an envelope of various global analyses
[59,128,134–136] for g1 at Q2 ¼ 4.43 GeV2, which was the
average Q2 of our data set.
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FIG. 31. Our results for g2 on 3He for the 4.74 GeV (filled
squares) and 5.89 GeV (filled circles) data. The error bars on our
data points represent the statistical uncertainty. The bands at the
bottom of the plot indicate the systematic uncertainty for each
data set, where the upper (lower) band corresponds to the
4.74 GeV (5.89 GeV) data set. The DIS data set corresponds
to data for which x < 0.519 (x < 0.623) for E ¼ 4.74 GeV
(5.89 GeV); the data at larger x values correspond to the
resonance data. Our data are compared to world data from JLab
E99-117 [28,46], JLab E01-012 [152] (resonance data), and JLab
E97-103 [153,154] (resonance data). The gray band represents an
envelope of various global analyses [59,128,134–136] used to
construct gWW

2 .

TABLE X. The dn2 results with statistical and systematic
uncertainties. The last uncertainty represents that due to neglect-
ing the Q2 evolution of the dn2 integrand.

hQ2i [GeV2] dn2 [×10−5]

3.21 −421.0� 79.0� 82.0� 8.0
4.32 −35.0� 83.0� 69.0� 7.0
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dn2 using the Nachtmann moments [157]; the difference
between theCNandNachtmann approacheswas found to be
small relative to the statistical uncertainties. An overview of
the systematic uncertainties is given in Table XXXIII in
Appendix E. The largest contribution to the systematic
uncertainty comes from the unmeasured low-x region.
Our unpolarized cross section and double-spin asym-

metry data were obtained at various Q2 values; since the dn2
integral is typically carried out at constant Q2, we consid-
ered what the effect of evolving ḡn2 (the twist-3 part of gn2)
would have on the dn2 value. To do this, we utilized the ḡn2
model from Ref. [158] along with the Q2 evolution
description for gn2 from Ref. [159], which uses flavor-
nonsinglet evolution equations and utilizes large-Nc and
large-x (x≳ 0.1) approximations. The Q2-evolution calcu-
lations were performed using QCDNUM [160] in the
variable-flavor number scheme (VFNS) and with
αsðQ2 ¼ M2

ZÞ ¼ 0.1185 [161]. For each of our measured
x bins at a given beam energy, the model was evolved from
its initial value at Q2 ¼ 1 GeV2 to the measured Q2 value
ðQ2

mÞ for that particular x bin and also to the hQ2i value for
the given beam energy; see Figs. 33 and 34. We then
evaluated

Δdn2 ¼ jdn2ðhQ2iÞ − dn2ðQ2
mÞj; ð46Þ

where hQ2i ¼ 3.21 GeV2 (4.32 GeV2) for E ¼ 4.74 GeV
(5.89 GeV). The dn2 integral was evaluated according to
Eq. (4) for our measured hxi bins corresponding to 0.277 ≤
x ≤ 0.874 (0.277 ≤ x ≤ 0.873) for E ¼ 4.74 GeV
(5.89 GeV). We found Δdn2 ¼ 0.00008 (0.00007)
for E ¼ 4.74 GeV (5.89 GeV), which is a factor of 6

(5) smaller than the systematic uncertainty on our measured
dn2 for E ¼ 4.74 GeV (5.89 GeV). The difference between
the constant Q2 evaluation of dn2 compared to the varying
Q2 approach was taken as an estimate of the systematic
uncertainty due to not performing the Q2 evolution on
our data.
Our result at hQ2i ¼ 3.21 GeV2 is small and negative,

while the result at hQ2i ¼ 4.32 GeV2 is consistent with
zero (Table X). The trend of our measurements appears to
be in agreement with the lattice QCD calculation [34] at
Q2 ¼ 5 GeV2. Our dn2 extraction is also consistent with bag
[33,38,39] and chiral soliton [32] models, as shown
in Fig. 32.
The Jefferson Lab Angular Momentum (JAM)

Collaboration has published new results from their global
QCD analysis [162]. Their work utilizes an iterative
Monte Carlo technique that aims to reduce the influence
of unphysical fitting parameters and lower the impact of
parameter initial values on the results. JAM has included
our data in their global analysis by fitting directly our DIS
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FIG. 33. The dn2 integrand for 4.74 GeV kinematics. For each
measured hxi bin, the model [158] was evolved [159,160] to the
measured (average) Q2 value indicated by the circles (squares).
For more details, see the text.
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FIG. 34. The dn2 integrand for 5.89 GeV kinematics. For each
measured hxi bin, the model [158] was evolved [159,160] to the
measured (average) Q2 value indicated by the circles (squares).
For more details, see the text.
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FIG. 32. Our measured dn2 data as a function ofQ
2 compared to

the world data from SLAC E155x [27], JLab E99-117, and SLAC
E155x [28], JLab RSS [25], and JLab E01-012 [26]. Our results
including the low-x contribution are offset in Q2 for clarity. Also
shown are various theoretical calculations, including a QCD sum
rule approach [30,31], a chiral soliton model [32], and a bag
model [33]. Additionally, a lattice QCD [34] calculation is
shown. The elastic contribution to dn2 is given by the dashed
curve, evaluated using the CN moments. Figure reproduced from
Ref. [155].

MEASUREMENTS OF dn2 AND An
1 : PROBING … PHYSICAL REVIEW D 94, 052003 (2016)

052003-29



data for A
3He
∥ and A

3He
⊥ . Extracting a pure twist-3 dn2 without

higher-twist contributions from resonances at the same Q2

values as our results, they find a sizable effect on their
(extrapolated) prediction atQ2 ¼ 1 GeV2, reducing it from
0.005� 0.005 to −0.001� 0.001. They also found their dn2
value to be consistent with lattice calculations [34] when
extrapolating to Q2 ¼ 5 GeV2.

2. The matrix element an2
Following a similar procedure to that discussed for d2,

we can extract the a2 matrix element from our g1 data
according to the third CN moment of g1,

a2ðQ2Þ ¼
Z

1

0

x2g1ðx;Q2Þdx: ð47Þ

The low-x, high-x, and measured regions were treated in
the same way as was done for the d2 analysis, using the
same model inputs. Our g1 data were not evolved to a
constant Q2, as our investigation into the Q2 evolution of
our g1 data revealed that the Q2 dependence was negligible
[62]. Our results for an2 are shown in Fig. 35, where the
inner error bars are the statistical uncertainties and the outer
error bars represent the in-quadrature sum of statistical and
systematic uncertainties. The circle (square) data points
exclude (include) the unmeasured low-x region. Both data
points extracted are positive, and the elastic contribution is
sizable. The SLAC E143 [47] data are also plotted, where
their uncertainty is the in-quadrature sum of the statistical

and systematic contributions. The up-triangles represent the
average over global analyses [59,128,134–136]. The lattice
calculation shown is from Göckeler et al. [34], where the
error bar is statistical with a 15% systematic uncertainty
added in quadrature. The systematic uncertainty arises from
their extrapolation of their result to the chiral limit [34].
Our results are tabulated in Table XI, broken down into the
low-x, measured, and high-x regions. The last column
shows the full extraction. The systematic uncertainties on

an2 are dominated by that in a
3He
2 and that due to the

parametrization of ap2 . The uncertainties for an2 are sum-
marized in Appendix E 5.

3. Color force extraction

In order to decompose the Lorentz color force into its
electric and magnetic components, one needs to first extract
the twist-4 matrix element, fn2 . This is accomplished by
considering our measured dn2 value along with the a

n
2 matrix

element.
The an2 matrix element was evaluated for various global

analyses [59,128,134–136] over the range 0.02 < x <
0.90, and the average of the results at each hQ2i bin is
taken as the value of an2 . These results are consistent with
our extracted values (Fig. 35). The elastic contribution was
added to the integral in a similar fashion as was done for dn2.
With dn2 and an2 in hand, the twist-4 matrix element fn2

was evaluated following the analysis presented in [22,40].
Results for Γn

1 [Eq. (13)] from HERMES [163], SMC [149],
JLab RSS [25], and E94-010 [131], and the SLAC experi-
ments E142 [43], E143 [47], and E154 [164] were used in
the updated extraction analysis. The data sets chosen for
this analysis were from those experiments that published gn1
data at constant Q2. Since Γn

1 is an integral over all x
(0 ≤ x ≤ 1), the unmeasured low-x and high-x regions need
to be accounted for in a consistent fashion. The method we
implemented for all data sets is that shown in Ref. [22],
with the exception of the HERMES and JLab data, which
had already used such an extrapolation. The extrapolation
calls for fitting the gn1 data to an appropriate function over
the appropriate x range. For the low-x region, the fit
function was a constant fðxÞ ¼ A, with A being a free
parameter. The fit was performed over the range

TABLE XI. The extracted an2 over the full x range, decomposed
into the low-x, measured, and high-x components. The column
labeled “full” is the sum of all three regions. The uncertainties are
only listed for the full extraction, where the first quantity is the
statistical uncertainty and the second is the systematic uncer-
tainty.

hQ2i
[GeV2]

Low x
[×10−4]

Measured
[×10−4]

High x
[×10−4]

Full
[×10−4]

3.21 −3.056 5.078 6.530 8.552� 1.761� 6.125
4.32 −3.056 5.499 2.601 5.044� 2.270� 6.042

)2 (GeV2Q
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SLAC E143
Average From Global Analyses
This Work
This Work (with low x)
Elastic Component

FIG. 35. Our measured an2 data compared to SLAC E143 [47]
and a lattice QCD calculation [34], both of which are at
Q2 ¼ 5 GeV2. The lattice calculation is offset in Q2 for clarity.
The up-triangles represent the average over global analyses
[59,128,134–136], which are offset in Q2 for clarity. Our
measurements shown as the circles (squares) exclude (include)
the unmeasured low-x region. The inner error bar on our data is
the statistical error, and the outer error bar is the in-quadrature
sum of the statistical and systematic uncertainties. The results
excluding the low-x contribution are offset in Q2 for clarity. The
elastic contribution is computed by using the Riordan [35] and
Kelly [36] parametrizations for Gn

E and Gn
M, respectively.
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xmin < x < x0, where x0 is the lowest measured x bin for a
given experiment. The lower bound xmin is defined by
W ¼ ffiffiffiffiffiffiffiffiffiffi

1000
p

GeV. The uncertainty in this low-x extrapo-
lation was estimated by taking the difference between our
fit of fðxÞ ¼ A with that of a simple Regge parametrization
where fðxÞ ¼ Ax−1=2 [165,166]. For the high-x region, the
fit function was fðxÞ ¼ Að1 − xÞ3, with A being a free
parameter, over the range x0 < x < xmax. The quantity x0 is
the highest x bin for which there were data available, and
xmax is defined by the pion production threshold,
W ¼ 1.12 GeV. The fit functions for the low- and high-
x regions were chosen based on the trend of the data in the
last three or two bins in each case, respectively.
The elastic contribution to Γn

1 was evaluated using the
Riordan [35] and Kelly [36] parametrizations, and it was
added to all of the world data. The uncertainty on the elastic
contribution was estimated as the difference between using
the Riordan (Kelly) parametrization for Gn

E (Gn
M) compared

to using Galster [167] (dipole) for Gn
E (Gn

M). The resulting
Γn
1 data from this analysis are presented in Appendix D.
In order to extract the higher-twist contribution,

the twist-2 contribution must first be removed. Using the
OPE [15], Γn

1 was expanded as an inverse power series in
Q2, revealing the higher-twist components, that was
accessed by subtracting the leading twist (twist-2)
contribution. The twist-2 contribution μn2 was calculated
using Eq. (14), where αs was parametrized according to
[168] and normalized to αsð1 GeV2Þ ¼ 0.45� 0.05 for
ΛQCD ¼ 315 MeV. We used Nf ¼ 3 and Nloop ¼ 3 [40],
gA ¼ 1.2723� 0.0023 [161], and a8 ¼ 0.587� 0.016
[161]. Note that the values for gA and a8 have been
updated relative to those used in Ref. [155]. At large
Q2, the higher-twist contributions should be small due to
theQ−2 suppression; therefore, Γn

1ðQ2Þ ¼ μ2ðQ2Þ. Because
of this, the axial charge ΔΣ was extracted [Eq. (14)] using
the highest Q2 measurements from SLAC E154 [164]
(Q2 ¼ 5 GeV2), SMC [149] (Q2 ¼ 10 GeV2), and
HERMES [163] (Q2 ¼ 6.5 GeV2). Statistically averaging
the results of these experiments yielded Q2 ¼ 5.77 GeV2

and Γn
1 ¼ −0.03851� 0.00535, resulting in ΔΣ ¼ 0.375�

0.052. This calculation is in excellent agreement with [169]
and is consistent with Ref. [128], but at odds with
Ref. [170]. In the latter case, we suspect this disagreement
may be due in part to differing approaches in the low-x
extrapolation of the world data in the various global
analyses; additionally, Ref. [170] is dominated by proton
data (and does not include JLab neutron data
[26,28,46,131]), which may be biasing the extraction of
ΔΣ, though it is clear that there is a need for more neutron
data in general.
As described in Appendix D, a fit to Γn

1 − μ2 as a
function ofQ2 allows the extraction of fn2 after inserting the
average an2 (see the beginning of Sec. V B 3) and dn2 from
the present experiment. The extracted fn2 values are given in

Table XII. This result differs from that in Ref. [155]
because we have improved our analysis, where we have
updated the values for gA and a8 used in the evaluation of
the twist-2 term μ2. We also now include uncertainties on
the low-x and elastic terms in the Γn

1 analysis mentioned
above; additionally, our uncertainty on fn2 has changed as
we now consider the full error matrix of our fit function,
accounting for correlations between the fit parameters A
and B. Our results reported here are larger than those in
Ref. [155] by about 23% (25%) for E ¼ 4.74 GeV
(5.89 GeV), and the systematic uncertainty has been
reduced by a factor of 1.5.
Our result for fn2 is compared to that from an instanton

model [171,172] and QCD sum rule calculations from E.
Stein et al. [30,173] and Balitsky et al. [31], shown in
Fig. 36. We find good agreement with the instanton model
and reasonable agreement with the QCD sum rule result
from Balitsky et al. Currently, there are no lattice QCD
calculations of fn2 , and it would be interesting to see what a
lattice approach would yield. One can compare our result to
that of Meziani et al. [22], who found fn2 ¼ 0.034� 0.043
normalized toQ2 ¼ 1 GeV2 using a similar data set in their
extraction of Γn

1 . The main difference between these
analyses was that they fit world neutron data to obtain
an2 and used the results of SLAC E155x [27] for dn2, both at
Q2 ¼ 5 GeV2. In contrast, this work used the measured dn2 ,
and the an2 matrix element was obtained at the necessaryQ2

from an average over the global analyses [59,128,134–
136]. The statistical uncertainty on our extracted fn2 arises

TABLE XII. Extracted fn2 results. The uncertainties given are
the statistical and systematic uncertainties, respectively.

hQ2i ðGeV2Þ fn2 ð×10−3Þ
3.21 53.41� 0.79� 25.55
4.32 49.66� 0.83� 25.99
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FIG. 36. Our extracted result for fn2 as compared to that from an
instanton model [171,172] and QCD sum rules [30,31,173]. The
result from the analysis of Meziani et al. [22] is also shown. For
the present data, the inner error bars represent the statistical
uncertainties (smaller than the markers), while the outer error bars
represent the statistical and systematic uncertainties added in
quadrature.
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from dn2 , while the systematic uncertainty contains con-
tributions from the fit to extract fn2 , and from the an2
and dn2 systematic uncertainties, but is dominated by
the first.
With the matrix elements dn2 and fn2 evaluated, the

Lorentz color force was decomposed into its electric and
magnetic components via [17]

Fy;n
E ¼ −

M2
n

6
ð2dn2 þ fn2Þ; ð48Þ

Fy;n
B ¼ −

M2
n

6
ð4dn2 − fn2Þ: ð49Þ

The results for the electric ðFy;n
E Þ and magnetic ðFy;n

B Þ color
forces averaged over the volume of the neutron are shown
in Table XIII and in Fig. 37, where we compare to an
instanton model [171,172] and QCD sum rules from Stein
et al. [30,173] and Balitsky et al. [31]. In Fig. 37, filled
markers represent Fy;n

E , while open markers indicate Fy;n
B .

We find that the electric and magnetic color forces are
approximately equal and opposite. The electric color force
component Fy;n

E is in agreement with the instanton model,
while the magnetic component Fy;n

B is consistent with the
instanton model and QCD sum rules. However, those
calculations were performed at Q2 ¼ 0.4 and 1 GeV2,
respectively. Note that the values for Fy;n

E and Fy;n
B reported

here differ from those presented in Ref. [155] because we
have reevaluated the color forces using the updated fn2
values given in Table XII. The central values for Fy;n

E at
E ¼ 4.74 GeV (E ¼ 5.89 GeV) have increased in magni-
tude by 28% (25%), while for Fy;n

B the central values have
increased in magnitude by 16% (24%). The systematic
uncertainties for both Fy;n

E and Fy;n
B have been reduced by a

factor of 1.5.

4. The virtual photon-nucleon asymmetry An
1

The asymmetry An
1 (Sec. IV D) was extracted for our DIS

data at the two beam energies for hQ2i ¼ 2.59 GeV2 (E ¼
4.74 GeV) and hQ2i ¼ 3.67 GeV2 (E ¼ 5.89 GeV); the
results are given in Tables XIV and XV. These results were
averaged using the statistical uncertainty as the weight,
while the systematic uncertainties were averaged using
equal weights. The averaged results, first published in
[174], are given in Table XVI and plotted in Fig. 38. The
systematic uncertainties are outlined in tables given in
Appendix E 6. The biggest contribution to the uncertainty
is from the effective proton polarization. Our result is
consistent with the trend seen in current DIS data from
SLAC E142 [43] and E154 [164], HERMES [45], and JLab
E99-117 [28,46]. Although this experiment was optimized
for the measurement of dn2 , we obtained a data set with
uncertainties that are competitive with the previous JLab
data from E99-117. Our extraction provides a proof-of-
principle measurement in an open-geometry detector
(BigBite) yielding data with competitive uncertainties
compared to the majority of the world data in the mid-x
range, and showing a zero crossing at x ≈ 0.5. Our data
tend to follow the trend of the pQCD-based parametrization
that includes orbital angular momentum [50], possibly
indicating the importance of orbital angular momentum
in the spin of the nucleon. Our result also shows good
agreement with the NJL-type model from Cloët et al. [52].
Dyson-Schwinger equation treatment predictions [53] are
presented at x ¼ 1 (Fig. 38).

5. The structure function ratio gn1=F
n
1

Similar to the An
1 analysis (Sec. V B 4), the gn1=F

n
1

ratio was extracted for our DIS data at each beam
energy for hQ2i ¼ 2.59 GeV2 (E ¼ 4.74 GeV) and
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FIG. 37. Our extracted result for Fy;n
E (filled markers) and Fy;n

B
(open markers) as compared to an instanton model [171,172] and
QCD sum rules [30,31,173]. For our data points, the inner error
bars represent the statistical uncertainties (smaller than the
markers), while the outer error bars represent the statistical
and systematic uncertainties added in quadrature.

TABLE XIII. Extracted magnetic and electric Lorentz color
force components. The uncertainties given are the statistical
uncertainty and the systematic uncertainty, respectively.

hQ2i [GeV2] Fy;n
E [MeV=fm] Fy;n

B [MeV=fm]

3.21 −33.53� 1.32� 19.07 52.35� 2.43� 19.18
4.32 −36.48� 1.38� 19.38 38.04� 2.55� 19.46

TABLE XIV. Results for An
1 and g

n
1=F

n
1 for E ¼ 4.74 GeV. The

uncertainties given are the statistical and systematic uncertainties,
respectively.

hxi An
1 gn1=F

n
1

0.277 0.012� 0.071� 0.008 0.007� 0.068� 0.010
0.325 0.011� 0.043� 0.009 0.008� 0.041� 0.008
0.374 0.102� 0.037� 0.014 0.065� 0.034� 0.011
0.424 −0.064� 0.040� 0.014 −0.066� 0.038� 0.013
0.473 −0.044� 0.051� 0.015 −0.058� 0.047� 0.014
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hQ2i ¼ 3.67 GeV2 (E ¼ 5.89 GeV). These data are given
in Tables XIVand XV. The results were averaged using the
statistical uncertainty as the weight, and systematic uncer-
tainties were averaged using equal weights. The averaged
results, first published in [174], are given in Table XVI and
plotted in Fig. 39. The systematic uncertainties are given in
tables presented in Appendix E 6. The biggest contribution
to the uncertainty is from the effective proton polarization
and from the fit to gp1=F

p
1 data. Our results are comparable

to the JLab E99-117 data [28,46] in reach and precision,
and are consistent with the trend seen in the DIS data from
SLAC E143 [43] and E155 [175] as shown in Fig. 39.

C. Flavor decomposition via the quark-parton model

Under the quark-parton model [176], if one assumes that
the strange quark distributions sðxÞ, s̄ðxÞ,ΔsðxÞ, andΔs̄ðxÞ
are negligible for x > 0.3, and neglecting any Q2 depend-
ence in the ratio of structure functions, the polarized-to-
unpolarized quark ratios can be extracted through Eqs. (27)
and (28). We utilized the Rdu ratio from the CJ12 [143]
model. Using our fit to the gp1=F

p
1 world data sets, we

obtained at leading order the quantities ðΔuþ ΔūÞ=
ðuþ ūÞ and ðΔdþ Δd̄Þ=ðdþ d̄Þ for E ¼ 4.74 GeV
(5.89 GeV) where hQ2i ¼ 2.59 GeV2 (3.67 GeV2). The
results are tabulated in Tables XVII and XVIII. Averaging
the two data sets, we obtained the values given in
Table XIX at hQ2i ¼ 3.08 GeV2. These averaged results,
first published in [174], are compared to various world data

[28,54–56] and theoretical calculations [50,51,53,59] in
Fig. 40. The uncertainty due to neglecting the strange
contribution was determined by computing Eqs. (27)
and (28) with the strange component included [86],

Δuþ Δū
uþ ū

¼
�
Δuþ Δū
uþ ū

�
s;s̄¼0

þ sþ s̄
u

�
4

15

gp1
Fp
1

−
1

15

gn1
Fn
1

−
1

5

Δsþ Δs̄
sþ s̄

�
; ð50Þ

FIG. 38. Our measured An
1 results compared to world data

[28,43–46] and a pQCD-inspired global analysis (dashed curve)
[49], a statistical quark model (solid curve) [51], a relativistic
CQM model (gray band) [48], and a pQCD-based parametriza-
tion including orbital angular momentum (dash-dotted curve)
[50]. An NJL-type model (dash–triple-dotted curve) is also
shown [52]. Dyson-Schwinger equation treatment predictions
[53] are presented at x ¼ 1. The band at the bottom of the plot
indicates the systematic uncertainty for the present data.

TABLE XV. Results for An
1 and gn1=F

n
1 for E ¼ 5.89 GeV. The

uncertainties given are the statistical and systematic uncertainties,
respectively.

hxi An
1 gn1=F

n
1

0.277 0.127� 0.116� 0.035 0.143� 0.112� 0.014
0.325 −0.031� 0.058� 0.009 −0.019� 0.056� 0.009
0.374 0.035� 0.049� 0.010 0.031� 0.046� 0.009
0.424 −0.039� 0.053� 0.013 −0.049� 0.050� 0.012
0.474 −0.044� 0.066� 0.017 −0.044� 0.062� 0.015
0.524 0.109� 0.088� 0.019 0.098� 0.082� 0.017
0.573 0.135� 0.126� 0.023 0.132� 0.116� 0.021

TABLE XVI. Results for An
1 and gn1=F

n
1 averaged over our E ¼

4.74 and 5.89 GeV results for hQ2i ¼ 3.08 GeV2. The uncer-
tainties given are the statistical and systematic uncertainties,
respectively.

hxi An
1 gn1=F

n
1

0.277 0.043� 0.060� 0.022 0.044� 0.058� 0.012
0.325 −0.004� 0.035� 0.009 −0.002� 0.033� 0.009
0.374 0.078� 0.029� 0.012 0.053� 0.028� 0.010
0.424 −0.055� 0.032� 0.014 −0.060� 0.030� 0.012
0.474 −0.044� 0.040� 0.016 −0.053� 0.037� 0.015
0.548 0.118� 0.072� 0.021 0.110� 0.067� 0.019
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FIG. 39. Our measured gn1=F
n
1 results, compared to world data

[28,43,46,164], and an NLO QCD global analysis [59] (dashed
curve) and pQCD-inspired fit [50] (dash-dotted curve), and a
statistical quark model [134] (solid curve). The band at the
bottom of the plot indicates the systematic uncertainty for our
data set.
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Δdþ Δd̄
dþ d̄

¼
�
Δuþ Δū
uþ ū

�
s;s̄¼0

þ sþ s̄
d

�
4

15

gn1
Fn
1

−
1

15

gn1
Fn
1

−
1

5

Δsþ Δs̄
sþ s̄

�
; ð51Þ

where the terms ð� � �Þs;s̄¼0 are defined in Eqs. (27) and (28).
The second term in Eqs. (50) and (51) is the strange
contribution, which was evaluated using various paramet-
rizations [59,128,134,135,143] and taking the maximum
difference between calculations using all possible model
combinations as the uncertainty. It was found to be sizable
in the lowest x bins for the down-quark results, but was
small for x ≥ 0.424. For the up-quark results, the strange
uncertainty was small. The uncertainty due to neglecting
the strange contribution is included in our reported
uncertainties.

The extracted up- and down-quark ratios agree with the
general trend of the world data within our uncertainties.
Our analysis supports the notion that the down-quark ratio
stays negative into the large x region, with no clear
indication that it turns positive toward x≃ 0.6, as predicted
by the calculation of Avakian et al. [50].
The largest contribution to our systematic uncertainties

on the up-quark ratio is from our fit to the gp1=F
p
1 data,

while for the down-quark ratio, the largest contributions are
due to the gp1=F

p
1 fit and the d=u ratio. An overview of the

systematic uncertainties is given in Appendix E 7.

VI. CONCLUSIONS

Scattering a longitudinally polarized electron beam of
energies of E ¼ 4.74 GeV and 5.89 GeV from a polarized
3He target in two orientations, longitudinal and transverse
(with respect to the electron beammomentum), we measured
the unpolarized electron-scattering cross section with the
LHRS and the electron double-spin asymmetries with the
BigBite spectrometer, with both spectrometers set at 45° with
respect to the beam line. Combining the unpolarized cross
sections and double-spin asymmetries allowed the extraction
of the twist-3 matrix element dn2 . This quantity was extracted
at two hQ2i values of 3.21 GeV2 and 4.32 GeV2. The result
at the lower hQ2i value is small and negative, while that for
the higher hQ2i value is consistent with zero. The data
indicate a trend toward the lattice QCD [34] calculation at

TABLE XVII. Results for ðΔuþΔūÞ=ðuþ ūÞ and ðΔdþ Δd̄Þ=
ðdþ d̄Þ at E ¼ 4.74 GeV. The uncertainties given are the
statistical and systematic uncertainties, respectively.

hxi ðΔuþ ΔūÞ=ðuþ ūÞ ðΔdþ Δd̄Þ=ðdþ d̄Þ
0.277 0.437� 0.013� 0.031 −0.219� 0.110� 0.028
0.325 0.482� 0.008� 0.036 −0.267� 0.069� 0.032
0.374 0.513� 0.006� 0.043 −0.218� 0.060� 0.038
0.424 0.570� 0.006� 0.050 −0.508� 0.068� 0.051
0.473 0.596� 0.007� 0.063 −0.566� 0.088� 0.069

TABLE XVIII. Results for ðΔuþΔūÞ=ðuþ ūÞ and ðΔdþΔd̄Þ=
ðdþ d̄Þ at E ¼ 5.89 GeV. The uncertainties given are the
statistical and systematic uncertainties, respectively.

hxi ðΔuþ ΔūÞ=ðuþ ūÞ ðΔdþ Δd̄Þ=ðdþ d̄Þ
0.277 0.410� 0.022� 0.032 0.001� 0.182� 0.027
0.325 0.487� 0.010� 0.037 −0.314� 0.094� 0.033
0.374 0.518� 0.008� 0.045 −0.281� 0.081� 0.040
0.424 0.567� 0.008� 0.051 −0.482� 0.090� 0.051
0.474 0.593� 0.009� 0.063 −0.547� 0.116� 0.071
0.524 0.594� 0.012� 0.070 −0.352� 0.165� 0.083
0.573 0.606� 0.015� 0.085 −0.365� 0.250� 0.111

TABLE XIX. Results for ðΔuþΔūÞ=ðuþ ūÞ and ðΔdþ Δd̄Þ=
ðdþ d̄Þ averaged over the two beam energies, for
hQ2i ¼ 3.08 GeV2. The uncertainties given are the statistical
and systematic uncertainties, respectively.

hxi ðΔuþ ΔūÞ=ðuþ ūÞ ðΔdþ Δd̄Þ=ðdþ d̄Þ
0.277 0.430� 0.011� 0.031 −0.160� 0.094� 0.028
0.325 0.484� 0.006� 0.037 −0.283� 0.055� 0.032
0.374 0.515� 0.005� 0.044 −0.241� 0.048� 0.039
0.424 0.569� 0.005� 0.051 −0.499� 0.054� 0.051
0.474 0.595� 0.006� 0.063 −0.559� 0.070� 0.070
0.548 0.598� 0.009� 0.077 −0.356� 0.138� 0.097

-0.2

-0.4

-0.6
-0.8

-1

FIG. 40. Our combined E ¼ 4.74 and 5.89 GeV data for the up-
and down-quark ratios. Our results are compared to existing data
[28,54–56], where the error bars on all data sets are the in-
quadrature sum of the statistical and systematic uncertainties.
Also presented is a statistical quark model (solid curve) [51], an
NLO QCD global analysis from Leader et al. (dashed curve) [59],
and a pQCD analysis including orbital angular momentum from
Avakian et al. (dash-dotted curve) [50]. An NJL-type model from
Cloët et al. (dash–triple-dotted curve) [52] is also shown. DSE
predictions [53] are shown at x ¼ 1.
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Q2 ¼ 5 GeV2. The extracted dn2 values are also consistent
with predictions of chiral soliton [32] and bag [33,38,39]
models. The size of the present dn2 results predicts the twist-3
contribution is small.
Utilizing our measured dn2 twist-3 matrix element com-

bined with global analyses for an2 and world data on Γn
1 , we

have extracted the twist-4 matrix element fn2 . This matrix
element is observed to be larger than dn2 in magnitude,
resulting in approximately equal and opposite Lorentz
color magnetic and electric forces in the neutron. The
results for fn2 are consistent with instanton model calcu-
lations [171,172] and a QCD sum-rule calculation [30].
The extracted values for Fy;n

E and Fy;n
B are in agreement

with the instanton model calculations of [171,172], while
the value for Fy;n

B is additionally in accordance with QCD
sum-rule calculations from [30,31]. We look forward to
lattice QCD calculations of the fn2 matrix element, not yet
available at this time due to their difficulty, before the new
wave of planned experiments in the 12 GeV upgrade era of
Jefferson Lab to measure d2 and f2 with more precision.
Following a similar analysis procedure to the one used

for dn2, we extracted the an2 matrix element using our g
3He
1

data. Our a2 results are positive for both hQ2i ¼ 3.21 and
4.32 GeV2, with an improved precision compared to the
currently published data and lattice calculations.
The extracted virtual photon asymmetry An

1 is consistent
with the current world data, especially JLab E99-117
[28,46], and shows good agreement with pQCD calcula-
tions that incorporate quark orbital angular momentum
[50]. This suggests that orbital angular momentum may
play an important role in the spin of the nucleon.
The measured structure function ratio of gn1=F

n
1 shows a

similar trend to JLab E99-117 [28,46], adding higher
precision data to the world data set.
Fitting the world g1=F1 data on the proton allowed the

extraction of ðΔuþ ΔūÞ=ðuþ ūÞ and ðΔdþ Δd̄Þ=ðdþ d̄Þ
when using the CJ12 [143]model for d=u. The extracted up-
quark ratio is consistent with existing measurements and
models, and its uncertainty is dominated by our fit to the
world gp1=F

p
1 data. The down-quark ratio is observed to

remain negative into the large-x region, with no clear
indication of a change to positive values in the range of
x≃ 0.75 as predicted in Ref. [50]. The down-quark ratio is
very sensitive to the d=u ratio, as is evident in the systematic
uncertainties. Better precision on d=u from the projected
experiment [177] at Jefferson Lab in the 12GeVupgrade era
will help to constrain the ðΔdþ Δd̄Þ=ðdþ d̄Þ ratio.
A future experiment [178] proposed at Jefferson Lab

calls for an even higher precision measurement of dn2 at four
central Q2 bins in a range from 2 GeV2 to 7 GeV2. While
our data provide a good understanding of dn2 at Q2 ¼ 3.21
and 4.32 GeV2, those data will provide a direct comparison
to the lattice QCD calculation at Q2 ¼ 5 GeV2. There are
also two dedicated An

1 experiments approved to run at

Jefferson Lab [179,180] that aim to extend DIS An
1

measurements to larger x (∼0.77) in addition to studying
the Q2 evolution of the asymmetry. These measurements
are important for broadening our insight into the large-x
spin structure of the nucleon, as suggested by the results1

presented in this paper.
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APPENDIX A: DEEP INELASTIC ELECTRON
SCATTERING FORMALISM

1. Structure functions and cross sections

In electron scattering, the electrons are accelerated to
high energies and scatter from a nuclear or nucleon target.
In practice, the target is typically fixed. The electron
interacts with the target by exchanging a virtual photon
with the target object, transferring its energy and momen-
tum to the target. An advantage of lepton scattering is that
the interaction at the leptonic vertex is solely described by
quantum electrodynamics, which simplifies the mathemat-
ics. The electromagnetic nature of the interaction also
results in the process being a “clean” probe into the
structure of the nucleon, where the QCD physics is
contained entirely in the description of the nucleon and
is not convoluted with the leptonic probe.
To describe the process more quantitatively, consider

Fig. 41. The incident and scattered electrons have the four-

momenta k ¼ ðE; ~kÞ and k0 ¼ ðE0; ~k0Þ, respectively. The
target has a four-momentum of p ¼ ðET; ~pÞ. The virtual
photon exchanged between the incident electron and the
target has the four-momentum q ¼ ðν; ~qÞ. If the incident
electron has enough energy, the target can break up into a
number of distinct hadrons; otherwise, the target will
remain intact. In the latter case, the recoiling target object
would have a four-momentum p0 in the final hadronic state.
Electron scattering data are presented and discussed in
terms of a number of Lorentz-invariant variables, namely ν,
y,Q2,W, and x. Since the four-momentum at each vertex is
conserved, we begin by defining q in terms of the incoming
and outgoing electron four-momenta,

1The results presented in this work may downloaded as raw
data files from [181].
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q ¼ k − k0 ¼ ðE − E0; ~k − ~k0Þ ¼ ðν; ~qÞ; ðA1Þ

where ν can be defined in an invariant form,

ν≡ p · q=M; ðA2Þ
with M being the mass of the nucleon. In the target rest

frame, p ¼ ðM; ~0Þ, so Eq. (A2) reduces to ν ¼ E − E0, and
is known as the electron energy loss. The fractional energy
loss, y, can be defined in an invariant form,

y≡ p · q
q · k

; ðA3Þ

which simplifies to the noninvariant form y ¼ ðE − E0Þ=E.
The four-momentum transfer squared, q2, always eval-

uates to less than or equal to zero. For convenience, we
define a positive quantity Q2,

Q2 ≡ −q2 ¼ 4EE0sin2ðθ=2Þ; ðA4Þ
where θ is the scattering angle of the electron in the
laboratory frame and we have neglected the electron mass.
Shifting our focus to the hadronic side of Fig. 41, there

are two possibilities for the final state: there is one object
(i.e., the target remains intact) or several, determined by the
energy with which the target is probed. Furthermore, the
measured interaction may be described by two general
terms: exclusive or inclusive scattering. In the case of
exclusive scattering, the scattered electron and all final-
state hadrons are detected; there is also the case of detecting
an electron and at least one particle in the final state, which
is called semi-inclusive. For inclusive scattering, only the
scattered electron is detected in the final state.
Inclusive scattering can be represented as eN → eX,

where e is the electron, N is the target nucleon, and X is the
final (unmeasured) hadronic state. In the context of an
unmeasured final hadronic state (which could consist of
any of the multitude of particle states for a given

combination of ν and Q2 values), we can define the
invariant mass of the system, W,

W2 ≡ ðqþ pÞ2 ¼ M2 þ 2Mν −Q2: ðA5Þ
Finally, we come to the variable x. It is defined in terms

of the other invariants ν and Q2 as

x≡ Q2

2p · q
¼ Q2

2Mν
: ðA6Þ

The simplest interpretation of x comes in the infinite
momentum frame, where the nucleon is traveling with a
large momentum along ~q. In this frame, the active quark in
the interaction (struck by the virtual photon) carries the
momentum fraction x of the nucleon momentum in the
leading-order DIS process [182].
The DIS region is characterized byW > 2 GeV, where ν

and Q2 become large enough so that the quarks can be
resolved inside the nucleon. In this case, the electron is
scattering from an asymptotically free quark (or antiquark)
in the nucleon.
Consider scattering unpolarized electrons from pointlike,

unpolarized spin-1=2 particles that are infinitely heavy with
a charge of þ1. In this case, energy conservation dictates
E0 ¼ E, and the cross section is given by

�
dσ
dΩ

�
Mott

¼ α2cos2ðθ=2Þ
4E2sin4ðθ=2Þ ; ðA7Þ

with θ being the scattering angle of the electron. This
quantity is known as theMott cross section. However, since
the nucleon is a composite object and is not infinitely
massive, the cross section is more complicated than that
seen in Eq. (A7), and is given by

d3σ
dΩdE0 ¼

�
dσ
dΩ

�
Mott

�
1

ν
F2ðx;Q2Þ

þ 2tan2ðθ=2Þ
M

F1ðx;Q2Þ
�
; ðA8Þ

where F1 and F2 are the unpolarized structure functions,
and are related to one another through Eq. (43).
For experiments that use targets that are not nucleons

(A ≠ 1), there are two conventions for expressing the
quantities F1 and F2. The first is per nucleon, written as
F1=A and F2=A. The second is per nucleus, where the
structure functions are reported without dividing by A. The
latter representation is used in this paper.
When both the incident electron beam and target are

polarized, one can access the spin structure functions g1 and
g2. A full discussion may be found in Ref. [123]. The
polarized cross section difference for when the target spin
(double arrows) and electron spin (single arrows) are
polarized along the direction of the electron momentum
is given as

FIG. 41. A cartoon describing inclusive polarized electron-
nucleon scattering. The large arrows indicate possible spin ori-
entations of the incident electron andnucleon.The quantities s andS
indicate the spin four-vectors of the electron and nucleon, respec-
tively. The other kinematic variables are described in the text.
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d2σ↓;⇑

dΩdE0 −
d2σ↑;⇑

dΩdE0 ¼
4α2

Q2

E0

νE
½ðEþ E0 cos θÞg1ðx;Q2Þ

− 2Mxg2ðx;Q2Þ�: ðA9Þ

When the target spin is perpendicular to the electron spin,
the cross section difference is written as

d2σ↓;⇒

dΩdE0 −
d2σ↑;⇒

dΩdE0 ¼
4α2

Q2

E02

νE
sin θ

�
g1ðx;Q2Þ

þ 2ME
ν

g2ðx;Q2Þ
�
: ðA10Þ

2. Bjorken scaling, the quark-parton model,
and scaling violation

When probing an object of finite size, the measurement
will depend upon the spatial resolution of the probe; in the
case of electron scattering, this is Q2, the negative of the
momentum transferred to the target squared. If we increase
Q2 so that we can resolve the internal structure of the
nucleon, the quarks will become visible. At this point,
inelastic electron-nucleon scattering may be seen as elastic
scattering from a single quark, while the other quarks
remain undisturbed. Considering that quarks are pointlike
particles, increasing the resolution Q2 will no longer affect
the interaction.
In the limit where Q2 → ∞ and ν → ∞, with x ¼

Q2=ð2MνÞ fixed (the Bjorken limit), the phenomenon
where experimental observables lose their Q2 dependence
is known as Bjorken scaling [183]. As a result, the structure
functions depend upon a single variable x. Furthermore, the
F2 structure function can be related to the F1 structure
function by the Callan-Gross relation [184],

F2ðxÞ ¼ 2xF1ðxÞ: ðA11Þ

To connect the quark behavior to the structure functions,
we turn to the quark-parton model (QPM). In this model,
deep inelastic scattering of electrons from nucleons is
described as the incoherent scattering of electrons from
free partons (quarks and antiquarks) inside the nucleon
[176], via the exchange of a virtual photon. Therefore, the
nucleon structure functions F1 and g1 can be written in
terms of the PDFs [176,182],

F1ðxÞ ¼
1

2

X
i

e2i qiðxÞ; ðA12Þ

g1ðxÞ ¼
1

2

X
i

e2iΔqiðxÞ; ðA13Þ

with q ¼ q↑ðxÞ þ q↓ðxÞ and Δq ¼ q↑ðxÞ − q↓ðxÞ, where
↑ (↓) indicates quark spin parallel (antiparallel) to the
parent nucleon spin.

The scaling behavior of the structure functions is only
exact in the limit of infiniteQ2 and ν. At finite values ofQ2

and ν, it is only an approximation. In reality, the quarks
participating in the interaction with the electron may radiate
gluons before or after scattering. Such processes result in an
infinite cross section and can only be treated properly when
all other processes of the same order are considered. These
gluonic radiative corrections result in the cross section
acquiring a logarithmic Q2 dependence, which can be
computed exactly in pQCD under the formalism of the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution equations [9]. As a result, the Q2 dependence
manifests itself in the structure functions.
As a result of the scaling violation, we recast the PDFs

and the structure functions in terms of both x and Q2. In
particular, the definition of the PDF is now q↑ð↓Þðx;Q2Þ:
this is the probability of finding a quark q with its spin
parallel (antiparallel) to its parent nucleon with momentum
fraction x when viewed at an energy scale Q ¼

ffiffiffiffiffiffi
Q2

p
.

The physical interpretation tied to the scaling violation is
that structure functions at low Q2 are dominated by three
valence quarks “dressed” by sea quarks (manifesting as
q − q̄ pairs) and gluons. As Q2 is increased, the resolving
power increases, allowing for sensitivity to the “bare”
quarks and gluons which make up the nucleon.

3. The resonance region

Because of the kinematics of our experiment, about half
of our data set corresponds to the DIS regime, while the
other corresponds to the resonance region. With this in
mind, we give a brief description of the resonance region.
When ν and Q2 have values such that 1.2 < W <

2 GeV, we explore the substructure of the nucleon. In this
energy range, the quarks that make up the nucleon
collectively absorb the energy of the virtual photon, leading
to unstable excited states of the nucleon called nucleon
resonances. The most prominent resonance occurs at
W ¼ 1.232 GeV, and is known as the Δ resonance.
Higher resonances are also possible at W > 1.4 GeV,
but are difficult to discern from one another, as their peaks
and tails tend to overlap.

4. The virtual photon-nucleon asymmetry A1

Let us consider a scattering interaction in which the
nucleon is longitudinally polarized, while the virtual
photon is circularly polarized with a helicity of �1. As
a result, two possible helicity-dependent cross sections for
a given nucleon polarization arise, denoted σ3=2 and σ1=2.
The subscripts denote the projection of the total spin of the
virtual photon-nucleon system along the direction of the
virtual photon momentum [47,98]. When the virtual photon
spin is parallel (antiparallel) to the nucleon spin, they add to
3=2 (1=2). From these two cross sections, the A1 asym-
metry is formed as
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A1 ≡ σ1=2 − σ3=2
σ1=2 þ σ3=2

: ðA14Þ

In terms of the structure functions, A1 may be written as
[123]

A1ðx;Q2Þ ¼ g1ðx;Q2Þ − γ2g2ðx;Q2Þ
F1ðx;Q2Þ : ðA15Þ

At large Q2, A1 ≈ g1=F1. This can be seen by observing
that γ2 → 0 as Q2 gets increasingly large. A conceptual
argument on the quark level is as follows: if the spin of the
virtual photon is antiparallel to that of the quark, then the
virtual photon can be absorbed and the quark spin is
flipped; however, if the spins are parallel, then the
absorption of the virtual photon is forbidden, since the
total projection of the spins along ~q is 3=2 and the quark is a
spin-1=2 particle. The mathematical form of the approxi-
mation can be illustrated using this physical interpretation:
for the case where the spins of the nucleon and virtual
photon are parallel (σ3=2), then the quark that can absorb
the virtual photon has its spin antiparallel to the nucleon
spin. This translates to σ3=2 ∼

P
ie

2
i q

↓
i ðxÞ. A similar argu-

ment may be made for the σ1=2 case where only quarks with
spins parallel to the parent nucleon can absorb virtual
photons. Thus, we have σ1=2 ∼

P
ie

2
i q

↑
i ðxÞ. Rewriting A1 in

terms of these approximations, we obtain

A1 ∼
P

ie
2
i ½q↑i ðxÞ − q↓i ðxÞ�P

ie
2
i ½q↑i ðxÞ þ q↓i ðxÞ�

¼
P

ie
2
iΔqiðxÞP

ie
2
i qiðxÞ

¼ g1ðxÞ
F1ðxÞ

;

ðA16Þ

where the last term arises from the quark-parton model
description of the F1 and g1 structure functions [Eqs. (A12)
and (A13)].
The A1 asymmetry is a ratio of structure functions

(≈g1=F1), and as a result there is very littleQ2 dependence.
This is because g1 and F1 follow the same Q2 evolution
described by the DGLAP equations [9] which tends to
cancel in the ratio, leading to A1 being roughly Q2

independent.

5. Electron asymmetries

The virtual photon-nucleon asymmetry A1 is defined in
terms of a ratio of the difference in virtual photon cross
sections to their sum. Because of the difficulty associated
with aligning the virtual photon spin along the direction of
the nucleon spin, another approach is utilized to measure A1

that consists of aligning the incident electron spin relative
to the direction of the nucleon spin. The extraction of the
electron asymmetries allows the determination of A1. After
some algebra, the electron asymmetries (Sec. I B) may be
written as [156]

A∥ ¼ DðA1 þ ηA2Þ; ðA17Þ

A⊥ ¼ dðA2 − ηA1Þ: ðA18Þ

The asymmetry A2 is defined as A2 ≡ 2σLT=ðσ1=2 þ σ3=2Þ,
where σLT is the cross section describing the interference
between virtual photons with longitudinal and transverse
polarizations. In the QPM, there is no clear interpretation
for σLT, and in turn A2, as there is for σ1=2, σ3=2, and A1

[185]. From Eqs. (A17) and (A18), one can write A1 and A2

in terms of the double-spin asymmetries A∥ and A⊥. Similar
equations may be obtained for g1=F1 and g2=F1 [156]. The
equations for A1 and g1=F1 are shown in Sec. I C.

6. Spin structure functions

The spin structure functions g1 and g2 may be obtained
from the measured unpolarized cross section σ0 and the
double-spin asymmetries A∥ and A⊥ through

g1 ¼
MQ2

4α2
2y

ð1 − yÞð2 − yÞ σ0½A∥

þ tan ðθ=2ÞA⊥�; ðA19Þ

g2 ¼
MQ2

4α2
y2

ð1 − yÞð2 − yÞ σ0

×

�
−A∥ þ

1þ ð1 − yÞ cos θ
ð1 − yÞ sin θ A⊥

�
: ðA20Þ

APPENDIX B: QUARK-GLUON CORRELATIONS

1. The operator product expansion and twist

The OPE allows the separation of the perturbative and
nonperturbative components in structure functions at finite
Q2. This concept is illustrated in the product of two local
quark (or gluon) operators OaðdÞObð0Þ separated by a
distance d in the limit of d → 0,

lim
d→0

OaðdÞObð0Þ ¼
X
k

cabkðdÞOkð0Þ; ðB1Þ

where the coefficient functions cabk are the Wilson coef-
ficients and contain the perturbative part, which can be
computed using perturbation theory since nonperturbative
effects occur at distances much larger than d [11]. The
nonperturbative components manifest in Okð0Þ and con-
tribute to the cross section on the order of x−nðQ=MÞD−2−n.
The exponents n and D are the spin and (mass) dimension

of the operator, respectively. The quantity Q ¼
ffiffiffiffiffiffi
Q2

p
. The

twist τ of the operator is defined by

τ≡D − n: ðB2Þ
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At large Q2, τ ¼ 2 terms dominate in the OPE; at low Q2,
higher-twist (τ > 2) operators become important.

2. Cornwall-Norton moments and Nachtmann moments

Using the OPE, an infinite set of sum rules may be
derived under a twist expansion of the spin structure
functions g1 and g2 [123]. Such expansions of g1 and g2
are known as the CN moments [156],

Z
1

0

xn−1g1ðx;Q2Þdx ¼ 1

2
an−1; n ¼ 1; 3; 5;…; ðB3Þ

Z
1

0

xn−1g2ðx;Q2Þdx ¼ n − 1

2n
ðdn−1 − an−1Þ;

n ¼ 3; 5; 7;…; ðB4Þ

where n indicates the nth moment. In Eqs. (B3) and (B4),
only twist-2 and twist-3 contributions are considered. The
quantities an−1 and dn−1 represent the twist-2 and twist-3
matrix elements, respectively [186]. The expansions are
only over odd integers, which is a result of the symmetry of
the structure functions under charge conjugation [187].
The twist-3 matrix elements dn−1 may be accessed by

combining Eqs. (B3) and (B4). One obtains [156]

Z
1

0

xn−1
�
g1ðx;Q2Þ þ n

n − 1
g2ðx;Q2Þ

�
dx ¼ dn−1

2
;

n ≥ 3: ðB5Þ

Choosing n ¼ 3 yields the equation for d2 [cf. Eq. (4)].
The study of higher twist in structure functions has

traditionally been done through the formalism of the CN
moments; however, the exact relation of the CN moments
to the dynamical higher-twist contributions has come into
question in recent analyses [156,188]. It is argued that the
CN moments are valid only when the terms connected to
the finite mass of the nucleon are neglected. Such terms are
known as target mass corrections. These corrections are
related to twist-2 operators and are of order OðM2=Q2Þ.
Analogous to the CN moments, the Nachtmann moments
M1 and M2 can be used to separate the higher-twist
contribution from the target mass corrections [157,189].
They are defined as [25,156,190]

Mn
1ðQ2Þ≡ 1

2
an−1 ¼

1

2
~anEn

1

¼
Z

1

0

ξnþ1

x2

�
x
ξ
−

n2

ðnþ 2Þ2
M2xξ
Q2

g1ðx;Q2Þ

−
4n

nþ 2

M2x2

Q2
g2ðx;Q2Þ

�
dx;

n ¼ 1; 3;…; ðB6Þ

Mn
2ðQ2Þ≡ 1

2
dn−1 ¼

1

2
~dnEn

2

¼
Z

1

0

ξnþ1

x2

�
x
ξ
g1ðx;Q2Þ

þ
�

n
n − 1

x2

ξ2
−

n
nþ 1

M2x2

Q2

�
g2ðx;Q2Þ

�
dx;

n ¼ 3; 5;…: ðB7Þ

where ξ ¼ 2x=

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2x2=Q2

p �
.

We have performed the analysis to extract dn2 and an2
according to the CN moments and checked that result
against what was obtained from using the Nachtmann
moments. The difference in results between the two
approaches was found to be negligible, on the order of
10−5 in absolute value.

APPENDIX C: FITS TO DATA

1. Cross section fits

As discussed in Sec. IV B, because of time constraints
not all cross section measurements for studying pair
production on 3He and N2 were carried out. To resolve
the absence of those data, the data that were collected were
fit to a function of the form

fðEpÞ ¼
1

E2
p
eða0þa1EpÞ; ðC1Þ

where the scattered electron energy Ep is in GeV. This was
done for σe

þ
, σe

−

N2
, and σe

þ
N . The fits were performed in ROOT

[88], and the extracted parameters and their uncertainties
were obtained from the MINUIT minimization package
[191]. The fits were done separately for the data sets
corresponding to each beam energy. The systematic uncer-
tainties on the fits were obtained by varying the parameters
within their errors and observing the change on the fit (see
Figs. 18 and 19). The parameters together with their
uncertainties are listed in Table XX for the nitrogen cross
section when scattered electrons were detected, σe

−

N2
(LHRS

set to negative polarity mode), and in Table XXI when
positrons were detected, σe

þ
N2

(LHRS in positive polarity
mode). Table XXII gives the fit parameters and their
uncertainties for the unpolarized 3He cross section
where positrons were detected, σe

þ
(LHRS in positive

polarity mode).

TABLE XX. Fit parameters for the nitrogen cross section
(negative polarity), σe

−

N2
, for E ¼ 4.74 GeV and E ¼ 5.89 GeV.

Par. E ¼ 4.74 GeV E ¼ 5.89 GeV

a0 1.465 × 101 � 4.919 × 10−2 1.480 × 101 � 5.647 × 10−2

a1 −1.825 × 10−3 � 4.770 × 10−5 −2.123 × 10−3 � 5.607 × 10−5
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2. gp1=F
p
1 fit

To carry out the analysis to obtain gn1=F
n
1 from our

g
3He
1 =F

3He
1 data, a parametrization of the gp1=F

p
1 data

was needed. We fit the world data to a three-parameter,
Q2-independent function given by

fðxÞ ¼ p0 þ p1xþ p2x2: ðC2Þ

The assumption of Q2 independence is reasonable as the
Q2 evolution in g1 and F1 partially cancels in the ratio to
leading order and next-to-leading order in Q2 [123].
Additionally, the world data (which are at differing Q2)
show roughly the same behavior. The world data con-
sidered were from HERMES [45], SLAC E143 [47] and
E155 [139], along with CLAS EG1b [56] and CLAS
EG1-DVCS [144]. First, all of these data were rebinned
in x, in new bins formed based on a statistical-error-
weighted average; the systematic errors of all data
contributing to a new bin were averaged with equal
weights to yield its systematic error. The fit result, with
χ2=ndf ¼ 0.91, is shown in Fig. 42. The fit parameters
were found to be

p0 ¼ 0.035� 0.008;

p1 ¼ 1.478� 0.077;

p2 ¼ −1.010� 0.138: ðC3Þ

The fit was performed in ROOT [88], and the extracted
parameters and their uncertainties were obtained from the
MINUIT minimization package [191]. The band indicates
the uncertainty on the fit which was taken as the spread
in the gp1=F

p
1 data, serving as a conservative estimate.

3. Ap
1 fit

To obtain An
1 from our A

3He
1 data, we followed a similar

procedure to the g1=F1 analysis. The data used in the fit
include measurements from SMC [149], HERMES [145],

EMC [146,147], SLAC E143 [47] and E155 [139],
COMPASS [148], and CLAS EG1b [56]. The fit is shown
in Fig. 43, where we obtained χ2=ndf ¼ 1.11. The fit
parameters were found to be

p0 ¼ 0.044� 0.007;

p1 ¼ 1.423� 0.078;

p2 ¼ −0.552� 0.158: ðC4Þ

The fit was performed in ROOT [88], and the extracted
parameters and their uncertainties were obtained from the
MINUIT minimization package [191]. The band in Fig. 43
gives the fit uncertainty, computed in the same fashion as
was done for the gp1=F

p
1 fit.

TABLE XXI. Fit parameters for the nitrogen cross section
(positive polarity), σe

þ
N2
, for E ¼ 4.74 GeV and E ¼ 5.89 GeV.

Par. E ¼ 4.74 GeV E ¼ 5.89 GeV

a0 1.559 × 101 � 1.604 × 10−1 1.614 × 101 � 2.120 × 10−1

a1 −4.699 × 10−3 � 2.255 × 10−4 −5.232 × 10−3 � 3.126 × 10−4

TABLE XXII. Fit parameters for the positron cross section on
3He, σe

þ
, for E ¼ 4.74 GeV and E ¼ 5.89 GeV.

Par. E ¼ 4.74 GeV E ¼ 5.89 GeV

a0 1.887 × 101 � 7.998 × 10−2 1.896 × 101 � 6.899 × 10−2

a1 −5.620 × 10−3 � 1.194 × 10−4 −5.421 × 10−3 � 9.286 × 10−5
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FIG. 42. Our fit to world gp1=F
p
1 data. The error bars on the data

are the in-quadrature sums of their statistical and systematic
uncertainties. The band indicates the error on the fit.
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FIG. 43. Our fit to world Ap
1 data. The error bars on the data

are the in-quadrature sums of their statistical and systematic
uncertainties. The band indicates the uncertainty on the fit.
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APPENDIX D: WORLD Γn
1 DATA

The world Γn
1 data from SLAC E142 [43], E143 [47] and

E154 [164], SMC [149], HERMES [163], and JLab RSS
[25] and E94-010 [131] used in our fn2 analysis are shown
in Fig. 44. The twist-2 contribution, μn2, is given by the solid
curve; its uncertainty is indicated by the band. The elastic
contribution is also shown, given as the dashed curve. For
more details, see Sec. V B 3.
Subtracting μn2 from Γn

1 yields the higher-twist contri-
bution, ΔΓn

1 ≡ Γn
1 − μn2 , shown in Fig. 45. Fitting these data

to the function

f

�
1

Q2

�
¼ A

Q2
þ B
Q4

; ðD1Þ

where A ¼ ðM2
n=9Þðan2 þ 4dn2 þ 4fn2Þ and B ¼ μ6, a

higher-twist (τ > 4) term, are free parameters. Using the
result for the fit parameter A, we extract fn2 after inserting
the average an2 from global analyses and our measured dn2
(see Sec. V B 3) into Eq. (D1). The values of the fit
parameters A and B were found to be

A ¼ 1.936 × 10−2;

B ¼ −1.675 × 10−2; ðD2Þ
with the error matrix

ε ¼
�

2.240 × 10−4 −1.653 × 10−4

−1.653 × 10−4 1.351 × 10−4

�
: ðD3Þ

The fit was performed in ROOT [88], and the extracted
parameters and their uncertainties were obtained from the
MINUIT minimization package [191]. This fit allowed the
extraction of fn2 as described in Sec. V B 3.

APPENDIX E: SYSTEMATIC
UNCERTAINTY TABLES

This section contains tables of showing the contributing
factors to the systematic uncertainties for the final unpolar-

ized cross sections and double-spin asymmetries, dn2, g
3He
1 ,

g
3He
2 , A

3He
1 , An

1 , g
3He
1 =F

3He
1 , gn1=F

n
1 and the flavor-separated

ratios ðΔuþ ΔūÞ=ðuþ ūÞ and ðΔdþ Δd̄Þ=ðdþ d̄Þ.

1. Final unpolarized cross section systematic
uncertainties

The breakdown of the systematic uncertainty on the
unpolarized cross sections is given in Tables XXIII
and XXIV. The column “Cuts” indicates uncertainties due
to event cuts, which includes the gas Čerenkov, E=p, and
target cuts to remove the target windows; “Background”
corresponds to uncertainties related to the positron and
nitrogen background subtractions; “Misc.” refers to the
uncertainties incurred from the beam charge calibration,
and the density of nitrogen and 3He in the target cell; “RC” is
the uncertainty due to the radiative corrections, as explained
in Sec. IV B 3. The final column (“Total”) gives the in-
quadrature sum of all uncertainties in the row.

2. Final asymmetry systematic uncertainties

Tables XXV, XXVI, XXVII, and XXVIII list the system-
atic uncertainties assigned to the double-spin final asymme-
tries A∥ and A⊥ on 3He. The systematic uncertainty depends
on the electron beam polarization Pb, the target polarization
Pb, the nitrogen dilution factor DN2

, and contaminations in
theBigBite analysis due toπ− (f1),πþ (f2), andeþ (f3).Also
there are contributions from the electron selection cuts
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FIG. 44. Γn
1 for the world data from SLAC E142 [43], E143

[47] and E154 [164], SMC [149], HERMES [163], and JLab RSS
[25] and E94-010 [131]. The uncertainties on the world data are
the in-quadrature sum of statistical and systematic uncertainties.
The elastic contribution is given by the dashed curve and has been
added to the data. The twist-2 contribution is indicated by the
solid curve, and its uncertainty is given by the band, which is
dominated by the uncertainty in αs.
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FIG. 45. ΔΓn
1 ≡ Γn

1 − μn2 for the world data shown in Fig. 44.
The uncertainties on the world data are the in-quadrature sum of
statistical and systematic uncertainties. Our fit is indicated by the
solid curve, and its uncertainty is given by the yellow band.
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(“Cuts”) and the radiative corrections (“RC”). The final
column (“Total”) is the in-quadrature sumof the uncertainties
in each row.Columns for all quantities except for the PID cuts
have been omitted since they were very small for the lowest x
bins and were negligible otherwise.

3. Polarized spin structure function systematic
uncertainties

Tables XXIX, XXX, XXXI, and XXXII list the system-
atic uncertainties assigned to the polarized spin-structure

TABLE XXIII. Systematic uncertainty breakdown for the unpolarized 3He cross section at E ¼ 4.74 GeV. All
uncertainties are in nb=GeV=sr. See Appendix E 1 for a discussion of the various contributions to the systematic
uncertainty.

hxi Cuts Background Misc. RC Total

0.214 1.700 × 10−1 3.800 × 10−1 2.440 × 10−1 2.870 × 10−1 5.610 × 10−1

0.299 1.390 × 10−1 1.170 × 10−1 2.120 × 10−1 2.400 × 10−2 2.810 × 10−1

0.456 6.400 × 10−2 1.700 × 10−2 1.000 × 10−1 5.000 × 10−3 1.210 × 10−1

0.494 5.300 × 10−2 1.200 × 10−2 8.800 × 10−2 1.000 × 10−3 1.030 × 10−1

0.533 4.700 × 10−2 8.000 × 10−3 7.000 × 10−2 0.000 8.400 × 10−2

0.579 3.600 × 10−2 6.000 × 10−3 5.300 × 10−2 2.000 × 10−3 6.500 × 10−2

0.629 2.800 × 10−2 4.000 × 10−3 4.000 × 10−2 4.000 × 10−3 5.000 × 10−2

0.686 2.000 × 10−2 3.000 × 10−3 2.800 × 10−2 5.000 × 10−3 3.500 × 10−2

0.745 1.500 × 10−2 3.000 × 10−3 2.100 × 10−2 9.000 × 10−3 2.800 × 10−2

TABLE XXIV. Systematic uncertainty breakdown for the unpolarized 3He cross section at E ¼ 5.89 GeV. All
uncertainties are in nb=GeV=sr. See Appendix E 1 for a discussion of the various contributions to the systematic
uncertainty.

hxi Cuts Background Misc. RC Total

0.208 1.060 × 10−1 3.710 × 10−1 1.610 × 10−1 2.600 × 10−1 4.920 × 10−1

0.247 1.120 × 10−1 2.280 × 10−1 1.710 × 10−1 4.700 × 10−2 3.100 × 10−1

0.330 5.600 × 10−2 6.100 × 10−2 9.800 × 10−2 1.700 × 10−2 1.300 × 10−1

0.434 4.400 × 10−2 1.700 × 10−2 6.300 × 10−2 4.000 × 10−3 7.900 × 10−2

0.468 3.800 × 10−2 1.100 × 10−2 4.900 × 10−2 4.000 × 10−3 6.300 × 10−2

0.503 2.900 × 10−2 8.000 × 10−3 4.200 × 10−2 1.000 × 10−3 5.200 × 10−2

0.539 2.600 × 10−2 6.000 × 10−3 3.300 × 10−2 0.000 4.200 × 10−2

0.580 1.800 × 10−2 4.000 × 10−3 2.700 × 10−2 1.000 × 10−3 3.300 × 10−2

0.629 1.100 × 10−2 3.000 × 10−3 1.900 × 10−2 2.000 × 10−3 2.200 × 10−2

0.679 9.000 × 10−3 2.000 × 10−3 1.300 × 10−2 2.000 × 10−3 1.600 × 10−2

0.738 7.000 × 10−3 2.000 × 10−3 1.000 × 10−2 4.000 × 10−3 1.300 × 10−2

TABLE XXV. Systematic uncertainties assigned to A
3He
∥ at an

incident beam energy of 4.74 GeV. See Appendix E 2 for a
discussion of thevarious contributions to the systematic uncertainty.

hxi Cuts Total

0.277 7.000 × 10−3 7.000 × 10−3

0.325 2.000 × 10−3 3.000 × 10−3

0.374 2.000 × 10−3 2.000 × 10−3

0.424 4.000 × 10−3 5.000 × 10−3

0.473 3.000 × 10−3 3.000 × 10−3

0.523 2.000 × 10−3 2.000 × 10−3

0.574 4.000 × 10−3 4.000 × 10−3

0.623 2.000 × 10−3 3.000 × 10−3

0.673 4.000 × 10−3 5.000 × 10−3

0.723 6.000 × 10−3 6.000 × 10−3

0.773 1.300 × 10−2 1.300 × 10−2

0.823 1.100 × 10−2 1.100 × 10−2

0.874 1.700 × 10−2 1.700 × 10−2

TABLE XXVI. Systematic uncertainties assigned to A
3He
⊥ at an

incident beam energy of 4.74 GeV. See Appendix E 2 for a
discussion of thevarious contributions to the systematic uncertainty.

hxi Cuts Total

0.277 2.000 × 10−3 2.000 × 10−3

0.325 2.000 × 10−3 2.000 × 10−3

0.374 2.000 × 10−3 2.000 × 10−3

0.424 2.000 × 10−3 2.000 × 10−3

0.473 1.000 × 10−3 1.000 × 10−3

0.523 1.000 × 10−3 1.000 × 10−3

0.574 2.000 × 10−3 2.000 × 10−3

0.623 2.000 × 10−3 2.000 × 10−3

0.673 3.000 × 10−3 3.000 × 10−3

0.723 2.000 × 10−3 2.000 × 10−3

0.773 4.000 × 10−3 5.000 × 10−3

0.823 6.000 × 10−3 6.000 × 10−3

0.874 4.000 × 10−3 6.000 × 10−3
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TABLE XXVII. Systematic uncertainties assigned to A
3He
∥ at an

incident beam energy of 5.89 GeV See Appendix E 2 for a
discussion of thevarious contributions to the systematic uncertainty.

hxi Cuts Total

0.277 9.000 × 10−3 1.000 × 10−2

0.325 3.000 × 10−3 3.000 × 10−3

0.374 2.000 × 10−3 2.000 × 10−3

0.424 2.000 × 10−3 3.000 × 10−3

0.474 6.000 × 10−3 6.000 × 10−3

0.524 2.000 × 10−3 2.000 × 10−3

0.573 3.000 × 10−3 3.000 × 10−3

0.624 5.000 × 10−3 5.000 × 10−3

0.674 5.000 × 10−3 5.000 × 10−3

0.723 5.000 × 10−3 5.000 × 10−3

0.773 8.000 × 10−3 8.000 × 10−3

0.823 1.400 × 10−2 1.400 × 10−2

0.873 1.700 × 10−2 1.700 × 10−2

TABLE XXIX. Systematic uncertainties assigned to g
3He
1 at an

incident beam energy of 4.74 GeV. See Appendix E 3 for a
discussion of thevarious contributions to the systematic uncertainty.

hxi Cuts Total

0.277 8.000 × 10−3 9.000 × 10−3

0.325 2.000 × 10−3 2.000 × 10−3

0.374 2.000 × 10−3 2.000 × 10−3

0.424 3.000 × 10−3 3.000 × 10−3

0.473 1.000 × 10−3 2.000 × 10−3

0.523 0.000 0.000
0.574 1.000 × 10−3 1.000 × 10−3

0.623 0.000 1.000 × 10−3

0.673 1.000 × 10−3 1.000 × 10−3

0.723 0.000 1.000 × 10−3

0.773 1.000 × 10−3 1.000 × 10−3

0.823 1.000 × 10−3 1.000 × 10−3

0.874 0.000 1.000 × 10−3

TABLE XXVIII. Systematic uncertainties assigned to A
3He
⊥ at an

incident beam energy of 5.89 GeV. See Appendix E 2 for a discus-
sion of the various contributions to the systematic uncertainty.

hxi Cuts Total

0.277 2.000 × 10−3 3.000 × 10−3

0.325 1.000 × 10−3 1.000 × 10−3

0.374 0.000 0.000
0.424 1.000 × 10−3 1.000 × 10−3

0.474 1.000 × 10−3 1.000 × 10−3

0.524 1.000 × 10−3 1.000 × 10−3

0.573 1.000 × 10−3 1.000 × 10−3

0.624 1.000 × 10−3 1.000 × 10−3

0.674 2.000 × 10−3 2.000 × 10−3

0.723 3.000 × 10−3 3.000 × 10−3

0.773 2.000 × 10−3 2.000 × 10−3

0.823 3.000 × 10−3 4.000 × 10−3

0.873 7.000 × 10−3 7.000 × 10−3

TABLE XXX. Systematic uncertainties assigned to g
3He
2 at an

incident beam energy of 4.74 GeV. See Appendix E 3 for a
discussion of thevarious contributions to the systematic uncertainty.

hxi Cuts Total

0.277 9.000 × 10−3 9.000 × 10−3

0.325 6.000 × 10−3 6.000 × 10−3

0.374 4.000 × 10−3 5.000 × 10−3

0.424 2.000 × 10−3 2.000 × 10−3

0.473 0.000 1.000 × 10−3

0.523 1.000 × 10−3 1.000 × 10−3

0.574 1.000 × 10−3 1.000 × 10−3

0.623 1.000 × 10−3 1.000 × 10−3

0.673 1.000 × 10−3 1.000 × 10−3

0.723 0.000 1.000 × 10−3

0.773 0.000 1.000 × 10−3

0.823 0.000 0.000
0.874 0.000 1.000 × 10−3

TABLE XXXI. Systematic uncertainties assigned to g
3He
1 at an

incident beam energy of 5.89 GeV. See Appendix E 3 for a
discussion of thevarious contributions to the systematic uncertainty.

hxi Cuts Total

0.277 1.000 × 10−2 1.200 × 10−2

0.325 2.000 × 10−3 3.000 × 10−3

0.374 2.000 × 10−3 2.000 × 10−3

0.424 1.000 × 10−3 2.000 × 10−3

0.474 2.000 × 10−3 2.000 × 10−3

0.524 1.000 × 10−3 1.000 × 10−3

0.573 1.000 × 10−3 1.000 × 10−3

0.624 1.000 × 10−3 1.000 × 10−3

0.674 0.000 0.000
0.723 0.000 0.000
0.773 0.000 0.000
0.823 0.000 0.000
0.873 0.000 0.000

TABLE XXXII. Systematic uncertainties assigned to g
3He
2 at an

incident beam energy of 5.89 GeV. See Appendix E 3 for a
discussion of thevarious contributions to the systematic uncertainty.

hxi Cuts Total

0.277 1.400 × 10−2 1.900 × 10−2

0.325 5.000 × 10−3 6.000 × 10−3

0.374 1.000 × 10−3 2.000 × 10−3

0.424 2.000 × 10−3 2.000 × 10−3

0.474 2.000 × 10−3 2.000 × 10−3

0.524 1.000 × 10−3 1.000 × 10−3

0.573 1.000 × 10−3 1.000 × 10−3

0.624 0.000 0.000
0.674 0.000 0.000
0.723 0.000 0.000
0.773 0.000 0.000
0.823 0.000 1.000 × 10−3

0.873 0.000 0.000
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functions. A number of factors contribute to the systematic
uncertainty, including kinematics (“Kin.”) and all of the
systematic uncertainties found to contribute to the final
asymmetries, namely Pb, Pt, f1, f2 f3, PID cuts (“Cuts”),
and radiative corrections (“RC”). Other contributions
include the systematic uncertainty on the unpolarized cross
section (σ0), in addition to the uncertainties associated with
the interpolation or extrapolation of the data where neces-
sary. The value for each of these uncertainties was
determined by varying each of these contributions within
reasonable limits and taking the corresponding change in

the observable (either g
3He
1 or g

3He
2 ) as the uncertainty. The

last column (“Total”) is the in-quadrature sum of the
uncertainties in each row. All uncertainties are absolute.
Columns for all quantities except for the PID cuts have
been omitted since they were very small for the lowest x
bins and were negligible otherwise.

4. dn2 systematic uncertainties

A breakdown of the dn2 systematic uncertainties is given in
TableXXXIII, for each of themeasuredmeanQ2 points. This
table includes the effects of all the uncertainties found in the
preceding tables (i.e.,Pp,Pt, etc.), referred to as experimental
systematics (“Exp.”), in addition to radiative corrections, dp2 ,

the proton and neutron polarizations ( ~Pp and ~Pn), and the
unmeasured low x contributions. The value for each of these
uncertainties was determined by varying each of these
contributions within reasonable limits and taking the corre-
sponding change in dn2 as the uncertainty. The two sources of
uncertainty that dominate the dn2 systematic uncertainty are
those from the experimental and low-x contributions.
However, the final dn2 measurement’s statistical uncertainty
is larger than its systematic uncertainty.

5. a2 systematic uncertainties

The systematic uncertainties for the measured a
3He
2 are

given in Table XXXIV, where the column labeled g
3He
1

corresponds to the uncertainty due to our g
3He
1 data, and the

column labeled x is the uncertainty due to x in the
integration. The value of these uncertainties was determined
by varying each of these contributions within reasonable

limits and taking the change in a
3He
2 as the uncertainty. The

in-quadrature sum of the two contributions is given as
the column labeled “Total.” The systematic uncertainties
for the an2 extraction for the full x range are presented in
Table XXXV. The columns labeled Low x (High x)
correspond to the uncertainties due to the low-x (high-x)
regions. The uncertainty due to the effective proton (neutron)
polarization is given by the column labeled ~Pp ( ~Pn). The

uncertainties due to ap2 and our measured a
3He
2 are also given.

6. A1 and g1=F1 systematic uncertainties

This section discusses the breakdown of the systematic

uncertainties on A
3He
1 and An

1 . The main factors that
contribute to the uncertainties on the 3He data are the final

TABLE XXXIII. Systematic uncertainties assigned to different regions of dn2 . “Res” indicates the contribution from the resonance
region, in particular, from data withW < 2 GeV. “DIS” represents the contribution due to data forW > 2 GeV. See Appendix E 4 for a
discussion of the various contributions to the systematic uncertainty.

Region
hQ2i
[GeV2] Exp. RC dp2

~Pp, ~Pn
(high error)

~Pp, ~Pn
(low error) Low x Total

DIS+Res 3.21 4.700 × 10−4 2.000 × 10−5 4.000 × 10−5 6.000 × 10−5 1.000 × 10−4 5.800 × 10−4 7.500 × 10−4

DIS+Res 4.32 3.700 × 10−4 2.000 × 10−5 4.000 × 10−5 2.000 × 10−5 4.000 × 10−5 5.800 × 10−4 6.900 × 10−4

DIS 2.59 3.600 × 10−4 1.000 × 10−5 5.000 × 10−5 3.000 × 10−5 5.000 × 10−5 � � � 3.700 × 10−4

DIS 3.67 2.900 × 10−4 2.000 × 10−5 4.000 × 10−5 2.000 × 10−5 2.000 × 10−5 � � � 2.900 × 10−4

Res 4.71 2.200 × 10−4 0.000 4.000 × 10−5 3.000 × 10−5 5.000 × 10−5 � � � 2.300 × 10−4

Res 5.99 1.100 × 10−4 0.000 2.000 × 10−5 1.000 × 10−5 3.000 × 10−5 � � � 1.200 × 10−4

TABLE XXXIV. The systematic uncertainties contributing to

the a
3He
2 result in the measured x range. See Appendix E 5 for a

discussion of the various contributions to the systematic un-
certainty.

hQ2i [GeV2] g
3He
1 x Total

3.21 3.428 × 10−5 8.803 × 10−6 3.539 × 10−5

4.32 3.281 × 10−5 6.681 × 10−6 3.348 × 10−5

TABLE XXXV. The systematic uncertainties contributing to the an2 result over the full x range. See Appendix E 5 for a discussion of
the various contributions to the systematic uncertainty listed below.

hQ2i [GeV2] Low x High x ~Pp
~Pn ap2 a

3He
2 Total

3.21 1.374 × 10−4 1.373 × 10−4 2.439 × 10−4 3.012 × 10−4 3.068 × 10−4 3.052 × 10−4 6.125 × 10−4

4.32 8.878 × 10−5 8.880 × 10−5 2.518 × 10−4 3.054 × 10−4 3.118 × 10−4 3.089 × 10−4 6.042 × 10−4
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asymmetries A∥ and A⊥, and the kinematic factors D, η, ξ,
and d (see Sec. I C). Each final asymmetry was varied

within its uncertainty, and the change in A
3He
1 was observed.

For the kinematics, the low-level variables of the electron
momentum p and scattering angle θ were changed within
their relative uncertainties of 1% and 1.4% [86], respec-
tively, and the kinematic factors were reevaluated, and the
change in the A1 asymmetry was observed. The resulting

contributions to the systematic uncertainty in A
3He
1 are listed

in Tables XXXVI and XXXVII for the 4.74 GeV and
5.89 GeV runs, respectively.
The systematic uncertainties for An

1 are listed in
Tables XXXVIII and XXXIX. The inputs in the An

1

extraction that were varied consisted of Fn
2 and Fp

2 ,

F
3He
2 , Ap

1 , and our A
3He
1 data. For the neutron and proton

F2, various models [134,143,192] were compared, and the
largest difference in An

1 was taken as the uncertainty, listed

in the Fn;p
2 column. The same procedure was used for F

3He
2 ,

TABLE XXXVI. Systematic uncertainties for A
3He
1 data at E ¼ 4.74 GeV. See Appendix E 6 for a discussion of

the various contributions to the systematic uncertainty.

hxi A∥ A⊥ Kin. Total

0.277 3.850 × 10−3 1.900 × 10−4 1.200 × 10−4 3.860 × 10−3

0.325 1.480 × 10−3 1.400 × 10−4 7.000 × 10−5 1.480 × 10−3

0.374 9.900 × 10−4 2.100 × 10−4 5.400 × 10−4 1.150 × 10−3

0.424 2.650 × 10−3 1.700 × 10−4 1.200 × 10−4 2.660 × 10−3

0.473 1.840 × 10−3 1.100 × 10−4 1.900 × 10−4 1.850 × 10−3

0.523 1.100 × 10−3 1.600 × 10−4 1.900 × 10−4 1.130 × 10−3

0.574 2.430 × 10−3 3.300 × 10−4 2.000 × 10−4 2.460 × 10−3

0.623 1.840 × 10−3 3.600 × 10−4 1.400 × 10−4 1.880 × 10−3

0.673 2.620 × 10−3 5.000 × 10−4 1.300 × 10−4 2.670 × 10−3

0.723 3.770 × 10−3 4.400 × 10−4 2.000 × 10−4 3.800 × 10−3

0.773 7.510 × 10−3 8.900 × 10−4 3.900 × 10−4 7.570 × 10−3

0.823 7.000 × 10−3 1.180 × 10−3 3.200 × 10−4 7.100 × 10−3

0.874 1.019 × 10−2 1.250 × 10−3 1.960 × 10−3 1.045 × 10−2

TABLE XXXVII. Systematic uncertainties for A
3He
1 data at E ¼ 5.89 GeV. See Appendix E 6 for a discussion of

the various contributions to the systematic uncertainty.

hxi A∥ A⊥ Kin. Total

0.277 5.520 × 10−3 1.800 × 10−4 5.900 × 10−4 5.550 × 10−3

0.325 1.850 × 10−3 9.000 × 10−5 2.400 × 10−4 1.870 × 10−3

0.374 1.230 × 10−3 4.000 × 10−5 4.000 × 10−5 1.230 × 10−3

0.424 1.510 × 10−3 1.100 × 10−4 2.200 × 10−4 1.530 × 10−3

0.474 3.270 × 10−3 9.000 × 10−5 4.000 × 10−5 3.270 × 10−3

0.524 1.200 × 10−3 1.200 × 10−4 1.000 × 10−5 1.210 × 10−3

0.573 1.800 × 10−3 1.400 × 10−4 1.300 × 10−4 1.810 × 10−3

0.624 3.120 × 10−3 1.000 × 10−4 1.600 × 10−4 3.130 × 10−3

0.674 2.770 × 10−3 2.700 × 10−4 7.000 × 10−5 2.780 × 10−3

0.723 2.740 × 10−3 3.900 × 10−4 1.300 × 10−4 2.770 × 10−3

0.773 4.430 × 10−3 3.500 × 10−4 1.100 × 10−4 4.450 × 10−3

0.823 7.870 × 10−3 7.100 × 10−4 6.600 × 10−4 7.930 × 10−3

0.873 9.270 × 10−3 1.170 × 10−3 1.400 × 10−4 9.340 × 10−3

TABLE XXXVIII. Systematic uncertainties for An
1 at E ¼ 4.74 GeV. See Appendix E 6 for a discussion of the various contributions to

the systematic uncertainty.

hxi Fn;p
2 F

3He
2

~Pp
~Pn Ap

1 A
3He
1 Total

0.277 2.730 × 10−3 7.000 × 10−4 5.160 × 10−3 1.500 × 10−4 5.080 × 10−3 2.680 × 10−3 8.220 × 10−3

0.325 2.690 × 10−3 1.010 × 10−3 6.160 × 10−3 1.200 × 10−4 6.050 × 10−3 1.850 × 10−3 9.280 × 10−3

0.374 6.900 × 10−3 6.500 × 10−4 7.200 × 10−3 1.690 × 10−3 6.690 × 10−3 6.370 × 10−3 1.371 × 10−2

0.424 5.980 × 10−3 1.810 × 10−3 8.310 × 10−3 1.190 × 10−3 7.710 × 10−3 6.390 × 10−3 1.449 × 10−2

0.473 5.740 × 10−3 1.710 × 10−3 9.570 × 10−3 8.500 × 10−4 8.960 × 10−3 5.280 × 10−3 1.537 × 10−2
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where the models considered were F1F209 [122] and

NMC95 [193]. This uncertainty is given in the F
3He
2

column. Our fit of the world Ap
1 data was varied within

its uncertainty, and the change in An
1 was taken as the

uncertainty, listed in the Ap
1 column. The values for the

effective neutron (proton) polarization ~Pn ( ~Pp) were varied
within their uncertainties, and the change in An

1 was taken

as the uncertainty. These contributions are listed as ~Pn and
~Pp for the neutron and proton, respectively. We varied our

A
3He
1 data within their systematic uncertainties and observed

the changes in the An
1 results, which were taken as the

uncertainties, listed in the A
3He
1 column. The in-quadrature

sum of all contributions is given in the column
labeled “Total.”

TABLE XXXIX. Systematic uncertainties for An
1 at E ¼ 5.89 GeV. See Appendix E 6 for a discussion of the

various contributions to the systematic uncertainty.

hxi Fn;p
2 F

3He
2

~Pp
~Pn Ap

1 A
3He
1 Total

0.277 4.500 × 10−3 4.000 × 10−4 5.140 × 10−3 2.070 × 10−3 5.130 × 10−3 3.370 × 10−2 3.483 × 10−2

0.325 2.440 × 10−3 1.310 × 10−3 6.140 × 10−3 5.900 × 10−4 5.810 × 10−3 3.060 × 10−3 9.430 × 10−3

0.374 2.650 × 10−3 6.400 × 10−4 7.190 × 10−3 5.200 × 10−4 6.700 × 10−3 1.470 × 10−3 1.032 × 10−2

0.424 2.900 × 10−3 2.120 × 10−3 8.300 × 10−3 7.400 × 10−4 7.940 × 10−3 3.740 × 10−3 1.263 × 10−2

0.474 3.940 × 10−3 1.350 × 10−3 9.560 × 10−3 8.400 × 10−4 9.240 × 10−3 9.750 × 10−3 1.702 × 10−2

0.524 9.950 × 10−3 0.000 1.096 × 10−2 1.720 × 10−3 1.060 × 10−2 5.050 × 10−3 1.897 × 10−2

0.573 1.300 × 10−2 1.500 × 10−4 1.247 × 10−2 2.140 × 10−3 1.207 × 10−2 8.000 × 10−3 2.321 × 10−2

TABLE XL. Systematic uncertainties for g
3He
1 =F

3He
1 data at E ¼ 4.74 GeV. See Appendix E 6 for a discussion of

the various contributions to the systematic uncertainty.

hxi A∥ A⊥ Kin. Total

0.277 3.680 × 10−3 5.300 × 10−4 4.000 × 10−5 3.720 × 10−3

0.325 1.340 × 10−3 3.500 × 10−4 4.000 × 10−5 1.380 × 10−3

0.374 9.200 × 10−4 4.900 × 10−4 4.000 × 10−5 1.040 × 10−3

0.424 2.560 × 10−3 3.300 × 10−4 1.300 × 10−4 2.580 × 10−3

0.473 1.710 × 10−3 2.000 × 10−4 1.100 × 10−4 1.720 × 10−3

0.523 1.030 × 10−3 2.600 × 10−4 2.000 × 10−5 1.060 × 10−3

0.574 2.200 × 10−3 4.700 × 10−4 3.000 × 10−5 2.260 × 10−3

0.623 1.610 × 10−3 5.000 × 10−4 1.700 × 10−4 1.690 × 10−3

0.673 2.430 × 10−3 6.700 × 10−4 1.400 × 10−4 2.530 × 10−3

0.723 3.350 × 10−3 5.100 × 10−4 2.000 × 10−4 3.390 × 10−3

0.773 6.410 × 10−3 9.700 × 10−4 1.600 × 10−4 6.490 × 10−3

0.823 5.760 × 10−3 1.260 × 10−3 2.800 × 10−4 5.900 × 10−3

0.874 8.590 × 10−3 1.230 × 10−3 3.200 × 10−4 8.680 × 10−3

TABLE XLI. Systematic uncertainties for g
3He
1 =F

3He
1 data at E ¼ 5.89 GeV. See Appendix E 6 for a discussion of the various

contributions to the systematic uncertainty.

hxi A∥ A⊥ Kin. Total

0.277 5.320 × 10−3 2.570 × 10−3 5.000 × 10−5 5.910 × 10−3

0.325 1.720 × 10−3 1.070 × 10−3 4.000 × 10−5 2.030 × 10−3

0.374 1.170 × 10−3 1.900 × 10−4 1.000 × 10−5 1.190 × 10−3

0.424 1.350 × 10−3 9.500 × 10−4 4.000 × 10−5 1.650 × 10−3

0.474 3.160 × 10−3 1.100 × 10−4 5.000 × 10−5 3.160 × 10−3

0.524 1.200 × 10−3 1.100 × 10−4 0.000 1.200 × 10−3

0.573 1.640 × 10−3 6.800 × 10−4 1.000 × 10−5 1.780 × 10−3

0.624 2.720 × 10−3 9.100 × 10−4 2.000 × 10−5 2.870 × 10−3

0.674 2.420 × 10−3 4.400 × 10−4 1.000 × 10−5 2.460 × 10−3

0.723 2.370 × 10−3 1.070 × 10−3 2.000 × 10−5 2.600 × 10−3

0.773 3.900 × 10−3 1.120 × 10−3 4.000 × 10−5 4.060 × 10−3

0.823 7.090 × 10−3 1.068 × 10−2 1.800 × 10−4 1.282 × 10−2

0.873 8.480 × 10−3 2.030 × 10−3 1.000 × 10−4 8.720 × 10−3
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To evaluate the systematic uncertainties on g1=F1 data,
shown in Tables XL, XLI, XLII, and XLIII, the same
procedure used for the A1 data was applied. The same
models for F2 on the neutron, proton, and 3He were used, in
addition to the effective polarizations of the neutron and
proton, ~Pn and ~Pp.

7. Flavor decomposition systematic uncertainties

Tables XLIV and XLV give a breakdown of the sys-
tematic uncertainties at E ¼ 4.74 GeV for the up- and
down-quark ratios, respectively. Tables XLVI and XLVII

list the uncertainties for E ¼ 5.89 GeV. The columns of the
table represent the contribution due to our gn1=F

n
1 data, our

fit to world gp1=F
p
1 data, the ðdþ d̄Þ=ðuþ ūÞ parametriza-

tion, and the strange uncertainty, respectively. The value of
these uncertainties, except for the strange uncertainty (see
Sec. V C), was determined by varying each of these
contributions within reasonable limits and taking the
change in the quark ratio as the uncertainty. This was
done for both the up- and down-quark ratios. The in-
quadrature sum of all contributions is displayed in the last
column, labeled “Total.”

TABLE XLII. Systematic uncertainties for gn1=F
n
1 at E ¼ 4.74 GeV. See Appendix E 6 for a discussion of the various contributions to

the systematic uncertainty.

hxi Fn;p
2 F

3He
2

~Pp
~Pn gp1=F

p
1 g

3He
1 =F

3He
1 Total

0.277 2.530 × 10−3 7.100 × 10−4 5.320 × 10−3 1.200 × 10−4 2.950 × 10−3 7.630 × 10−3 1.011 × 10−2

0.325 2.480 × 10−3 9.800 × 10−4 6.270 × 10−3 1.300 × 10−4 3.650 × 10−3 3.060 × 10−3 8.310 × 10−3

0.374 5.640 × 10−3 2.900 × 10−4 7.230 × 10−3 1.080 × 10−3 4.680 × 10−3 2.470 × 10−3 1.064 × 10−2

0.424 5.770 × 10−3 1.730 × 10−3 8.190 × 10−3 1.100 × 10−3 6.020 × 10−3 6.360 × 10−3 1.346 × 10−2

0.473 6.020 × 10−3 1.700 × 10−3 9.240 × 10−3 9.700 × 10−4 7.600 × 10−3 5.050 × 10−3 1.445 × 10−2

TABLE XLIII. Systematic uncertainties for gn1=F
n
1 at E ¼ 5.89 GeV. See Appendix E 6 for a discussion of the various contributions to

the systematic uncertainty.

hxi Fn;p
2 F

3He
2

~Pp
~Pn gp1=F

p
1 g

3He
1 =F

3He
1 Total

0.277 4.500 × 10−3 4.500 × 10−4 5.100 × 10−3 2.450 × 10−3 2.970 × 10−3 1.193 × 10−2 1.427 × 10−2

0.325 2.180 × 10−3 1.160 × 10−3 6.030 × 10−3 3.300 × 10−4 3.760 × 10−3 4.510 × 10−3 8.780 × 10−3

0.374 2.420 × 10−3 6.200 × 10−4 6.950 × 10−3 5.300 × 10−4 4.790 × 10−3 2.920 × 10−3 9.290 × 10−3

0.424 3.110 × 10−3 2.110 × 10−3 7.890 × 10−3 8.400 × 10−4 6.020 × 10−3 4.410 × 10−3 1.152 × 10−2

0.474 3.770 × 10−3 1.260 × 10−3 8.900 × 10−3 7.600 × 10−4 7.280 × 10−3 9.170 × 10−3 1.525 × 10−2

0.524 9.150 × 10−3 0.000 9.980 × 10−3 1.680 × 10−3 9.620 × 10−3 3.940 × 10−3 1.716 × 10−2

0.573 1.240 × 10−2 1.500 × 10−4 1.111 × 10−2 2.280 × 10−3 1.183 × 10−2 7.140 × 10−3 2.176 × 10−2

TABLE XLIV. Systematic uncertainties for ðΔuþ ΔūÞ=ðuþ ūÞ at E ¼ 4.74 GeV. See Appendix E 7 for a
discussion of the various contributions to the systematic uncertainty.

hxi gn1=F
n
1 gp1=F

p
1 ðdþ d̄Þ=ðuþ ūÞ s Total

0.277 9.900 × 10−4 2.918 × 10−2 3.260 × 10−3 8.700 × 10−3 3.064 × 10−2

0.325 7.800 × 10−4 3.556 × 10−2 3.590 × 10−3 6.450 × 10−3 3.633 × 10−2

0.374 9.300 × 10−4 4.243 × 10−2 3.610 × 10−3 4.580 × 10−3 4.284 × 10−2

0.424 1.090 × 10−3 4.967 × 10−2 4.620 × 10−3 3.280 × 10−3 5.000 × 10−2

0.473 1.100 × 10−3 6.300 × 10−2 5.070 × 10−3 2.350 × 10−3 6.326 × 10−2

TABLE XLV. Systematic uncertainties for ðΔdþ Δd̄Þ=ðdþ d̄Þ at E ¼ 4.74 GeV. See Appendix E 7 for a
discussion of the various contributions to the systematic uncertainty.

hxi gn1=F
n
1 gp1=F

p
1 ðdþ d̄Þ=ðuþ ūÞ s Total

0.277 8.240 × 10−3 1.518 × 10−2 1.455 × 10−2 1.673 × 10−2 2.811 × 10−2

0.325 7.140 × 10−3 2.027 × 10−2 1.886 × 10−2 1.363 × 10−2 3.167 × 10−2

0.374 9.290 × 10−3 2.647 × 10−2 2.280 × 10−2 1.071 × 10−2 3.770 × 10−2

0.424 1.193 × 10−2 3.399 × 10−2 3.467 × 10−2 8.140 × 10−3 5.066 × 10−2

0.473 1.343 × 10−2 4.814 × 10−2 4.754 × 10−2 5.940 × 10−3 6.923 × 10−2
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