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We compute the dominant, logarithmically enhanced radiative corrections to the electron spectrum in
bound muon decay in the whole experimentally interesting range. The corrected spectrum fits well with the
results from the TWIST Collaboration. The remaining theoretical error, dominated by the nuclear charge
distribution, can be reduced in the muon-electron conversion searches by measuring the spectrum slightly
below the new physics signal window.
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I. INTRODUCTION

The spectrum of electrons from the decay of a muon
bound in an atom [decay in orbit (DIO)] has two parts. The
low-energy part, Ee ≲mμ=2 (Ee is the electron energy and
mμ is the muon mass), is also present in free muon decay,
but it is reshuffled because the bound muon is moving and
the daughter electron interacts with the electric field of the
nucleus. This modification of the spectrum was observed
by the TWIST Collaboration [1].
In addition, the possibility of transferring momentum

to the nucleus approximately doubles the range of energy
accessible to the electron; this adds the high-energy region
mμ=2≲ Ee ≲mμ. This region has already been explored
for some nuclei, including titanium, sulfur, and gold [2–6].
The upcoming experiments COMET and Mu2e [7–9] will
measure it for aluminum with high precision. Their
main goal is to discover the lepton-flavor-violating muon-
electron conversion. High-energy electrons from the DIO
are a background in this search.
The purpose of this paper is to improve the theoretical

description of the entire spectrum by determining loga-
rithmically enhanced radiative corrections. We focus on
aluminum, the stopping material in COMET and Mu2e.
The spectrum of free muon decay is known, including

corrections of the first [10] and the second order [11] in the
fine-structure constant α ≈ 1=137, as well as the leading
logarithms in the third order ðαπ ln

mμ

me
Þ3 [12]. In the case of

the bound muon, even OðαÞ effects are known only in a
limited range of electron energies. Radiative corrections
near the top of the electron spectrum in free muon decay
(Ee ∼

mμ

2
) were evaluated in [13] by convoluting the OðαÞ

free-muon spectrum with the so-called shape function [14],
reconciling TWIST results [1] with quantum electrody-
namics. This approach had been developed in the heavy-
quark effective theory to describe decays of B mesons
[15,16] using factorization theorems. However, the factori-
zation cannot be applied when the electron energy is much
larger than the half of the muon mass.

Fortunately, the highest-energy end point of the DIO
spectrum (Ee ∼mμ) offers a different simplification: one
can expand in the number of photons exchanged with
the nucleus, parameterized by Zα, where Z is the
proton number of the nucleus (for aluminum, Z ¼ 13).
Radiative corrections in the end-point region have been
evaluated in [17]. It is still unknown how to compute full
radiative corrections for intermediate electron energies
1
2
mμ < Ee < mμ [18].
However, the likely largest corrections can be computed.

Enhanced effects ∼ α
π ln

mμ

me
arise from collinear photons and

can be found from collinear factorization theorems [19],
without a new loop calculation.
In a muonic atom, vacuum polarization (VP) is an

additional source of large logarithms. It modifies the
Coulomb potential and is taken into account numerically,
together with the effects of the finite-charge distribution in
the nucleus. Typically, the VP correction is on the order of
α
π ln

Zαmμ

me
, or α

π ln
mμ

me
near the DIO endpoint.

Section II presents details of both collinear and VP
corrections. Section III summarizes numerical results. In
Sec. IV we discuss the uncertainty due to the nuclear charge
distribution and suggest a means of lowering it.

II. LEADING LOGARITHMIC CORRECTIONS
TO THE DIO SPECTRUM

We assume that the daughter electron is relativistic. For a
low-energy electron, additional nonperturbative phenom-
ena would have to be considered. For example, a slow
electron can be captured into the atom in the final state. The
low-energy part of the spectrum is not yet fully understood
[20]. However, it involves only a small fraction of electrons
because of the phase-space suppression and it is not
relevant for conversion experiments, which are sensitive
only to the high-energy region of the spectrum.

A. Collinear photons

Focusing on an energetic electron, we first consider
the emission of collinear photons. For electron energies
much larger than the electron mass Ee ≫ me, Coulomb*szafron@ualberta.ca
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corrections are small and do not affect the collinear limit of
the amplitude in the leading order (LO) in Zα. Before the
emission of a collinear photon, the electron is almost on
shell and propagates over distances that are large compared
with the size of the muonic atom. Hence, the collinear
emission is a long-distance phenomenon that takes place
after the electron escapes the region of the strong binding
potential. On the other hand, if the photon is emitted before
the last scattering of an electron on the nucleus, the electron
is still off shell and the amplitude is not singular. In such
case, the corrections are not enhanced by a large logarithm
ln mμ

me
or suppressed by additional powers of Zα. For

aluminum, Zα ln mμ

me
∼ 1

2
. These corrections are comparable

with the nonlogarithmic term OðαÞ and we neglect them.
Collinear corrections can be calculated using a factori-

zation theorem, previously employed to improve the free
muon spectrum [12,21,22]. Following Ref. [21], we evalu-
ate the collinear logarithms dΓCL

dEe
convoluting the leading-

order spectrum dΓLO
dEe

with the electron structure function,

dΓCL

dEe
¼ dΓLO

dEe
⊗ De þO

�
Zα

α

π
ln
mμ

me

�
; ð1Þ

where

DeðxÞ ¼ δð1 − xÞ þ α

2π

�
ln
m2

μ

m2
e
− 1

�
PeðxÞ þOðα2Þ ð2Þ

and the electron splitting function is

PeðxÞ ¼
�
1þ x2

1 − x

�
þ
:

We employ the dimensionless variable x ¼ Ee=Emax, with
Emax denoting the maximum electron energy. The convo-
lution is defined asA⊗BðzÞ¼R

1
0 dx

R
1
0 dyδðz−xyÞAðxÞBðyÞ,

and the leading order term dΓLO
dEe

includes Coulomb effects to
all orders in Zα.
Equation (1) ensures a cancellation of the mass singu-

larity in the correction to the bound muon lifetime, in
agreement with the Kinoshita-Lee-Nauenberg theorem
[23,24].

B. Vacuum polarization

The second type of large logarithms comes from the
vacuum polarization that strengthens the binding. The VP
does not contribute to the free muon spectrum at one loop;
hence, this correction is exclusive to the bound muon and is
related to other binding effects. The OðαÞ correction to the
potential is known as the Uehling term [25]. For a pointlike
nucleus, the binding potential is

VðrÞ ¼ −
Zα
r

�
1þ 2α

3π

Z
∞

1

dxe−2merx
2x2 þ 1

2x4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p �
þOððZαÞ3Þ: ð3Þ

The VP potential for an arbitrary charge distribution is
given in Ref. [26]. The electron loop modifies the potential
at distances comparable to the Compton wavelength of
electron re ∼ 1

me
or smaller. The VP term reduces the end-

point energy and increases the number of high-energy
electrons. It also shrinks the muon orbit. As a result, the
muon kinetic energy and the lifetime increase.
In muonic atoms, the VP effect is much larger than in

ordinary atoms [27]. The binding energy,

Eb ≃ −mμ
ðZαÞ2
2

; ð4Þ

receives a correction that is not suppressed by extra powers
of Zα. In an ordinary atom the Lamb shift contributes at the
ðZαÞ4 order. For example, the VP correction starts with
− 4

15
α
π ðZαÞ4me. This behavior follows from the range of the

VP potential, which is much smaller than the size of the
electron orbit 1

me
≪ 1

meZα
. When the electron is replaced

by a muon, the potential reaches beyond the muon orbit,
1
me

≫ 1
mμZα

, and the correction to the binding energy behaves

as ∼ α
π ðZαÞ2 ln

mμZα
me

. For a pointlike nucleus and using a
nonrelativistic muon wave function, in the limit me ≪ mμ,
we get the correction to the binding energy

ΔBVP ¼
α

π
ðZαÞ2mμ

�
11

9
−
2

3
ln
2mμZα

me

�
¼ −2.7 keV for aluminum: ð5Þ

This is larger than the total uncertainty in the binding
energy and has to be included in the evaluation of the
end-point energy. We will return to this correction in the
discussion of numerical results in Sec. III.
The logarithmic terms in the VP correction can also be

reproduced by using in Eq. (4) the running coupling

constant αðQ2Þ ¼ α

1− α
3π lnðQ

2

m2
e
Þ
, with

ffiffiffiffiffiffi
Q2

p
¼ mμZα.

In the DIO spectrum, the VP effects do not factorize,
unlike the collinear corrections. They are accounted for,
together with the finite nuclear size, by numerically solving
the Dirac equation.
Large corrections with logarithms of Zα are also present

in the DIO spectrum. Pure relativistic corrections can
contain ln Zα, typically suppressed by two powers of
Zα [28]. In our numerical approach, we solve the Dirac
equation without any nonrelativistic expansion; hence,
these terms are automatically included in our leading-order
spectrum.
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Logarithms of Zα will appear also in radiative correc-
tions involving ultrasoft photons, like in the classical
calculation of the Lamb shift [29]. These Bethe-type
logarithms are suppressed by additional powers of Zα,
in the same manner as the VP shift of the binding energy in
electron atoms.

III. NUMERICAL RESULTS

We compute wave functions of the bound muon and the
daughter electron by numerically solving the Dirac equa-
tion [30,31]. An analytical solution is not known for a
realistic distribution of the nuclear charge density. In order
to find the DIO spectrum we have implemented in PYTHON

matrix elements, including nuclear recoil corrections,
given in [32]. As a check of the numerical code, we have
compared the muon binding energy and the DIO spectrum
with previous results [32,33].
We use the Fermi model for the nuclear charge density

distribution fitted to the electron elastic scattering data [34].
In Sec. IV we discuss other possible models and the
uncertainty related to the nuclear charge radius.
Near the end point, the spectrum rapidly varies with

energy, like ðEmax − EeÞ5, so a precise value of Emax is
critical. We predict, including the charge distribution
corrections, the VP term, and the recoil correction [see
Eq. (13) in [32]],

Emax ¼ mμ − Erec þ Eb ¼ 104.971ð1Þ MeV: ð6Þ

The error comes from the uncertainty in the charge
distribution. The difference between our result and the
end-point energy without the VP correction, Eμe ¼
104.973ð1Þ [32], is consistent with Eq. (5).
We denote NCL ¼ dΓCL

dEe
and NLO ¼ dΓLO

dEe
. We also intro-

duce NVP ¼ dΓVP
dEe

as the leading-order spectrum that
includes the VP correction only. Relative collinear
NCL−NLO

NLO
and VP NVP−NLO

NLO
corrections are presented in

Fig. 1. For a 1-MeV signal window near the end point,
we obtain a 12% reduction of the number of DIO events,
consistent with [17].
Should the DIO spectrum be needed for electron energies

closer to the end point, we recommend using Eq. (2) in
[17], where soft photons have been exponentiated.
For low electron energies, Ee ≤

mμ

2
−mμZα, the DIO

spectrum is dominated by the free muon decay corrected by
the binding effects. Consequently, in this region, the VP is a
relatively unimportant subleading effect. The VP correction
becomes significant for electron energies above the free
muon end point, Ee >

mμ

2
, where the free muon spectrum is

absent. Here, the spectrum is dominated by the binding
effects and is sensitive to the details of the binding
potential. The VP correction is particularly important near
the end point Ee ≃ Emax, where highly virtual Coulomb
photons transfer a large momentum to the nucleus.

In Fig. 2 we show the VP correction in the DIO endpoint
region, where the spectrum has a simple dependence on the
electron energy,

dΓ
dEe

≡ N ∼ ðEmax − EeÞ5: ð7Þ

Here the VP correction manifests itself in two ways. The
correction due to the shift in the end-point energy (5) is
important only very close to Emax. For smaller electron
energies it becomes negligible. To illustrate this effect we
plotted ðEmax−Ee

Eμe−Ee
Þ5 − 1 in Fig. 2.

The VP also modifies muon and electron wave functions.
This effect does not depend strongly on the electron energy,
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FIG. 1. Leading corrections to the bound muon spectrum. The
VP correction NVP−NLO

NLO
is mostly positive (solid line). We have

shifted the electron energies in the VP term, Ee → Ee þ ΔBVP, so
that the NVP and NLO spectra have a common end-point energy,
Eμe. The correction NCL−NLO

NLO
, due to collinear photons, decreases

the number of electrons near the end point (dotted line). The
dashed line represents the total correction. See text for details.
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FIG. 2. Vacuum polarization correction to the DIO spectrum
around the endpoint. The solid line illustrates the relative change
of the spectrum due to the decrease of the endpoint energy,
ðEmax−Ee
Eμe−Ee

Þ5 − 1. The dotted line is a correction due to the shift in

the wave functions δVP, see Eq. (8). The dashed line shows both
effects combined.
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because it is dominated by the running of the coupling
constant αðQ2Þ. It varies slowly for jQ2j ∼m2

μ.
To quantify this effect, we define the shift of the

spectrum due to the VP correction to the wave functions as

δVP ¼
NVPðEe þ ΔBVPÞ − NLOðEeÞ

NLOðEeÞ
ð8Þ

in the limit whenEe approaches the end point of the leading-
order spectrum Eμe. We find numerically δVP ¼ 2.5%.
Reference [17] provided the correction to the leading term
of the spectrum expanded in Zα: δVP;ðZαÞ5 ¼ 2.9%. The
difference with δVP is caused by higher orders in Zα,
estimated as minus 20% of the leading ðZαÞ5 term [17].
As a check, we have compared our results with the

spectrum measured by TWIST [1]. The results are pre-
sented in Fig. 3. The quality of the fit is comparable to our
previous approach based on the shape function (see Fig. 3
in [13]). However, now we are not limited to electron
energies Ee ≲ mμ

2
. Also, we are not including the energy

scale uncertainty in the fit. This reduces the number of fit
parameters to one: the overall normalization of the spec-
trum. The quality of the fit is characterized by χ2 per degree
of freedom, χ2=DOF. The leading order DIO spectrum
gives χ2=DOF ¼ 8.8. When radiative corrections are
included using the shape function, this decreases to
χ2=DOF ¼ 3.9. The spectrum obtained in the present paper
gives a slightly better χ2=DOF ¼ 2.8. The quality of the fit
could likely be improved by including the TWIST sys-
tematic errors and correlations among energy bins, but we
are not qualified to do this.

IV. NUCLEAR CHARGE DISTRIBUTION

In order to quantify the uncertainty due to the nuclear
charge density, we have examined three experimental
sources. Two use the Fermi model,

ϱðrÞ ¼ ϱ0
1þ expðr−r0a Þ ; ð9Þ

where r0 is a fitted parameter describing the radius of the
distribution and a is related to the so-called skin thickness.
Elastic electron scattering gives [34] r0 ¼ 2.84ð5Þ fm for
a ¼ 0.569 fm and transitions in muonic aluminum [35]
give, more precisely, r0¼3.0534ð13Þ fm for a ¼ 0.523 fm.
Even though the radii seem to differ by more than one
standard deviation, they have been fitted at different values
of the parameter a. In our calculation these differences
partially compensate one another, as we shall see below.
Another parameterization employs the spherical Bessel

function j0,

ϱðrÞ ¼
X
n

anj0

�
nπr
R

�
; r < R;

ϱðrÞ ¼ 0; r ≥ R; ð10Þ

where R is a cutoff beyond which the density is assumed
to be zero, taken to be R ¼ 7 fm, and the coefficients ai,
for i ¼ 1;…; 12, are given in [34]. Unfortunately, no error
estimate seems to be available for ai.
Only the high-energy part of the DIO spectrum is

sensitive to the smearing of the nuclear charge. Figure 4
shows the predictions of the three models in that region,
consistent within the electron scattering errors.
Electron scattering data give the largest error for the

charge density. We use them to tabulate the DIO spectrum
for aluminum including leading logarithmic corrections;
see Supplemental Material [36]. This choice is further
justified by the muon DIO amplitude near the end point
being proportional to the elastic scattering amplitude [17].
To quantify the dependence of the error on the electron
energy, we approximate the one-sigma boundaries (the
shaded region in Fig. 4) by
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FIG. 3. Left: The difference between TWIST data and the theoretically calculated spectrum normalized to our theoretical evaluation of
the DIO spectrum. Crosses represent the leading-order evaluation without any radiative corrections. Dots correspond to our new
evaluation that includes leading logarithmic corrections. Right: The DIO spectrum (solid line) fitted to TWIST data (dots). With the
results of this paper, a measurement of the DIO spectrum at energies Ee ∼

mμ

2
can be used to calibrate the energy response in the

future conversion experiments.

ROBERT SZAFRON and ANDRZEJ CZARNECKI PHYSICAL REVIEW D 94, 051301(R) (2016)

051301-4

RAPID COMMUNICATIONS



ΔN
N

≈ σ
2Ee − Emax

Emax
; with σ ¼ 0.022: ð11Þ

The coefficient 2 in front of Ee reflects the approximate
vanishing of the sensitivity to the nuclear distribution in the
low-energy region, at Ee ¼ Emax=2 and below.
The uncertainty (11) can be reduced by measuring, in

conversion experiments, the DIO spectrum outside the
conversion signal window. To fit r0, such measurements
should use the radiatively corrected DIO spectrum; not only
are the corrections large, but they also change the simple
functional form of the DIO spectrum near the end point,
Eq. (7).
To achieve the necessary accuracy, the DIO spectrum

measurement requires a precise energy calibration. The
end-point energy has been calculated with a precision of
1 keV, see Eq. (6). The upcoming experiments will measure
the end-point energy with a larger uncertainty, ΔEmax.
From Eq. (7) we estimate how ΔEmax influences the
number of electrons with energy Ee ¼Emax−δ. Denoting
the uncertainty in the spectrum due to ΔEmax as ΔNE,
we get

ΔNE

N
≈ 5

ΔEmax

δ
: ð12Þ

Hence, in order to constrain the error related to the nuclear
charge distribution, the number of DIO events N with
energy Ee has to be measured with an experimental
precision ΔNexp such that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ΔNexp

N

�
2

þ
�
ΔNE

N

�
2

s
≲ ΔN

N
: ð13Þ

It is most efficient to use the DIO measurement at an energy

for which the largest ΔNexp

N can be tolerated. This optimal
energy can be calculated using (11) and (12),

Eopt
e

Emax
¼ 1 − ξ −

2

3
ξ2 −

4

3
ξ3 þOðξ4Þ

ξ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25

2

�
ΔEmax

σEmax

�
2

3

s
ð14Þ

For example, for ΔEmax ¼ 30 keV, the optimal energy is
90 MeV, and the experimental uncertainty should be

smaller than ΔNexp

N ≲ 0.012.

V. CONCLUSIONS

We have calculated the energy spectrum of electrons in
bound muon decay including leading logarithmic correc-
tions. For electron energies Ee > 100 MeV, the sum of
vacuum polarization and collinear photon effects decreases
the number of DIO events by more than 10%, in agreement
with the end-point expansion [17].
Our present result is valid in the entire energy range

Ee ≫ me and can be used to calibrate the energy in
conversion experiments. This was not possible with pre-
vious results that were available only near the end point
Emax and in the low-energy (shape function) region, without
means to interpolate in the remaining high-energy region.
The dominant remaining uncertainty comes from the

nuclear charge distribution. Here, new input from experi-
ments is required. We suggest that the DIO spectrum be
used to constrain the charge distribution, as a byproduct of
the conversion search.
We have neglected the screening by the electron cloud

(see [32] for a discussion). In order to further improve
the theoretical description of the DIO spectrum, this effect
should be included together with nonlogarithmic radiative
corrections OðαπÞ.
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