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We investigate a holographic model of superfluid flows with an external repulsive potential. When the
strength of the potential is sufficiently weak, we analytically construct two steady superfluid flow solutions.
As the strength of the potential is increased, the two solutions merge into a single critical solution at a
critical strength, and then disappear above the critical value, as predicted by a saddle-node bifurcation
theory. We also analyze the spectral function of fluctuations around the solutions under a certain decoupling
approximation.

DOI: 10.1103/PhysRevD.94.046007

I. INTRODUCTION

Superfluid flow in Bose-Einstein condensate in cold
atoms or in 4He is of particular interest as an example of
inviscid fluid flows with no dissipation. It is typically
unstable due to the excitation of the flow (the Landau
instability) or against the creation of solitons such as
vortices (the soliton-emission instability). In particular,
the latter instability is expected to occur in spatially
inhomogeneous systems or around an obstacle [1].
The soliton-emission instability in inhomogeneous sys-

tems has been extensively investigated by solving the time-
dependent Gross-Pitaevskii (GP) equation [2,3]. Frisch
et al. [4] numerically found a steady superfluid flow
solution in a two-dimensional system and showed that
the flow is broken by the creation of vortices beyond a
threshold velocity. Hakim [5] obtained two analytic steady
superfluid flow solutions in a one-dimensional system in
the presence of an external localized repulsive potential.
They merge at a critical velocity, and beyond it, there is no
steady flow solution. These features are consistent with
experimental results [6–8], and they can be described in
terms of a saddle-node bifurcation of the stationary
solutions [9]. However we should note that although the
GP equation is very useful to understand various features of
superfluid flows, it is applicable only to weakly interacting
low-temperature systems.
One of the possible approaches to tackling strongly

interacting cases is to appeal to a “holographic model”
based on the AdS/CFT duality [10]. There have already
been a number of works on holographic models [11,12] in
which strongly correlated condensed matter systems can be
successfully described in terms of some gravitational

theory via the AdS/CFT duality (see also Ref. [13] for a
review).
In this paper, we shall construct a holographic superfluid

model as an attempt to extend the analysis of the one-
dimensional superfluid flow in Ref. [5] to the strongly
coupled case. We perturbatively construct analytic super-
fluid flow solutions (see also Refs. [14,15] for similar flow
solutions) in the presence of an external localized repulsive
potential. We find that two steady flow solutions exist
below a critical value of the strength of the potential. One of
the solutions is unstable and steeper near the potential than
the stable one, as shown in Ref. [5]. The two solutions
merge into one at the critical value and then disappear
beyond it, as predicted by a saddle-node bifurcation
theory.
We also derive the spectral function ρ of fluctuations of

the solution and investigate the effects of the impurity
generated by the repulsive potential, under a certain
decoupling approximation. We find that with respect to a
small variation of the chemical potential, the spectral
function shows a peculiar behavior which is explained
by the existence of a band gap generated by the external
localized repulsive potential.
This paper is organized as follows. In Sec. II, we set up

our holographic model that corresponds to the one-dimen-
sional superfluid flow studied in Ref. [5]. In Sec. III, we
perturbatively construct two steady solutions of holo-
graphic superfluid flows and derive the superfluid current.
In Sec. IV, we show that the steeper solution is unstable
in the sense that the free energy is higher than that of the
other solution. We study the spectral function in Sec. V.
Section VI is devoted to summary and discussions.

II. HOLOGRAPHIC SUPERFLUID MODEL

We will construct a holographic superfluid model
which is dual to a strongly coupled field theory in
3þ 1-dimensional Minkowski spacetime with the action
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S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
Rþ 12

L2
þ L2

e2
Lm

�
þ Sct;

Lm ≔ −jDψ j2 − ðm2 þ Vðx; uÞÞjψ j2 − 1

4
FμνFμν; ð1Þ

where ψ is a complex scalar field with mass m and charge
e, Dμ ≔ ∇μ − iAμ, and where L denotes the anti–de Sitter
(AdS) radius, Vðx; uÞ a localized external repulsive poten-
tial, and Sct the counterterm defined below.
In this paper, we consider a probe limit e → ∞ in which

the gauge field Aμ and the scalar field ψ do not backreact on
the original metric. Therefore we consider, as our back-
ground spacetime, the Schwarzschild-AdS metric with the
temperature T:

ds2

L2
¼ π2T2

u
ð−fdt2 þ dx2 þ dy2 þ dz2Þ þ du2

4u2f
; ð2Þ

where fðuÞ ≔ 1 − u2, and 0 < u < 1 outside the black
hole with AdS boundary at u ¼ 0.
The field equations on our background are

DμDμψ −m2ψ − Vðx; uÞψ ¼ 0; ð3Þ

∇νFνμ ¼ i½ψ�Dμψ − ψðDμψÞ��: ð4Þ

For simplicity, we shall set m2L2 ¼ −4 so that the
Breitenlohner-Freedman (BF) bound [16] is saturated,
and consider a periodic potential with a dimensionless
positive constant ĝ

Vðx; uÞ ¼ ĝ
L
u

X∞
n¼−∞

δðx − nlÞ; ð5Þ

localized at xn ¼ nlðn ∈ NÞ. Note that V corresponds to a
repulsive potential, as ðĝ=LÞu is positive.
Since Vðx; uÞ decreases to zero as u → 0 and thus the

effective mass-squared saturates the BF bound at the AdS
boundary, the asymptotic form of ψ becomes

ψðu; xÞ≃ −αðxÞuþ βðxÞu ln u: ð6Þ

According to the dictionary of AdS/CFT duality, the
coefficient α corresponds to the expectation value hOi of
the dual field theory operator of dimension two, while β
corresponds to a source term in the dual boundary field
theory [17]. Hereafter, we shall impose β ¼ 0 at the AdS
boundary, as our boundary condition on ψ .
As indicated in Ref. [14], it is convenient to use the

gauge-invariant variables R and Mμ defined by ψ ¼
Reiφ=L (where R is a dimensionless quantity) and
Mμ ≔ Aμ −∇μφ. Then, Eqs. (3) and (4) reduce to the
equations only for the gauge-invariant variables R and Mμ,

∇2R −MμMμR −m2R − Vðx; uÞR ¼ 0; ð7Þ

∇μðMμR2Þ ¼ 0; ð8Þ

∇νFνμ ¼ 2R2

L2
Mμ; ð9Þ

where Eqs. (7) and (8) are derived from the real and
imaginary parts of Eq. (3), respectively. When the system is
stationary, Eq. (8) implies the conservation of momentum
of the superfluid flow.
According to Bloch’s theorem [18], having the periodic

potential V, Eq. (3) must admit a solution ψ that is periodic
in x, except the phase φ. This implies that for such a
periodic solution ψ , the corresponding gauge invariants, R
and Mμ, must also be periodic in x. So, hereafter we shall
regard R and Mμ as smooth functions [apart from the
location of the delta function in Eq. (5)] on an annulus
ðu; xÞ ∈ ½0; 1� × S1 with x ¼ 0 and x ¼ l being identified.
Since the potential is x dependent, the velocity of the

superfluid is also x dependent. We consider the case that the
superfluid velocity is injected at x ¼ l=2 (compare with
Ref. [5], in which the injection was made at spatial infinity).
We impose the following asymptotic boundary conditions:

Mtð0; xÞ ¼ μ; Mxð0; l=2Þ ¼ v0; ð10Þ

where μ and v0 are respectively interpreted as the chemical
potential and the superfluid velocity injected at x ¼ l=2
(see, for example Ref. [19]).

III. PERTURBATIVE CONSTRUCTION
OF THE SOLUTIONS, ðR;MÞ

In this section we solve Eqs. (7), (8), and (9) perturba-
tively, assuming that the amplitude of R is very small.
Following Ref. [20], we expand R and Mμ as a series in a
small parameter ϵ as

R ¼ ϵ
1
2R1ðu; xÞ þ ϵ

3
2R2ðu; xÞ þ � � � ;

Mμ ¼ Mð0Þ
μ ðu; xÞ þ ϵMð1Þ

μ ðu; xÞ þ � � � ;
Fμν ¼ Fð0Þ

μν þ ϵFð1Þ
μν þ � � � ; ð11Þ

where FðiÞ
μν ¼ ∂μM

ðiÞ
ν − ∂νM

ðiÞ
μ .

At zeroth order in ϵ, imposing that the chemical potential

Mð0Þ
t ð0; xÞ is constant, we find the solution forMð0Þ

μ ðu; xÞ as

Mð0Þ
t ¼ μ0ð1 − uÞ; Mð0Þ

x ¼ ξðxÞ; Mð0Þ
u ¼ 0: ð12Þ

Here, ξðxÞ is the velocity of the superfluid satisfying
ξðl=2Þ ¼ v0 (see the condition (10)).
Under the ansatz R1 ¼ ρðuÞζðxÞ, Eq. (7) is divided into

the following two equations:
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∂2
xζ − ξ2ζ − gδðxÞζ ¼ −κ2ζ; ð13Þ

ρ00 −
1þ u2

uf
ρ0 þ 1

f

�
1

u2
þ μ̂20ð1 − uÞ
4uð1þ uÞ −

κ̂2

4u

�
ρ ¼ 0; ð14Þ

where κ > 0 is a separation constant, and where
g ≔ ĝLπ2T2, μ̂0 ≔ μ0=πT, and κ̂ ≔ κ=πT are the dimen-
sionless quantities.
As R1 depends on x, we can define the expansion

parameter ϵ as the value of jhOij at x ¼ l=2, where hOi
is the condensate of the dual field theory defined in the
AdS/CFT duality. So, we can normalize

lim
u→0

ρðuÞ=u ¼ 1; ζðl=2Þ ¼ 1; ð15Þ

without loss of generality.
To obtain an analytic solution of Eq. (14), following the

procedure of Ref. [17], we consider the following particular
case:

κ̂2 ≪ 1; lim
κ̂→0

μ̂0 ¼ 2: ð16Þ

Expanding Eq. (14) as a series in κ̂2, we obtain ρ as

ρ ¼ u
1þ u

− κ̂2
u lnð1þ uÞ
4ð1þ uÞ þOðκ̂4Þ;

μ̂0 ¼ 2þ 1

2
κ̂2 þOðκ̂4Þ: ð17Þ

Integrating Eq. (13) from x ¼ −ϵ to x ¼ ϵ, we obtain

lim
ϵ→0

f∂xζðþϵÞ − ∂xζðl − ϵÞg ¼ gζð0Þ: ð18Þ

Then, the general solution of Eq. (13)1 satisfying Eq. (18)
and the normalization (15) is written as

ζ2 ¼ 1 − ðv0=κÞ2
2

cos 2κðx − l=2Þ þ 1þ ðv0=κÞ2
2

ð19Þ

with

g ¼ 2ð1 − ðv0=κÞ2Þκ sin κl
1þ ðv0=κÞ2 þ ð1 − ðv0=κÞ2Þ cos κl

: ð20Þ

For given v0l and gl, we can find the parameters κl that
satisfy Eq. (20). As shown in Fig. 1, there are two
parameters κ<, κ>ðκ< < κ>Þ for a given v0l when gl is
smaller than a critical value gcl. The two parameters,

however, merge at gcl and then beyond it, there is no
solution satisfying Eq. (20). The structure of the solutions is
very similar to the one found in Ref. [5], implying that the
solution with κ> is unstable according to a saddle-node
bifurcation theory.

IV. HIGHER-ORDER SOLUTIONS
AND THE FREE ENERGY

In this section we construct higher-order solutions of
Eq. (11) and show that the solution with larger κ is unstable
by calculating the free energy.

A. The construction of OðϵÞ solutions
At OðϵÞ, the equations of motion are derived from the

Maxwell equation (9). From the condition (10) and the
expansion (11), it follows that the rhs of the x component of

Eq. (9) is x independent at OðϵÞ. This implies that Mð1Þ
x is

also x independent. Making the ansatzMð1Þ
x ¼ Mð1Þ

x ðuÞ and
Mð1Þ

u ¼ 0, Eq. (9) is reduced to

ð1 − u2ÞM00
x
ð1Þ − 2uM0

x
ð1Þ ¼ v0ρ2

2u2
: ð21Þ

From the boundary condition (10) and ξðl=2Þ ¼ v0, the

asymptotic boundary condition for Mð1Þ
x should be

Mð1Þ
x ð0Þ ¼ 0. Imposing the regularity condition at the

horizon u ¼ 1, we obtain the solution, up to Oðκ̂2Þ,

Mð1Þ
x ¼ v0

32ð1þuÞ
�
8ð1− κ̂2Þþ κ̂2fð2 ln2Þð1þuÞ lnð1−uÞ

− lnð1þuÞð4þ2ð1þuÞ lnð1−uÞ

− ð1þuÞ lnð1þuÞÞg−2κ̂2ð1þuÞLi2
�
1þu
2

��

−
v0
192

f48− κ̂2ð48þπ2−6ðln2Þ2gþOðκ̂4Þ; ð22Þ

where Li2 is the polygamma function [21]. The superfluid

current hJxi is read off from the derivative of Mð1Þ
x as

FIG. 1. The plot of gl as a function of κl and v0l. When v0 is
constant, there are two solutions for κ as long as g is less than a
critical value gc.

1In general, there is another solution such that ζ2 has a local
minimum at x ¼ l=2. However, this solution must oscillate at
least once, so it takes a larger value of κ than the one of the
solution (19). This implies that it takes more energy than the
solution (19).
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hJxi ∼M0
x
ð1Þð0Þ ¼ −

v0
8
ð2 − κ̂2ð1 − ln 2ÞÞ: ð23Þ

The equation of motion for Mð1Þ
t is given by

4u∂2
uM

ð1Þ
t þ ∂2

xM
ð1Þ
t

1 − u2
¼ 2μ0

uð1þ uÞ ρ
2ζ2

¼ μ0ρ
2

uð1þ uÞ fð1 − ν2Þ cos 2κðx − l=2Þ þ 1þ ν2g; ð24Þ

where here and hereafter we set ν ¼ v0=κ for

brevity. Making the ansatz, Mð1Þ
t ðu; xÞ ¼ ηt0ðuÞ þ

ηt1ðuÞ cos 2κðx − l=2Þ and imposing the asymptotic boun-
dary condition ηt1ð0Þ ¼ 0 by Eq. (10), and the regularity
conditions at the horizon, ηt0ð1Þ ¼ ηt1ð1Þ ¼ 0, we obtain

ηt0
πT

¼ −Cð1 − uÞ þ ð1þ ν2Þð1 − uÞ
8ð1þ uÞ

þ κ̂2ð1þ ν2Þfu − 1þ ð1þ uÞ ln 2 − 2 lnð1þ uÞg
16ð1þ uÞ

þOðκ̂4Þ; ð25Þ

ηt1
πT

¼ −
ð1 − ν2Þuð1 − uÞ

8ð1þ uÞ þ κ̂2ð1 − ν2Þu
16ð1þ uÞ

× f1 − u − ð1þ uÞ ln 2þ 2 lnð1þ uÞg þOðκ̂4Þ;
ð26Þ

where C is an integration constant determined later.

B. The free energy

To regulate the action (1), we need a counterterm Sct
defined by

Sct ≔
Z

d4x
ffiffiffiffiffiffi
−h

p �
2jψ j2
L

þ nμ∇μjψ j2
�
; ð27Þ

where nμ is defined first as a unit outward normal vector to
a u ¼ const hypersurface with the induced metric hab, and
where the limit u → 0 is taken [17]. Evaluating the action
(1) on the on-shell condition by using the equation of
motion (3) and using the asymptotic form of ψ [Eq. (6)], we
find

Sos ¼ L3ðπTÞ4
Z

d4xð−2jβj2 ln uþ αβ� þ α�βÞ

−
L2

4

Z
d5x

ffiffiffiffiffiffi
−g

p
F2: ð28Þ

Since we impose β ¼ 0 for the asymptotic boundary
condition of ψ , the first term disappears, and there is no
contribution from the scalar field.

Using the Maxwell equation ∇νF
νμ
ð0Þ ¼ 0, we find

Sos ¼ −L2

Z
d4x

ffiffiffiffiffiffi
−h

p
nμFð0Þ

μν ðMν
ð0Þ=2þ ϵMν

ð1Þ þ � � �Þ

−
ϵ2L2

2

Z
d4x

ffiffiffiffiffiffi
−h

p
nμFð1Þ

μν Mν
ð1Þ

þ ϵ2L2

2

Z
d5x

ffiffiffiffiffiffi
−g

p
Mν

ð1Þ∇μFð1Þ
μν þ � � � : ð29Þ

As shown in Ref. [22], the last term becomes zero under
the asymptotic boundary condition β ¼ 0. Then, the free
energy Ω ¼ −Sos=

R
dt becomes

Ω ¼ 2π2L3T2

Z
d3xM0ð0Þ

t Mt − π2L3T2

Z
d3xM0ð0Þ

t Mð0Þ
t

þ ϵ2π2L3T2

Z
d3xM0ð1Þ

t Mð1Þ
t þ � � � : ð30Þ

Here, we have used the fact that M0ð0Þ
x ¼ 0 and

Mð1Þ
x ðu ¼ 0Þ ¼ 0.
In the limit κ̂ → 0ðT → ∞Þ, Mð0Þ is independent of the

scalar field configuration of ψ . Furthermore, our asymp-
totic condition μ ¼ Mtð0; xÞ given by Eq. (10) implies that
the difference of the free energy between the two solutions
with κ< and κ> appears at the last term in Eq. (30), up to
Oðϵ2Þ. Substitution of the solution (25) and (26) into
Eq. (30) yields

Ω ¼ −ϵ2π4L3T4l
Z

dydz × Γ;

Γ ≔
�
C −

1þ ν2

8

��
C −

1þ ν2

4
−
ð1 − ν2Þ sin κl

8κl

�
: ð31Þ

The constant C is determined by the “orthogonality”
condition2Z

d5x
ffiffiffiffiffiffi
−g

p
Mν

ð1Þ∇μFð1Þ
μν ¼

Z
d5x

ffiffiffiffiffiffi
−g

p
Mν

ð1ÞM
ð0Þ
ν R2

1 ¼ 0;

ð32Þ

where we used the Maxwell equation (9) in the last line.
Substituting Eqs. (22), (25), and (26) into the condition, we
find

�ð1þ ν2Þ sin κl
2κl

þ 1 − ν2

4
þ ð1 − ν2Þ sin 2κl

8κl

�
z1

þ
�ð1 − ν2Þ sin κl

2κl
þ 1

2
ð1þ ν2Þ

�
z0 þOðκ̂2Þ ¼ 0 ð33Þ

with the coefficients z0 and z1 given by

2For the derivation, see Appendix A in Ref. [22].
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z0 ¼
1

192
ð5þ 5ν2 − 48CÞ þOðκ̂2Þ;

z1 ¼ −
1

192
ð1 − ν2Þ þOðκ̂2Þ: ð34Þ

The chemical potential can be expanded as

μ̂ ¼ Mtð0; xÞ
πT

¼ 2þ κ̂2

2
þ ϵμ̂1 þ � � � ;

μ̂1 ≔ −Cþ 1þ ν2

8
: ð35Þ

As μ and T are fixed for the two solutions κaða ¼>;<Þ, the
expansion parameter ϵ depends on κa. We evaluate the free
energy (31) in the case of the high-temperature limit κ̂ → 0

and ϵ1=2 ≪ 1. In this case, substituting Eq. (35) into
Eq. (31) and eliminating ϵ, we find

Ω≃ −ðμ̂ − 2Þ2π4L3T4l
Z

dydz
Γ
μ̂21

: ð36Þ

This implies that the difference in the free energy between
the two solutions is determined by the coefficient Γ=μ̂21.
We numerically solve Eq. (33) and find the coefficient

Γ=μ̂21 for several cases. It turns out that as κ becomes
smaller, the coefficient Γ=μ̂21 takes on larger positive values.
This indicates that the free energy with the smaller
κðκ<Þ is smaller than the one with the larger κðκ>Þ, as
expected. In the gl ¼ 0.6π, v0l ¼ 0.4π case, for example,
κ<l ¼ 0.633π, κ>l ¼ 0.957π, and Γ=μ̂21 ¼ 6.854, Γ=μ̂21 ¼
5.917, respectively.

V. IMPURITY AND THE SPECTRAL FUNCTION

So far, we have discussed properties of our holographic
superfluid solutions with taking into account the effects of
the background fluid flow v0. In this section, we turn our
attention to the effects of the impurity introduced by the
repulsive potential.
According to the dictionary of the AdS/CFT duality, the

spectral function is derived from the linear perturbation of
the background solution obtained in Secs. III and IV. In
general, the perturbed variables δψ , δAμ of the scalar field
and the gauge field are coupled to each other. However,
since the coupling constant is proportional to ϵ1=2 (see, for
example, Ref. [20]), by taking the limit ϵ → 0, one can
decouple those perturbation variables. Furthermore, by
doing so, one can neglect the effects of the background
flow v0 on perturbations, and thereby manifest the effects
of the impurity on the spectral function. In what follows, we
consider, in this limit ϵ → 0, the fluctuations of the scalar
field with the temperature T and the coupling constant g
fixed, while the chemical potential μ takes various different
values.

Under the fixed gauge potential Aμ ¼ μð1 − uÞδtμ, the
perturbed equation is simply given by Eq. (3). Here, note
that the fluctuations of the superfluid velocity are encoded
in the phase φ of the perturbed scalar field δψ .3

Our background solution is independent of t and

homogeneous along the direction of ~Y ¼ ðy; zÞ, while it
is inhomogeneous along the x direction. In this case,

the linear perturbation of the source term δJ ¼
e−iωtþi~q·~YδJðω; ~qjxÞ and the linear response of the con-

densates δhOi ¼ e−iωtþi~q·~YδhOðω; ~qjxÞi are related to each
other, via the retarded response function Gðω; ~qjx; x0Þ, as
follows:

δhOðω; ~qjxÞi ¼ −
Z

dx0Gðω; ~qjx; x0ÞδJðω; ~qjx0Þ: ð37Þ

Since the spectral function

ρðω; ~qjx; x0Þ ≔ −ℑ½Gðω; ~qjx; x0Þ�; ð38Þ

specifies G via its spectral representation, let us study the
behavior of the spectral function ρ. In order to see the
effects of the impurity, we focus on the linear perturbations

~q ¼ ~0which are homogeneous along ~Y ¼ ðy; zÞ. (Hereafter
we shall omit the argument ~q, for simplicity.)
In the evaluation of Gðωjx; x0Þ, it is convenient to

introduce an appropriate complete orthonormal system
(CONS) fχjg in the L2ðRÞ space along the x direction.
Then, Eq. (37) is expressed as

δhOiðωÞi ¼ −
X
j

GijðωÞδJjðωÞ; ð39Þ

where

δJjðωÞ ≔
Z

dxχ�jðxÞδJðωjxÞ; ð40aÞ

GijðωÞ ≔
Z

dxdx0χ�i ðxÞGðωjx; x0Þχjðx0Þ; ð40bÞ

Gðωjx; x0Þ ¼
X
i;j

χiðxÞGijðωÞχ�jðx0Þ: ð40cÞ

Now let us derive Eq. (39) by using the holographic
method. We look for a solution of the perturbed scalar
field δψ in the form of a separation of variables
δψ ¼ e−iωtUðuÞXðxÞ. The equation of motion for δψ
becomes the following set of equations:

3The velocity corresponds to the derivative of φ with respect
to x.
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�
−

d2

dx2
þ g

X∞
n¼−∞

δðx − nlÞ
�
X ¼ κ2X; ð41aÞ

�
d
du

fðuÞ
u

d
du

þ fω̂þ μ̂ð1 − uÞg2
4u2fðuÞ þ 4 − κ̂2u

4u3

�
U ¼ 0;

ð41bÞ

where ω̂ ≔ ω=πT, μ̂ ≔ μ=πT, and κ > 0.
In the limit ϵ → 0, the background solution in previous

sections affects Eq. (41b) only through μ̂. Note that
Eq. (41b) is equivalent to Eq. (14) when ω̂ ¼ 0.
Let us first analyze Eq. (41a). Since Eq. (41a) corre-

sponds to an energy eigenvalue problem of the Kronig-
Penney model consisting of δ-function barriers with a
certain period, it should admit, as a solution, Bloch states

Xkðxþ lÞ ¼ eiklXkðxÞ ð−∞ < k < ∞Þ: ð42Þ

Demanding the orthonormal condition,Z
∞

−∞
dxX�

kðxÞXk0 ðxÞ ¼ δðk − k0Þ; ð43Þ

we find the solutions to Eqs. (41a) and (42) as

Xkð0 < x < lÞ ¼ f8π sin κl sin klðdk=dκÞg−1=2
× fðeikl − e−iκlÞeiκx − ðeikl − eiκlÞe−iκxg:

ð44Þ

Here κ is a positive-definite function κðkÞ > 0 of the wave
number k and is determined by [23],

−1 ≤ cos kl ¼ cos κlþ gl
2

sin κl
κl

≤ 1: ð45Þ

Note that κðkÞ ¼ κð−kÞ, X�
kðxÞ ¼ X−kðxÞ.

The condition (45) places a restriction on the range of κ
for a given g, yielding a band structure shown in Fig. 2. The
shaded region represents the allowed region satisfying
Eq. (45), while the blank region corresponds to the
forbidden region. Let us denote by κn the bottom of the
nth allowed band. Then, the first and the second allowed
bands are given respectively by κ1 < κ < π=l and κ2 <
κ < 2π=l. For gl ¼ 0.663π, κ1l ¼ 0.423π and κ2l ¼
1.175π.
In the case of v0l ¼ π=2, the dot-dashed (blue) curve

represents the function g of κ given by Eq. (20), while the
dashed (black) and solid (green) curves represent the ones
with v0l ¼ 0.421π and v0l ¼ 0.225π, respectively.
Let us turn to Eq. (41b). Hereafter, by Uk we denote U

that couples to Xk
4 so that δψ ∝ XkUk. Near the AdS

boundary u ∼ 0, it becomes�
d
du

1

u
d
du

þ 1

u3

�
Uk ∼ 0; ð47Þ

and therefore its solution behaves asymptotically as

UkðuÞ ∼ −αðκ̂ðkÞ; μ̂; ω̂Þuþ βðκ̂ðkÞ; μ̂; ω̂Þu ln u: ð48Þ

Here we have taken into consideration the fact that the wave
number k contributes to the above formula only through
κ̂ðkÞ in Eq. (41b).
Note that α and β are related in a certain manner so that at

the horizon u → 1, Uk satisfies the in-going boundary
conditions. This, together with the fact that versions of
Eq. (41b) with different wave numbers k are independent of
each other, implies that the expectation value αðκ̂ðkÞÞ
couples only to the source βðκ̂ðkÞÞ with the same wave
number k. Therefore we can diagonalize GijðωÞ in Eq. (39)
so that Gkk0 ðω̂Þ ¼ Gκ̂ðω̂Þδðk − k0Þ, with Gκ̂ðω̂Þ given below.
Note that Gκ̂ðω̂Þ is labeled only by κ̂, since α and β have a
dependency on k only through κ̂. Thus, we obtain the
retarded response function as

FIG. 2. The band structure given by the repulsive potential (5).
The shaded region is the allowed region in which Eq. (45) holds,
and the blank region is the forbidden one. The dot-dashed (blue)
curve represents the function g given by Eq. (20) with v0l ¼ π=2,
while the dashed (black) and solid (green) curves represent the
ones with v0l ¼ 0.421π and v0l ¼ 0.225π, respectively. The
horizontal black dotted line expresses the local maximum value
(gl ¼ 0.663π) of the blue dot-dashed curve. The six points on the
horizontal dotted line correspond to κ�l=π ≔ Tlκ̂�ðμ̂Þ for the
value of the chemical potential μl=π respectively, 2.060 (filled
circle, red), 2.120 (filled square, green), 2.215 (filled diamond,
black), 2.321 (filled triangle, blue), 2.400 (filled nabla, magenta),
2.519 (open circle, orange) when Tl ¼ 1 and gl ¼ 0.663π.

4Note that in what follows, we assume that the orthonormal
Bloch states (44) form a CONS on the L2ðRÞ space defined by

Z
∞

−∞
dkXkðxÞX�

kðx0Þ ¼ δðx − x0Þ: ð46Þ
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Gðω̂jx; x0Þ ¼
Z

∞

−∞
dkGκ̂ðω̂ÞXkðxÞX�

kðx0Þ

¼ 2

Z
∞

0

dkGκ̂ðω̂Þℜ½XkðxÞX�
kðx0Þ�; ð49aÞ

Gκ̂ðω̂Þ ≔ −
αðκ̂ðkÞ; μ̂; ω̂Þ
βðκ̂ðkÞ; μ̂; ω̂Þ : ð49bÞ

The behavior of the retarded response function Gκ̂ðtÞ with
real time t is determined by the singularity structure of
Gκ̂ðω̂Þ with respect to the complex ω̂. We can find the
relaxation time scale of the condensate by inspecting the
quasinormal (QN) frequency ω̂ ¼ Ω̂QNMðκ̂; μ̂Þ, which is a
solution to βðκ̂; μ̂; ω̂Þ ¼ 0 and provides the poles of Gκ̂ðω̂Þ.
Furthermore, we find a critical point from either the highest
value of μ̂ [μ̂ ¼ μ̂�ðκ̂Þ] or the lowest value of κ̂ [κ̂ ¼ κ̂�ðμ̂Þ]
that solves the source-free condition for the linear pertur-
bation (response) field in the stationary case. As shown
later, the spectral function crucially depends on the back-
ground parameter κ̂�ðμ̂Þ.
Now let us see the behavior of the spectral function at the

point x ¼ x0 ¼ l=2, avoiding in particular the location of
the impurity itself. Define ρðω̂Þ ≔ ρðω̂jl=2; l=2Þ. Then
from Eqs. (38), (44), and (49a), we obtain

ρðω̂Þ ¼ −
Z
B

dκ
π
ℑ½Gκ̂ðω̂Þ�Wðκl; glÞ; ð50aÞ

Wðσ; glÞ ≔ sin σ þ ðgl=2σÞð1 − cos σÞ
sin kl

ð50bÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ þ gl tanðσ=2Þ
2σ − gl cotðσ=2Þ

s
; ð50cÞ

where the domain of integration B satisfies Eq. (45) with
κ > 0 and is determined by gl. We list below the basic
properties of the spectral function ρðω̂Þl, obtained by
inspecting Eq. (50):

(i) The spectral function ρðω̂Þl is specified by μ̂, Tl,
and gl. [Note that κ̂ ¼ κl=ðπTlÞ.]

(ii) The dependency on μ̂ and Tl is determined by
Gκ̂ðω̂Þ. Equation (41b), which provides Gκ̂ðω̂Þ, is the
same as the equation for linear perturbations with
wave number k on the homogeneous background
field with no impurity. (To see this, replace κ̂ with
k=πT.) From the dependency of Gκ̂ðω̂Þ on low ω̂ and
κ̂ around the critical point μ̂ ≲ μ̂�ðκ̂Þ, it turns out that
our holographic superconductor exhibits the critical
dynamics of model A [24]. (See Ref. [25] for a
review of dynamic critical phenomena, and also
Ref. [26] for the introduction of dynamic critical
phenomena. The study of dynamic critical phenom-
ena in the AdS/CFT context is given in, e.g.,
Refs. [27–29].)

(iii) The effects of the impurity appear via the band
structure B and the weight Wðκl; glÞ.

(iv) Due to “sin kl” in the denominator of Eq. (50b) [or
Eq. (50c)], the weight W diverges at the edge of the
band, where cos kl ¼ �1. Since 1= sin kl ∝ dk=dκ
from Eq. (45), the divergence of W is related to that
of the state density per unit “energy” E ≔ κ2, i.e.,
dk=dE. This is a reminiscent of the fact that in a
superfluid, the local dynamical response function
exhibits a singular behavior around the critical
velocity [30,31]. The divergence of the state density
at the critical velocity is the origin of the singular
behavior.

In Fig. 3, we plot the spectral function at x ¼ l=2, ρðω̂Þ,
for various chemical potentials μ for Tl ¼ 1 and gl ¼
0.663π case. Then, the behavior of the spectral function is
qualitatively determined by the position of κ� ≔ πTκ̂�.
When κ�l=π ¼ ðTlÞκ̂� is in the blank region in Fig. 2, the
spectral function rapidly increases as ω̂ increases [see the
red (κ�l ¼ 0.35π) and orange curves (κ�l ¼ 1.1π) in
Fig. 3]. On the other hand, when κ�l=π is in the gray
region in Fig. 2, the spectral function does not change
rapidly in the low-frequency region, and it decays around
ω̂ ∼ 0.1 (see the other curves in Fig. 3).
The behavior of ρðω̂Þ shown in Fig. 3 can be explained

by inspecting the dependency of ρκ̂ðω̂Þ ≔ −ℑ½Gκ̂ðω̂Þ� on μ̂
(or κ̂�) and κ, and by taking the existence of a band gap into
consideration.
We first note that Gκ̂ðω̂Þ is expressed in terms of its QN

frequencies fΩ̂QNM;jgj¼0;1;2;… as

Gκ̂ðω̂Þ ¼
X
j

ajðκ̂; μ̂Þ
ω̂ − Ω̂QNM;jðκ̂; μ̂Þ

þ � � � ;

FIG. 3. The log-log plot of the spectral function ρðω̂Þ is shown
for various chemical potentials μl=π [2.060 (filled circle, red),
2.120 (filled square, green), 2.215 (filled diamond, black), 2.321
(filled triangle, blue), 2.400 (filled nabla, magenta), 2.519 (open
circle, orange)] when Tl ¼ 1 and gl ¼ 0.663π. Note that these
points with the colors red, green, black, blue, magenta, and
orange correspond respectively to the points on the horizontal
black dotted line with the same colors in Fig. 2.
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where aj denotes the residues of Gκ̂ðω̂Þ at ω̂ ¼ Ω̂QNM;j.
Now, let Ω̂ðκ̂; μ̂Þ be the QN frequencies whose imaginary
parts take the smallest absolute value. From the above
expression of Gκ̂ðω̂Þ, we find that for real ω̂, such a Ω̂ðκ̂; μ̂Þ
can contribute most to Gκ̂ðω̂Þ, and hence to ρκ̂ðω̂Þ, and we
have

Gκ̂ðω̂Þ ∼
aðκ̂; μ̂Þ

ω̂ − Ω̂ðκ̂; μ̂Þ ¼
aðω̂ − Ω̂�Þ
jω̂ − Ω̂j2 :

Then, the behavior of ρκ̂ðω̂Þ can be understood in terms of
Ω̂ðκ̂; μ̂Þ via the following formula:

ρκ̂ðω̂Þ ∼ −
ℑðaÞω̂

jω̂ − Ω̂ðκ̂; μ̂Þj2 ; ð51Þ

where we have set ℑ½aΩ̂�� ¼ 0 as ρκ̂ðω̂ ¼ 0Þ ¼ 0.
We find that Ω̂ðκ̂; μ̂Þ has the following properties:
(i) When κ̂ ¼ κ̂�ðμ̂Þ, Ω̂ ¼ 0,5 and when κ̂≷κ̂�ðμ̂Þ,

ℑ½Ω̂ðκ̂; μ̂Þ�≶0. That is, perturbations with κ̂ >
κ̂�ðμ̂Þ are stable ones, while those with κ̂ < κ̂�ðμ̂Þ
are unstable ones.

(ii) Since κ̂�ðμ̂Þ is an increasing function, as μ̂ increases,
the stable perturbations change to unstable ones, and
at the marginal limit μ̂↗μ̂�ðκ̂Þ (κ̂�ðμ̂Þ↗κ̂), Ω̂ → 0

[24,32]. This implies that Ω̂ is continuous with μ̂.
(iii) For the stable perturbations with κ̂ > κ̂�ðμ̂Þ, both the

magnitude of the real part of Ω̂ðκ̂; μ̂Þ and that of the
imaginary part are increasing functions with respect
to κ̂.

From the observations above, we can expect ρκ̂ðω̂Þ to
behave as follows:

(i) As Eq. (51) shows, ρκ̂ðω̂Þ possesses a Lorentzian
peak of width about jℑ½Ω̂ðκ̂; μ̂Þ�j at ω̂ ¼ ℜ½Ω̂ðκ̂; μ̂Þ�.
[In what follows we assume ℜðΩ̂Þ > 0.]

(ii) As the marginal limit μ̂↗μ̂�ðκ̂Þ (κ̂�ðμ̂Þ↗κ̂) is ap-
proached, the peak of ρκ̂ðω̂Þ is becomes narrow in
width and sharp, and its location approaches ω̂ ¼ 0.

(iii) The modes which become unstable beyond the
marginal limit possess a negative peak in the range
ω̂ < 0.

Figures 4–7 show that our expectations about the behavior
of ρκ̂ðω̂Þ listed above are in fact true.
As in Eq. (50), the local spectral function ρðω̂Þ can be

obtained by the (weighted with W) summation of ρκ̂ðω̂Þ.
Then, from Figs. 4–7, we can find the behavior of ρðω̂Þ in
Fig. 3 as follows:

(i) ðTlÞκ̂�ðμ̂Þ < κ1l=π (Fig. 4)
The minimum value of κ is κ1, whose peak

location, ω̂1 ≔ ℜ½Ω̂ðκ1=πT; μ̂Þ�, is the closest to
ω̂ ¼ 0 and the tallest among others. As κ̂ increases,
the peak is shifted to the right and its shape becomes
short and wide. Then, ρðω̂Þ obtained by summing up
such short and wide profiles increases with ω̂ in a
neighborhood ω̂≳ 0, admits a peak around ω̂1, and
then monotonically decreases as the red plots
in Fig. 3.

FIG. 4. Plots of ρκ̂ðω̂Þ for various different values of κ̂ with
κ̂� ¼ 0.35, corresponding to the red plot (filled circle) in Fig. 3.
The location of the peak shifts to the right, as κ̂ increases from
κ̂ ¼ 0.423 with the difference Δκ̂ ¼ 0.08 between every adjacent
two peaks. When Tl ¼ 1, κ̂ ≃ 0.423, which gives the peak closest
to the origin, corresponds to, κ1l=π ∼ 0.423, the bottom of the
first allowed band for gl ¼ 0.663π. One can find the disappear-
ance of peaks around ω̂ ¼ 0.32 due to the band gap for κ̂ ¼ 1.063
and 1.143.

FIG. 5. Plots of ρκ̂ðω̂Þ for various different values of κ̂ with
κ̂� ¼ 0.50, corresponding to the green plot (filled square) in
Fig. 3. The plots with the same color in this figure and Fig. 4 are
for the same values of κ̂. Due to the large value of κ̂� (or μ̂)
compared to that in Fig. 4, every peak is shifted to the left
compared to the location of the corresponding peak in Fig. 4. The
disappearance of peaks due to the band gap is also shifted to
around ω̂ ¼ 0.29. Note also that there is a mode that has a peak
arbitrarily close to ω ¼ 0, as 0.423 < κ̂�.

5This is indicated from the fact that μ̂� (κ̂�) satisfies the source-
free condition of Eq. (41b) with ω̂ ¼ 0 (i.e., boundary conditions
at the infinity for QN frequencies). For κ̂ ¼ 0, such a massless
mode may be viewed as the emergence of a holographic Nambu-
Goldstone mode in the condensation phase [32].
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(ii) κ1l=π < ðTlÞκ̂�ðμ̂Þ < 1 (Figs. 5 and 6)
In this case ω̂1 < 0. Since κ̂�ðμ̂Þ is in the first

allowed band, there exists a mode of κ̂ which can
arbitrarily be close to κ̂�, and in the range ω̂ > 0,
sharp peaks continue to ω̂ ¼ 0. For this reason, ρðω̂Þ
does not show an increasing behavior in ω̂ in a
neighborhood of ω̂ ¼ 0 shown in Fig. 3.
Also in that neighborhood, the disappearance of

peaks due to the band gap makes ρðω̂Þ decrease,
reflected in the plots on the decreasing slope (with
colors, green, black, blue, and magenta) in Fig. 3.

(iii) 1 < ðTlÞκ̂�ðμ̂Þ < κ2l=π (Fig. 7)
Due to the band gap, there are no peaks in a

neighborhood of ω̂ ¼ 0 and no contribution to ρðω̂Þ
in the neighborhood of ω̂ ¼ 0. Therefore the region
of ω̂≳ 0 looks similar to Fig. 4. As a result, the plot
of ρðω̂Þ also becomes similar to that of ðTlÞκ̂�ðμ̂Þ <
κ1l=π (see the red plots in Fig. 4).

Although in this section we focused on the impurity and
spectral function neglecting the effects of the background
flow v0, in order to obtain some insights into critical
behavior in our holographic superfluid models, we may
give the following interpretation on the relation between κ�
and the background flow v0.
By Eq. (20), κ�lð¼ πTlκ̂�Þ is related to the background

fluid flow velocity v0l. Then, the parameter values κ�l=π ¼
0.5 (green), 0.677 (black), and 0.840 (blue) in
Fig. 3 correspond respectively to v0l=π ¼ 0.225, 0.421,
and 0.5.
As explained in Sec. III, there are two solutions κ�

satisfying Eq. (20) when v0 < vc. In the above case,
vcl≃ 0.5π, so the blue curve in Fig. 3 corresponds to
the almost critical case where the two solutions merge.
As v0 approaches the threshold vc from below, a small

hill accompanied with a steep slope emerges in the spectral
function ρðω̂Þ around ω̂ ¼ ω=πT ∼ 0.1 (blue curve). The
divergent state density at the edge of the band gap, κl ¼ π
induces the small hill, while the steep slope is caused by the
band gap above, κl > π, as discussed above. Figure 3
shows that the slope becomes steep as v0 approaches the
threshold vc from below. This reflects the fact that the
imaginary part of the QN frequencies, Ω̂ðκ̂; μ̂Þ in the band
gap, κl > π becomes small as κ� approaches the edge of the
band gap, κl ¼ π.

VI. SUMMARY AND DISCUSSIONS

We have investigated holographic models of one-
dimensional superfluid flow solutions in the presence of
an external repulsive potential. Our solutions are a gener-
alization of the solution of the GP equation [5] to the
strongly coupled case. Our solutions possess properties that
are very similar to those found in the GP equation. (i) There
are two solutions below the critical value gc of the coupling
constant g, and they merge at gc. (ii) The free energy of the
solution with the steeper configuration is higher than the
other solution, implying that the solution with the steeper
configuration is unstable.
We have also studied the spectral function derived from

the perturbation of the steady superfluid flow solution. Due
to the band structure generated by the periodic repulsive
potential, the qualitative features of the spectral function are
essentially determined by the parameter κ� which satisfies
βðκ�;ω ¼ 0Þ ¼ 0. As shown in Fig. 3, as κ� approaches the
edge of the band from the left-hand side, a small hill
appears. This reflects the fact that the state density, and
hence W, diverges at the edge.
For the solution of one-dimensional superfluid flow [5],

the spectral function ρðωÞ of the local density fluctuation
was derived by solving the Bogoliubov equation of the
GP equation [30,31]. Near the saddle-node bifurcation,
the characteristic frequency ω� corresponding to the
peak of the spectral function scales as ω� ∼ jg − gcj1=2.

FIG. 7. Plots of ρκ̂ðω̂Þ for various different values of κ̂ with
κ̂� ¼ 1.10, corresponding to the magenta plot (open circle) in
Fig. 3. The disappearance of peaks due to the band gap is now
around ω̂ ∼ 0, and ρðω̂ ∼ 0þÞ takes vanishingly small values,
corresponding to the behavior of the orange plot in Fig. 3.

FIG. 6. Plots of ρκ̂ðω̂Þ for various different values of κ̂ with
κ̂� ¼ 0.95, corresponding to the magenta plot (filled nabla) in
Fig. 3. The location of every peak is shifted further to the left, and
the disappearance of peaks due to the band gap is now around
ω̂ ¼ 0.06, which forms the slope around logðω=πTÞ ¼ −1.25
in Fig. 3.
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Furthermore, ρðωÞ behaves as ρðω < ω�Þ ∝ ωβ1 and
ρðω > ω�Þ ∝ ωβ2 , where β1 − β2 ¼ 2. This is quite differ-
ent from the spectral function we obtained. One of the main
reasons for this is that we derived the spectral function in
the limit ϵ → 0. In this limit, the perturbed equation does
not include the background solution explicitly. To derive
such critical phenomena, it would be interesting to

calculate the spectral function in the case ϵ > 0, taking
into account the fluctuations of the gauge field.
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