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Based on the truncated Dyson-Schwinger equations for the fermion propagator withN fermion flavors at
zero temperature, the chiral phase transition of quantum electrodynamics in 2þ 1 dimensions (QED3) with
boson mass—which is obtained via the Anderson-Higgs mechanism—is investigated. In the chiral limit,
we find that the critical behavior of QED3 with a massless boson is different from that with a massive
boson: the chiral phase transition in the presence of a nonzero boson mass reveals the typical second-order
phase transition, at either the critical boson mass or a critical number of fermion flavors, while for a
vanishing boson mass it exhibits a higher than second-order phase transition at the critical number of
fermion flavors. Furthermore, it is shown that the system undergoes a crossover behavior from a small
number of fermion flavors or boson mass to its larger one beyond the chiral limit.
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I. INTRODUCTION

Quantum electrodynamics in 2þ 1 dimensions (QED3)
has been widely studied for many years. It has many features
similar toQCD, such as dynamical chiral symmetry breaking
(DCSB) in the massless fermion limit and confinement
[1–5]. Moreover, QED3 is super-renormalizable, so it does
not suffer from the ultraviolet divergence which is present in
QED4. Therefore it can serve as a toymodel of more realistic
theories such asQCD.Besides, QED3 has been used to study
some problems in condensed matter physics. In particular,
QED3 can be regarded as a model for high-Tc supercon-
ductivity and the fractional quantum Hall effect [6–10].
The research of the chiral phase transition (CPT) in

QED3 is an active subject, since Appelquist et al. [11]
pointed out that QED3 with N fermion flavors undergoes a
CPT into the phase of DCSB when N is smaller than a
critical fermion flavor Nc (≈3.24). They arrived at this
conclusion by applying the lowest-order approximation of
the truncated Dyson-Schwinger equation (DSE). Then,
some groups adopted an improved scheme of the DSE
and verified the existence of Nc [12,13]. In particular, the
result of Ref. [13] illustrates that the critical behavior of
the chiral fermion condensate obtained using the rainbow
approximation of the DSE near Nc is the same as that
obtained using the truncated scheme of the Ball-Chiu/
Curtis-Pennington vertex [14,15]. The comparability
implies that the rainbow approximation of the DSE can
be used to qualitatively study the CPT in QED3.

To determine the order of the CPT around Nc, the
authors of Ref. [16] studied the light scalar degrees of
freedom and the order parameter of the CPT near Nc and
found that the phase transition is not second order and is
also unlike the conventional first-order transition [17]. In
addition, the results from the Cornwall-Jackiw-Tomboulis
(CJT) effective potential [18] and chiral susceptibility [19]
also show that the CPT around Nc with a massless boson
at zero temperature is neither of first order nor of second
order, and thus it should be a continuous phase transition
of a higher order.
The above result about the nature of the CPT holds when

the gauge boson is massless, but it is expected to change
when the gauge boson gains a nonzero mass ζ. DCSB in
QED3 is a low-energy phenomenon and exists only in the
infrared region, in which the gauge interaction is strong
enough to cause fermion condensation. This requires the
fermions to be apart from each other. However, when
the gauge boson has a finite mass it cannot mediate a
long-range interaction. This physical picture is obviously
different from that with a massless boson which mediates a
long-range interaction. The previous works showed that,
with the involved boson mass, Nc depends apparently on
the value of ζ [20,21]. Thus it is very interesting to
investigate whether or not the characteristic of the CPT
is also changed when including ζ and what will happen
beyond the chiral limit.
In principle, we should adopt the Landau theory of phase

transitions to study the nature of the CPT, but it is too
complicated to expand the free energy of the system on the
order of the CPT near the critical point. Fortunately, the
chiral susceptibility contains some essential characteristics
of the CPT. Moreover, the CJT effective potential [22] also
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provides us with a virtual framework to analyze the nature
of the phase transition; thus, in this paper we shall adopt the
two methods to analyze the critical behaviors of QED3 with
massless and massive bosons.

II. ORDER OF THE CHIRAL PHASE
TRANSITION

The Lagrangian for massless QED3 with N fermion
flavors in a general covariant gauge in Euclidean space can
be written as

L ¼
XN
j¼0

ψ jð∂ þ ieA −mÞψ j þ
1

4
F2
σν þ

1

2ξ
ð∂σAσÞ2; ð1Þ

where the four-component spinor ψ is the massless fermion
field, and ξ is the gauge parameter. In the absence of the
mass term mψψ , this system has chiral symmetry and the
symmetry group is Uð2Þ. The original Uð2Þ symmetry
reduces to Uð1Þ ×Uð1Þ when the massless fermion
acquires a nonzero mass due to nonperturbative effects.
It is different from the gauge field in the reformulated

Thirring model in three dimensions [23], which was studied
using the hidden local symmetry technique which reveals a
gauge field character. In this work, we want to stress that
the gauge boson in QED3 will acquire a mass through the
Anderson-Higgs mechanismwhich happens when the gauge
field interacts with some scalar field in the phase with
spontaneous gauge symmetry breaking. In physics, this
phenomenon occurs in the state of plane superconductivity
where spontaneous gauge symmetry breaking appears.
To see the effect played by ζ, we now introduce an

additional interaction term between the gauge field Aμ and
the complex scalar boson field ϕ:

L0 ¼LþLB;

with LB ¼
XN
j¼0

½jð∂μþ ieAμÞϕjj2 −μjϕjj2− λjϕjj4�: ð2Þ

LB is the so-called Abelian Higgs model or relative
Ginzburg-Landau model [24,25]. The scalar field ϕ
represents the bosonic holons based on the spin-charge
separation picture, while the coefficient λ is always positive
according to the Landau phase transition theory. Physically,
at μ > 0, the system stays in the normal state and the
vacuum expectation value of the boson field hϕi ¼ 0, so
the Lagrangian respects the local gauge symmetry. When
μ < 0, the system enters the superconducting state and the
boson field develops a finite expectation value hϕi ≠ 0;
then, the local gauge symmetry is spontaneously broken
and the gauge field acquires a finite mass ζ after absorbing
the massless Goldstone boson. The finite gauge field mass
is able to characterize the achievement of superconductiv-
ity. On the other hand, the gauge field obtains a mass via the

Anderson-Higgs mechanism which implies that the gauge
field is in a confinement phase [26], and thus the spinons
and holons are confined in the superconducting phase
(the spin-charge recombination). It is well known that
neither spinons nor holons can be observed in high-Tc
superconducting experiments; however, a well-defined
quasiparticle can be observed due to the spin-charge
recombination in the superconducting phase [27].
In this paper, we will follow Refs. [24–27] to add the

gauge mass by hand and study the influence of ζ on the
nature of the CPT in QED3. The order of the CPT is
defined via the full fermion propagator

hψψi ¼ Tr½Sðx≡ 0Þ� ¼
Z

d3p
ð2πÞ3

4Bðp2Þ
A2ðp2Þp2 þ B2ðp2Þ ;

ð3Þ
which is related to the full fermion propagator SðpÞ
and reduces to its free one S0ðpÞ,

S−1ðpÞ ¼ iγ · pAðp2Þ þ Bðp2Þ → S−10 ¼ iγ · pþm; ð4Þ
in the high-energy limit. It is well defined in the chiral limit,
but it is divergent at m ≠ 0. This divergence is typically
removed and we obtain a renormalized fermion chiral
condensate Tr½Sðx≡ 0Þ − S0ðx≡ 0Þ�.

A. Chiral susceptibility

We can also determine the transition point via the
maximum of the chiral susceptibility ∂hψψi

∂m which indicates
that the chiral susceptibility measures the response of the
chiral condensate to an infinitesimal change of the fermion
mass [28],

χc ¼ 4

Z
d3p
ð2πÞ3

�
p2A2D − 2p2ABC − B2D

½p2A2 þ B2�2

−
p2 −m2

ðp2 þm2Þ2
�
; ð5Þ

where

Cðp2Þ ¼ ∂Aðp2Þ
∂m ; Dðp2Þ ¼ ∂Bðp2Þ

∂m : ð6Þ

Now let us turn to the calculation of Aðp2Þ, Bðp2Þ and
the related Cðp2Þ, Dðp2Þ functions which can be obtained
by solving DSEs for the fermion propagator,

S−1ðpÞ ¼ S−10 ðpÞ þ
Z

d3k
ð2πÞ3 ½γσSðkÞΓνðp; kÞDσνðqÞ�;

ð7Þ
where Γνðp; kÞ is the full fermion-photon vertex and
q ¼ p − k. The simplest and most commonly used trun-
cated scheme for the DSEs is the rainbow approximation,
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i.e., Γνðp; kÞ → γν, since it gives us rainbow diagrams in
the fermion DSE and ladder diagrams in the Bethe-Salpeter
equation for the fermion-antifermion bound-state ampli-
tude [3–5]. The coupling constant α ¼ e2 has dimension
one and provides us with a mass scale. For simplicity,
in this paper, mass and momentum are all measured in
units of α, namely, we choose a kind of natural units in
which α ¼ 1.
From Eqs. (4) and (7), we obtain the equations satisfied

by Aðp2Þ and Bðp2Þ,

Aðp2Þ ¼ 1 −
1

4p2

Z
d3k
ð2πÞ3 Tr½iðγpÞγσSðkÞγνDσνðqÞ�; ð8Þ

Bðp2Þ ¼ 1

4

Z
d3k
ð2πÞ3 Tr½γσSðkÞγνDσνðqÞ�: ð9Þ

Another involved function is the full gauge boson propa-
gator DσνðqÞ which is given by [20,29]

DσνðqÞ ¼
δσν − qσqν=q2

q2½1þ Πðq2Þ� þ ζ2
þ ξ

qσqν
q4

; ð10Þ

where Πðq2Þ is the vacuum polarization for the gauge
boson which is satisfied by the polarization tensor

Πσνðq2Þ¼−
Z

d3k
ð2πÞ3Tr½SðkÞγσSðqþkÞγν� ð11Þ

and ζ is the gauge boson mass which is acquired through
the Higgs mechanism, which happens when the gauge field
interacts with a scalar field in the DCSB phase (more
details about the Higgs mechanism in QED3 can be found
in Refs. [29,30]).
Using the relation between the vacuum polarization

Πðq2Þ and Πσνðq2Þ,

Πσνðq2Þ ¼ ðq2δσν − qσqνÞΠðq2Þ; ð12Þ

we can obtain an equation for Πðq2Þ which has an ultra-
violet divergence. Fortunately, it is present only in the
longitudinal part and proportional to δσν. This divergence
can be removed by the projection operator

Pσν ¼ δσν − 3
qσqν
q2

; ð13Þ

and then we obtain a finite vacuum polarization [31,32].
Finally, since the Landau gauge is the most convenient

and commonly used one, we choose to work in the Landau
gauge and immediately obtain the truncated DSEs for the
fermion propagator and then analyze the critical behavior in
this Higgs model.
By some tricks proposed in Ref. [9], we obtain the

equations satisfied by Aðp2Þ, Bðp2Þ, and Πðq2Þ,

Aðp2Þ ¼ 1þ 2

p2

Z
d3k
ð2πÞ3

Aðk2ÞðpqÞðkqÞ=q2
Hðk2Þ½q2ð1þ Πðq2ÞÞ þ ζ2� ;

ð14Þ

Bðp2Þ ¼ mþ 2

Z
d3k
ð2πÞ3

Bðk2Þ
Hðk2Þ½q2ð1þ Πðq2ÞÞ þ ζ2� ;

ð15Þ

Πðq2Þ ¼ 2N
q2

Z
d3k
ð2πÞ3

Aðk2ÞAðp2Þ
Hðk2ÞHðp2Þ

× ½2k2 − 4ðk · qÞ − 6ðk · qÞ2=q2�; ð16Þ

with Hðk2Þ ¼ A2ðk2Þk2 þ B2ðk2Þ.
Adopting Eqs. (6) and (14)–(16) and setting Π0ðq2Þ ¼

∂Πðq2Þ
∂m , we get the coupled equations for Cðp2Þ; Dðp2Þ,

and Π0ðq2Þ,

Cðp2Þ¼ 2

p2

Z
d3k
ð2πÞ3

ðp ·qÞðk ·qÞC
H2ðk2Þ½q2ð1þΠðq2ÞÞþζ2�2 ; ð17Þ

Dðp2Þ ¼ 1þ 2

Z
d3k
ð2πÞ3

q2D
H2ðk2Þ½q2ð1þ Πðq2ÞÞ þ ζ2�2 ;

ð18Þ

Π0ðq2Þ ¼ 2N
q2

Z
d3k
ð2πÞ3

½2k2 − 4ðk · qÞ − 6ðk · qÞ2=q2�Π0
1

H2ðk2ÞH2ðp2Þ ;

ð19Þ

where

C≡ ½B2ðk2ÞCðk2Þ−A2ðk2ÞCðk2Þk2−2Aðk2ÞBðk2ÞDðk2Þ�
× ½1þΠðq2Þþζ2=q2�−Aðk2ÞHðk2ÞΠ0ðq2Þ;

D≡ ½Aðk2ÞDðk2Þk2−B2ðk2ÞDðk2Þ−2Aðk2ÞBðk2ÞCðk2Þk2�
× ½1þΠðq2Þþζ2=q2�−Bðk2ÞHðk2ÞΠ0ðq2Þ;

Π0
1≡ ½Aðp2ÞCðk2ÞþAðk2ÞCðp2Þ�Hðk2ÞHðp2Þ
−2Aðk2ÞAðp2Þ½Aðk2ÞCðk2Þk2þBðk2ÞDðk2Þ�Hðp2Þ
−2Aðk2ÞAðp2Þ½Aðp2ÞCðp2Þp2þBðp2ÞDðp2Þ�Hðk2Þ:

B. CJT effective potential

Furthermore, to indicate the order of the CPT with the
gauge boson mass, we can also analyze the derivative of the
generating functional with respect to the number of fermion
flavors and the boson mass. Due to its nonperturbative
nature, it is too complex to obtain an exact expression for
the generating functional. However, in some situations, an
expression for the effective potential can be given in terms
of the fermion and boson propagators (which correspond to
the bare vertex approximation for solving the DSEs for the
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fermion and boson propagators) to study the nature of the
chiral phase transition around the critical point.
The pressure is the negative value of the CJT effective

potential density and the CJT effective pressure is given
as [22]

Pðζ; NÞ ¼ −NTr

�
lnðSS−10 Þ þ 1

2
ð1 − SS−10 Þ

�

þ 1

2
Tr½lnðDD−1

0 Þ þ ð1 −DD−1
0 Þ�; ð20Þ

where the trace, logarithm, and propagators are taken in
the functional framework. The first term represents the
contribution of N fermion flavors, and the last term denotes
the contribution of the photon. Because of the divergent
integral, the differential pressure between the DCSB phase
(d) and chiral restored phase (c) is often calculated as

ΔPðζ; NÞ ¼ Pd − Pc ð21Þ
to determine which phase exists; this expression is
reduced as

ΔPðζ; NÞ ¼ −2N
Z

d3p
ð2πÞ3

�
ln

A2
cp2

A2
dp

2 þ B2
d

þ ðA2
d − 1ÞA2

dp
2 þ B2

d

A2
dp

2 þ B2
d

þ 1 − Ac

Ac

�

þ
Z

d3p
ð2πÞ3

�
ln
1þ Πc

1þ Πd
þ Πd − Πc

ð1þ ΠdÞð1þ ΠcÞ
�
:

ð22Þ
The unknown functions in Eq. (22) can be obtained from
Eqs. (14)–(16) both in the DCSB phase (B > 0) and the
chiral symmetric phase (B≡ 0) in the chiral limit.
To indicate the nature of the CPT at the critical point, we

can expand ΔPðζ; NÞ by ζ (N) with a fixed N (ζ),

ΔPNðζÞ ¼
X∞
n¼0

ðζc − ζÞn
n!

∂nΔPNðζÞ
∂ζn ; ð23Þ

ΔPζðNÞ ¼
X∞
n¼0

ðNc − NÞn
n!

∂nΔPζðNÞ
∂Nn : ð24Þ

The discontinuous ∂nfðxÞ
∂xn at the critical point denotes the

nth-order phase transition.

III. SECOND-ORDER PHASE TRANSITION
IN THE CHIRAL LIMIT

A. Divergent peak of χ c

After solving the above coupled DSEs in the rainbow
approximation by means of the iteration method, we can
obtain the three functions A, B, and Π for the propagators
and the interrelated functions C;D;Π0 for the scalar

susceptibility. The numerical results are plotted in
Figs. 1 and 2 at fixed N and ζ, respectively.
From Figs. 1 and 2, it is found that, at small ζ or N,

the fermion self-energy equation has a nonzero solution.
Based on the CJT effective potential [33], the potential of
the Wigner phase [where Bðp2Þ≡ 0] is larger than that of
the Nambu phase [with Bðp2 > 0Þ] and hence the DCSB
occurs. In this phase, Aðp2Þ and Dðp2Þ approach 1 at large
p2 while the other functions vanish in the large-momentum
limit, and all six functions are almost constant in the

Π

Π

FIG. 1. The typical behavior of Aðp2Þ, Cðp2Þ, Bðp2Þ, Dðp2Þ,
Πðp2Þ, and −Π0ðq2Þ with several values of ζ near ζc at N ¼ 1.

Π

Π

FIG. 2. The typical behavior of Aðp2Þ, Cðp2Þ, Bðp2Þ, Dðp2Þ,
Πðp2Þ, and −Π0ðq2Þ with several values of N near Nc at ζ ¼ 0.1.
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infrared region. Based on Eq. (3), Bð0Þ can also be treated
as an order parameter of the CPT. As ζ or N increases,
Bð0Þ decreases at a critical value ζc or Nc, while Dð0Þ
increases and in fact reveals its divergent behavior at this
point. With increasing ζ or N, the gap equation (15) has
only one trivial solution, i.e., Bðp2Þ≡ 0 and the chiral
symmetry is restored. Here, the vanishingBð0Þ corresponds
to the infinite Πð0Þ. However, A and C reveal their
abnormal behaviors in the chiral-symmetric phase. Aðp2Þ
at small p2 remains almost constant which is obviously
different from the case with ζ ¼ 0 [34], while Cðp2Þ is
divergent in the infrared region.
Substituting the above four functions A, B, C, and D, we

obtain the chiral susceptibility with a range of ζ and N and
illustrate them in Figs. 3 and 4. The upper lines in Fig. 3
illustrate the behavior of the chiral susceptibility and the
lower lines in this figure show the infrared value of Bðp2Þ.
As is shown in Fig. 3, for any given N, χc stays almost
constant for small and large ζ, while it shows an apparent
peak at some critical boson mass which depends on N and
decreases as N increases. This result is consistent with our
previous work [21] in which the fermion chiral condensate
was adopted to gain the curve of the CPT in the (ζ, N)
plane. It is well known that the nature of a phase transition
is a very important and basic issue in the study of phase
transitions and the chiral susceptibility is an effective
parameter to study the features of the chiral phase tran-
sition. As shown below, with the involved nonzero boson
mass, the CPT is a typical second-order phase transition.

We see that, at any N, the peak of the susceptibility lies at
ζNc and exhibits a very narrow, pronounced, and in fact
divergent peak, which also reveals a typical characteristic
of the second-order phase transition driven by the restora-
tion of chiral symmetry. For a fixed ζ, with increasing N,
chiral symmetry is restored at a critical Nζc and the
susceptibility exhibits the same behavior around the critical
point. From Fig. 3, we see that the chiral susceptibility
reveals its infinite value at Nζc, which also illustrates the
typical second-order phase transition.
By means of the same method, we also obtain the value

of the chiral susceptibility and Bð0Þwith a range of fermion
flavors with zero boson mass. The results are plotted in
Fig. 4. From this figure, we see that as N increases the
chiral susceptibility shows an obvious peak, while Bð0Þ
vanishes. In addition, we also see that the susceptibility
around Nc is apparently different from that with a nonzero
boson mass where the peak shows neither a divergent nor a
discontinuous behavior, which illustrates that the CPT at
Nc with zero boson mass is neither of first order nor of
second order and thus is a higher-order continuous phase
transition.
As is well known, the massless boson mediates the long-

range interaction, while the massive boson mediates the
short-range interaction. This effect is clearly illustrated in
Fig. 1. Just as shown in Fig. 1, the fermion self-energy is
depressed by the nonzero mass of the boson. It is precisely
this depression given by the boson mass that changes the
characteristic of the chiral phase transition of the system:
the chiral phase transition with a massive boson reveals the
typical second-order phase transition, while exhibiting a
higher than second-order transition at the critical number of
fermion flavors in the case of a massless boson.

B. Results from the CJT effective potential

If we substitute different solutions of A, B, and Π in both
DCSB and the chiral-symmetric phase, we can also obtain
the differential pressure and its derivative change with the
variation of N or ζ. Their behavior can be seen in Figs. 5
and 6. We find that each of the three functions ΔP;ΔP0,

ζ

χ

ζ=1Ε−3
ζ=0.01
ζ=0.1

χ

FIG. 3. The divergent peak of the chiral susceptibility and the
vanishing Bð0Þ around the critical points with several values
of N (top) and ζ (bottom).

FIG. 4. The dependence of the chiral susceptibility and Bð0Þ on
N at ζ ¼ 0. (Here, Δ ¼ − ln Bð0ÞN

Bð0ÞN¼0
.)
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and ΔP00 falls with increasing ζ (or N) and ΔP;ΔP0
decrease monotonically to zero at the critical boson mass
ζNc (or the critical number of fermion flavors Nζc) which
corresponds to the vanishing point of the fermion chiral
condensate. The diminishing ΔP0 illustrates that the CPT
at the critical point is not a first-order phase transition.
We also see that ΔP00 in the DCSB phase exhibits a

continuous behavior with the alteration of ζ and N but
jumps to zero at the critical point. The jumping behavior of
ΔP00 shows that the system in the original chiral symmetry
breaking phase undergoes a second-order phase transition
into the chiral-symmetric phase.
However, when ζ decreases, the nature of the CPT near

the critical number of fermion flavors exhibits different
behavior. We can also obtain how the differential pressure
and its derivatives change with the variation ofN, which we
illustrate in Fig. 7. From Fig. 7, it can be seen that all three
functions ΔPN;ΔP0

N , and ΔP00
N fall monotonically to zero

asN increases and the curves show no jump near the critical
number of fermion flavors. This means that the trans-
formation from the DCSB phase to the chiral-symmetric

phase is neither of first order nor of second order, but rather
should be a higher-order continuous phase transition. This
is the same as the result for the chiral susceptibility.

IV. CROSSOVER BEYOND THE CHIRAL LIMIT

To indicate the transition in the case of the nonchiral limit,
we also investigate the peak of the chiral susceptibility
and plot its typical behavior with a series of values of ζ at
a fixed N in Fig. 8. From Fig. 8 we see that, as the gauge
boson mass increases, the chiral susceptibility exhibits an
apparent peak, but the corresponding value of ζ changes little
with the increasing fermion mass. Nevertheless, the chiral
susceptibility depends little on ζ and the fermion mass at
small and large ζ. Moreover, we find that—as distinguished
from the case in the chiral limit—the susceptibility exhibits
nonsingular behavior at finite fermion masses. The peak of
the susceptibility becomes smooth and its height is greatly
suppressed and evidently finite; thus, there is no uniquevalue
of ζ, but rather a range of finite width where the transition
phenomenon appears.
Similarly, we also obtain the typical behavior with a

range of N at a fixed ζ, which we show in Fig. 9. One finds
that, beyond the chiral limit, the susceptibility exhibits a
smooth peak and the value of the peak falls with increasing
fermion mass; it either has not a unique value of N to
undergo the transition phenomenon.

Δ

Δ

ζ

Δ

ζ

FIG. 5. The dependence of ΔPN;ΔP00
Nð¼ ∂2ΔP

∂ζ2 Þ (left) and
ΔP0

Nð¼ − ∂ΔP
∂ζ Þ (right) on ζ near the critical boson mass at N ¼ 1.

Δ
ζ

Δ
ζ

Ν

Δ
ζ

Ν

FIG. 6. The dependence of ΔPζ;ΔP00
ζ ð¼ ∂2ΔP

∂N2 Þ (left), and
ΔP0

ζð¼ − ∂ΔP
∂N Þ (right) on N near the critical number of fermion

flavors at ζ ¼ 0.1.

ΨΨ
Δ

Δ

Δ

FIG. 7. The dependence of ΔPN;ΔP0
N , and ΔP00

N at ζ ¼ 0 in
the DCSB phase.

χ

ζ

FIG. 8. The relation between the chiral susceptibility and ζ at
several values of m when N ¼ 1.

χ

=0

=1Ε−4

=1Ε−3

FIG. 9. The relation between chiral susceptibility and N at
several m when ζ ¼ 0.1.
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V. CONCLUSIONS

The goal of this paper was to investigate the nature of the
chiral phase transition of QED3 at zero temperature through
a continuum study of the chiral susceptibility and the CJT
effective potential, with zero/nonzero boson mass near the
critical values, including the critical number of fermion
flavors and critical boson mass.
With a nonzero boson mass, the chiral susceptibility at

either the critical number of fermion flavors or critical
boson mass shows large and in fact divergent peaks, which
illustrates a typical characteristic of a second-order phase
transition driven by chiral symmetry restoration in QED3 at
zero temperature. To check the conclusion, we also adopted
the Cornwall-Jackiw-Tomboulis effective potential frame-
work to analyze the nature of the CPT with a nonzero
boson mass. The general method shows that the second-
order partial derivative of the pressure difference about ζ or
N jumps to zero at the critical point, which gives an obvious
proof of the second-order transition. Nevertheless, in the
absence of a boson mass at zero temperature around the
critical number of fermion flavors, the chiral susceptibility

exhibits a smooth and finite peak, and the first and second
order partial derivatives of N of the differential pressure
monotonously decrease. The behavior of the two param-
eters shows that QED3 with zero boson mass undergoes a
higher than second-order phase transition at the critical
number of fermion flavors.
On the other hand, considering a finite fermion mass, the

chiral susceptibility exhibits a smooth peak, which changes
in an N or ζ range of smooth width and also reveals its
stressed peak with increasing fermion mass: this behavior
indicates a typical crossover beyond the chiral limit in the
Anderson-Higgs model.

ACKNOWLEDGMENTS

We would like to thank Prof. Wang Qiang-hua and C. D.
Roberts for their helpful discussions. This work is sup-
ported in part by the National Natural Science Foundation
of China under Grants Nos. 11275097, 11475085, and
11535005, and by the Fundamental Research Funds for the
Central Universities (under Grant No. 2242014R30011).

[1] P. Maris, Phys. Rev. D 52, 6087 (1995).
[2] G. Grignani, G. Semenoff, and P. Sodano, Phys. Rev. D 53,

7157 (1996).
[3] P. Maris, Phys. Rev. D 54, 4049 (1996).
[4] C. J. Burden, J. Praschifka, and C. D. Roberts, Phys. Rev. D

46, 2695 (1992).
[5] A. Bashir, A. Raya, I. C. Cloet, and C. D. Roberts, Phys.

Rev. C 78, 055201 (2008).
[6] W. Rantner and X. G. Wen, Phys. Rev. Lett. 86, 3871

(2001).
[7] M. Franz and Z. Tesanovic, Phys. Rev. Lett. 87, 257003

(2001).
[8] I. F. Herbut, Phys. Rev. Lett. 88, 047006 (2002); Phys. Rev.

B 66, 094504 (2002); Phys. Rev. Lett. 94, 237001
(2005).

[9] X. G. Wen and A. Zee, Phys. Rev. Lett. 69, 1811 (1992).
[10] G. Z. Liu and G. Cheng, Phys. Rev. B 66, 100505

(2002).
[11] T. Appelquist, D. Nash, and L. C. R. Wijewardhana, Phys.

Rev. Lett. 60, 2575 (1988).
[12] D. Nash, Phys. Rev. Lett. 62, 3024 (1989).
[13] C. S. Fischer, R. Alkofer, T. Dahm, and P. Maris, Phys. Rev.

D 70, 073007 (2004).
[14] J. S. Ball and T.W. Chiu, Phys. Rev. D 22, 2542 (1980).
[15] D. C. Curtis and M. R. Pennington, Phys. Rev. D 42, 4165

(1990).
[16] T. Appelquist, D. Nash, and L. C. R. Wijewardhana, Phys.

Rev. Lett. 60, 2575 (1988).
[17] T. Appelquist, J. Terning, and L. C. R. Wijewardhana, Phys.

Rev. Lett. 75, 2081 (1995).

[18] H. T. Feng, B. Wang, W.M. Sun, and H. S. Zong, Phys. Rev.
D 86, 105042 (2012).

[19] H. T. Feng, J. F. Li, Y. M. Shi, and H. S. Zong, Phys. Rev. D
90, 065005 (2014).

[20] G. Z. Liu and G. Cheng, Phys. Rev. D 67, 065010 (2003).
[21] H. T. Feng, W.M. Sun, F. Hu, and H. S. Zong, Int. J. Mod.

Phys. A 20, 2753 (2005).
[22] J. M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D

10, 2428 (1974).
[23] T. Itoh, Y. Kim, M. Sugiura, and K. Yamawaki, Prog. Theor.

Phys. 93, 417 (1995).
[24] H. Kleinert, F. S. Nogueira, and A. Sudbo, Nucl. Phys.

B666, 361 (2003).
[25] G. Z. Liu and G. Cheng, Phys. Rev. B 65, 132513 (2002).
[26] E. Fradkin and S. H. Shenker, Phys. Rev. D 19, 3682 (1979).
[27] J. F. Li, F. Y. Hou, Z. F. Cui, H. T. Feng, Y. Jiang, and H. S.

Zong, Phys. Rev. D 90, 073013 (2014).
[28] H. T. Feng, Mod. Phys. Lett. A 27, 1250209 (2012).
[29] X. Z. Wang, J. F. Li, X. H. Yu, and H. T. Feng, Chin. Phys.

Lett. 32, 111102 (2015).
[30] J. F. Li, H. T. Feng, Y. Jiang, W.M. Sun, and H. S. Zong,

Mod. Phys. Lett. A 27, 1250026 (2012).
[31] N. Brown and M. R. Pennington, Phys. Rev. D 39, 2723

(1989).
[32] C. J. Burden, J. Praschifka, and C. D. Roberts, Phys. Rev. D

46, 2695 (1992).
[33] P. L. Yin, Z. F. Cui, H. T. Feng, and H. S. Zong, Ann. Phys.

(Amsterdam) 348, 306 (2014).
[34] H. T. Feng, M. He, W.M. Sun, and H. S. Zong, Phys. Lett. B

688, 178 (2010).

INFLUENCE OF BOSON MASS ON CHIRAL PHASE … PHYSICAL REVIEW D 94, 045022 (2016)

045022-7

http://dx.doi.org/10.1103/PhysRevD.52.6087
http://dx.doi.org/10.1103/PhysRevD.53.7157
http://dx.doi.org/10.1103/PhysRevD.53.7157
http://dx.doi.org/10.1103/PhysRevD.54.4049
http://dx.doi.org/10.1103/PhysRevD.46.2695
http://dx.doi.org/10.1103/PhysRevD.46.2695
http://dx.doi.org/10.1103/PhysRevC.78.055201
http://dx.doi.org/10.1103/PhysRevC.78.055201
http://dx.doi.org/10.1103/PhysRevLett.86.3871
http://dx.doi.org/10.1103/PhysRevLett.86.3871
http://dx.doi.org/10.1103/PhysRevLett.87.257003
http://dx.doi.org/10.1103/PhysRevLett.87.257003
http://dx.doi.org/10.1103/PhysRevLett.88.047006
http://dx.doi.org/10.1103/PhysRevB.66.094504
http://dx.doi.org/10.1103/PhysRevB.66.094504
http://dx.doi.org/10.1103/PhysRevLett.94.237001
http://dx.doi.org/10.1103/PhysRevLett.94.237001
http://dx.doi.org/10.1103/PhysRevLett.69.1811
http://dx.doi.org/10.1103/PhysRevB.66.100505
http://dx.doi.org/10.1103/PhysRevB.66.100505
http://dx.doi.org/10.1103/PhysRevLett.60.2575
http://dx.doi.org/10.1103/PhysRevLett.60.2575
http://dx.doi.org/10.1103/PhysRevLett.62.3024
http://dx.doi.org/10.1103/PhysRevD.70.073007
http://dx.doi.org/10.1103/PhysRevD.70.073007
http://dx.doi.org/10.1103/PhysRevD.22.2542
http://dx.doi.org/10.1103/PhysRevD.42.4165
http://dx.doi.org/10.1103/PhysRevD.42.4165
http://dx.doi.org/10.1103/PhysRevLett.60.2575
http://dx.doi.org/10.1103/PhysRevLett.60.2575
http://dx.doi.org/10.1103/PhysRevLett.75.2081
http://dx.doi.org/10.1103/PhysRevLett.75.2081
http://dx.doi.org/10.1103/PhysRevD.86.105042
http://dx.doi.org/10.1103/PhysRevD.86.105042
http://dx.doi.org/10.1103/PhysRevD.90.065005
http://dx.doi.org/10.1103/PhysRevD.90.065005
http://dx.doi.org/10.1103/PhysRevD.67.065010
http://dx.doi.org/10.1142/S0217751X05021130
http://dx.doi.org/10.1142/S0217751X05021130
http://dx.doi.org/10.1103/PhysRevD.10.2428
http://dx.doi.org/10.1103/PhysRevD.10.2428
http://dx.doi.org/10.1143/PTP.93.417
http://dx.doi.org/10.1143/PTP.93.417
http://dx.doi.org/10.1016/S0550-3213(03)00453-X
http://dx.doi.org/10.1016/S0550-3213(03)00453-X
http://dx.doi.org/10.1103/PhysRevB.65.132513
http://dx.doi.org/10.1103/PhysRevD.19.3682
http://dx.doi.org/10.1103/PhysRevD.90.073013
http://dx.doi.org/10.1142/S0217732312502094
http://dx.doi.org/10.1088/0256-307X/32/11/111102
http://dx.doi.org/10.1088/0256-307X/32/11/111102
http://dx.doi.org/10.1142/S0217732312500265
http://dx.doi.org/10.1103/PhysRevD.39.2723
http://dx.doi.org/10.1103/PhysRevD.39.2723
http://dx.doi.org/10.1103/PhysRevD.46.2695
http://dx.doi.org/10.1103/PhysRevD.46.2695
http://dx.doi.org/10.1016/j.aop.2014.06.004
http://dx.doi.org/10.1016/j.aop.2014.06.004
http://dx.doi.org/10.1016/j.physletb.2010.04.004
http://dx.doi.org/10.1016/j.physletb.2010.04.004

