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The effects of nonlinear vacuum electrodynamics are most clearly pronounced in a strong electro-
magnetic field close to Schwinger limit. Electromagnetic fields of such intensity can be obtained in
laboratory conditions only on very few extreme laser facilities and during a short time interval. At the same
time, the astrophysical compact objects with a strong electromagnetic field such as pulsars and magnetars
are the best suited to study the effects of nonlinear vacuum electrodynamics. We present analytical
calculations for pulsar proper radiation in parametrized post-Maxwellian nonlinear vacuum electrody-
namics. Based on the obtained solutions, the effect of nonlinear vacuum corrections to pulsar spin down is
being investigated. The analysis of torque functions show that the nonlinear vacuum electrodynamics
corrections to the electromagnetic radiation for some pulsars may be comparable to the energy loss by
gravitational radiation.
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I. INTRODUCTION

Investigation of the pulsar’s spin down is extremely
significant for modern astrophysics. It gives estimations on
the pulsar’s luminosity variation and on the pulsar’s age. An
analysis of pulsar spin down for a close binary system PSR
1913þ16 at the first time indirectly confirmed gravitational
wave radiation [1].
Pulsar spin down is generally caused by many factors

such as its interaction with the surrounding magnetosphere
[2], energy dissipation by telluric currents in the near-
surface region of the pulsar’s crust [3], time dependence of
the pulsar’s magnetic dipole moment caused by processes
under its surface, the presence of a magnetic quadruple
moment and other higher multipole components in a
magnetic field [4], and gravitational wave radiation.
Nevertheless, the main reason of the pulsar spin down is

its electromagnetic radiation [5,6]. This radiation is typi-
cally described in magnetic dipole approximation [7,8] of
Maxwell electrodynamics. However, pulsars [9] have a
considerable magnetic field, B ∼ 109 ÷ 1014 G, for which
Maxwell electrodynamics should be replaced by nonlinear
vacuum electrodynamics [10–13]. As it is shown in
[14–18], according to nonlinear vacuum electrodynamics
the electromagnetic processes do not proceed in the way
predicted by Maxwell electrodynamics (see also [19–23]).
Hence, it becomes important to calculate pulsar electro-
magnetic radiation corrections according to the laws of
nonlinear vacuum electrodynamics. The necessity for such
corrections in the pulsar dynamics was also mentioned in

[23,24] and the first estimates in order of magnitude were
obtained in [18,25,26]. The primary goal of the present
paper is to obtain exact expressions for vacuum nonlinear
electrodynamics corrections to dipole radiation of the
pulsar in the post-Maxwellian limit. The parer organized
as follows. The main nonlinear vacuum electrodynamics
theories and their properties are presented in Sec. II.
Section III gives the calculation of electromagnetic fields
for the rotating pulsar and in Sec. IV pulsar spin-down
corrections are evaluated.

II. NONLINEAR VACUUM ELECTRODYNAMIC
THEORIES

Nonlinear vacuum electrodynamics corrections become
substantial in a strongmagnetic field of a pulsar. The nature of
these corrections depends on the choice of the theoretical
model.Themodern field theoryconsiders twomostpromising
generalizations of vacuum nonlinear electrodynamics,
namely, the Heisenberg-Euler [10] and Born-Infeld [11]
theories, although othermodels have also been analyzed [27].
The Heisenberg-Euler electrodynamics takes into account

one-loop vacuum polarization corrections to classical
electrodynamics arising from QED. The nonlinear Born-
Infeld electrodynamics was constructed from the phenom-
enological assumptions leading to a finite energy of a
pointlike charged particle. As it became clear later, the
Lagrangian of this theory can also be obtained as an
asymptotic case in superstring theory [28]. The influence
of nonlinear corrections in both vacuum electrodynamic
models becomes substantial only in sufficiently strong fields
comparable with the so-called critical or Schwinger field*sokolov.sev@inbox.ru
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Bc ¼ m2c2=eℏ ¼ 4.41 × 1013 G. When electromagnetic
fields E and B are much lower than the critical field Bc,
one can speak about post-Maxwellian approximation of
nonlinear vacuum electrodynamics. In this approximation,
the nonlinear corrections to the Lagrange function originat-
ing from Born-Infeld and Heisenberg-Euler theories can be
represented in a similar form [29] by using the general
parametrized expression

L ¼ 1

32π
f2J2 þ ξ½ðη1 − 2η2ÞJ22 þ 4η2J4�g −

1

c
Akjk; ð1Þ

where ξ ¼ 1=B2
c ¼ 0.5 × 10−27 G−2, J2 ¼ FikFki ¼

2ðE2 −B2Þ, and J4 ¼ FikFklFlmFmi ¼ 2ðE2 −B2Þ2 þ
4ðEBÞ2—which are invariants of the electromagnetic field
tensor, and the post-Maxwellian parameters η1 and η2
depend on the choice of theoretical model.
The post-Maxwellian parameters η1 and η2 in the case of

Heisenberg-Euler electrodynamics are related to the fine
structure constant α [10,30]:

η1 ¼
α

45π
¼ 5.1 × 10−5; η2 ¼

7α

180π
¼ 9.0 × 10−5:

For Born-Infeld electrodynamics, these parameters are
equal to each other and can be expressed through the field
induction 1=a typical for this theory:

η1 ¼ η2 ¼
a2B2

c

4
¼ 4.9 × 10−6; a ¼ 10−16 G−1:

The electromagnetic field equations for the post-
Maxwellian vacuum electrodynamics with the
Lagrangian (1) are equivalent [31] to the equations of
Maxwell electrodynamics in continuous media

rot H ¼ 4π

c
jþ 1

c
∂D
∂t ; divD ¼ 4πρ; ð2Þ

rot E ¼ −
1

c
∂B
∂t ; divB ¼ 0;

with specific nonlinear constitutive equations [32]:

D ¼ 4π
∂L
∂E ¼ Eþ 2ξfη1ðE2 −B2ÞEþ 2η2ðBEÞBg; ð3Þ

H ¼ −4π
∂L
∂B ¼ Bþ 2ξfη1ðE2 −B2ÞB − 2η2ðBEÞEg:

As it follows from the constitutive relations, the influence
of nonlinear terms becomes substantial in magnetic fields
close to Bc. At the same time, to retain the Lagrange
function (1) validity we will only focus on the case
B=Bc < 1 which takes place for many pulsars.
To calculate the pulsar radiation intensity we should take

into account not only changes in the electromagnetic field

equations, but also consider the alterations in the electro-
magnetic field energy-momentum tensor and the energy
flux density. In accordance with [33], in parametrized post-
Maxwellian electrodynamics (1) the energy-momentum
tensor has the form

Tik ¼ 1

4π

�
ð1þ ξη1J2ÞFik

ð2Þ

−
gik

8
½2J2 þ ξðη1 þ 2η2ÞJ22 − 4η2ξJ4�

�
;

where Fik
ð2Þ ¼ gniFnmFmk is the second power of the electro-

magnetic field tensor and gik is the metric. Using the energy-
momentumtensoronecanreadilyderive theexpressionfor the
energy flux density vector S (Poynting vector):

Sμ ¼ cT0μ ¼ c
4π

ð1þ ξη1J2ÞF0μ
ð2Þ

¼ c
4π

f1þ 2ξη1ðE2 − B2Þg½EB�;

where the index μ ¼ 1, 2, 3 denotes the spatial components
of the vector and ½EB� refers to the cross product.
It should be noted that the Pointing vector in the

post-Maxwellian approximation has the correction
ξη1ðE2 −B2Þ½EB�, which is nonzero in the general case.
However, for the radiation intensity calculations this
correction turns out to be inessential as it leads to
subleading terms in Pointing vector decreasing faster than
1=r2 with increasing the distance r from the pulsar to the
observer. This property allows us to use the expression
for the Pointing vector of Maxwell electrodynamics
S≃ c½EB�=4π in our further calculations.
Now we can determine nonlinear vacuum electrodynam-

ics corrections to the pulsar electromagnetic radiation.

III. NONLINEAR VACUUM ELECTRODYNAMICS
CORRECTIONS TO THE PULSAR RADIATION

Let us consider a pulsar with the magnetic dipole moment
m and the radius Rs placed at the coordinate origin. The
magnetic dipole moment is declined at the angle θ0 to the z
axis and rotates uniformlywith the angular velocityω around
this axis. So the time variation of this vector has a
form mðtÞ ¼ jmjfsin θ0 cosωt; sin θ0 sinωt; cos θ0g.
Since for the most pulsars the linear velocity of the surface

points is much lower than the speed of light c, the restriction
on the angular velocity takes place ω ≪ c=Rs. At the same
time we will suppose that the pulsar magnetic field B is
sufficiently weak and that B2=B2

c < 1. This assumption
allows us to use the post-Maxwellian approximation for
the Lagrange function (1) and the constitutive equations (2).
Moreover, the corrections of nonlinear electrodynamics in
the constitutive equations turn out to be much smaller than
the terms related to the Maxwell electrodynamics, which
makes it possible to calculate the pulsar electromagnetic field
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by the successive approximation method. Let us represent
the pulsar electromagnetic field as a sum of the Maxwell
electrodynamics field EM, BM and small corrections of
nonlinear vacuum electrodynamics EN , BN .

E ¼ EM þ EN; B ¼ BM þ BN:

In all the following relations we will assume that
EN; BN ≪ EM; BM and the calculations will be performed
up to quantities linear in EN , BN .
In a number of papers it was shown that electromagnetic

wave beams, propagating through the pulsar magnetic field,
will bend [34,35] and the propagation velocity for these
beams will depend on the wave polarization [36,37].
However, in the solution of the considering problem these
effects give a second-order infinitesimal correction, and we
neglect them.
Introducing electromagnetic field potentials in

accordance with the usual expressions BN ¼ rotAN ,
EN ¼ −gradφN − ∂AN=c∂t, we reduce system (2), con-
sidering (3) and the Lorentz gauge, to equations for
electromagnetic field potentials:

□φN ¼ 2ξdivfη1ðE2
M−B2

MÞEMþ2η2ðBMEMÞBMg;
□AN ¼ 2ξrotfη1ðE2

M−B2
MÞBM−2η2ðBMEMÞEMg

−
2ξ

c
∂
∂tfη1ðE

2
M−B2

MÞEMþ2η2ðBMEMÞBMg: ð4Þ

The right-hand sides of Eq. (4) depend on components of
the pulsar’s electromagnetic field in Maxwell electrody-
namics. For our calculations it suffices to take a classical
simple model of the magnetic dipole field [7,38] for EM
andBM, although a more general description that takes into
account higher multipole components [4,39] is possible. In
Maxwell’s electrodynamics the field of a uniformly rotating
magnetic dipole may be represented in the form [40]

BMðr; τÞ ¼
3ðmðτÞrÞr − r2mðτÞ

r5
−

_mðτÞ
cr2

þ 3ð _mðτÞrÞr
cr4

þ ðm̈ðτÞrÞr − r2m̈ðτÞ
c2r3

; ð5Þ

EMðr; τÞ ¼
½r; _mðτÞ�

cr3
þ ½r; m̈ðτÞ�

c2r2
;

where the point above the vector means a derivative with
respect to time delay τ ¼ t − r=c.
Substituting expressions (5) for BM and EM to the right-

hand sides of Eq. (4), we obtain equations for the electro-
magnetic field potentials φN , AN caused by the nonlinearity
of vacuum electrodynamics. These equations are linear
inhomogeneous hyperbolic types of differential equations,
which can be integrated by integration methods described in
detail in the literature [41,42]. The procedure of solutions
deriving appears to be rather cumbersome because of the

complexity of the right-hand side, and therefore we only
present the final results in the form of solutions for the fields
EN and BN . It should be noted that radiation calculations
need to preserve in general solutions of Eq. (4) only
summands decreasing not faster than ∼1=r in the wave
zone. It is convenient to represent the expressions for the
vectorsEN andBN as a sum in which the index of each term
indicates the frequency with which it varies:

EN ¼ E1 þ E2 þ E3; BN ¼ B1 þB2 þB3:

In such notation, the component E1 corresponds to the
radiation field at the pulsar rotation frequency ω, the
component E2 relates to the radiation at the double fre-
quency 2ω, and E3 describes radiation at the frequency 3ω.
Explicit expressions for the pulsar radiation electric field

calculated at the observation point with the radius-vector
r ¼ fx ¼ r sin θ cosφ; y ¼ r sin θ sinφ; z ¼ r cos θg
located at the distance r ≫ c=ω from the pulsar have a form

ðE1Þx¼−
Ucosθsinθ0

30r
f½2ð7η1−3η2−ð3η1−η2Þsin2θ0Þ

þð2sin2θ0−1Þð3η1−η2Þsin2θ�sinðΨþφÞ
−ð2sin2θ0−1Þð3η1−η2Þsin2θsinðΨ−φÞg;

ðE1Þy¼
Ucosθsinθ0

30r
f½2ð7η1−3η2−ð3η1−η2Þsin2θ0Þ

þð2sin2θ0−1Þð3η1−η2Þsin2θ�cosðΨþφÞ
−ð2sin2θ0−1Þð3η1−η2Þsin2θcosðΨ−φÞg;

ðE1Þz¼
Usinθsinθ0

15r
sinΨ

×f7η1−3η2−ð3η1−η2Þsin2θ0
þð2sin2θ0−1Þð3η1−η2Þsin2θg;

ðE2Þx¼
2Ucosθ0sin2θ0 sinθ

105r
×f½51η1sin2θ−7η2sin2θ−66η1þ14η2�sinð2ΨþφÞ
þð15η1−7η2Þsin2θsinð2Ψ−φÞg;

ðE2Þy¼−
2Ucosθ0sin2θ0 sinθ

105r
×f½51η1sin2θ−7η2sin2θ−66η1þ14η2�cosð2ΨþφÞ
−ð15η1−7η2Þsin2θcosð2Ψ−φÞg;

ðE2Þz¼
4Uð33η1−7η2Þ

105r
cosθsin2θcosθ0sin2θ0 sinð2ΨÞ;

ðE3Þx¼−
81Uη1
140r

cosθsin2θsin3θ0 sinð3ΨþφÞ;

ðE3Þy¼
81Uη1
140r

cosθsin2θsin3θ0cosð3Ψþ2φÞ;

ðE3Þz¼
81Uη1
140r

sin3θsin3θ0 sinð3ΨÞ; ð6Þ
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where for brevity we use the notations k ¼ ω=c,
Ψ ¼ ωt − kr − φ, and U ¼ ξm3k4=R4

s . Because of the
cumbersomeness of the expressions, we will not present
here the explicit form of the magnetic field vector Bα

(where α ¼ 1, 2, 3); however, it can be easily found in the
wave zone from relations Bα ¼ ½nEα�, where n ¼ r=r is
the unit vector in the direction to the observer.
As it follows from (6), vacuum electrodynamics non-

linearity leads to radiation at frequencies multiple to the
pulsar rotation frequency. In the post-Maxwellian approxi-
mation this radiation occurs at the doubled and tripled rotation
frequency. Allowance for higher-order infinitesimal correc-
tions of nonlinear vacuumelectrodynamics such as post-post-
Maxwellian corrections [43], also leads to a high order
harmonics appearance in the pulsar radiation spectrum, but
their amplitude is much lower than the harmonics amplitude
in the post-Maxwellian approximation. Now we can use
obtained solutions (6) to calculate the angular distribution of
pulsar radiation and the total radiation intensity.
The angular distribution of pulsar radiation (the intensity

of radiation at the solid angle dΩ in the direction of

observation given by the unit vector n) can be found by
using the Pointing vector S: dIðtÞ=dΩ ¼ r2ðSnÞ. As it was
shown earlier, in order to calculate the Pointing vector in
the wave zone one can take the Maxwell electrodynamics
expression S ¼ c½EB�=4π. Using the derived expressions
(6) for the pulsar electromagnetic field, we can write the
angular radiation distribution within the first order of
smallness:

dIðtÞ
dΩ

¼
�
dI
dΩ

�
M
þ dI0

dΩ
þ
X4
l¼1

dIl
dΩ

cosðlΨÞ; ð7Þ

where the notation Ψ ¼ ωt − kr − φ is applied.
The summand ðdI=dΩÞM corresponds to radiation in

Maxwell electrodynamics and the other terms refer to the
corrections of vacuum nonlinear electrodynamics. Their
indices denote the frequency at which the corresponding
radiation intensity component varies. And the expressions
themselves for each of the angular distribution of the pulsar
radiation component have a form:

�
dI
dΩ

�
M
¼ Qsin2θ0

4π

�
1 −

1

2
sin2θð1þ cosð2ΨÞÞ

�
;

dI0
dΩ

¼ AQsin2θ0
π

�
η2 − 3η1

20
sin2θsin2θ0 þ

5η1 − 2η2
30

sin2θ þ 3η1 − η2
30

sin2θ0 þ
3η2 − 7η1

30

�
;

dI1
dΩ

¼ 2AQ cos θ cos θ0 sin θsin3θ0
35π

�
3η1sin2θ − 11η1 þ

7η2
3

�
;

dI2
dΩ

¼ AQsin2θsin2θ0
4π

�
81η1
140

sin2θsin2θ0 −
67η1
70

sin2θ0 −
η2
15

sin2θ0 þ
2ð2η1 − η2Þ

15

�
;

dI3
dΩ

¼ 6η1AQ
35π

cos θ cos θ0sin3θsin3θ0;

dI4
dΩ

¼ 81η1AQ
560π

sin4θsin4θ0; ð8Þ

where the notations A¼ðkRsBp=BcÞ2 and Q¼ω4B2
pR6

s=c3

are introduced. Here, for convenience, the modulus of
the pulsar magnetic dipole moment m was expressed in
terms of the characteristic magnetic field on its surface
Bp: m ¼ BpR3

s .
The expressions (7) and (8) allow us to calculate the total

energy radiated by the pulsar in all directions:

Iel ¼
Z

dI
dΩ

dΩ ¼ 2Q
3

sin2θ0

�
1 −

11η1 − 5η2
15

�
Bp

Bc
kRs

�
2
�
:

ð9Þ

Thus, the nonlinear vacuum electrodynamics action indu-
ces higher harmonics in the pulsar radiation spectrum, with
frequencies multiple of the rotation frequency. Although
the intensity of these harmonics (9) is small in comparison

with the pulsar radiation in Maxwell electrodynamics,
nevertheless their corrections should be taken into account
in an analysis of the pulsar spin down.

IV. PULSAR SPIN-DOWN CORRECTIONS

For an estimation of the vacuum nonlinear electrody-
namics influence on the pulsar spin down let us suppose a
pulsar rotating in vacuum. Similarly, as in [38,44] we will
consider that the pulsar’s angular velocity change occurs
only due to the electromagnetic and gravitational wave
radiation. So the pulsar kinetic energy Ek variation rate will
be caused by the electromagnetic Iem and gravitational Igr
radiation intensities:

dEk

dt
¼ −Iel − Igr: ð10Þ
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Assuming a rigid-body rotation of the pulsar and the
relativistic corrections associated with the rotation to be
small, one can express the kinetic energy through the inertia
moment J and the angular velocity ω so that Ek ¼ Jω2=2.
We obtained the pulsar electromagnetic radiation intensity
Iel in (9) and the gravitational radiation intensity may be
estimated by the well-known quadrupole formula [33]:

Igr ¼
32

5

G
c5

J2ϵ2ω6;

where G is the gravitational constant and ϵ is equatorial
ellipticity. The law of pulsar rotation energy variation
(10) leads to the spin-down equation:

dω
dt

¼ ðKm þ K3nedÞω3 þ ðK5ned þ KgwÞω5; ð11Þ

where Km is the Maxwell electrodynamics torque function,
K3ned and K5ned are the torque functions originating from
vacuum nonlinear electrodynamics, and Kgw is the gravi-
tational radiation torque. Each of the these functions has the
following form:

Km¼−
2

3c3
B2
p

J
R6
ssin2θ0; K3ned¼

8η1
15

�
Bp

Bc

�
2

Km;

K5ned¼
�
117η1þ25η2

75
þ2ð3η1−5η2Þ

15
sin2θ0

��
RsBp

cBc

�
2

Km;

Kgw¼−
32

5

GJε2

c5
: ð12Þ

As it follows from Eq. (11), the influence of vacuum
nonlinear electrodynamics in the post-Maxwellian approxi-
mation is manifested as additional corrections to the
Maxwell electrodynamics torque function and to the pulsar
gravitational radiation torque. These corrections K3ned and
K5ned depend on the value of post-Maxwellian parameters
η1 and η2.
For Born-Infeld and Heisenberg-Euler models K3ned > 0

and K5ned > 0, and therefore these corrections induce the
pulsar spin-down increase. At the same time, expression
(12) does not exclude the existence of a hypothetical
theoretical model of a vacuum nonlinear electrodynamics
for which K5ned < 0. In such a theory nonlinear corrections
can decrease the rate of the energy loss by the pulsar.
To provide explicit estimates for the values of the torque

functions we adopt typical pulsar parameters [9]: the radius
Rs ¼ 30 km, the inertia moment J ¼ 1045 g · cm2, and we
also suppose that θ0 ¼ π=2. When choosing the pulsar’s
rotation period and magnetic field induction, one should
take into consideration the earlier adopted restrictions
ωRs=c ≪ 1 and Bp ≪ Bc. These constraints are satisfied
for a wide range of pulsars, for example, J007þ 7303

whose rotation period is P0 ∼ 0.3 s, and Bp ∼ 1013 G or for

J1012-5830 with the rotation period P0 ∼ 2.1 s and the
magnetic field induction on the surface Bp ∼ 0.9 × 1012 G.
The values of post-Maxwellian parameters in the

Heisenberg-Euler and Born-Infeld theories have the same
order of smallness, and therefore for the initial estimation
we will use the parameters of only one of them, for
instance, the Heisenberg-Euler theory. For the above-
mentioned pulsar characteristics the ratio between the
nonlinear electrodynamics and Maxwell electrodynamics
torque is sufficiently small: K3ned=Km ∼ 10−6. As it was
expected, the main influence on the pulsar spin down is
exerted by the Maxwell electrodynamics. At the same time
the ratio between the gravitational radiation and vacuum
nonlinear electrodynamics torque functions strongly
depends on the pulsar equatorial ellipticity ε. For the
maximum ellipticity estimation ε ∼ 10−4 [38] and for the
angular velocity ω ∼ 100 s−1, we will obtain K5ned=Kgw∼
3.7 × 10−4, and ω2Kgw=K3ned ∼ 0.7 In the case of pulsars
with a smaller ellipticity ε ∼ 10−6 pulsar spin down caused
by gravitational radiation decreases: K5ned=Kgw ∼ 3.5 and
ω2Kgw=K3ned ∼ 7 × 10−5 and becomes much smaller than
the vacuum nonlinear electrodynamics effect.

V. CONCLUSION

In this paper, we have studied the proper electromagnetic
radiation of a pulsar in the post-Maxwellian approximation
of vacuum nonlinear electrodynamics.
Obtained analytical expressions for the electromagnetic

field of a slowly rotating pulsar (kRs ≪ 1) show the
presence of harmonics with frequencies multiple to the
rotation frequency in the radiation spectrum. The field of
each harmonic (6) depends on the parameters of the post-
Maxwellian electrodynamic model η1, η2 and is largely
determined by the magnetic field induction Bp on the
pulsar surface and its rotation frequency ω.
The expressions of the intensity angular distribution (7)

and total radiation intensity (9) were obtained for each
of the harmonics. In spite of the fact that the influence of
nonlinear vacuum electrodynamics has the character of
small corrections to the intensity of the main pulsar
radiation in Maxwell electrodynamics, the magnitude of
these corrections may turn out to be comparable with the
other mechanisms of pulsar energy loss, for instance, with
the gravitational radiation. To analyze this possibility we
studied the pulsar spin down caused by both electromag-
netic and gravitational radiation. The influence of nonlinear
vacuum electrodynamics in the post-Maxwellian approxi-
mation shows up simultaneously in the form of corrections
K3ned and K5ned to torque functions of each of the pulsar
spin-down mechanisms. The correction K3ned to the
Maxwell electrodynamic torque function Km exceeds in
magnitude the correction K5ned. In the case of pulsars with
the characteristic rotation frequency ω < 100 s−1 we infer
ω2K5ned ≪ K3ned. The relation between Kgw and K5ned
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depends substantially on the pulsar magnetic field induc-
tion and its ellipticity. For a characteristic field Bp ∼ 1013 G
on the pulsar surface and the ellipticity ε ∼ 10−4 the
gravitational radiation makes a more considerable contri-
bution to the pulsar spin down than the vacuum nonlinear
electrodynamics: K5ned=Kgw ∼ 10−4. At the same time, for
the pulsars with lower equatorial ellipticity ε ∼ 10−6 the

nonlinear vacuum electrodynamics torque K5ned
exceeds the gravitational torque K5ned=Kgw ∼ 3.5 and
exerts great influence on the pulsar spin down.
Therefore, for weakly elliptic pulsars the spin down due
to the vacuum nonlinear electrodynamics corrections can
play a more important role than the spin down due to
gravitational radiation.
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