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The partition function of a relativistic invariant quantum field theory is expressed by its vacuum energy
calculated on a spatial manifold with one dimension compactified to a 1-sphere S1ðβÞ, whose circum-
ference β represents the inverse temperature. Explicit expressions for the usual energy density and pressure
in terms of the energy density on the partially compactified spatial manifold R2 × S1ðβÞ are derived. To
make the resulting expressions mathematically well defined a Poisson resummation of the Matsubara sums
as well as an analytic continuation in the chemical potential are required. The new approach to finite-
temperature quantum field theories is advantageous in a Hamilton formulation since it does not require the
usual thermal averages with the density operator. Instead, the whole finite-temperature behavior is encoded
in the vacuum wave functional on the spatial manifold R2 × S1ðβÞ. We illustrate this approach by
calculating the pressure of a relativistic Bose and Fermi gas and reproduce the known results obtained from
the usual grand canonical ensemble. As a first nontrivial application we calculate the pressure of Yang-
Mills theory as a function of the temperature in a quasiparticle approximation motivated by variational
calculations in Coulomb gauge.
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I. INTRODUCTION

In many branches of modern physics like in the
exploration of the early Universe or the phase diagram
of hadronic matter the study of a quantum field theory at
finite temperature and chemical potential is required. The
central quantity of interest is then the grand canonical
partition function

Zðβ; μÞ ¼ Tre−βðH−μNÞ ¼
X
n

e−βðEn−μNnÞ; ð1Þ

where β is the inverse temperature (in units of Boltzmann’s
constant) and H is the Hamiltonian. Furthermore, N is the
operator of the number of valence particles and μ is the
corresponding chemical potential. In the last expression n
denotes an exact eigenstate with energy En and particle
number Nn. The sum over n includes also the summation
over the particle number. Obviously Zðβ; μÞ requires the
knowledge of all eigenenergies to all possible particle
numbers, i.e. the trace of expð−βðH−μNÞÞ in the full Fock
space of quantum field theory is required. Alternatively, we
can represent Zðβ; μÞ as a functional integral over the fields;
see Eq. (13) below. The numerical evaluation of these
functional integrals is the aim of the lattice approach to
quantum field theory [1]. The lattice approach has
provided much insight into the finite-temperature behavior
of quantum field theories and in particular of QCD, where
extensive calculations have been carried out; for a recent
review see e.g. Ref. [2]. The lattice approach faces,
however, a fundamental problem when applied to gauge
theories at large chemical potentials: the notorious sign
problem. In SUðN > 2Þ gauge theories the fermion

determinant becomes complex for finite chemical poten-
tials, which cannot be dealt with in lattice Monte Carlo
calculations. Therefore alternative, continuum approaches
are required for the investigation of QCD at finite baryon
density. In the continuum, the partition function can be
calculated from the functional integral representation in
perturbation theory [3,4]. In leading order the partition
function is then given in terms of the functional deter-
minants of the inverse propagators of the fields involved.
The perturbative result for the partition function can be
extended beyond perturbation theory by replacing the bare
propagators with nonperturbative ones, which are obtained
e.g. from a truncated set of Dyson-Schwinger equations
[5] or functional renormalization group flow equations [6].
An alternative nonperturbative continuum approach is the
Hamiltonian approach, which is based on the canonical
quantization and requires the solution of the (functional)
Schrödinger equation [7]. Our experience from quantum
mechanics shows that solving the Schrödinger equation is
usually much simpler than calculating the corresponding
functional integral, at least when one is only interested in
the ground state of the theory. Indeed, at zero temperature
for QCD in Coulomb gauge the variational Hamiltonian
approach developed in Refs. [8–10] is much more efficient
than the corresponding Dyson-Schwinger approach [11].
For finite temperatures, however, calculating the grand

canonical partition function via Eq. (1) seems not very
attractive, since, in principle, all eigenenergies have to be
determined. In the present paper we present a convenient
alternative method to obtain the partition function of a
relativistic quantum field theory within the Hamilton
approach where the knowledge of the ground-state energy
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(in the presence of a chemical potential) is sufficient,
provided the latter is evaluated on a spatial manifold with
one dimension compactified to a circle S1ðβÞ, the circum-
ference of the circle β being the inverse temperature. We
will present this approach for the generic case of a gauge
theory like QCDwith a bosonic vector field and a fermionic
Dirac field. The extension to theories with tensor fields will
be straightforward. For a scalar field the approach follows
immediately from that of a vector field. For bosonic fields
and in the absence of a chemical potential the present
approach to finite temperature was already used in Ref. [12]
to study Yang-Mills theory. Furthermore, this approach also
allows the calculation of the Polyakov loop in the
Hamiltonian formulation [13,14], which at first sight seems
impossible due to the use of the Weyl gauge A0 ¼ 0 in the
canonical quantization.
The organization of the rest of the paper is as follows. In

the next section the new Hamiltonian approach to finite-
temperature quantum field theory is developed for a gauge
theory with a vector and a Dirac field. In Sec. III this
approach is illustrated for free relativistic bosons and
fermions. In Sec. IV the pressure of Yang-Mills theory
is evaluated in a schematic quasiparticle model, which is
motivated by the results of a variational calculation in
Coulomb gauge [9,10]. Some concluding remarks are given
in Sec. V.

II. FINITE TEMPERATURE FROM
COMPACTIFICATION OF A

SPATIAL DIMENSION

Consider a gauge field theory defined by a classical
relativistically invariant Euclidean Lagrange density
Lðx;ψ ; A; γÞ, where AμðxÞ and ψðxÞ, respectively, are
the bosonic gauge and the fermionic matter fields.
Furthermore, γν are the Dirac matrices. From the classical
Lagrangian one finds after canonical quantization in the
usual way the Hamiltonian Hðψ ; A; γÞ. Once the
Hamiltonian is known the grand canonical partition func-
tion (1) can, in principle, be calculated. From the canonical
representation (1) of the partition function one can derive a
Euclidean functional integral representation; see e.g.
Refs. [4,15]. Below we briefly sketch the connection
between the functional integral representation and the
canonical operator representation (1) of the partition
function, since this connection is essential for later
considerations.
The Euclidean Lagrangian LEðx;ψ ; A; γÞ follows from

the one in Minkowski space Lðx;ψ ; A; γÞ by the analytic
continuation

x4 ¼ ix0; A4 ¼ iA0; γ4 ¼ iγ0; ð2Þ

where the Euclidean Dirac matrices satisfy the Clifford
algebra

fγμ; γνg ¼ −2δμν: ð3Þ

From the Euclidean Lagrangian density LE ¼
LEðx;ψ ; A; γμÞ one constructs the canonical momenta

ΠAμ ¼ ∂LE

∂ð∂Aμ=∂x4Þ ; Πψ ¼ ∂LE

∂ð∂ψ=∂x4Þ ð4Þ

and the Hamiltonian density

H ¼ ΠAμ
∂Aμ

∂x4 þ Πψ
∂ψ
∂x4 − LE: ð5Þ

The Hamiltonian

H ¼
Z

dx1dx2dx3H ð6Þ

is independent of x4 by Hamilton’s equation.
We assume that the Lagrangian density is invariant under

global phase transformations of the matter field

ψ → eiαψ ; ð7Þ

which results in a conserved Noether current, ∂μJμ ¼ 0,
with

Jμ ¼ i

�
ψ� ∂LE

∂ð∂μψ
�Þ −

∂LE

∂ð∂μψÞ
ψ

�
: ð8Þ

For Dirac fermions this current is given by

Jμ ¼ ψγμψ : ð9Þ

The corresponding conserved Noether charge is the particle
number

N ¼ −i
Z

dx1dx2dx3J4 ð10Þ

satisfying dN=dx4 ¼ 0.
After canonical quantizationH and N become operators,

which commute at all times, ½N;H� ¼ 0. Following the
standard procedure the partition function (1) is expressed as
an integral over the canonical fields and momenta

Zðβ; μÞ ¼
Z
x4−b:c:

Dðψ ; AÞ
Z

DðΠψ ;ΨAÞ

× exp

�Z
β=2

−β=2
dx4

Z
dx1dx2dx3

×

�
Πψ

∂ψ
∂x4 þ ΠAμ

∂Aμ

∂x4 −H − iμJ4
��

: ð11Þ

Here the functional integration is performed over tempo-
rally (anti)periodic (Fermi-)Bose fields
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ψðx; x4 ¼ β=2Þ ¼ −ψðx; x4 ¼ −β=2Þ;
Aμðx; x4 ¼ β=2Þ ¼ Aμðx; x4 ¼ −β=2Þ: ð12Þ

These boundary conditions are indicated in Eq. (11) by the
subscript “x4 − b:c:”. As the derivation of Eq. (11) shows,
these boundary conditions are a consequence of the trace in
the partition function (1). These boundary conditions are
absolutely necessary at finite β but become irrelevant in the
zero-temperature limit β → ∞.
Integrating out the momenta in Eq. (11) yields

Zðβ; μÞ ¼
Z
x4−b:c:

Dðψ ; AÞ exp
�
−SE½ψ ; A� − iμ

×
Z

β=2

−β=2
dx4

Z
d3xψðxÞγ4ψðxÞ

�
; ð13Þ

where

SE½ψ ; A� ¼
Z

β=2

−β=2
dx4

Z
d3xLEðx;ψ ; A; γÞ ð14Þ

is the Euclidean action.
Let us now perform the following cyclic change of

vectorial variables:

z1 ¼ x2; z2 ¼ x3; z3 ¼ x4; z4 ¼ x1

C1ðzÞ ¼ A2ðxÞ; C2ðzÞ ¼ A3ðxÞ;
C3ðzÞ ¼ A4ðxÞ; C4ðzÞ ¼ A1ðxÞ

Γ1 ¼ γ2; Γ2 ¼ γ3; Γ3 ¼ γ4; Γ4 ¼ γ1 ð15Þ

and also, change the fermion variable, by the identification

χðzÞ ¼ ψðxÞ: ð16Þ

The new Dirac matrices Γμ satisfy the same Clifford algebra
(3) as the old ones, γμ, and thus the same matrix
representation can be used for the Γμ as for the γμ. The
change of variables (15)–(16) can be accomplished by a
particular SOð4Þ rotation. Therefore, by the SOð4Þ invari-
ance of the Euclidean Lagrangian we have1

LEðx;ψ ; A; γÞ ¼ LEðz; χ; C;ΓÞ: ð17Þ

Let us stress that the Euclidean action (14) is not invariant
under SOð4Þ rotations since the integration domain R3 ×
S1ðβÞ is not but the Euclidean Lagrangian is SOð4Þ
invariant. The present approach uses only the SOð4Þ
invariance of the Euclidean Lagrangian.

After the change of variables (15) the functional integral
for the partition function (13) becomes

Zðβ; μÞ ¼
Z
z3−bc

Dðχ; CÞ exp
�
−SE½χ; C�

− iμ
Z

dz4
Z
β
d3zχðzÞΓ3χðzÞ

�
; ð18Þ

where we have defined the integration measure over the
partially compactified spatial manifold R2 × S1ðβÞZ

β
d3z ≔

Z
d2z⊥

Z
β=2

−β=2
dz3 ð19Þ

with z⊥ ¼ ðz1; z2Þ denoting the components of the three-
vector z orthogonal to the compactified dimension z3.
Furthermore, the Euclidean action is now given by

SE½χ; C� ¼
Z

dz4
Z
β
d3zLEðz; χ; C;ΓÞ ð20Þ

and the functional integration runs over fields satisfying
(anti)periodic boundary conditions in the z3 direction

χðz⊥; β=2; z4Þ ¼ −χðz⊥;−β=2; z4Þ;
Cμðz⊥; β=2; z4Þ ¼ Cμðz⊥;−β=2; z4Þ; ð21Þ

which is indicated in Eq. (18) by the subscript “z3 − bc”.
We can now interpret z4 as the Euclidean time and z ¼

ðz⊥; z3Þ ¼ ðz1; z2; z3Þ as the spatial coordinates and reverse
the derivation which leads from the canonical representa-
tion (1) to the path integral representation (13). Then we
arrive at the following canonical representation of the grand
canonical partition function:

Zðβ; μÞ ¼ lim
l→∞

Tre−l ~Hðχ;C;Γ;β;μÞ ð22Þ

where l → ∞ is the length of the uncompactified spatial
dimensions and we have defined

~Hðχ;C;Γ;β;μÞ¼Hðχ;C;Γ;βÞþ iμ
Z
β
d3zχ†ðzÞα3χðzÞ:

ð23Þ

HereHðχ; C;Γ; βÞ is the Hamiltonian which arises after the
analytic continuation

z4 ¼ iz0; C4 ¼ iC0; Γ4 ¼ iΓ0 ð24Þ

of the Euclidean Lagrangian LEðz; χ; C;ΓÞ to Minkowski
space and by subsequent canonical quantization in “Weyl
gauge” C0ðzÞ ¼ 0 [considering Ci¼1;2;3ðzÞ as the “coor-
dinates” of the gauge field]. Furthermore, we have defined
the Dirac matrix

1Strictly speaking, this identity requires that the same repre-
sentation is chosen for the new Dirac matrices Γμ as for the old
ones γμ. However, since the physical quantities are independent
of the specific representation used we can employ any repre-
sentation for the Γμ, which is convenient.
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α3 ¼ Γ0Γ3: ð25Þ

The resulting Hamiltonian Hðχ; C;Γ; βÞ is formally the
same as the original HamiltonianHðψ ; A; γÞ except that the
former is defined on the spatial manifoldR2 × S1ðβÞ and its
fields satisfy the (anti)periodic spatial boundary condi-
tions (21).
The representation (22) allows one to calculate the

partition function in an efficient way within the
Hamiltonian approach: due to the limit l → ∞, arising
from the infinite extent of the (original) spatial dimensions,
the calculation of the function (22) reduces to finding the
vacuum energy ~E0ðβ; μÞ of the quantum field theory
defined by the Hamiltonian (23)

Zðβ; μÞ ¼ lim
l→∞

e−l ~E0ðβ;μÞ: ð26Þ

This requires solving the Schrödinger equation

~Hðβ; μÞψðχ; CÞ ¼ ~E0ðβ; μÞψðχ; CÞ ð27Þ

for the vacuum wave functional on the spatial manifold
R2 × S1ðβÞ for given β and μ. In this way the whole finite-
temperature behavior of the quantum field theory is
encoded in the vacuum sector on the spatial manifold
R2 × S1ðβÞ. The upshot of the above consideration is that
finite-temperature quantum field theory can be described in
the Hamiltonian approach by compactifying one spatial
dimension and solving the corresponding Schrödinger
equation for the vacuum sector. Let us stress that the
equivalence between Eq. (1) and Eqs. (22) and (26) holds
for any relativistically invariant theory. In the derivation of
Eq. (22) we have used theOð4Þ invariance of the Euclidean
Lagrangian. Consequently, the present approach to finite
temperatures cannot be applied to nonrelativistic field
theories or many-body systems.
In terms of the original partition function (1) the pressure

p and energy density ε are given by

p ¼ lnZðβ; μÞ=βV;

ε ¼ hHi=V ¼ 1

V

�
−
∂ lnZ
∂β þ μ

β

∂ lnZ
∂μ

�
; ð28Þ

where V ¼ l3, l → ∞ is the volume of ordinary 3-space.
Inserting here for Z the representation (26) one finds

p ¼ −e; ε ¼ ∂
∂β ðβeÞ − μ

∂e
∂μ ; ð29Þ

where e denotes the vacuum energy density on R2 × S1ðβÞ
defined by

~E0ðβ; μÞ ¼ l2βe: ð30Þ

To distinguish this quantity from the true (physical) energy
density ε in the following we will refer to e as pseudoe-
nergy density. Analogously one finds from

hNi ¼ 1

β

∂ lnZ
∂μ ð31Þ

and Eqs. (26) and (30) for the particle density ρ ¼ hNi=V

ρ ¼ −
∂e
∂μ ; ð32Þ

which together with Eq. (29) yields the known result

ρ ¼ ∂p
∂μ : ð33Þ

The above presented approach to finite-temperature quan-
tum field theory is completely equivalent to the standard
grand canonical ensemble as long as no approximation is
introduced that breaks the relativistic invariance. It is,
however, advantageous in nonperturbative studies, since
it requires only the calculation of the ground-state energy
density on the spatial manifold R2 × S1ðβÞ but avoids the
introduction of the density operator expð−βðH − μNÞÞ of
the grand canonical ensemble. The latter quantity is
difficult to handle in a continuum approach when strong
interactions are present.

III. ILLUSTRATION FOR FREE FIELDS

Below we illustrate the approach to finite-temperature
quantum field theory presented in the previous section for
free (relativistic) field theories.
In the usual functional integral approach the partition

function of the grand canonical ensemble of a free field
theory is obtained in terms of the functional determinant of
the inverse Euclidean propagator [4]. For example, for a
massive complex scalar Bose field one finds

ZBðβÞ ¼ Det−1ð−∂μ∂μ −m2Þ; ð34Þ

while for a massive Dirac fermion field

ZFðβÞ ¼ Detð−i∂ −mÞ ð35Þ

is obtained. In both cases m denotes the mass. Here the
eigenfunctions of the inverse propagators have to satisfy the
(anti)periodic boundary conditions for (fermions) bosons as
a consequence of the temporal (anti)periodic boundary
condition (12) to the fields. The functional determinants
are UV divergent and a few mathematical manipulations
(like partial integration and dropping infinite temperature-
independent constants) are required in order to obtain from
the partition function well-defined expressions for the
thermodynamic quantities. Therefore in the alternative
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approach of the previous section we should also expect that
some mathematical manipulations are required to obtain
well-defined expressions.
With Eq. (28) one finds from Eqs. (34) and (35) for the

pressure (see e.g. Ref. [4])

p ¼ N
1

3

Z
đ3p

p2

ωðpÞ ðnþðpÞ þ n−ðpÞÞ; ð36Þ

whereN is a numerical factor accounting for the number of
degenerate degrees of freedom2 and

n�ðpÞ ¼ ½eβðωðpÞ∓μÞð∓Þ1�−1; ð37Þ

are the finite-temperature (Fermi) Bose occupation num-
bers of the particle and antiparticles, respectively. Here,

ωðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
ð38Þ

is the relativistic single-particle energy for both bosons and
fermions. The same result, Eq. (36), is also found in the
usual Hamiltonian approach by calculating the grand
canonical partition function (1) in the corresponding
Fock space with H given by the free-particle Hamiltonian.
For a real field the chemical potential vanishes such that

nþðpÞ ¼ n−ðpÞ ≔ nðpÞ. In addition, a factor of 1=2 arises
due to the fact that the partition function is then given by
only the (inverse) square root of the functional determinant
of the inverse propagator, i.e. for a real scalar field, one has

ZBðβÞ ¼ Det−1=2ð−∂μ∂μ þm2Þ ð39Þ

such that

p ¼ N
1

3

Z
đ3p

p2

ωðpÞ nðpÞ ð40Þ

with N ¼ 1. This expression applies also for massless
gauge bosons where N ¼ 2 accounts for the two polari-
zation degrees of freedom.
Let us now calculate the pressure in the alternative

approach developed in Sec. II. In this approach the central
quantity of interest is the vacuum energy density on
R2 × S1ðβÞ. For free field theories this quantity is of the
form

eðβÞ ¼ ð−ÞnFN 2nF

2

Z
β
đ3pΩðpÞ; ð41Þ

where we have introduced the fermion number

nF ¼
�
0; bosons

1; fermions
ð42Þ

in order to treat Bose and Fermi systems simultaneously.
Furthermore, ΩðpÞ is a generalized single-particle energy.3

[For a massive free particle ΩðpÞ is given by ωðpÞ (38).] It
is a function of the 3-momentum p, which on R2 × S1ðβÞ is
given by

p ¼ p⊥ þ pne3: ð43Þ

Here p⊥ denotes the component of the momentum in the
two noncompactified spatial dimensions, while

pn ¼ ωn þ nF
π

β
; ωn ¼

2πn
β

ð44Þ

denote the Matsubara frequencies for Bose ðnF ¼ 0Þ and
Fermi ðnF ¼ 1Þ systems. Furthermore, we have defined the
integration measure of the corresponding momentum space

Z
β
đ3p ¼

Z
đ2p⊥

1

β

X
n

; đ2p⊥ ¼ d2p⊥
ð2πÞ2 : ð45Þ

According to Eq. (29) the expression (41) should give for
ΩðpÞ ¼ ωðpÞ the negative of the pressure given in Eq. (36),
which is not immediately obvious. Contrary to Eq. (36) the
expression (41) is UV divergent. This is not surprising
since e contains the (infinite) zero-temperature vacuum
energy density, which has to be eliminated from the
thermodynamic quantities. To extract the zero-temperature
part of eðβÞ [Eq. (41)] it is convenient to Poisson resum the
sum over the Matsubara frequencies using

1

β

X∞
n¼−∞

fðωnÞ ¼
1

2π

Z
∞

−∞
dzfðzÞ

X∞
k¼−∞

eikβz: ð46Þ

Putting z ¼ p3 for bosons and zþ π
β ¼ p3 for fermions we

obtain for any function of the norm of the 3-momentum
fðpÞ≡ fð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ p2

n

p
Þ the relation

Z
β
đ3pfðpÞ ¼

Z
đ3pfðpÞ

X∞
k¼−∞

ð−1ÞnFkeikβp3 : ð47Þ

Note that on the lhs the integration includes the Matsubara
sum (45), while on the rhs the integration is over the
usual three-dimensional (flat) momentum space with
đ3p ¼ d3p=ð2πÞ3, d3p ¼ dp1dp2dp3. The k ¼ 0 term

2For a scalar fieldN ¼ 1 whileN ¼ 2 for Dirac fermions due
to the two degenerate spin states.

3For a Fermi system the vacuum is given by the filled negative
energy states of the Dirac sea. With the sign convention adopted
in Eq. (41) ΩðpÞ is positive also for fermions. The additional
factor of 1=2 in the Bose case ðnF ¼ 0Þ arises from the ground-
state energy of an independent oscillator mode.
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in the sum (47) represents just the zero -temperature part. In
a quantum field theory this part is usually divergent and has
to be eliminated to find the temperature-dependent part.
Even when the k ¼ 0 term is excluded for the functions
fðpÞ of interest the momentum integral on the rhs of
Eq. (47) is usually UV divergent. To make these integrals
well defined we use the proper-time representation for a
power of a quantity4 A

Aν ¼ 1

Γð−ν; xÞ
Z
x=A

dττ−1−νe−τA; ð49Þ

which is valid for any x > 0. However, this representation is
not yet useful since the quantity of interest A appears also in
the lower integration bound. As we will see below, after the
momentum integrals have been carried out the limit x → 0
can be taken in the proper-time integral, which removes A
from the integration bound. However, the incomplete Γ
function Γðν; xÞ is divergent for ν < 0 and x → 0. The
regularization can be carried out as usual by replacing the
incomplete Γ function Γð−ν; xÞ in the limit x → 0 by its
complete counterpart Γð−νÞ provided Γð−νÞ does exist.
(This in fact is an analytic continuation, which discards an
infinite contribution.) Then we obtain from Eq. (49) the
representation

Aν ¼ 1

Γð−νÞ limϵ→0

Z
∞

ϵ
dττ−1−νe−τA: ð50Þ

For the energy density (41) with a general dispersion
relation ΩðpÞ we find by using Eq. (47)

eðβÞ ¼ ð−ÞnFN 2nF

2

Z
đ3pΩðpÞ

X∞
k¼−∞

ð−ÞknFeikβp3 : ð51Þ

As already noticed before, the k ¼ 0 term is just the zero-
temperature part of the vacuum energy density, which,
indeed, is a (infinite) temperature-independent and thus
irrelevant constant, which has to be omitted from thermo-
dynamical quantities. The remaining temperature-depen-
dent part is still not well defined. At least the integral over
the transverse momenta

R
đ2p⊥ is still UV divergent. To

make this integral well defined we use the proper-time
representation (50) with A ¼ Ω2 and ν ¼ 1=2. Then we
find from Eq. (51) for the finite-temperature part of the
vacuum energy on R2 × S1ðβÞ

eðβÞ ¼ ð−ÞnFN 2nF

2

2

Γð− 1
2
Þ
Z

∞

0

dττ−3=2

×
Z

đ3pe−τΩ2ðpÞ X∞
k¼1

ð−ÞknF cosðkβp3Þ: ð52Þ

For β → ∞ the integrand becomes a rapidly oscillating
function and eðβÞ vanishes, as one expects for the finite-
temperature part. To work out the expression (52) we need
the explicit form of the single-particle energies ΩðpÞ. We
will consider bosons and fermions separately. For simplic-
ity we will put the chemical potential to zero in the Bose
case, since we are mainly interested in gauge bosons, where
the chemical potential vanishes. For fermions we will
include a nonzero chemical potential.

A. Bosons

For massive relativistic bosons and in the absence of a
chemical potential the quantityΩðpÞ in Eq. (41) is given by
the single-particle energy (38)

ΩðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
: ð53Þ

With this form of ΩðpÞ the momentum integrals in Eq. (52)
can be explicitly carried out. Using Γð− 1

2
Þ ¼ −2

ffiffiffi
π

p
one

finds

eðβÞ ¼ N
8π2

X∞
n¼1

�
2m
nβ

�
2

K−2ðnβmÞ; ð54Þ

where

KνðzÞ ¼
1

2

�
1

2
z

�
ν
Z

∞

0

dtt−ν−1e−t−
z2
4t ð55Þ

is the modified Bessel function, which satisfies the rela-
tion K−νðzÞ ¼ KνðzÞ.
For massless bosons m ¼ 0 the expression (54) can be

worked out analytically. Using the asymptotic form of the
modified Bessel function [16]

KνðzÞ ¼
1

2
ΓðνÞ

�
1

2
z

�
−ν
; z → 0; ν > 0 ð56Þ

we find from Eq. (54) for m ¼ 0

eðβÞ ¼ −
N
π2

ζð4ÞT4; ð57Þ

where

ζðxÞ ¼
X∞
n¼1

1

nx
ð58Þ

4From the integral representation of the incomplete Γ function

Γðν; xÞ ¼
Z

∞

x
dssν−1e−s ð48Þ

the representation (49) follows after the substitution s ¼ τA.
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is the Riemann ζ function. With ζð4Þ ¼ π4=90 we obtain
from Eq. (29) for the pressure of massless bosons

p ¼ N
π2

90
T4; T ¼ 1=β; ð59Þ

which is the Stefan-Boltzmann law. This is the correct
result, which follows also from the usual grand canonical
ensemble, Eq. (36). Note for photons we have N ¼ 2 due
to the two polarization degrees of freedom.
For massive bosonsm ≠ 0 the remaining expression (54)

has to be calculated numerically. Also the corresponding
expression (36) for the pressure in the usual grand
canonical ensemble cannot be calculated analytically in
that case. Figure 1 shows the pressure calculated numeri-
cally by means of Eq. (54) and compares this result to that
of the grand canonical ensemble (36). The agreement of
both results is, of course, expected in view of our above
given derivation. What is remarkable, however, is that only
the first few terms of the sum in Eq. (54) are required to
reproduce the full result with high accuracy.

B. Fermions

In the present approach of introducing the temperature
through the compactification of the 3-axis the Dirac
Hamiltonian of massive fermions in the presence of a
(real) chemical potential reads [see Eq. (23)]

h ¼ α · pþ γ0mþ iμα3; αk ¼ γ0γk: ð60Þ

Its eigenvalues are given by �ΩðpÞ where

ΩðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥ þ ðpn þ iμÞ2

q
ð61Þ

with pn ¼ ωn þ π=β being the fermionic Matsubara fre-
quency, Eq. (44). Inserting this expression for ΩðpÞ into
Eq. (52) and carrying out the momentum integral analo-
gously to the bosonic case, one arrives at the following result:

eðβÞ ¼ N
4π2

X∞
n¼1

ð−Þn cosðinβμÞ
�
2m
nβ

�
2

K−2ðnβmÞ; ð62Þ

wherewehaveN ¼ 2 due to the two spin degrees of freedom
for Dirac fermions. For massive fermions this expression has
to be calculated numerically, while for massless fermions we
can use the asymptotic form of the modified Bessel function
(56) and obtain

eðβÞ ¼ 2N
π2β4

X∞
n¼1

ð−Þn cosðinβμÞ
n4

: ð63Þ

Obviously, this sum does not converge for real μ and β. To
make this expression well defined we analytically continue
the chemical potential μ to imaginary values. For real x we
have [17]

X∞
n¼1

ð−Þn cosnx
n4

¼ 1

48

�
−

7

15
π4 þ 2π2x2 − x4

�
: ð64Þ

Continuing this result back to imaginary values x ¼ iβμ we
find from Eq. (63) for the pressure p ¼ −eðβÞ

p ¼ N
24π2

�
7

15
π4T4 þ 2π2T2μ2 þ μ4

�
; ð65Þ

which is the correct result known from the grand canonical
ensemble (36).
The equivalence of the expression (63) for the pressure to

that of the grand canonical ensemble (36) can be made
explicit by means of the polylogarithm

LisðzÞ ¼
X∞
n¼1

zn

ns
; ð66Þ

which is defined for arbitrary complex order s and for
complex z with jzj < 1. By analytic continuation it can be
extended to jzj > 1. The analytically continued form has
the integral representation

LisðzÞ ¼
1

ΓðsÞ
Z

∞

0

dt
ts−1

et=z − 1
; ð67Þ

by means of which the sum in Eq. (63) can be expressed as

X∞
n¼1

ð−Þn cosðinyÞ
n4

¼ −
1

12

Z
∞

0

dtt3
�

1

et−y þ 1
þ 1

etþy þ 1

�
:

ð68Þ
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FIG. 1. The pressure of a gas of massive bosons as a function of
the temperature calculated from Eq. (54) with N ¼ 1 by
including only the first n ¼ 1, 2 and 5 terms. The crosses give
the result of the grand canonical ensemble (36).
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Inserting this relation into Eq. (63) after a change of
variables t ¼ βp we recover the pressure of the grand
canonical ensemble, Eq. (36), for massless fermions.

IV. YANG-MILLS THEORY IN A QUASIPARTICLE
APPROXIMATION

As a first application of the general method developed in
Sec. II to produce new results we consider Yang-Mills
theory at finite temperature in a quasiparticle approxima-
tion motivated by the variational calculation in Coulomb
gauge [9,10,18]. In this approximation the pseudoenergy
density on R2 × S1ðLÞ is given by Eq. (41) [or in the
regularized form by Eq. (52)] with [19]

ΩðpÞ ¼ ωðpÞ − χðpÞ; ð69Þ

where ωðpÞ is the gluon’s quasiparticle energy and χðpÞ is
the ghost loop. For simplicity we will ignore the ghost loop
in the following. Its influence will be discussed later. In the
variational approach in Coulomb gauge [9,10] one finds a
gluon quasiparticle energy ωðpÞ, which can be approxi-
mated by the so-called Gribov formula

ωðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm4

p2

s
: ð70Þ

This formula also nicely fits the lattice data for the gluon
propagator with a Gribov mass of m ¼ 880 MeV [20]. In
Ref. [21] the thermodynamics of a noninteracting gas of
gluons with the dispersion relation (70) was studied.
Unfortunately with this ωðpÞ the pseudoenergy density
(51) cannot be calculated analytically. We are interested
here in an analytic estimate of the pressure for Yang-Mills
theory. Therefore, we approximate this expression by the
sum of its infrared and ultraviolet limits

ωðpÞ ¼ pþm2

p
: ð71Þ

This approximation is applicable in the low- and high-
momentum regimes at least but may be too crude in the
mid-momentum regime p≃m. Therefore we expect that
the details of the deconfinement phase transition cannot be
adequately reproduced. This refers, in particular, to the
critical temperature, which is sensitive to the details in the
mid-momentum regime.
In a naive attempt one would calculate the pressure and

energy density from the pseudoenergy density (41) or
Eq. (51) with ΩðpÞ given by Eq. (71) resulting in

eðβÞ ¼ eα¼1ðβÞ þ eα¼−1ðβÞ; ð72Þ

where we have defined the finite-temperature momentum
integrals

eαðβÞ ¼ N
1

2

Z
β
đ3pωαðpÞ ð73Þ

of powers of the 3-momentum

ωαðpÞ ¼ m1−αpα; p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ p2

n

q
: ð74Þ

Using the proper-time representation (50)

pα ¼ 1

Γð− α
2
Þ
Z

∞

0

dττ−1−
α
2e−τp

2 ð75Þ

and the Poisson resummation (47) where one has to skip the
k ¼ 0 term one finds after carrying out the momentum
integrals

R
đ2p⊥ and

R
dp3 the following result:

eαðβÞ ¼ N
m1−α

ð4πÞ3=2 ·
Γðα

2
þ 3

2
Þ

Γð− α
2
Þ
�
2

L

�
3þα

ζnFðαþ 3Þ; ð76Þ

where

ζnFðxÞ ¼
X∞
n¼1

ð−1ÞnFn
nx

: ð77Þ

For bosons ðnF ¼ 0Þ this quantity is the Riemann ζ
function (58), ζnF¼0ðxÞ¼ζðxÞ, while for fermions ðnF ¼ 1Þ
we have

ζnF¼1ðzÞ ¼
X∞
n¼1

ð−1Þn
nz

¼ −ð1 − 21−zÞζðzÞ; Rez > 0:

ð78Þ

We are interested here in the gauge bosons with the
dispersion relation (71), for which the pressure p ¼ −eðβÞ
is given by Eqs. (72) and (73) with degeneracy factor
N ¼ 2ðN2

C − 1Þ for the gauge group SUðNCÞ. For bosons
we find from Eq. (76)

eα¼1ðβÞ ¼ −N
π2

90
T4; eα¼−1ðβÞ ¼ N

m2

12
T2: ð79Þ

The resulting pressure [Eq. (72)]

p ¼ −eðβÞ ¼ pSB

�
1 −

45

6

m2

T2

�
ð80Þ

approaches the correct Stefan-Boltzmann limit

pSB ¼ N
π2

90
T4 ð81Þ

for high temperatures but is negative for small temper-
atures. A negative pressure usually indicates that the
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underlying phase is unstable. Indeed, the quasiparticle
vacuum of Yang-Mills theory is unstable against the
formation of a constant background field. In fact, a constant
background field aligned along the compactified dimension
lowers the (pseudo)energy density.5 This is seen by
calculating the effective potential of such a background
field [14]. In the Hamiltonian approach the effective
potential of a (constant) background field a is given by
the energy density [here on R2 × S1ðLÞ by the pseudoe-
nergy density], calculated in the presence of the constraint
that the expectation value of the dynamical field A equals
the background field [22]

hAi ¼ a: ð82Þ

Without loss of generality the background gluon field can
be chosen in the Cartan subalgebra. Up to two-loop order
the effective potential of the background field is then
obtained from the (pseudo)energy density (41) by shifting
the momentum [14]

p → pσ ¼ p − σa ¼ p⊥ þ e3ðpn − σaÞ; ð83Þ

where σ denotes a root vector of the gauge group, and
summing over all roots

eða; LÞ ¼
X
σ

Z
L
đ3pΩðpσÞ: ð84Þ

Here the degeneracy factor N ¼ 2ðN2
C − 1Þ is already

included. The factor 2 stemming from the two polarization
degrees of freedom cancels the factor 1=2 in Eq. (41) while
the color degeneracy factor N2

C − 1 is accounted for by the
summation over the root vectors σ.
To find the minimum of the effective potential eða; βÞ it is

convenient to subtract the pseudoenergy density at vanishing
background field eða ¼ 0; βÞ ¼ eðβÞ. The difference

epða; βÞ ≔ eða; βÞ − eða ¼ 0; βÞ ð85Þ

is ultraviolet finite and can be interpreted as the effective
potential of the Polyakov loop [14]. To obtain the Polyakov
loop potential in the quasiparticle approximation for the
dispersion relation (71) it is convenient to calculate first the
extension of eαðβÞ (73) in the presence of the background
field

eαða; βÞ ¼
X
σ

Z
L
đ3pωαðpσÞ; ð86Þ

whereωαðpÞ is defined in Eq. (74). The calculations are done
in the same way as in the absence of the background field

except that after doing the Poisson resummation the inte-
gration variable p3 is shifted: p3 − σ · a → p3. One finds

eαða; βÞ ¼ 2
m1−α

ð4πÞ3=2
Γð3þα

2
Þ

Γð− α
2
Þ
�
2

β

�
αþ3

hαða; βÞ; ð87Þ

where

hαða; βÞ ¼
X
σ

X∞
n¼1

cosðnσ · aβÞ
nαþ3

: ð88Þ

Since

hαða ¼ 0; βÞ ¼ ðN2
C − 1Þζðαþ 3Þ ð89Þ

the expression eαða; βÞ [Eq. (87)] reduces for a ¼ 0 indeed
to eαðβÞ [Eq. (76)]. For the dispersion relation (71) we find
for the Polyakov loop potential

epða; βÞ ¼ eα¼1ða; βÞ þ eα¼−1ða; βÞ
− ðeα¼1ð0; βÞ þ eα¼−1ð0; βÞÞ: ð90Þ

The various pieces can be evaluated analytically. For the
gauge group SUðNC ¼ 2Þ the roots are one dimensional

σa ¼ σa; σ ¼ 0; � 1; ð91Þ

so that

hαða; βÞ ¼ 2
X∞
n¼1

cosðnaβÞ
nαþ3

þ ζðαþ 3Þ: ð92Þ

Using [17]

X∞
k¼1

cosðkxÞ
k2

¼ π2

6
−
πx
2
þ x4

4
ð93Þ

and ζð2Þ ¼ π2=6 one finds for α ¼ −1

eα¼−1ða; βÞ ¼ ðN2
C − 1Þm

2

6
T2

�
1 −

a
πT

�
2

: ð94Þ

For α ¼ 1 we use [17]

X∞
k¼1

cosðkxÞ
k4

¼ π4

90
−
π2x2

12
þ πx3

12
−
x4

48
ð95Þ

and ζð4Þ ¼ π4=90 to obtain

eα¼1ða;βÞ¼−ðN2
C−1Þπ

2T4

45

�
1−20

�
a

2πT

�
2
�
1−

a
2πT

�
2
�
:

ð96Þ
5A constant background field along the uncompactified

dimension has no physical effect.
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With the explicit expressions for eα¼�1ða; βÞ at handwe find
for the effective potential of the Polyakov loop (90)

eða; βÞ ¼ ðN2
C − 1Þ 4

9
π2T4fðxÞ; ð97Þ

where

fðxÞ ¼ x2ðx − 1Þ2 þ cxðx − 1Þ ð98Þ

with the dimensionless variables

x ¼ aβ
2π

; c ¼ 3
m2β2

2π2
: ð99Þ

Note that the potential (97) is invariant under the center
transformation x → 1 − x.
For c > 1

2
the function fðxÞ [Eq. (97)] has a single real

extremum, i.e. a minimum at x ¼ 1
2
. This minimum turns

into a degenerate cubic root at c ¼ 1
2
and eventually for

c < 1
2
dissolves into a maximum at x ¼ 1

2
and two degen-

erate minima at

x1=2 ¼
1

2
½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2c

p
�; ð100Þ

which are related by a center transformation x → 1 − x,
i.e. x2 ¼ 1 − x1.
For a given temperature T ¼ 1=β ([.e. for a given value

of c (99)] the vacuum background field configuration a is
given by the minimum of the Polyakov loop potential (97).
For c > 1

2
the minimum occurs at the center-symmetric

point x ¼ 1
2
, i.e. a ¼ π

β corresponding to the confined phase.

At c ¼ 1
2
where this minimum turns into a maximum the

deconfinement phase transition occurs. From Eq. (99) we
find for the critical temperature

Tc ¼
ffiffiffi
3

p
m=π: ð101Þ

For a Gribov mass of m≃ 880 MeV [20], which fits the
lattice data for the gluon propagator one finds
Tc ≃ 485 MeV, which is by far too high compared to
the lattice result of Tc ≃ 300 MeV. As shown in Ref. [14]
the high value of Tc results from the neglect of the ghost
loop in the (pseudo)energy density. Inclusion of the ghost
loop lowers the critical temperature to realistic values [14].
By means of the critical temperature Tc [Eq. (101)] we

can express the quantity c [Eq. (99)] as

2c ¼
�
T
Tc

�
2

; ð102Þ

so that the two degenerate minima (100) of the effective
potential epða; βÞ at T > Tc read

x1=2 ¼
1

2

2
641�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
Tc

T

�
2

s 3
75: ð103Þ

The pressure of Yang-Mills theory is given by

p ¼ −eða; βÞ ¼ −eα¼−1ða; βÞ − eα¼1ða; βÞ; ð104Þ

where a is the position of the minimum of the Polyakov
loop potential, which [in the dimensionless variable x (99)]
is given by

x ¼
� 1

2
; T ≤ Tc

x1=2; T ≥ Tc:
ð105Þ

In the confined phase we have x ¼ 1=2 or a ¼ π=β and

eα¼−1

�
a ¼ π

β
; β

�
¼ 0;

eα¼1

�
a ¼ π

β
; β

�
¼ ðN2

C − 1Þ π2

180
T4; ð106Þ

so that we find for the pressure

pðtÞ ¼ −
1

4
pSBðtÞ; ð107Þ

where

pSBðtÞ ¼ −eα¼1ða ¼ 0; βÞ ¼ ðN2
C − 1ÞM

4

5π2
t4 ð108Þ

is the Stefan-Boltzmann limit (81) of the pressure and we
have introduced the dimensionless temperature t ¼ T=Tc.
In the deconfined phase we obtain with

eα¼−1ðx1=2; βÞ ¼ ðN2
C − 1Þ m

4

2π2
t2
�
1 −

1

t2

�
;

eα¼1ðx1=2; βÞ ¼ −ðN2
c − 1Þm

4

π2
t4
�
1

5
−

1

4t2

�
ð109Þ

for the pressure

pðtÞ ¼ pSBðtÞ
�
1 −

15

4

1

t2
þ 5

2

1

t4

�
: ð110Þ

For T → ∞ the pressure approaches the Stefan-Boltzmann
limit. The pressure obtained above is shown in Fig. 2 as a
function of the temperature. For sake of comparison we
also show the pressure measured on the lattice [23], where
the scale was adjusted to match the critical temperature Tc.
Above Tc the tendency of the lattice data is roughly
reproduced. Given the crudeness of our approximation
we cannot expect a good agreement with the lattice data. In
the confined phase we still get a negative pressure
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p=pSB ¼ −1=4; ð111Þ

which, however, is much more benign than the result of the
naive calculation (80), for which

p=pSB ∼ −1=T2; T → 0: ð112Þ

The negative pressure obtained in Eq. (111) for T < Tc is
not due to an instability of the confined phase but rather is a
consequence of the violation of Oð4Þ invariance by the
dispersion relation (71).6 This is seen by calculating
numerically the pressure for the quasiparticle energy
(71) from the grand canonical ensemble (40), which yields
a positive-definite result [24]. Since both approaches, the
grand canonical ensemble and the compactification of a
spatial axis, are equivalent for Oð4Þ-invariant theories the
negative pressure obtained above is definitely a conse-
quence of the Oð4Þ violation of the dispersion relation (71)
but not a consequence of a vacuum instability.
In general, in a Hamiltonian approach approximations

may lead to a violation of the Oð4Þ symmetry. In the
variational approach to Yang-Mills theory in Coulomb
gauge [8–10] it is not difficult to see that the inclusion of
the ghost reduces the Oð4Þ symmetry breaking. Indeed, in
this approach the self-consistent pseudoenergy density is
given by Eq. (41) with ΩðpÞ given by Eq. (69). The ghost
loop χðpÞ is infrared divergent and vanishes in the ultra-
violet. If one uses the Gribov formula ωðpÞ [Eq. (70)] and

ignores the so-called Coulomb term, the variational gap
equation yields for the ghost loop [14]

χðpÞ ¼ m2=jpj: ð113Þ
Using the approximation (71) to the Gribov formula and
Eq. (113) we obtain from Eq. (69) ΩðpÞ ¼ jpj, which is an
Oð4Þ-invariant dispersion relation. Of course, in a realistic
calculation using the numerical variational solutions the
inclusion of the ghost will not completely restore the
Oð4Þ symmetry but will definitely reduce the symmetry
breaking [24].

V. SUMMARY AND CONCLUSIONS

I have presented an alternative approach to finite-
temperature quantum field theory within the Hamiltonian
formulation where the temperature is introduced by com-
pactifying a spatial dimension. Compared to the usual
grand canonical ensemble this approach is advantageous in
the sense that it does not require the introduction of a
statistical density operator. Instead the whole temperature
behavior is encoded in the vacuum state on the spatial
manifold R2 × S1. This is beneficial for nonperturbative
continuum studies like variational approaches, which
usually concentrate on the description of the vacuum while
excited states are not directly accessible. I have illustrated
this approach for free bosons and fermions where it
reproduces the correct result of the grand canonical
ensemble. Furthermore, the pressure of Yang-Mills theory
was calculated in a quasiparticle approximation using
quasigluon energies, which were motivated by the results
of a variational approach in Coulomb gauge and also by
lattice data for the gluon propagator in Coulomb gauge. In
order to carry out the calculations analytically we used a
simple parametrization of the quasigluon energy, which
unfortunately violates Oð4Þ invariance, in particular at
small momenta. As a consequence we obtained a small
negative pressure in the confined phase. The Oð4Þ sym-
metry breaking of the assumed gluon energy (71) decreases
with increasing momenta and the obtained pressure reaches
the correct Stefan-Boltzmann limit at high temperature.
Let us also mention that the present approach was

applied in Ref. [12] to study finite-temperature Yang-
Mills theory in a variational approach and in Ref. [14]
to calculate the effective potential of the Polyakov
loop (in pure Yang-Mills theory) at finite temperature. In
the future I plan to apply this approach also to the quark
sector of QCD.
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6Please recall that the present approach to finite-temperature
quantum field theory by compactifying a spatial dimension
assumes Oð4Þ invariance in Euclidean space; see Sec. II. In
the cases treated in Sec. III the Oð4Þ invariance was strictly
preserved and the exact results were obtained.
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