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We corroborate the previously applied spectral approach to compute the vacuum polarization energy of
string configurations in models similar to the standard model of particle physics. The central observation
underlying this corroboration is the existence of a particular global isospin transformation of the string
configuration. Under this transformation the single particle energies of the quantum fluctuations are
invariant, while the inevitable implementation of regularization and renormalization requires operations
that are not invariant. We verify numerically that all such variances eventually cancel, and that the vacuum
polarization energy obtained in the spectral approach is indeed gauge invariant.
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I. INTRODUCTION

Various field theories suggest the existence of stringlike
configurations, which are the particle physics analogs of
vortices or magnetic flux tubes in condensed matter physics.
These configurations can arise at scales ranging from the
fundamental distances in string theory to astrophysical
distances, where in the latter case they are often called
cosmic strings. (See, for example, the reviews [1,2].1) A
well-known representative is the Nielsen-Olesen vortex [4]
in a model with an Abelian gauge field coupled to a single
Higgs field. This vortex is classically stable, as are particular
embeddings in non-Abelian models with several Higgs fields
[5]. In general, however, non-Abelian string configurations
are not classically stable. In this context the Z-string, which
typically involves the Z-boson field in the standard model, is
of particular interest [6]. Though not classically stable, it is
possible that these strings are stabilized by quantum effects.
The vacuum polarization energy (VPE), which is the
regularized and renormalized sum of all zero point energies
of the quantum fluctuations in the classical background, is
central to these investigations. In field theory quantum
effects are typically estimated by Feynman diagram tech-
niques. However, stringlike configurations have a nontrivial
structure at spatial infinity which makes the formulation of a
Feynman perturbation expansion impossible without any
further adaptation. Even then, the convergence of the series
is not guaranteed as the relevant couplings are not neces-
sarily small and the series is only asymptotic. On top of that,
the rich topological structures [7] of theories with cosmic
strings require techniques beyond perturbative treatments.
Not surprisingly, the study of the VPE of cosmic string
configurations has a long history of slow progress without a
fully concluding answer.

Numerous publications have analyzed quantum fluc-
tuations about cosmic strings. Naculich [8] has discussed
that in the limit of weak coupling, fermion fluctuations
tend to destabilize the string. The quantum properties of
Z-strings have also been connected to nonperturbative
anomalies [9]. Furthermore, the emergence or absence of
exact neutrino zero modes in a Z-string background and
the possible consequences for the string topology were
investigated in Ref. [10]. A first attempt at a full
calculation of the fermion quantum corrections to the
Z-string energy was carried out in Ref. [11]. Those
authors were only able to compare the energies of two
string configurations, rather than comparing a single
string to the vacuum, because of limitations arising from
the nontrivial behavior at spatial infinity. (We will discuss
this issue in more detail below.) The fermion vacuum
polarization energy of the Abelian Nielsen-Olesen vortex
[4] has been estimated in Ref. [12] with regularization
limited to the subtraction of the divergences in the heat-
kernel expansion. On the other hand, quantum energies of
bosonic fluctuations in string backgrounds were calcu-
lated in Ref. [13]. However, these are suppressed com-
pared to fermion fluctuations when the number of
internal degrees of freedom, e.g. color, is large.
Using the spectral method [14] the (one-loop) VPE can

be computed from scattering data. An essential feature of
this method is the identification of elements from the Born
expansion with Feynman diagrams. These elements are
added and subtracted to make contact with standard
renormalization techniques and conditions which prescribe
certain Green functions for particular values of transferred
momenta. In a sequence of projects we succeeded in
computing the fermion VPE of cosmic strings after solving
a number of problems2:

1Arguments for a closer connection between cosmic and
fundamental strings are given in Ref. [3]. 2See Ref. [15] for a recent review.
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(1) The string configuration does not have a well-
defined Born series to be identified with the
Feynman series of quantum field theory; this
can be overcome by a special local gauge trans-
formation [16].

(2) A correction factor to the naïve Jost function is
required to maintain the analytic properties of
scattering data [17,18], because the effective fermion
mass depends on the distance from the string core.

(3) Higher order Feynman diagrams are required which
become exceedingly difficult to evaluate numeri-
cally; this is solved by the so-called fake boson
approach [19].

Formally the unregularized and unrenormalized fermion
VPE of the string is the sum of energy eigenvalues from a
Dirac Hamiltonian. These eigenvalues are invariant for a
particular path in the space of parameters which define the
(weak) isospin orientation of the string [20]. Previous
calculations of the VPE [16–18] were restricted to a
simplifying submanifold in isospace that could not access
this path. The invariance of the single particle energies is,
however, not sufficient to ensure that the full fermion VPE
is also invariant in this calculation. The sum of the energy
eigenvalues is ultraviolet divergent, and in the inevitable
process of regularization and renormalization divergent
contributions emerge that are manifestly variant. They are
conjectured to cancel based on their formal equivalence as
expansions in powers of the string background. On the
regularization side terms from the Born expansion to
scattering data are subtracted, which on the renormalization
side are added back in the form of Feynman diagrams. An
exact match of these quantities is not at all obvious. For
instance, Feynman diagrams allow us to distinguish
between the divergences that emerge from the quantum
loops and the Fourier modes of the background (this is, e.g.,
essential for understanding the Casimir effect [21] in the
context of spectral methods). On the other hand, scattering
data, and thus the Born expansion terms, do not distinguish
between external and loop momenta. Using dimensional
regularization, the equivalence of the two schemes has been
verified for the leading (tadpole) divergence, both for boson
[22] and fermion [23] fluctuations. At higher order the
distinction between loop and Fourier momenta is essential,
and so far no such proof has been provided.
The scattering data decouple into angular momentum

channels. As we will explain in Sec. III, a channel by
channel subtraction is mandatory for contributions that can
be related to the quadratic ultraviolet divergences in the
Feynman series. The subleading logarithmic divergences
require one to include higher order Born/Feynman terms,
which are very cumbersome to simulate numerically.
Fortunately, the set of divergences terminates at this
logarithmic level so that these divergences can be cavalierly
treated by simulating them in a simpler (typically bosonic)
theory. This method brings into the game an additional

contribution that is not manifestly invariant under the
particular isospin transformation mentioned above.
Furthermore, the simulation of divergences by a boson
model also requires the exchange of momentum integrals
with orbital angular momentum sums, which by itself
demands care: for instance, swapping these operations
for momenta on the real axis gives erroneous results
[24]; instead, an analytic continuation to imaginary
momenta is required [25]. In any event, the whole regu-
larization procedure is not manifestly gauge invariant while
gauge invariance should, of course, be maintained by the
final result in order for the adopted calculational procedure
to produce unambiguous results. A good example to
demonstrate the subtleties of gauge invariance in the
context of the spectral approach are the vacuum charges
induced by a nontrivial background configuration:
improper regularization may falsely predict anomalous
vacuum charges [23]. From these considerations, it is clear
that consistency checks are indispensable to ensure that the
spectral method does not artificially break (gauge) sym-
metries leading to erroneous results. In the present paper,
we will explore such a test based on a global isospin
invariance. Because of the operation under item 1 above,
this also probes a local invariance.
We conclude this introduction with a brief description of

our model. The bosonic part is described by the Lagrangian

Lϕ;W ¼ −
1

2
trðGμνGμνÞ þ

1

2
trðDμΦÞ†DμΦ

−
λ

2
trðΦ†Φ − v2Þ2; ð1Þ

where the Higgs doublet is written using the matrix
representation

Φ ¼
�

ϕ�
0 ϕþ

−ϕ�þ ϕ0

�
: ð2Þ

The gauge coupling constant g enters through both the
covariant derivative Dμ ¼ ∂μ − igWμ and the SUð2Þ field
strength tensor

Gμν ¼ ∂μWν − ∂νWμ − ig½Wμ;Wν�: ð3Þ

The classical potential has been chosen such that the Higgs
field acquires a vacuum expectation value (VEV) v, where
hdetðΦÞi ¼ v2 ≠ 0. As a consequence, all bosons become
massive: mW ¼ gv=

ffiffiffi
2

p
and mH ¼ 2v

ffiffiffi
λ

p
. The interaction

of the (classical) string with the left-handed fermions is
described by

LΨ ¼ iΨ̄ðPLDþ PR∂ÞΨ − fΨ̄ðΦPR þ Φ†PLÞΨ: ð4Þ

Here, PR;L ¼ 1
2
ð1� γ5Þ are projection operators on left-/

right-handed components, respectively, and the strength of
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the Higgs-fermion interaction is parametrized by the
Yukawa coupling f, which gives rise to the fermion mass,
m ¼ fv.
This short report is organized as follows. In Sec. II we

discuss the particular form of the cosmic string configu-
ration and describe the path in weak isospace along which
the Dirac eigenvalues are unchanged. In Sec. III we explain
how spectral methods are utilized to compute the fermion
contribution to the VPE, including the subtleties needed to
make the approach feasible. We present numerical results
for the VPE in Sec. IV and show that this particular
invariance is indeed reproduced within our numerical
accuracy. We conclude with a brief summary in Sec. V
and leave some technical details to the appendixes.

II. COSMIC STRING CONFIGURATION

The starting point to parametrize cosmic string configu-
rations is the four-dimensional unit vector [26,27]

n̂ðξ1; ξ2;φÞ ¼

0
BBB@

sin ξ1 sin ξ2 cosφ

cos ξ1
sin ξ1 cos ξ2

sin ξ1 sin ξ2 sinφ

1
CCCA; ð5Þ

where ξ1 and ξ2 describe the isospin orientation of the
string and φ is the azimuthal angle in coordinate space.3 For
simplicity, we will always consider unit winding of the
string; generalizations to winding number n merely require
the replacement cosφ → cosðnφÞ and sinφ → sinðnφÞ. In
what follows we also employ the abbreviations

si ¼ sin ξi and ci ¼ cos ξi ð6Þ

for the trigonometrical functions of the isospin angles ξ1
and ξ2. A global rotation within the plane of the second and
third components by an angle α with tan α ¼ s1c2=c1
transforms the unit vector n̂ into

~nðξ1; ξ2;φÞ ¼

0
BBB@

s1s2 cosφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − s21s

2
2

p
0

s1s2 sinφ

1
CCCA: ð7Þ

Hence observables (which are, by definition, gauge invari-
ant) will not depend on the two angles ξ1 and ξ2
individually but only on the product s1s2. Stated otherwise,
all observables must remain invariant along paths of
constant s1s2 in isospin space [20].
The unit vector n̂ ¼ ðn0; nÞ ∈ S4 defines the SUð2Þ

matrix Uðξ1; ξ2;φÞ ¼ n01 − in · τ, where τ ¼ ðτ1; τ2; τ3Þ

are the three Pauli matrices. The Higgs and gauge fields of
the string are then characterized by two profile functions fH
and fG that are functions of the distance (ρ) from the string
center,

�
ϕþðρ;φÞ
ϕ0ðρ;φÞ

�
¼ fHðρÞUðξ1; ξ2;φÞ

�
0

v

�
and

Wðρ;φÞ ¼ 1

g
φ̂
ρ
fGðρÞUðξ1; ξ2;φÞ∂φU†ðξ1; ξ2;φÞ:

ð8Þ

Here, the gauge connection W is a vector in coordinate
space and a matrix in the adjoint representation of weak
isospace. The profile functions vanish at the core of the
string (ρ ¼ 0) and approach unity at spatial infinity. From
this parametrization we find the classical mass of the string4

Ecl

m2
¼ 2π

Z
∞

0

ρdρ

�
ðs1s2Þ2

�
2

g2

�
f0G
ρ

�
2

þ f2H
f2ρ2

ð1 − fGÞ2
�

þ f02H
f2

þ μ2h
4f2

ð1 − f2HÞ2
�
; ð9Þ

where the dimensionless radial integration variable is
related to the physical radius by ρphys ¼ ρ=m and we have
introduced the mass ratio μH ≡mH=m. As expected, the
classical mass only depends on the isospin angles via the
combination s1s2, which reflects gauge invariance.
Note that the configuration, Eq. (8) approaches a local

gauge transformation of the constant vacuum configuration
at spatial infinity. As a consequence, this configuration is not
appropriate for techniques that require some kind of pertur-
bative expansions which do not preserve gauge invariance
order by order. In particular, individual Fourier transforma-
tions of the Higgs and gauge fields are ill defined. We
therefore introduce an additional radial function ξðρÞ with
the boundary values ξð0Þ ¼ 0 and limρ→∞ξðρÞ ¼ ξ1 to
define the local SULð2Þ gauge transformation

V ¼ exp ½−iτ · ξðρ;φÞ� with

ξðρ;φÞ ¼ ξðρÞ

0
B@

s2 cosφ

−s2 sinφ
c2

1
CA: ð10Þ

Since ξð0Þ ¼ 0 this gauge transformation does not introduce
any singularity at the origin; at spatial infinity it accounts for
the above-mentioned gauge transformation of the constant
vacuum. With the gauge transformation, Eq. (10) applied,
perturbative expansions can be performed. Of course, this
comes at the expense of an additional radial function. By

3The string configuration will be infinitely extended along the
3-direction in coordinate space.

4Here and in the following, the prime indicates a derivative
with respect to the radial argument ρ, and we omit the argument
for simplicity if no confusion can occur.
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construction, observables are independent of its detailed
form as long as the boundary conditions described above are
maintained. For the particular case of ξ2 ¼ π

2
this was

verified in Ref. [16]. In the present study, we will also
consider deviations from that particular parameter value. We
emphasize that the introduction of the gauge rotation,
Eq. (10) has effectively made our test isospin symmetry
local, since ξ1 has turned into a space dependent quantity.

To write down the Dirac Hamiltonian from which we
compute the spectrum of the fermion fluctuations we
extract the Hamiltonian, H from the Lagrangian, Eq. (4),
and then perform the left-handed gauge transformation
defined in Eq. (10): H ¼ ðPR þ VPLÞHðPR þ VPLÞ†. To
simplify the presentation we define ΔðρÞ≡ ξ1 − ξðρÞ and
separate the interaction part (again using dimensionless
variables)

H ¼ −i
�

0 σ · ρ̂

σ · ρ̂ 0

�
∂ρ −

i
ρ

�
0 σ · φ̂

σ · φ̂ 0

�
∂φ þ

�
1 0

0 −1

�
þHint; ð11Þ

Hint ¼
�
ðfH cosðΔÞ − 1Þ

�
1 0

0 −1

�
þ ifH sinðΔÞ

�
0 1

−1 0

�
IH

�
þ 1

2

∂ξ
∂ρ

�−σ · ρ̂ σ · ρ̂

σ · ρ̂ −σ · ρ̂

�
IH

þ s2
2ρ

�−σ · φ̂ σ · φ̂

σ · φ̂ −σ · φ̂

�
½fG sinðΔÞIGðΔÞ þ ðfG − 1Þ sinðξÞIGð−ξÞ�: ð12Þ

The isopsin matrices in this expression are

IH ¼
�

c2 s2eiφ

s2e−iφ −c2

�
and IGðxÞ ¼

�
−s2 sinðxÞ ½c2 sinðxÞ − i cosðxÞ�eiφ

½c2 sinðxÞ þ i cosðxÞ�e−iφ s2 sinðxÞ

�
: ð13Þ

Note that the latter appears with different arguments in Eq. (12). Nothing from the invariance along the path with s1s2 ¼
const is manifest in Eq. (12), and neither is the gauge invariance from Eq. (10).
To proceed, we diagonalize the Hamiltonian in a basis of wave functions

Ψlðρ;φÞ ¼
X
s;j¼�1

2

ðhρjhφ; SIjÞjϵlsji ð14Þ

that decouple radial and angular coordinates in the upper and lower components of the Dirac spinors (ϵ refers to the energy
eigenvalue defined in Eq. (17) below)

hρjϵlþþi ¼
�
f1ðρÞjlþþi
g1ðρÞjl −þi

�
; hρjϵlþ −i ¼

�
f2ðρÞjlþ −i
g2ðρÞjl − −i

�
;

hρjϵl −þi ¼
�
f3ðρÞjl −þi
g3ðρÞjlþþi

�
; hρjϵl − −i ¼

�
f4ðρÞjl − −i
g4ðρÞjlþ −i

�
; ð15Þ

The notation is such that the signs denote the spin and
isospin projection quantum numbers. For instance,

hφ; SIjlþþi ¼ eiðlþ1Þφ
�
1

0

�
S

⊗
�
1

0

�
I

: ð16Þ

Diagonalization means that we construct the eigenvalues of
the stationary Dirac equation

HΨ ¼ ϵΨ; ð17Þ

with jϵj < 1. For jϵj > 1 we construct the full scattering
matrix as a function of momentum k ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 − 1

p
. Since we

employ four componentDirac spinors,wehavefH; α3g ¼ 0

and the spectrum is charge conjugation invariant. Our final
result of the scattering problem (described inAppendixA) is
the Jost function νðtÞ for imaginary momentum k ¼ it, as
well as the first two terms of its Born expansion obtained by
iterating the interaction part Hint.

III. VACUUM POLARIZATION ENERGY

The main goal of the present investigation is to verify
that our treatment of the ultraviolet divergences does not
produce any dependence on the isospin angles ξ1 and ξ2
that cannot be expressed as s1s2. Any change in the
renormalization conditions is described by finite counter-
terms. As was the case for the classical energy Eq. (9), the
counterterms are manifestly functions of s1s2. We are

H. WEIGEL, M. QUANDT, and N. GRAHAM PHYSICAL REVIEW D 94, 045015 (2016)

045015-4



therefore free to employ the simplest renormalization
scheme, which is MS. For the profile functions we choose
a specific form and introduce dimensionless width param-
eters wG, wH, and wξ,

fHðρÞ ¼ 1 − exp

�
−

ρ

wH

�
;

fGðρÞ ¼ 1 − exp

�
−

ρ2

w2
G

�
; and

ξðρÞ ¼ ξ1

�
1 − exp

�
−
ρ2

w2
ξ

��
: ð18Þ

Observable values for the width parameters are in units of
m−1 since ρphys ¼ ρ=m. Recall again that ξðρÞ is just an
auxiliary profile describing the local gauge transformation,
Eq. (10), and that the VPE should be independent of wξ.
With these conventions on the ansatz parameters, the VPE
depends on the model parameters g, f, and v only via the
overall factorm2 ¼ ðvfÞ2; see also Eq. (9). In this sense the
dependence on the model parameters is completely con-
tained in the classical energy and the counterterms, and thus
requires little numerical effort.
The spectral method [14] to compute the VPE from

scattering data identifies the change of the density of states
caused by a static background as the derivative of the
scattering phase shift (also known as the phase of the Jost
function for real momenta) via the Krein-Friedel-Lloyd
formula; cf. Ref. [28] and references therein. More pre-
cisely, we obtain the phase shift as ð−i=2Þ lnðdet SÞ, where
S is the scattering matrix of the multichannel problem.
Integration over the momentum along the string then yields
the VPE per unit length. However, that integral is only
finite due to particular sum rules among the scattering data
[29]. Ultimately this leads to the interface formalism [30] in
which we only need to integrate over the momentum k of
the scattering problem in the plane perpendicular to the
string. In this situation, it is prudent to use the analytic
properties of the scattering data to perform the final
momentum integral over imaginary momentum t with
k ¼ it. This analytic continuation has several advantages:
First, it allows one to interchange the momentum integral
with the angular momentum sum [25], and second, it
implicitly collects the contributions to the VPE coming
from the bound states. This is beneficial, as there is
generally a large number of such states, in particular for
wide strings, and identifying them numerically is cumber-
some. To express the VPE as an integral over imaginary
momenta it is essential that the scattering phase shift is an
odd function of the real momentum. Typically this property
results from the Hamiltonian being real [31,32] which is,
however, not the case here: The gauge transformation,
Eq. (10), turns the global isospin transformation along the
path s1s2 ¼ const into a local one, and, consequently, there
is no global transformation on the basis states, Eq. (15),

which could result in a real Hamiltonian.5 In Appendix A
we show that nevertheless the phase shift is odd in the
momentum.
After collecting all information the VPE per unit length

of the string is expressed as

Evac ¼
m2

2π

Z
∞

0

dττ

�X
l

Dl½νðτ;lÞ − ν1ðτ;lÞ − ν2ðτ;lÞ�

−
cF
cB

X
l

D̄lν̄2ðτ;lÞ
�
þ E2 þ Ef:b:; ð19Þ

where we performed a final change of variable t → τ ¼ffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 1

p
to avoid the integrable singularity at t ¼ m. In

Eq. (19) ν is the full Jost function with orbital angular
momentum l and degeneracy factor Dl ¼ 2 − δl;−1 on the
imaginary momentum axis, while ν1 and ν2 are the first two
terms of its Born expansion with respect to Hint. These two
subtractions are performed before summing over angular
momentum channels. This is indispensable in order to
identify and disentangle the subleading logarithmic diver-
gence and the relevant finite contributions from the two
leading Born terms. In fact, the logarithmic divergence has
additional contributions from the third and fourth order
Feynman diagrams, and their total strength6 is cF. The
second order contribution of quantum corrections from a
complex boson field about a static background also
produces a logarithmic divergence. Let cB be its strength
and ν̄2ðτ;lÞ the second order Born term of its Jost function
for imaginary momenta in the angular momentum channel
l. Then the last term in curly brackets of Eq. (19) removes
the logarithmic divergence from the integral. Since there is
no further (sub-subleading) divergence, this subtraction can
be made after summing over angular momenta. In the last
step all subtractions are added back in the form of Feynman
diagrams. They are computed by standard techniques
using, e.g., dimensional regularization. Their divergent
parts are uniquely compensated by counterterms in a
definite renormalization scheme. All that remains are the
finite parts E2 and Ef:b: of the second order fermion and
fake boson diagrams, which correspond to the finite parts of
the subtractions ν1;2 and ν̄, respectively. Equation (19)
is the master formula to compute the VEV of string
configurations.
We stress that only the very first term under the integral

in Eq. (19) remains unchanged when varying the string
isospin orientation, provided that sinðξ1Þ sinðξ2Þ remains
constant. All other contributions are more general functions

5The Hamiltonian is still Hermitian, of course, and the single
particle energies are real.

6Here, the term “strength” means that the Feynman diagrams
produce the singularity cF=2π

4−D in dimensional regularization. In
Ref. [18] a factor of 4 was omitted in the definition of both cF and
cB, so that the ratio remains unaffected.
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of ξ1 and ξ2 and thus vary along our particular isospin path
of constant sinðξ1Þ sinðξ2Þ. These terms should eventually
cancel provided that the identity of Born and Feynman
series holds. However, individually they represent ill
defined ultraviolet divergent quantities that undergo distinct
regularization procedures, and it is therefore unclear
whether the spectral approach and, in particular, the
renormalization procedure spoil gauge invariance. We will
investigate this question numerically in the next section.

IV. RESULTS

The computation of the momentum integral and its
integrand in Eq. (19) is by far the most expensive part
of the numerical procedure. To begin with, the l ¼ −1 and
l ¼ 0 channels require particular consideration. They
involve Hankel functions of order zero whose irregular
component diverges logarithmically at small arguments
rather than by an inverse power law. Thus regular and
irregular components are numerically difficult to separate.
When integrating the radial differential equation
[Eqs. (A14) and (A8) for k ¼ it] we take the lower
boundary to be ρmin ∼ 10−50 for these two channels, and
from ρmin we extrapolate to ρ ¼ 0. In other channels a
lower boundary of ρmin ∼ 10−12 is fully reliable. Angular
momenta are typically summed up to lmax ¼ 600 or
lmax ¼ 700 above which numerical stability for Hankel
functions at small arguments is lost. For background
profiles with small or moderate widths this gives sufficient
accuracy. Once the angular momentum sum is completed,
the analog contribution from the fake boson (mimicking the
logarithmic ultraviolet divergences from third and fourth
order Feynman diagrams) is subtracted and the large τ

behavior of the integrand is treated by fitting a 1=τ3 tail;
cf. the right panel of Fig. 1. Finally, for wider profiles an
additional extrapolation of the angular momentum sum to
lmax → ∞ is necessary which typically adds about 1%� � �
2% to the VPE.
We start with a few examples, displayed in Table I and

Fig. 1, in order to verify the independence from the gauge
profile ξðρÞ. The variation of the individual contributions to
the VPE is an order of magnitude larger than that of the
total result. The tiny variation of the latter is due to errors
from the numerical simulation. The cancellation of the
gauge variant parts for the VPE is most obvious when
adding them as absolute values which contains spreads of
up to 10%. A large variation appears in the fermion part of
the momentum integral (i.e., the contribution from the first
term in curly brackets) in Eq. (19), as can be seen in Fig. 1.
Even though we have just established that the VPE does

not vary with the width of the gauge profile, it is prudent for
numerical efficiency and stability to choose that width
similar to one in the profile functions of the physical boson

FIG. 1. Partial sums that enter the VPE, Eq. (19), for the string profiles with wG ¼ wH ¼ 4.82, ξ1 ¼ 0.3π, and ξ2 ¼ 0.25π. The left
panel shows the fermion part for four different values of wξ. The right panel shows the total integrand for three values of wξ relative to
wξ ¼ 2.0. The double-dashed lines that start at τ ¼ 2 in the right panel are simple power decays which serve to guide the eye on the large
τ behavior. Note the different scales in the two panels.

TABLE I. Example for the invariance with respect to the local
gauge transformation, Eq. (10) with EFD ¼ E2 þ Ef:b:. Listed are
all ingredients from Eq. (19) that explicitly depend on the width
wξ of the gauge profile ξðρÞ. Parameters are wG ¼ wH ¼ 4.82,
ξ1 ¼ 0.3π, and ξ2 ¼ 0.25π. In all cases an identical fake boson
profile was employed because it affects EFD.

wξ Eδ cF EFD Evac jEδj þ jEFDj
2.0 0.3010 −10.00 −0.0108 0.2902 0.3118
3.5 0.2974 −11.59 −0.0072 0.2902 0.3046
5.0 0.2953 −14.29 −0.0047 0.2905 0.3000
6.5 0.2915 −17.82 −0.0015 0.2901 0.2930
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fields, because otherwise large angular momenta play too
significant a role.
In Fig. 2 we show the strongly varying fermion part of

the integrand for the VPE for sets of isospin angles that
produce identical products s1s2. Despite the pronounced
variation of this particular piece, the total VPE only differs
at the order of the numerical accuracy as can clearly be seen
from the data in Table II. The comparison with the
(incorrect) addition of the absolute values of the gauge
variant contributions further illustrates this observation.
For ξ2 ¼ π

2
the Hamiltonian is real. In this simpler case

the VPE was computed for about 50 sets of width
parameters (wH, wG; cf. Appendix B) and eight different
values for ξ1 ∈ ½0; π

2
� in Ref. [18]. These results7 were then

used to establish stable charged cosmic strings for fermion
masses only slightly larger than that of the top quark. Here
we consider the same sets of width parameters for two pairs
of isospin angles that yield the identical products s1s2. In
the first of the two pairs we simply swap the isospin angles
as compared to the earlier calculations [18] and show the
resulting VPE (in the MS renormalization scheme) in
Fig. 3. Obviously the computed VPEs agree within the
numerical accuracy for the full range of considered width
parameters. However, merely swapping the isospin angles
is not sufficient to fully establish dependence on only the
product s1s2. For example, there could be gauge variant
contributions involving sinðξ1 þ ξ2Þ. To rule out such a
dependence, we have made a second study and compared
the two sets ðξ1; ξ2Þ ¼ ð0.1; 0.4Þπ and ðξ1; ξ2Þ ¼
ð0.3; 0.11834Þπ. The resulting VPEs are shown in

Fig. 4. Again we observe perfect agreement for the
computed VPEs as the tiny numerical discrepancies are
not resolved within Figs. 3 and 4. So we conclude that the
spectral methods to compute the VPE of cosmic strings
indeed preserve gauge and isospin invariance even though
some of its components do not.
The comparison of the results in Fig. 3 with those in

Fig. 4 suggests that the VPE depends on the isospin
orientation only mildly, except for the very narrow con-
figurations that suffer from the Landau ghost problem
[18,33,34]. This is not quite the case: in the current study
our goal is to compare the VPE for configurations with
equal s1s2, as in either Fig. 3 or Fig. 4. To reveal the
discussed invariance, the difference between the two angles
is usually chosen deliberately large, so that one of the
angles is always small and so is the product s1s2. When we
lift this restriction we find, e.g., with wG ¼ wH ¼ 6.0 that
Evac increases from 0.438m2 to 0.479m2 between s1s2 ¼ 0
and s1s2 ¼ 1.
In a separate study we have implemented a boundary

condition at large separation from the string to construct
discretized basis states that serve to compute matrix
elements of the Dirac Hamiltonian, Eq. (12). These matrix
elements form a complex Hermitian matrix that we have
diagonalized using LAPACK [35]. Eigenvalues below thresh-
old are identified as bound state energies. We have verified
that all energy eigenvalues of the Dirac Hamiltonian remain
unchanged when altering ξ1 and ξ2 such that s1s2 stays
constant. This is expected for bound states that have no
support in the vicinity of the boundary. Scattering states,
however, reach out to spatial infinity and are thus sensitive
to the discretizing boundary conditions which are not
manifestly gauge invariant; so the invariance of these states
comes as some surprise. In addition, this discretization
approach requires one to impose a numerical cutoff on the
energy to produce a finite dimensional Hamiltonian matrix.
The levels slightly below that cutoff exhibit a soft variation
along the path of invariance in isospace. This reflects the
fact that unitarity of the transformation is lost for a finite
dimensional Hilbert space. Similarly, such near-cutoff
energies do also vary with the gauge profile ξðρÞ.
Renormalized VPE calculations based on this or similar
numerical discretization approaches [36] will probably be

FIG. 2. The fermion part of the momentum integrand in
Eq. (19) (similar to the left panel of Fig. 1). The selected width
parameters are wH ¼ wG ¼ 3.5.

TABLE II. Contributions to Eq. (19) and their variations with
the isospin angles. In all cases we have s1s2 ≈ 0.29389. The
width parameters of the boson profiles are wG ¼ wH ¼ 3.5.
The results were obtained with various values for the widths
of the gauge and fake boson profiles.

ξ1=π ξ2=π Eδ cF EFD Evac jEδj þ jEFDj
0.1 0.4 0.1504 −4.913 0.0014 0.1518 0.1518
0.4 0.1 0.1702 −8.541 −0.0180 0.1521 0.1882
0.3 0.11834 0.1496 −6.814 0.0021 0.1517 0.1517
0.2 1=6 0.1639 −5.615 −0.0117 0.1522 0.1758

7We have reproduced these earlier results for ξ2 ¼ π
2
using the

more general numerical simulation for the complex Hamiltonian.
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erroneous. In the spectral approach, we consequently use
the discretization technique only for the bound states, while
scattering states are treated in the continuum formulation.
Finally we note in passing that we have numerically

verified the bound state energies from the above discreti-
zation computation against the roots of the Jost function on
the imaginary axis and also ensured that the number of
bound states satisfies Levinson’s theorem.8

V. CONCLUSION

There are numerous obstacles in computing the VPE of
string type configuration in gauge theories that are similar
to the standard model of particle physics. Within the so-
called spectral approach, these obstacles can be overcome
by an interplay of techniques which individually are not
gauge invariant. If the spectral approach is a meaningful
tool in gauge theories, it must ensure that the gauge variant
contributions eventually cancel. To the best of our knowl-
edge there is no formal proof of this cancellation at the
moment, and it is also far from obvious because the gauge-
variant contributions are related to ultraviolet divergent
quantities that undergo different methods of regularization.

FIG. 3. The vacuum polarization energy for different background profiles with the two isospin angles swapped. In the right panel we
zoom in by omitting narrow profiles that suffer from the Landau ghost problem [18,33,34]. Details of the profiles are listed in
Appendix B.

FIG. 4. Same as Fig. 3 for a second pair of isospin angles.

8For the bound states the discretization procedure is advanta-
geous because root finding algorithms may fail to identify
degenerate bound states that appear in multichannel scattering.
Also identifying the roots very close to threshold is numerically
cumbersome.
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Hence analytical or numerical verifications of gauge
invariance in the spectral approach are indispensable.
In the present study we have therefore comprehensively

revisited the computation of the VPE for string type
configurations arising from fermion fluctuations, in order
to justify and validate earlier computations (carried out in a
limited parameter space) that suggested novel solutions in
theories closely related to the standard model [37]. Those
earlier studies were implicitly based on the assumption that
the spectral method would not spoil gauge invariance as the
identification of Born and Feynman series would hold even
for (differently regularized) divergent contributions. Here
we have extended the parameter space for an independent
numerical corroboration of this assumption. It employs the
invariance of the spectrum of the Dirac Hamiltonian along a
particular path in the enlarged parameter space. This
invariance must be reflected in the VPE. However, this
is not manifest in the actual VPE calculation, because
regularization and renormalization indeed require delicate
operations on divergent contributions that vary under the
isospin transformation.
Our numerical simulations show that individual contri-

butions that are not gauge invariant but need to be included
for regularization and renormalization may vary by 10% or
more along the path of isospin invariance. But then, the
contributions combine such that these variations actually do
cancel in the total result, leading to changes of the fermion
quantum energy of the cosmic string along the path of
isospin invariance of the order of only a fraction of a
percent. Such variations are within the bounds of the
numerical accuracy. Thus we have verified numerically
that the spectral method preserves gauge invariance and is
hence a valid tool to study quantum corrections to extended
configurations, such as cosmic strings in the standard
model of particles.
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APPENDIX A: SCATTERING PROBLEM

Scattering data are essential to the spectral method to
compute the VPE because they determine the density of
states. After continuing to complex momenta, the Jost
function on the imaginary axis is the major ingredient.
However, our scattering problem is more general than that
typically discussed in textbooks [31,32] as the potential is
not real, and thus complex conjugation does not produce
the second independent solution. In this appendix we
describe the resulting changes up to the point where we
observe that the sum of the eigenphase shifts is antisym-
metric when reflecting the real momentum k → −k. From
there, the techniques of Ref. [18] can be copied.

Let ð~fÞj and ð~gÞj with j ¼ 1;…; 4 denote the linearly
independent solution of the Dirac equation and combine
them to matrices

ð~fÞj → ½F ·Hu�j and ½F � ·H�
u�j;

ð~gÞj → κ½G ·Hd�j and κ½G� ·H�
d�j: ðA1Þ

in which the free solutions with outgoing boundary con-
ditions (recall the we consider unit winding of the string)

Hu ¼ diagðHð1Þ
lþ1ðkρÞ; Hð1Þ

l ðkρÞ; Hð1Þ
lþ2ðkρÞ; Hð1Þ

lþ1ðkρÞÞ;
ðA2Þ

Hd ¼ diagðHð1Þ
lþ2ðkρÞ; Hð1Þ

lþ1ðkρÞ; Hð1Þ
lþ1ðkρÞ; Hð1Þ

l ðkρÞÞ;
ðA3Þ

have been factorized. The Hð1Þ
l ðzÞ are Hankel functions of

the first kind and describe the outgoing waves. The relative
weight of upper and lower Dirac components,

κ ≡ k
ϵþm

¼ ϵ −m
k

; ðA4Þ

has been introduced to make Hermiticity in the coupled
equations explicit; see below. It is convenient to define
2 × 2 submatrices

H ¼ αH

�
1 0

0 1

�
; P ¼ αP

�−ic2 −s2
s2 ic2

�
¼ −P†;

G ¼ αG

�
s2sΔ cΔ þ ic2sΔ

cΔ − ic2sΔ −s2sΔ

�

þ αξ

� −s2sξ cξ − ic2sξ
cξ þ ic2sξ s2sξ

�
þ αr

�−ic2 −s2
s2 ic2

�
:

ðA5Þ

Note that for c2 ¼ 0 and s2 ¼ 1 these are the matrices as
defined in Eq. (B3) of Ref. [18] with Gþ ¼ G and
G− ¼ G†. With these definitions the potential matrices
become very compact,

Vuu ¼
�

H G

G† H

�
; Vdd ¼

�
−H G†

G −H

�
;

Vud ¼ −
�
G P

P G†

�
; Vdu ¼

�
−G† P

P −G

�
¼ V†

ud:

ðA6Þ

Even though the problem is manifestly Hermitian, the
matrix elements are no longer real.
The differential equations for outgoing boundary con-

ditions are also discussed in Appendix B of Ref. [18]
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∂ρF ¼ ½M̄ff þOd� ·F þF ·MðrÞ
ff þ k½M̄fg þC� ·G ·Zd;

∂ρG¼ ½M̄gg þOu� ·GþG ·MðrÞ
gg þ k½M̄gf −C� ·F ·Zu;

ðA7Þ

where the 4 × 4 coefficient matrices without an overline are
purely kinematic,

Zu ¼ diag

�
Hð1Þ

lþ1ðkρÞ
Hð1Þ

lþ2ðkρÞ
;
Hð1Þ

l ðkρÞ
Hð1Þ

lþ1ðkρÞ
;
Hð1Þ

lþ2ðkρÞ
Hð1Þ

lþ1ðkρÞ
;
Hð1Þ

lþ1ðkρÞ
Hð1Þ

l ðkρÞ

�
;

Zd ¼ ðZuÞ−1;

Ou ¼
1

ρ
diagð−ðlþ 2Þ;−ðlþ 1Þ;lþ 1;lÞ;

Od ¼
1

ρ
diagðlþ 1;l;−ðlþ 2Þ;−ðlþ 1ÞÞ; ðA8Þ

and C ¼ diagð−1;−1; 1; 1Þ. The matrices multiplying F
and G from the right are also independent of the back-
ground potential,

MðrÞ
ff ¼ MðrÞ

ff ðkÞ ¼ −kC · ZdðkÞ −Od and

MðrÞ
gg ¼ MðrÞ

gg ðkÞ ¼ kC · ZuðkÞ −Ou: ðA9Þ

Genuine interactions from the string background are solely
contained in the overlined matrices in Eq. (A7). Using the
same 2 × 2 matrix notation as above, we have explicitly

M̄gg ¼ CVud ¼
�

G P

−P −G†

�
;

M̄ff ¼ −CVdu ¼
�
−G† P

−P G

�
;

M̄gf ¼
1

E −m
CVuu ¼

1

E −m

�−H −G
G† H

�
;

M̄fg ¼ −
1

Eþm
CVdd ¼

1

Eþm

�
−H G†

−G H

�
: ðA10Þ

Note that, in comparison to Ref. [18], a factor of k has been
reshuffled k from the definitions of M̄gf and M̄fg into the
differential equations to make the k dependence more
transparent. Recall also that the factor k [more precisely
the factor κ ¼ k=ðEþmÞ] arises from the relative weight
of the upper and lower components. Since E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
,

the new definitions in Eq. (A10) are now invariant under
k ↔ −k. The solutions to the differential equations (A7)
are subject to the boundary conditions F → 1 and G → 1
at ρ → ∞.
If the interactions were real, the scattering solution and

the scattering matrix would be defined via Eqs. (27)–(29) of
Ref. [18]; however, they are not. We therefore have to

reconstruct the solutions with incoming boundary condi-
tions explicitly. To this end we introduce (recall that

Hð2Þ
ν ðxÞ ¼ ½Hð1Þ

ν ðxÞ�� for real x)

Z̄u ¼ Z̄uðkÞ

¼ diag

�
Hð2Þ

lþ1ðkρÞ
Hð2Þ

lþ2ðkρÞ
;
Hð2Þ

l ðkρÞ
Hð2Þ

lþ1ðkρÞ
;
Hð2Þ

lþ2ðkρÞ
Hð2Þ

lþ1ðkρÞ
;
Hð2Þ

lþ1ðkρÞ
Hð2Þ

l ðkρÞ

�

and Z̄d ¼ ðZ̄uÞ−1 ðA11Þ

that enter

∂ρF̄ ¼ ½M̄ff þOd� · F̄ þ F̄ ·N ðrÞ
ff þ k½M̄fg þC� · Ḡ · Z̄d;

∂ρḠ¼ ½M̄gg þOu� · Ḡþ Ḡ ·N ðrÞ
gg þ k½M̄gf −C� · F̄ · Z̄u;

ðA12Þ

with the additional definitions (note the overline “ −” added
to Zu and Zd)

N ðrÞ
ff ¼ N ðrÞ

ff ðkÞ ¼ −kC · Z̄dðkÞ −Od and

N ðrÞ
gg ¼ N ðrÞ

gg ðkÞ ¼ kC · Z̄uðkÞ −Ou: ðA13Þ

According to Eq. (9.1.39) in Ref. [38] we have

Hð2Þ
ν ðzÞ ¼ −eiνπHð1Þ

ν ð−zÞ ¼ −ð−1ÞνHð1Þ
ν ð−zÞ;

and thus

Z̄uðkÞ ¼ −Zuð−kÞ and Z̄dðkÞ ¼ −Zdð−kÞ:

This implies

N ðrÞ
ff ðkÞ ¼ MðrÞ

ff ð−kÞ and N ðrÞ
gg ðkÞ ¼ MðrÞ

gg ð−kÞ:

Hence the wave equations (A12) can be written as

∂ρF̄ ¼ ½M̄ff þOd� · F̄ þ F̄ ·MðrÞ
ff ð−kÞ

− k½M̄fg þ C� · Ḡ · Zdð−kÞ;
∂ρḠ ¼ ½M̄gg þOu� · Ḡþ Ḡ ·MðrÞ

gg ð−kÞ
− k½M̄gf − C� · F̄ · Zuð−kÞ: ðA14Þ

Equations (A14) are also obtained from Eqs. (A7) by
replacing k → −k. Since F , G, F̄ , and Ḡ all obey the same
boundary conditions at spatial infinity, this implies that

F̄ ðkÞ ¼ F ð−kÞ and ḠðkÞ ¼ Gð−kÞ: ðA15Þ

The scattering solution constructed from theF components
read
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Ψ ¼ F̄ ·H�
u − ðF ·HuÞ · S; ðA16Þ

and regularity at ρ → 0 determines the scattering matrix

S ¼ lim
ρ→0

H−1
u · F−1 · F̄ ·H�

u: ðA17Þ

The sum of the eigenphase shifts thus finally is

δlðkÞ ¼
1

2i
ln det lim

ρ→0
F lðρ; kÞ−1 · F̄ lðρ; kÞ

¼ i
2
½det trlim

ρ→0
F lðρ; kÞ − det trlim

ρ→0
F lðρ;−kÞ�;

ðA18Þ

where we have restored all the arguments and made use of
the reflection symmetry derived in Eq. (A15). This clearly
shows that the eigenphase shift is odd under k. Thus the
phase shift part of the VPE can indeed be computed from
the Jost function at imaginary momenta [14]. In Ref. [18]
the derivation of the entries in Eq. (19) from continuation of
Eqs. (A7) or (A12) has been discussed in detail and must
not be repeated here.

APPENDIX B: RADIAL PARAMETERS

In this appendix we list, within Table III, the details of
the background profiles that were used for the numerical
simulations in Sec. IV. The definition of the variational
width parameters is given in Eq. (18).
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