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The effective low energy Lagrangian of CPN−1 models in d < 4 dimensions can be constructed in the
large N limit by solving the saddle point equations in the presence of a constant field strength. The two-
dimensional case is explicitly worked out, and possible applications are briefly discussed.
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Many properties of quantum field theories can be
understood by the evaluation and the study of effective
actions depending on the degrees of freedom relevant to the
space and energy scales under consideration. In the low
energy limit, the approach leading to the construction of the
effective potential [1,2] has proven to be quite useful in
many instances.
However, the extension of the method to gauge theories

is not straightforward because one cannot choose nontrivial
vacuum expectation values for the gauge fields without
breaking gauge invariance. A way out involves assuming
constant electric and magnetic fields, in which case a gauge
invariant effective theory can be constructed. One may then
obtain the Euler-Heisenberg Lagrangian [3], describing the
low energy sector of QED.
Here, we present a slightly different approach, exploiting

the properties of the large N limit. We explore in detail the
gauge sector of CPN−1 models [4–8], but in principle the
method might be extended to large N scalar electrodynam-
ics. CPN−1 models may be interesting for possible appli-
cations to condensed matter physics [9] but also because
their two-dimensional version shares with QCD many
important properties (asymptotic freedom, confinement,
θ dependence); and therefore, it may be employed as a
laboratory in order to test theoretical ideas that cannot be
easily verified in QCD [10].
The essential ingredient of our method amounts to

recognizing that the saddle point equations describing
the model in the large N limit can be explicitly solved
also in the presence of space-dependent gauge fields, as
long as they correspond to constant (gauge invariant) field
strengths. Aside from the technicalities of the derivation,
the final result is an effective low energy Lagrangian
depending only on gauge invariant fields and allowing
also for the study of the response to the presence of (gauge
invariant) sources.
CPN−1 models are defined by the action

S0ðz; z̄Þ ¼
N
2f

Z
ddxDμz̄Dμz; ð1Þ

where z is an N-component complex vector satisfying
z̄z ¼ 1, Dμ ≡ ∂μ þ iAμ, and Aμ ≡ iz̄∂μz.

One may implement the constraints by introducing
Lagrange multiplier fields α and λμ and performing the
Gaussian integration over the unconstrained z fields,
obtaining the effective action

S1ðλμ; αÞ ¼ NTrLn½−DμDμ þ iα� − N
2f

Z
ddx½iα�; ð2Þ

where now Dμ ≡ ∂μ þ iλμ.
In order to build up generating functionals for the

correlations, one may add source terms to the action. If
one is interested only in the gauge invariant correlations
of the gauge fields, the coupling to the source Jμν may take
the form

N
Z

ddxFμνJμν; ð3Þ

where Fμν ≡ ∂μλν − ∂νλμ, and we introduced a factor N in
the definition of the source for the purpose of investigating
the large N behavior of the system.
In the large N limit, the functional integration over the

fields α and λμ with a measure determined by the action S1
may be replaced by a saddle point evaluation implying
minimization of the action with respect to the fields.
Let us now define the dressed propagator Ωðx; y; α; λμÞ,

solving the equation

½−DμDμ þ iα�Ωðx; y; α; λμÞ ¼ ð2πÞdδðdÞðx − yÞ; ð4Þ
where we adopted a dimensional regularization in order to
take care of singularities that may be present for physical
values of d.
The saddle point equations for the action S1 in the

presence of a (gauge invariant) source are the following:

−
i
N

δS1
δαðxÞ≡Ωðx; x;α; λμÞ −

1

2f
¼ 0; ð5Þ

i
N

δS1
δλμðxÞ

≡ 2DμΩðx; x; α; λμÞ ¼ 2∂νJμν: ð6Þ

The first equation does not depend on Jμν, and therefore,
it can be solved (in principle) for arbitrary values of λμðxÞ,
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finding a function αðλμðxÞÞ. In the logic of the saddle point
evaluation of the functional integral, substituting αðλμÞ in
the action is equivalent to performing the integration over
the α field.
The resulting effective action SλðλμÞ≡ S1ðλμ;αðλμÞÞ

depends only on the gauge field. Therefore the 2n-point
effective vertices appearing in Sλ must enjoy explicit gauge
invariance. It is trivial to show that the definition of αðλμÞ
implies also that the value of λμ found by minimizing S1
will minimize also Sλ because the total variation of Sλ with
respect to λμ coincides with the partial variation of S1 with
respect to λμ.
The function αðλμÞ can be determined in the form of a

series in the powers of λμ and of its derivatives, and it is
easy to check that the series is even in λμ, consistent with
the fact that the resulting effective action must not include
terms that are odd in the gauge field.
The coefficients of the series can be interpreted in

terms of Feynman diagrams, and the effect of substituting
αðλμÞ in S1 amounts to combining the bare 2n-gauge field
vertices of S1 with all the tree-level counterterms contain-
ing lower order mixed vertices connected only by scalar
propagators. This is exactly the procedure needed in
order to restore gauge invariance in the “dressed” (or
“subtracted”) gauge field vertices that will appear in Sλ.
As a byproduct of this approach, the combinatorics of the
“dressing” may be extracted from the perturbative expan-
sion of the first saddle point equation.
In turn, solving the saddle point equation for the action

Sλ in the presence of a source and substituting the result
in Sλ corresponds to building up the generating function for
the gauge invariant (connected) correlations of the gauge
fields by summing up all the contributions coming from the
tree approximation of the effective theory.
Because of gauge invariance, the effective action cannot

have a nontrivial dependence from a constant field λμ, and it
must be a function of the field strength and of its derivatives.
The dressed vertices appearing in the effective action must
be transverse, and therefore, their low momentum behavior
must be described by homogeneous 2n-degree polynomials
in the momenta. In particular, their two-dimensional tensor
structure is bound to assume the form

Y2n
i¼1

εμiνip
ðiÞ
νi ; ð7Þ

with appropriate generalizations to higher dimensions,
holding for all d < 4.
Similar arguments may be applied to the function αðλμÞ

finding that it must be gauge invariant, and in the low
energy limit, it must be a (space-independent) function of
(constant) Fμν.
Therefore, in the zero-field strength limit, λμ may be set

equal to zero, and the first saddle point equation becomes

Ωðx; x; α0; 0Þ ¼
Z

ddp
ð2πÞd

1

p2 þ iα0

¼ Γð1 − d
2
Þ

ð4πÞd2 ½iα0�d2−1 ¼
1

2f
; ð8Þ

allowing for the elimination of the coupling f in favor of
the mass scale m2 ≡ iα0.
The direct calculation of the low energy limit of αðλμÞ for

small field strength allows us to verify that

iαðFμνÞ ¼ m2 þ
�
d
2
− 2

�
FμνFμν

12m2
þOðF4

μνÞ: ð9Þ

In order to construct the gauge invariant effective potential
to all orders in the field strength, we are left with the task of
extracting the function αðFμνÞ from the solution of the
saddle point equation

Ωðx; x; α; λμÞ ¼ Ωðx; x; α0; 0Þ: ð10Þ

However, in the case of constant Fμν, we may assume
λμ ¼ 1

2
Fμνxν (in the transverse gauge), and a significant

simplification occurs in the evaluation of Ω since

Ω−1 ¼ −∂μ∂μ þ FμνLμν þ
1

4
FμρFνρxμxν þ iα; ð11Þ

where Lμν ¼ iðxμ∂ν − xν∂μÞ is the angular momentum
operator.
In order to exploit dimensional regularization, we may

decompose the space degrees of freedom noticing that for
d < 4 the tensor FμρFνρ is a projection operator on a two-
dimensional subspace. Hence, it is possible to write

Ω−1 ¼ ½p2
1 þ p2

2 þ Bðx1p2 − x2p1Þ þ
1

4
B2ðx21 þ x22Þ�

þ Aþ p2⊥; ð12Þ
where B is the modulus of the nontrivial eigenvalues of Fμν,
A ¼ iα and p⊥

μ are the components of momentum orthogo-
nal to the ðx1; x2Þ plane.
We may now define the (creation and annihilation)

operators

a� ≡ p1 � ip2 þ
i
2
Bðx1 � ix2Þ;

a†� ≡ p1 ∓ ip2 −
i
2
Bðx1 ∓ ix2Þ; ð13Þ

and notice that it is possible to write

Ω−1 ¼ a†�a� þ Bþ Aþ p2⊥: ð14Þ
As a consequence, Ω−1 can be interpreted as a

Hamiltonian whose eigenstates are the eigenstates of
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energy and angular momentum of a two-dimensional
quantum harmonic oscillator, and Ω is the corresponding
Green’s function. Hence, we can formally write

Ωðx; yÞ ¼
Z

dd−2p⊥
ð2πÞd−2 e

ip⊥
μ ðx⊥μ −y⊥μ Þ

×
X
n;m

ψnmðx1; x2Þjψ�
nmðy1; y2Þ

ðn�mþ 1ÞBþ Aþ p2⊥
; ð15Þ

and in particular,

Ωðx;xÞ¼
Z

dd−2p⊥
ð2πÞd−2

X
n;m

jψnmðx1;x2Þj2
ðn�mþ1ÞBþAþp2⊥

¼Γð2− d
2
Þ

ð4πÞd2−1
X
n;m

½ðn�mþ1ÞBþA�d2−2jψnmj2: ð16Þ

Moreover, since the only excitations of the
“Hamiltonian” are left (or right) circular quanta, we can
take advantage of this fact and express the result in terms of
the wave functions ψnlnrðxþ; x−Þ, where x� ≡ x1 � ix2
and nl;r ¼ n�m.
Let us now describe the properties of the wave functions

ψnlnrðxþ; x−Þ:

ψnlnrðxþ; x−Þ ¼
βffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πnl!nr!
p Pnlnrðβxþ; βx−Þe−

1
2
β2xþx− ; ð17Þ

where β≡ ffiffiffiffiffiffiffiffi
B=2

p
, and we introduced the polynomials

Pabðsþ; s−Þ≡
X
l

ð−1Þl
l!

a!ðsþÞa−l
ða − lÞ!

b!ðs−Þb−l
ðb − lÞ! : ð18Þ

It is possible to prove the following general identity:

X
n

1

n!
Panðsþ; s−ÞP�

bnðtþ; t−Þ

¼ ð−1ÞbPabðtþ − sþ; t− − s−Þetþs− ; ð19Þ

and as a special case, performing the summation over the
right circular quanta

X
nr

ψnlnrðxþ;x−Þψnlnrðyþ;y−Þ

¼ e
1
2
β2ðx−yþ−xþy−Þð−1Þnl βffiffiffi

π
p ψnlnlðyþ−xþ;y− −x−Þ; ð20Þ

where the exponent in the rhs is purely imaginary.

As a consequence, we obtain

Ωðx; yÞ ¼
Z

dd−2p⊥
ð2πÞd−2 e

ip⊥
μ ðx⊥μ −y⊥μ Þ

ffiffiffiffiffiffi
B
2π

r
ei

B
2
ðx1y2−x2y1Þ

×
X
nl

ð−1Þnl ψnlnlðyþ − xþ; y− − x−Þ
ð2nl þ 1ÞBþ Aþ p2⊥

; ð21Þ

where ψnlnl actually depends only on the combination
ðyþ − xþÞðy− − x−Þ≡ ½ðy1 − x1Þ2 þ ðy2 − x2Þ2�.
It is worth noticing that the space dependence of Ωðx; yÞ

is dictated by translation invariance, rotation invariance,
and gauge covariance.
In particular, we may exploit the translation invariance of

the problem and recognize that in the case of constant field
strength a translation amounts to a gauge transformation,
and it is possible to find a translation such that Ω−1

becomes explicitly translation invariant and the phase in
Ω is absorbed, making the new Ω explicitly translation
invariant. Moreover, because of rotation invariance, the
term depending on the angular momentum Lμν in the new
Ω−1 can be set equal to 0.
In any case, observing that ψnlnlð0; 0Þ ¼ ð−1Þnl

ffiffiffiffi
B
2π

q
, we

immediately obtain the relationship

Ωðx; xÞ ¼ Γð2 − d
2
Þ

ð4πÞd2
X
nl

2B½ð2nl þ 1ÞBþ A�d2−2: ð22Þ

This expression is formally divergent for physical values
of d, and it will need further regularization.
To this purpose, the expression for Ωðx; x; A; BÞ can be

rephrased in the form [11]

Ωðx; x;A; BÞ ¼
Z

∞

0

dz

ð4πÞd2 z
1−d

2

X∞
n¼1

2Be−zðAþBþ2nBÞ

¼
Z

∞

0

dz

ð4πÞd2 z
−d
2

zB
sinh zB

e−zA: ð23Þ

Noticing that

Ωðx; x;m2; 0Þ ¼
Z

∞

0

dz

ð4πÞd2 z
−d
2e−zm

2

; ð24Þ

it is now easy to regularize the above expression by writing

Ωðx; x;A;BÞ −Ωðx; x; m2; 0Þ

¼
Z

∞

0

dz

ð4πÞd2 z
−d
2

�
zB

sinh zB
e−zA − e−zm

2

�
: ð25Þ

The lhs of this equation is finite for all d < 4, and by
using the expansion
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x
sinh x

¼ 1þ
X∞
n¼1

ð2 − 22nÞB2n

ð2nÞ! x2n ≡X∞
n¼0

Cn

ð2nÞ! x
2n; ð26Þ

where B2n are the Bernoulli numbers, changing variables to
zA ¼ t and performing some trivial integration one finds
the asymptotic series representation

Ωðx; x;A; BÞ − Ωðx; x;m2; 0Þ

¼ 1

ð4πÞd2 A
d
2
−1
�
Γ
�
1 −

d
2

��
1 −

�
A
m2

�
1−d

2

�

þ
X∞
n¼1

Γð2nþ 1 − d
2
Þ

Γð2nþ 1Þ Cn

�
B
A

�
2n
�
: ð27Þ

In order to solve the first saddle point equation and find
AðB2Þ, the rhs of the above expression must be set equal
to zero.
In the lowest order of the expansion, one may reproduce

the above mentioned result

AðB2Þ ≈m2 −
1

6

�
2 −

d
2

�
B2

m2
þOðB4Þ: ð28Þ

It is also possible to confirm the perturbative result,
holding in the limit when d → 4 from below,

AðB2Þ → m2 þOð4 − dÞ: ð29Þ

A representation of the effective potential in d dimen-
sions may be obtained from the integration of the above
result:

VðA;BÞ − VðA; 0Þ ¼ −
�
A
4π

�d
2
X∞
n¼1

Γð2n − d
2
Þ

Γð2nþ 1ÞCn

�
B
A

�
2n
:

ð30Þ

In two dimensions, one may follow a different strategy in
the evaluation of the integrals, by writing

Ωðx; x;A; BÞ −Ωðx; x;m2; 0Þ

¼ 1

4π

Z
∞

0

dz

�
2Be−zðAþBÞ

1 − e−2zB
−
e−zm

2

z

�

¼ 1

4π

Z
∞

0

dt
�
e−t

AþB
2B

1 − e−t
−
e−t

t

�
þ
�
e−t

t
−
e−t

m2

2B

t

�

¼ −
1

4π

�
ψ

�
1

2
þ A
2B

�
þ ln

2B
m2

�
; ð31Þ

where ψðzÞ≡ d
dz lnΓðzÞ is the digamma function.

It is now possible to reconstruct the complete effective
potential by integrating the above expression with respect
to A and imposing proper boundary conditions in order to
determine the residual dependence on B.

The two-dimensional result is then

V ¼ 1

4π

�
B ln 2π − A ln

2B
m2

− 2B lnΓ
�
1

2
þ A
2B

��

¼ A
4π

�
1 − ln

�
A
m2

�
þ
X∞
n¼1

Cn

2nð1 − 2nÞ
�
B
A

�
2n
�
: ð32Þ

As a consequence, we also obtain

∂V
∂A ¼ −

1

4π

�
ψ

�
1

2
þ A
2B

�
þ ln

2B
m2

�

¼ 1

4π

�X∞
n¼1

Cn

2n

�
B
A

�
2n
− ln

A
m2

�
; ð33Þ

∂V
∂B ¼ 1

4π

�
ln 2π −

A
B
− 2 lnΓ

�
1

2
þ A
2B

�
þ A
B
ψ

�
1

2
þ A
2B

��

¼ 1

4π

�X∞
n¼1

Cn

1 − 2n

�
B
A

�
2n−1

�
: ð34Þ

The saddle point equation ∂V
∂A ¼ 0 may now be employed

in order to find the function AðB2Þ. The first few terms in
the expansion of A

m2 in powers of B
m2 are

A
m2

≈ 1 −
1

6

�
B
m2

�
2

þ 3

40

�
B
m2

�
4

þO

��
B
m2

�
6
�
: ð35Þ

The function VλðBÞ≡ VðAðB2Þ; BÞ is an even function
of B, and it is the generating functional for the low energy
vertices of the gauge fields in the large N limit of CPN−1

models, thus acting as the two-dimensional counterpart of
the Euler-Heisenberg Lagrangian.
The first few terms in the expansion of VλðBÞ are

VλðBÞ ≈
1

4π

�
m2 þ 1

6

B2

m2
−

1

40

B4

m6
þO

�
B6

m10

��
: ð36Þ

Another possible application of the above results may
consist in the evaluation of the leading order in the 1=N
expansion of the θ dependence of the vacuum energy. To
this purpose, it is necessary to solve the coupled equations

∂V
∂A ¼ 0;

∂V
∂B ¼ i

2π

θ

N
: ð37Þ

In turn, this requires a continuation of the solutions to
complex values of the variables A and B.
It is intriguing to notice that in the complexified version

of the equations a nonanalytic dependence on B
A becomes

apparent. Indeed, by assuming A real and B≡ iB̄ purely
imaginary, the effective potential takes the form
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VðA; B̄Þ ¼ 1

4π

�
2B̄ℑ

�
lnΓ

�
1

2
þ i

A
2B̄

��
− A ln

2B̄
m2

�

þ i
4π

B̄ lnð1þ e−
πA
2βÞ: ð38Þ

However, the saddle point equations may be solved order
by order in θ̂≡ θ

N, assuming A
m2 to be an even function and

B
m2 an odd function of θ̂, in which case the continuation from

imaginary to real values of θ̂ can be performed without any
difficulty. The results of this approach will be presented in a
forthcoming publication [12].
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