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We discuss the renormalization of the initial value problem in nonequilibrium quantum field theory
within a simple, yet instructive, example and show how to obtain a renormalized time evolution for the two-
point functions of a scalar field and its conjugate momentum at all times. The scheme we propose is
applicable to systems that are initially far from equilibrium and compatible with nonsecular approximation
schemes which capture thermalization. It is based on Kadanoff-Baym equations for non-Gaussian initial
states, complemented by usual vacuum counterterms. We explicitly demonstrate how various cutoff-
dependent effects peculiar to nonequilibrium systems, including time-dependent divergences or initial-time
singularities, are avoided by taking an initial non-Gaussian three-point vacuum correlation into account.
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I. INTRODUCTION

Quantum field theory out of equilibrium has received
a lot of attention in recent years, especially within the
framework of the Kadanoff-Baym equations [1]. Coupled
to a resummation such as the one provided by the two-
particle irreducible (2PI) effective action [2], these equa-
tions elude the secularity problem and yield a controlled
time evolution even at late times [3,4]. Despite this major
progress and the related growing number of applications [5]
including condensed matter, early universe cosmology or
heavy-ion collisions, a consistent formulation of the initial
value problem in the case of (super)renormalizable theo-
ries, that deals with the elimination of ultraviolet diver-
gences at all times, is still to be constructed.
Many interesting approaches have been devoted to

understanding and tackling the problem, from studies in
the Hartree approximation or in perturbation theory [6–10]
which however do not capture thermalization or are not
free of secular terms, to approaches based on appropriately
chosen external sources [11,12] or on the use of informa-
tion about the time evolution prior to the initialization time
[13] which depart however in spirit from the strict initial
value problem, and restrict the control over the initial state.
In this work, we present a consistent formulation dealing

with both secular terms and UV divergences, in which the
only ingredient is a proper description of the initial state.
Our main result is that nonequilibrium initial states
encompassing (a particular subset of) non-Gaussian vac-
uum correlations, together with the usual vacuum counter-
terms, ensure a manifestly finite evolution. Furthermore,

we find that initial correlations play a role in the elimination
of divergences across all time scales.
We should mention that, in various physically relevant

limits, renormalization is not needed or already under
control. This is the case for the kinetic regime which
becomes relevant when the system is dilute enough or the
classical/statistical regime which applies in the case of high
mode occupancies. In this work however, we would like not
to rely on those assumptions. Treating the quantum case
properly can be useful for various reasons. First of all, this
may lead to some constraints on the initial state, which are
not obvious in the classical case. Also, there can be
physical situations where the strongly-occupied or dilute
limits are not applicable, or the system changes the
behavior in the course of its time-evolution (e.g. preheating
after inflation [14]; cf. [15] for a review and potential
observational consequences). Finally, if one wants to
understand response on short time scales (e.g. related to
the Zeno-effect [16]) or loss of memory of the initial state
(e.g. for a finite period of inflationary expansion [17];
cf. [18] for a discussion of related signatures in present and
future cosmological data), a proper implementation of the
initial state is important, to avoid artifacts. We also note that
renormalization in the classical limit is well understood for
the time-evolution of thermal correlation functions [19] but
not for genuine out-of-equilibrium correlators where there
exist claims that the classical limit is not renormaliz-
able [20], at least not in the standard sense. The approach
developed here avoids this difficulty and is applicable away
from the limiting cases discussed above.
It is important to stress that, when it comes to discussing

the renormalization out-of-equilibrium, few analytical
results are known, especially in any framework that deals
simultaneously with the secularity problem (and therefore
goes beyond perturbation theory). For this reason, in this
work we focus on a specific model/approximation that
allows us to exhibit the features which render
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renormalization out of equilibrium difficult, while admit-
ting an analytical treatment of divergences. The specificity
of our model/approximation should then be balanced with
the benefit of having a complete analytical understanding
of renormalization out-of-equilibrium in at least one (non-
trivial) case. The knowledge gained from this simple but
instructive example will be later put to work to discuss
other models/approximations.
The paper is organized as follows. In Sec. II, we sum-

marize the relevant equations for the out-of-equilibrium
problem and specify our model and approximation. In
Sec. III, we discuss the renormalization of the model in
equilibrium. In Secs. IV, we consider the out-of-equilibrium
case, extract analytically the most divergent contributions to
the two-point correlators anddiscuss their renormalization in
terms of initial three-point correlations.We also compare our
results to the case of a Gaussian initial state where these
correlations are absent. In Sec. V, we discuss yet another
peculiar feature of the Gaussian initial state and how it is
cured by the three-point initial correlations.

II. NONEQUILIBRIUM EVOLUTION EQUATIONS

In what follows, we consider a theory involving two real
scalar fields φ and χ in dþ 1 dimensions with trilinear
coupling,

L ¼ 1

2
ð∂φÞ2 − 1

2
m2

φφ
2 þ 1

2
ð∂χÞ2 − 1

2
m2

χχ
2 −

λ

2
φχ2: ð1Þ

Out of equilibrium, the information on the system is
contained in its time-dependent correlation functions.
Tracking the one- and two-point functions provides already
a wealth of information, from which various quantities of
interest can be constructed, including effective occupation
and energy densities, spectral properties, and power spectra
[21–23]. In general the one-point function hφðxÞi can be
space-time dependent, and the two-point functions depend
on two space-time points. They can be parametrized by the
so-called statistical and spectral functions,

Fðx; yÞ ¼ 1

2
hfφðxÞ;φðyÞgi − hφðxÞihφðyÞi;

ρðx; yÞ ¼ ih½φðxÞ;φðyÞ�i; ð2Þ

with analogous definitions for χ. We are interested in
obtaining a properly renormalized nonequilibrium evolu-
tion for these correlators, from which the observables
mentioned above can be read off. For example, the energy
density involves the correlator of the canonical momentum,
given by ∂x0∂y0F [22]. For simplicity we assume in the
following1 hφi ¼ hχi ¼ 0 and concentrate on the time-
evolution of the two-point functions.

The nonequilibrium setup can be characterized by an
initial state (at time t ¼ 0, say) described by a density
matrix ρ. The time-evolution of any observable Ô can be
obtained from the closed-time path representation of hÔi≡
TrðρÔÞ [1]. Let us briefly review the generating functional
Z for expectation values. We consider external sources
JaðxÞ and Ka;bðx; yÞ with indices a; b ¼ φ; χ, and use a
compact notation

Jaϕa ¼
Z
C
ddþ1xJaðxÞϕaðxÞ;

ϕaKabϕ
b ¼

Z
C
ddþ1xddþ1yϕaðxÞKabðx; yÞϕbðxÞ; ð3Þ

whereϕa ¼ φ; χ labels the two fields and summation over a,
b is implied. The time arguments are integrated over the
closed timepathC shown inFig. 1. Thegenerating functional
for expectation values of products of field operators that are
time-ordered along the path C is defined as

Z½J; K� ¼ TrðρTCeiJaϕ
aþi

2
ϕaKa;bϕ

bÞ

¼
Z

Dϕþ

Z
Dϕ−hϕþjρjϕ−i

× hϕ−jTCeiJaϕ
aþi

2
ϕaKabϕ

b jϕþi: ð4Þ

In the second step we have evaluated the trace in the basis
of eigenstates of the field operators at t ¼ 0, ϕað0; ~xÞ
jϕi ¼ ϕað~xÞjϕi, and used the completeness relationR
Djϕihϕj ¼ 1. The matrix element in the third line can be

represented by the path integral [1,24]

hϕ−jeiJaϕaþi
2
ϕaKabϕ

b jϕþi ¼
Z

ϕ−

ϕþ
DϕeiSþiJaϕaþi

2
ϕaKabϕ

b
; ð5Þ

over field configurations ϕaðt; ~xÞ with time argument asso-
ciated to the closed time path C, with boundary condi-
tions ϕað0�; ~xÞ ¼ ϕa

�ð~xÞ.

FIG. 1. Closed time path C used for the computation of
expectation values. The time path starts and ends at the initial
time tinit ≡ 0, and tmax should be chosen larger than the largest
time for which correlation functions are computed. The bounda-
ries of the time path are denoted by 0þ and 0−, respectively.

1In the theory considered here, hφi ¼ 0 might be achieved by
means of an external source.
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The matrix element of the density matrix in the second
line of Eq. (4) encodes the information about the initial
state at t ¼ 0. In the following it is important to describe the
initial state accurately. For that, it is useful to Taylor expand
the matrix element in the form

hϕþjρjϕ−i ¼ expðiF ½ϕ�Þ; ð6Þ

with

F ½ϕ�≡X
n≥0

X
ai¼φ;χ

X
ϵi¼�

1

nφ!nχ!

Z
ddx1 � � � ddxn

× αϵ1…ϵn
n;a1…anð~x1;…; ~xnÞϕa1

ϵ1 ð~x1Þ…ϕan
ϵn ð~xnÞ; ð7Þ

where the coefficients αn are analogous to cumulants,
generalized to a field-theoretical setting [24], with labels
for fields (ai ¼ φ; χ) and bra/ket states (ϵi ¼ �). Here nφ is
the number of φ fields contained in a1;…; an and
nχ ¼ n − nφ. Terms with n ≤ 2 encode the initial condi-
tions for the one- and two-point functions, and non-
Gaussian initial correlations are parametrized by terms
with n ≥ 3. After inserting (5) and (6) into (4), one obtains

Z½J;K�¼
Z

Dϕþ

Z
Dϕ−

Z
ϕ−

ϕþ
DϕeiSþiFþiJaϕaþi

2
ϕaKabϕ

b
:

ð8Þ

Note that the information on the initial state entering via
F ½ϕ� can be seen as an additional contribution adding to
the classical action S½ϕ�. The contributions to F ½ϕ� in the
Taylor expansion (7) for n ≤ 2 can be absorbed into a
redefinition of the external sources J and K, respectively.
Following [25], the non-Gaussian initial correlations with
n ≥ 3 can be incorporated in a diagrammatic expansion of
the generating functional as effective n-point vertices,
called α-vertices in what follows. For example, the vertex
encoding the initial three-point correlation of one φ and two
χ fields has the form

iα3;χχφðx1; x2; x3Þ≡ iδ3F ½ϕ�
δχðx1Þδχðx2Þδφðx3Þ

¼
X
ϵi¼�

iαϵ1;ϵ2;ϵ33;χχφ ð~x1; ~x2; ~x3Þ

× δϵ1ðx01Þδϵ2ðx02Þδϵ3ðx03Þ; ð9Þ

where δ�ðtÞ≡ δCðt − 0�Þ and δC is the delta function
on the closed time path. In addition, the usual local
χχφ-vertex derived from the Lagrangian is in this notation
given by

i
δ3S½ϕ�

δχðx1Þδχðx2Þδφðx3Þ
¼ −iλδCðx1 − x2ÞδCðx2 − x3Þ; ð10Þ

where δCðx − yÞ≡ δCðx0 − y0Þδð~x − ~yÞ. In general, the
αn-vertices connect n legs of φ=χ fields, specified by the
labels ai, and involve n delta functions supported at t ¼ 0�,
the upper and lower boundary of the closed time path C,
respectively. Taking the additional vertices arising from the
initial correlations into account, the generating functional
can be constructed based on the usual Feynman rules in
position space, except that each time variable is integrated
over the closed time path.
By performing a double Legendre transformation of

Z½J; K� with respect to both sources one obtains the 2PI
effective action Γ, which depends in general on the full one-
two-point correlation functions of the φ and χ fields [2]. As
mentioned above, we consider a setup with vanishing one-
point functions. In this case the 2PI effective action can be
parametrized as

Γ½G;D�¼ i
2
TrlogG−1þ i

2
TrlogD−1

þ i
2
TrðG−1

0 GÞþ i
2
TrðD−1

0 DÞþΓ2½D;G�; ð11Þ

where

Gðx; yÞ ¼ 1

Z
δZ

δKφφðy; xÞ
¼ hTCφðxÞφðyÞi

¼ Fðx; yÞ − i
2
sgnCðx0 − y0Þρðx; yÞ; ð12Þ

where sgnCðx0 − y0Þ is the signum function on the closed-
time path, and G−1

0 ðx; yÞ ¼ ið□þm2
φÞδCðx − yÞ. The two-

point functions D and D0 for χ are defined analogously.
Furthermore Γ2½D;G� is given by the sum of all 2PI
diagrams with full propagators G and D for the φ and χ
fields, respectively. The equation of motion for the two-
point function G is given by the stationarity condition
δΓ=δG ¼ 0, which takes the form of a Schwinger-Dyson
equation

G−1ðx; yÞ ¼ G−1
0 ðx; yÞ − Πðx; yÞ; ð13Þ

where Πðx; yÞ ¼ 2iδΓ2=δGðy; xÞ is the full self-energy for
φ. Out of equilibrium the two-point functions depend on
both arguments and not only on the difference x − y. By
multiplying from the right with G and integrating one
obtains the equation of motion

ið□þm2
φÞGðx;yÞ¼δCðx−yÞþ

Z
C
ddþ1zΠðx;zÞGðx;yÞ:

ð14Þ

The self-energy can be decomposed as [25]
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Πðx; yÞ ¼ ΠFðx; yÞ −
i
2
sgnCðx0 − y0ÞΠρðx; yÞ

þ iΠλα
F ðx; ~yÞδsðy0Þ þ

1

2
Πλα

ρ ðx; ~yÞδaðy0Þ; ð15Þ

where δs=aðtÞ ¼ ðδðt − 0þÞ � δðt − 0−ÞÞ=2 and we omitted
terms ∝ δs=aðx0Þ which will not be needed. The self-
energiesΠλα

F=ρ vanish for Gaussian initial states, and contain
an α-vertex attached to the right leg in a diagrammatic
expansion (cf. Fig. 2). The integration over the time path on
the right-hand side of (14) can be expressed in terms of
integrals over the real-time axis by inserting the decom-
positions (12) and (15). In addition, for a spatially homo-
geneous state, it is convenient to use the momentum
representation Fpðx0; y0Þ ¼

R
ddxei~p·ð~x−~yÞFðx; yÞ, and

similar for ρ and Π. This yields the Kadanoff-Baym
equations [1,25]

ð∂2
t þ ν2p þ δm2

φÞFpðt; t0Þ ¼
Z

t0

0

dt00ΠF;pðt; t00Þρpðt00; t0Þ

−
Z

t

0

dt00Πρ;pðt; t00ÞFpðt00; t0Þ

þ Πλα
F;pðtÞFpð0; t0Þ

þ 1

4
Πλα

ρ;pðtÞρpð0; t0Þ;

ð∂2
t þ ν2p þ δm2

φÞρpðt; t0Þ ¼
Z

t0

t
dt00Πρ;pðt; t00Þρpðt00; t0Þ;

ð16Þ

that describe the time-evolution starting from a general
initial state at t ¼ 0. Here we defined ν2p ≡ p2 þm2

φ and
included also a mass counterterm. The initial state enters
via the initial conditions Fpð0; 0Þ, ∂tFpð0; 0Þ ¼ ∂t0Fp

ð0; 0Þ and ∂t∂t0Fpð0; 0Þ as well as the non-Gaussian initial
correlations α. The latter contribute to the self-energies in a
diagrammatic expansion of the self-energies via the
α-vertices. The corresponding initial conditions for ρp are
fixed by the equal time commutation relations (ETCR) to be
ρpjt¼t0 ¼ ∂t∂t0ρpjt¼t0 ¼ 0 and ∂tρpjt¼t0 ¼ −∂t0ρpjt¼t0 ¼ 1.
We take an initial three-point correlation into account,

and approximate the self-energies at one-loop with a
d-dimensional loop cutoff Λ (cf. Fig. 2),

ΠF;pðt; t0Þ ¼−
λ2

2

Z
Λ

ddq
ð2πÞd

�
DF;qðt; t0ÞDF;p−qðt; t0Þ

−
1

4
Dρ;qðt; t0ÞDρ;p−qðt; t0Þ

�
;

Πρ;pðt; t0Þ ¼−λ2
Z
Λ

ddq
ð2πÞdDF;qðt; t0ÞDρ;p−qðt; t0Þ;

Πλα
F;pðtÞ¼−

λ

2

Z
Λ

ddq
ð2πÞd

�
DF;qðt;0ÞDF;p−qðt;0Þiαsss3

−
1

4
Dρ;qðt;0ÞDρ;p−qðt;0Þiαaas3

�
;

Πλα
ρ;pðtÞ¼−λ

Z
Λ

ddq
ð2πÞdDF;qðt;0ÞDρ;p−qðt;0Þiαsaa3 ; ð17Þ

whereD denotes the correlator of the field χ and with initial
correlations αijk3 ≡P

ϵi
Pi
ϵ1P

j
ϵ2P

k
ϵ3α

ϵ1ϵ2ϵ3
3;χχφ ðq;p−q;−pÞ, with

Ps
� ≡ 1, Pa

� ≡�1 transformed into spatial Fourier modes.
Including higher initial correlations is possible but would
affect only the finite and thus the physical part of the time
evolution.
While our findings can be generalized, we assume for

simplicity that χ behaves as a thermal bath that is kept
close to equilibrium by some further (unspecified)
interactions. Concretely, to compute the self-energies we
use the free equilibrium expressions DF;qðt; t0Þ ¼
ð1þ2nqÞcosðωqðt− t0ÞÞ=ð2ωqÞ and Dρ;qðt; t0Þ ¼
sinðωqðt − t0ÞÞ=ωq, where nq ¼ 1=ðeωq=T − 1Þ. This corre-
sponds to neglecting the backreaction of the thermal bath to
which the field φ is coupled. In this approximation, the
spectral function is given by the equilibrium solution
ρpðt; t0Þ ¼ ρeqp ðt − t0Þ, while the statistical propagator
Fpðt; t0Þ approaches the thermal solution for late
times t; t0 → ∞ [23]. Furthermore, we analyze the super-
renormalizable case d < 5, which admits a nontrivial con-
tinuum limit. As mentioned before, we choose this setting
because it allows us to trace all potential divergences in a
nonequilibrium system analytically. For concreteness we set
d ¼ 4 in the following because it is the highest dimension for
which the cubic scalar interaction is still superrenormaliz-
able.All resultscanbeeasilyadaptedtolowerdimensions, for
which the UV sensitivity is reduced compared to d ¼ 4.

III. EQUILIBRIUM PROPERTIES

Before discussing the renormalization of Fpðt; t0Þ, we
briefly discuss the renormalization of the spectral function
by usual vacuum counterterms. We focus for simplicity
on ρvacp¼0 for mχ ¼ 0, but the relevant UV properties extend

to nonzero p, T or mχ. The Fourier transform ρvacp¼0ðωÞ ¼R
dω
2π ρ

vac
p¼0ðtÞe−iωt is obtained from the vacuum Euclidean

propagator Gvacðip5Þ¼ 1=ðp2
5þm2

φþδm2
φþΠvacðip5ÞÞ as

ρvacp¼0ðωÞ¼−2iImGvacðip5 →ωþ iϵÞ. At one-loop, we find

FIG. 2. One-loop contributions to the φ self-energy Πðx; yÞ.
The box represents the initial three-point correlation iα3. The first
and second diagrams contribute to ΠF=ρ and Πλα

F=ρ respectively,
while the other two are ∝ δs=aðx0Þ and not needed in what
follows.

MATHIAS GARNY and URKO REINOSA PHYSICAL REVIEW D 94, 045012 (2016)

045012-4



Πvacðip5Þ ¼ −
λ2

64π2

�
Λ −

p5

2
Arctan

�
2Λ
p5

��
: ð18Þ

There is a linear divergence which is absorbed by a mass
counterterm δm2

φ ¼ ðλ2=64π2ÞΛ. Then the Euclidean
propagator admits the continuum limit G∞

vacðip5Þ ¼ 1=
ðp2

5 þm2
φ þ γjp5jÞ, where we introduced γ ≡ λ2=ð256πÞ.

The spectral function in the continuum limit reads

ρvacp¼0ðωÞ ¼
−2iγω

ðω2 −m2
φÞ2 þ γ2ω2

; ð19Þ

and obeys
R

dω
2π ωρ

vac
p¼0ðωÞ ¼ −i in agreement with the

ETCR. We note also that the spectral function behaves like
1=ω3 at large jωj, a property that we shall use in the next
section. This property extends to T > 0 since the thermal
contribution to the one-loop self-energy behaves like
λ2T3=ω2

n at large external Matsubara frequency ωn.
For the discussion below, it is finally important to realize

that even though Gvacðip5Þ admits a continuum limit, the
UV behavior of its Fourier transform GvacðτÞ needs to be
further analyzed. In particular, ∂2

τGvacðτÞjτ¼0 contains
divergences. One is a trivial contact term which appears
in the relation ∂2

τGvacðτÞjτ¼0 ¼ −δðτ ¼ 0Þ þ ∂t∂t0Fvac
p

ðt; t0Þjt¼t0 . After this contact term has been subtracted,
we are left with

∂t∂t0Fvac
p¼0jt¼t0 ¼

Z
∞

−∞

dp5

2π
ð1 − p2

5Gvacðip5ÞÞ

¼
Z

∞

−∞

dp5

2π

m2
φ þ λ2

64π2
p5

2
Arctanð2Λp5

Þ
p2
5 þm2

φ þ λ2

64π2
p5

2
Arctanð2Λp5

Þ
ð20Þ

which produces a divergent integral for Λ → ∞. Since the
divergence originates from the “Arctan” function in the
numerator and the p2

5-term in the denominator, we have
that, as Λ → ∞ (and after performing the change of
variables p5 ¼ Λ ~p5)

∂t∂t0Fvac
p¼0jt¼t0 ∼

λ2

128π2

Z
∞

−∞

d ~p5

2π

~p5Arctanð 2
~p5
Þ

~p2
5 þ m2

φ

Λ2

∼
γ

π
ln

Λ
mφ

; ð21Þ

where γ was introduced above Eq. (19). This leading
behavior at large Λ is not modified at nonzero T, p or
mχ . Moreover, this correlator contributes to the energy
density [23], and in equilibrium the divergence can be
removed by a cosmological constant counterterm.

IV. RENORMALIZATION OUT OF EQUILIBRIUM

To study the behavior of Fpðt; t0Þ for Λ → ∞, we note
that a formal analytical solution for Fpðt; t0Þ is given by

Fpðt; t0Þ ¼ Fhom
p ðt; t0Þ þ Finh;G

p ðt; t0Þ þ Finh;nG
p ðt; t0Þ with

Fhom
p ¼ ρpðtÞρpðt0Þ∂t∂t0Fpð0; 0Þ þ σpðtÞσpðt0ÞFpð0; 0Þ

þ ðσpðtÞρpðt0Þ þ σpðt0ÞρpðtÞÞ∂tFpð0; 0Þ;

Finh;G
p ¼

Z
t

0

du
Z

t0

0

dvρpðt; uÞΠF;pðu; vÞρpðv; t0Þ;

Finh;nG
p ¼ 1

4

Z
t

0

duρpðt; uÞΠλα
ρ;pðuÞρpð0; t0Þ

þ 1

4

Z
t0

0

dvρpðt; 0ÞΠλα
ρ;pðvÞρpðv; t0Þ; ð22Þ

where we introduced

ρpðtÞ≡ ρpðt; 0Þ;

σpðtÞ≡ −∂t0ρpðt; 0Þ þ
Z

t

0

ρpðt; uÞΠλα
F;pðuÞ: ð23Þ

For a Gaussian initial state, Finh;nG
p vanishes identically and

σpðtÞGauss ¼ −∂t0ρpðt; 0Þ, in accordance with [23].
We first investigate the contribution Finh;G

p ðt; t0Þ in (22)
which is independent of the initial conditions. Potential UV
divergences can arise only from the vacuum part of ΠF (i.e.
nq; np−q → 0) because the thermal contribution is expo-
nentially suppressed for large loop momenta. Keeping only
this part and using the Fourier representation ρpðtÞ ¼R

dω
2π ρpðωÞeiωt one obtains

Finh;G
p ðt; t0Þ ¼ −

λ2

2
Re

Z
Λ

ddq
ð2πÞd

Z
dω
2π

Z
dω0

2π
ρpðωÞρpðω0Þ

×
ðeiΩqt − eiωtÞðe−iΩqt0 − e−iω

0t0 Þ
4ωqωp−qðΩq − ωÞðΩq − ω0Þ ; ð24Þ

where Ωq ≡ ωq þ ωp−q. Note that the integrand has no
poles because the numerator vanishes for Ωq → ω;ω0,
respectively. The integration over q is superficially loga-
rithmically divergent. To extract UV sensitive terms we useR
dωρpðωÞ ¼ 0 to replace

eiΩqt − eiωt

Ωq − ω
by

eiΩqt − eiωt

Ωq − ω
−
eiΩqt

Ωq
ð25Þ

and similarly for the other such fraction appearing in
Eq. (24). After some simple algebra, this allows us to
rewrite the integral above in an equivalent form, with the
second line of (24) replaced by
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ðωeiΩqt −ΩqeiωtÞðω0e−iΩqt0 −Ωqe−iω
0t0 Þ

4ωqωp−qΩ4
q

×

�
1þ Ωqðωþ ω0Þ − ωω0

ðΩq − ωÞðΩq − ω0Þ
�
: ð26Þ

Using ρpðωÞ ∝ ω−3 for large ω, one shows that the second
term in the square bracket of (26) leads to absolutely
convergent contributions to Finh;G

p , ∂tF
inh;G
p and

∂t∂t0F
inh;G
p . Potential divergences therefore can only arise

from the first term in this bracket. Using
R

dω
2π ωρpðωÞ ¼ −i,

we obtain

Finh;G
p ðt; t0Þ ¼ γ

π
½ρpðtÞρpðt0ÞLp − ρpðtÞSpðt0Þ

− ρpðt0ÞSpðtÞ þ Cpðt − t0Þ� þ � � � ð27Þ

where the ellipsis stands for absolutely convergent con-
tributions, and we defined the integrals

Lp ≡ 32π2
Z
Λ

ddq
ð2πÞd

1

ωqωp−qΩ2
q
∼ ln

Λ
mφ

;

SpðtÞ≡ 32π2
Z
Λ

ddq
ð2πÞd

sinðΩqtÞ
ωqωp−qΩ3

q
;

Cpðt − t0Þ≡ 32π2
Z
Λ

ddq
ð2πÞd

cosðΩqðt − t0ÞÞ
ωqωp−qΩ4

q
: ð28Þ

For d ¼ 4, Lp is logarithmically divergent for large Λ,
while Sp and Cp are absolutely convergent for all t, t0.
Nevertheless, _Spð0Þ ¼ Lp and C̈pð0Þ ¼ −Lp are logarith-
mically divergent, which affects the correlators ∂tFp and
∂t∂t0Fp (see below). The term ∝ C̈p in ∂t∂t0F

inh;G
p matches

the logarithmic divergence of the corresponding vacuum
correlator for equal times (21). In the following, we discuss
how these divergences affect the nonequilibrium correlators
and demonstrate explicitly how they can be removed by
the homogeneous and non-Gaussian contributions in (22)
for a proper choice of initial conditions. Before that, we
briefly discuss the Gaussian case.

A. Gaussian initial condition

On general grounds, one expects that a physical initial
state should differ from the vacuum correlations by a finite,
cutoff-independent amount. Implementing this idea rigor-
ously would require us to take initial n-point correlations
into account for all n. In practice, one has to cut at some
finite n. Let us first consider the Gaussian case

ðG1Þ Fpð0; 0Þ ¼ Fvac
p ð0; 0Þ þ Δð0Þ

p

∂tFpð0; 0Þ ¼ ∂tFvac
p ð0; 0Þ þ Δð1Þ

p ;

∂t∂t0Fpð0; 0Þ ¼ ∂t∂t0Fvac
p ð0; 0Þ þ Δð2Þ

p ;

αn ¼ 0 for n ≥ 3; ð29Þ

where only the connected two-point function is nonzero

initially, and ΔðiÞ
p are cutoff-independent functions that

parametrize the nonequilibrium initial state. The logarith-
mic divergence contained in ∂t∂t0Fvac

p ð0; 0Þ, cf. (21),
leads to a logarithmic divergence in the homogeneous
solution (22),

Fhom
p ðt; t0Þ ¼ γ

π
ρpðtÞρpðt0Þ ln

Λ
mφ

þ finite: ð30Þ

This divergence has precisely the same time-dependence as
the one ∝ Lp in Finh;G

p , cf. (27), but when summing both
contributions there is in fact no cancellation. Instead both
divergences add up, and therefore the choice (G1) does not
admit a continuum limit for Fpðt; t0Þ. This can also be seen
in the numerical solution, shown in Fig. 3 (dashed lines).
Is it possible to remedy this shortcoming without going

beyond the Gaussian initial state? To answer this question,
we consider an alternative initial condition for the mixed
derivative (and with the other derivatives initialized as in
(G1)) where we add “by hand” a piece that removes the
logarithmic divergence in Fpðt; t0Þ at all times,

ðG2Þ ∂t∂t0Fpð0; 0Þ ¼ ∂t∂t0Fvac
p ð0; 0Þ − 2

γ

π
Lp þ Δð2Þ

p :

ð31Þ

Indeed, Fpðt; t0Þ possesses a continuum limit, as can also be
observed in Fig. 3 (upper graph, dotted lines). However,
closer inspection shows that this choice leads to the
appearance of initial-time singularities in the two-point
functions involving the canonical momentum, in particular
from (27) and (31) it follows that

∂tF
ðG2Þ
p ðt; t0Þjt→0 ¼ −

γ

π
ρpðt0ÞLp þ � � � ð32Þ

is logarithmically divergent for Λ → ∞, as our numerical
simulation also confirms (not shown). Moreover, the
momentum-momentum correlator

∂t∂t0F
ðG2Þ
p ðt; t0Þ ¼ −

γ

π
½_ρpðt0Þ _SpðtÞ þ _ρpðtÞ _Spðt0Þ

þ C̈pðt − t0Þ� þ � � �

→

�− γ
π Lp þ � � � t; t0 → 0

þ γ
π Lp þ � � � t → t0; t ≫ 1=Λ

;

ð33Þ
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exhibits a cutoff-dependent “jump” from the initial
value imposed at t ¼ t0 ¼ 0 to the value that matches
the vacuum correlator (21) at “late” times (see Fig. 3, lower
graph, dotted lines). Note that both (G1) and (G2) lead to a
cutoff-dependence which cannot be removed by a cosmo-
logical constant counterterm in the contribution of the
field- and momentum correlator to the energy density,
respectively.

B. Non-Gaussian initial condition

In the following we demonstrate that the non-Gaussian
initial condition

ðNGÞ Fpð0; 0Þ ¼ Fvac
p ð0; 0Þ þ Δð0Þ

p

∂tFpð0; 0Þ ¼ ∂tFvac
p ð0; 0Þ þ Δð1Þ

p ;

∂t∂t0Fpð0; 0Þ ¼ ∂t∂t0Fvac
p ð0; 0Þ þ Δð2Þ

p ;

α3 ¼ αvac3 ; αn ¼ 0 for n ≥ 4; ð34Þ

characterized by two-point functions as for (G1) and an
initial three-point correlation equal to the one in vacuum
avoids the pathologies in the Gaussian case and admits a
well-behaved continuum limit. Using the matching pro-
cedure developed in [25],

iαijk;vac3 ¼ −2λ
ωq þ ωp−q þ νp

; ð35Þ

for ijk ¼ sss; aas; saa. All higher n-point functions are set
to zero initially.
The inhomogeneous part of the solution (22) now

contains an additional piece involving α3. An analogous
computation as above shows that

Finh;nG
p ðt; t0Þ ¼ γ

π
½−2ρpðtÞρpðt0ÞLp

þ ρpðtÞSpðt0Þ þ ρpðt0ÞSpðtÞ� þ � � � ð36Þ

Remarkably, the term ∝ Lp has the same structure as in
Finh;G
p ðt; t0Þ, cf., (27), but with a relative factor −2. Together

with the divergence in the inhomogeneous Gaussian part
(27), this is precisely what is needed to cancel the
logarithmic divergence of the homogeneous part (30). In
addition, it is important to note that the terms proportional
to Sp cancel with those in Finh;G

p ðt; t0Þ.
This has several consequences which we want to stress:

(i) Fpðt; t0Þ and ∂tFpðt; t0Þ converge to a finite continuum
limit, (ii) ∂t∂t0Fpðt; t0Þ has a time-independent logarithmic
divergence for t ¼ t0 which matches precisely the one in
vacuum, i.e. the difference ∂t∂t0Fpðt; t0Þ − ∂t∂t0Fvac

p ðt; t0Þ
also converges for all t; t0 ≥ 0. (iii) there are no initial-time
singularities. These features can be observed also for the
numerical solutions (see Fig. 3, solid lines), which are
almost indistinguishable when varying the cutoff.
Furthermore, (i) and (ii) imply that the energy density is
finite at all times and renormalized by the same counter-
terms as in equilibrium. We emphasize that the initial three-
point correlation sizeably affects the solution Fpðt; t0Þ not
only at early times, but up to the thermalization time-
scale t ∼ 1=γ.

V. INITIAL TIME VS CONTINUUM LIMIT

For an initial value problem to be meaningful, it is
necessary that the correlation functions possess a well-
defined behavior in the limit t → 0. Since the super-
renormalizable theory considered here allows us also to
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2.0

t 1 m

F
p
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G2
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10

10 3 10 2 10 1 100 101
0.0

0.5
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1.5

2.0

t 1 m

t
t' F

p
t,t

'
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t

t' G1

G2
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m 100
25
10

FIG. 3. Time-evolution of the statistical propagator Fpðt; tÞ and
the momentum-momentum correlator ∂t∂t0Fpðt; t0Þ − ∂t∂t0Fvac

p

ðt; t0Þjt¼t0 (for p ¼ 0) at equal times for three different values of
the cutoffΛ=mφ ¼ 10, 25, 100, and three different initial conditions

(G1) (dashed), (G2) (dotted) and (NG) (solid). We used Δð0Þ
p¼0 ¼

nin=mφ;Δ
ð1Þ
p¼0 ¼ 0;Δð2Þ

p¼0 ¼ ninmφ with nin ¼ 0.5, γ=mφ ¼ 0.28,
Tχ ¼ mχ ¼ 0.
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take the continuum limit Λ → ∞, it is instructive to discuss
the interplay of both limits. We first consider the unequal-
time correlation functions for which t0 ¼ 0. In this case, the
solution (22) simplifies to

FΛ
pðt; 0Þ ¼ σΛpðtÞFΛ

pð0; 0Þ þ ρΛpðtÞ∂tFΛ
pð0; 0Þ; ð37Þ

where we indicated the UV regulator in the superscript. By
solving the Kadanoff-Baym equations perturbatively in λ
for small time t one obtains up to Oðλ2Þ,

σΛpðtÞGauss ¼ cos νpt − γJΛðtÞ þ � � � ;

ρΛpðtÞ ¼
sin νpt

νp
− γIΛðtÞ þ � � � ; ð38Þ

where γ ¼ λ2=ð256πÞ, JΛðtÞ ¼ dIΛ=dt and

IΛðtÞ ¼
64π

νp

Z
Λ

ddq
ð2πÞd

νp sinðΩqtÞ −Ωq sinðνptÞ
ωqωp−qΩ2

qðν2p −Ω2
qÞ

: ð39Þ

Here we omitted again thermal contributions to the self-
energies which are absolutely convergent even when taking
time derivatives. For the mixed correlator of the canonical
momentum and the field ∂tFpðt; 0Þ one needs to consider
also KΛðtÞ≡ d2IΛ=dt2. In d ¼ 4, IΛ and JΛ are absolutely
convergent, while the superficial degree of divergence of
KΛ is zero. Nevertheless, due to the structure of the
integrand, it turns out that KΛ has a continuum limit for
all times t. For p ¼ mχ ¼ 0 one finds the explicit results

I∞ðtÞ ¼
2

m2
φ
sin2

�
mφt

2

�
sgnðtÞ;

J∞ðtÞ ¼
1

mφ
sin ðmφtÞsgnðtÞ;

K∞ðtÞ ¼
�
cos ðmφtÞsgnðtÞ t ≠ 0

0 t ¼ 0
: ð40Þ

The absolutely convergent integrals I∞ and J∞ are con-
tinuous for t → 0, i.e. the continuum limit Λ → ∞ and
the initial time limit t → 0 commute, as expected. This is
not the case for KΛ, for which K∞ðtÞjt→0;t>0 → 1 while
KΛð0ÞjΛ→∞ ¼ 0. This implies that

F∞
p ðt; 0Þjt→0 ¼ FΛ

pð0; 0ÞjΛ→∞; ð41Þ

i.e. the initial-time and the continuum limit commute for the
field correlator. For the mixed correlator of the canonical
momentum ∂tφ and the field, on the other hand, one finds

∂tF∞
p ðt; 0Þjt→0 − ∂tFΛ

pð0; 0ÞjΛ→∞ ¼ −γF∞
p ð0; 0Þ; ð42Þ

for a Gaussian initial state. This implies that the initial
condition imposed at a finite value of the cutoff does not

correspond to the value of the correlation function that is
approached in the continuum limit for arbitrarily small but
positive time t. In practice, the time evolution of ∂tFΛ

pðt; 0Þ
corresponds to a rapid “jump” by a finite amount
−γF∞

p ð0; 0Þ within a timescale t≲ 1=Λ, cf. Fig. 4 (dashed
lines). The continuum limit (grey dot-dashed line) is
approached for any t > 0 for Λ → ∞, such that the actual
value of the correlator at small but nonzero time
differs from the initial condition imposed at t ¼ 0. Since
this difference is finite, it is in principle not in conflict
with renormalizability. However, it implies that in the
continuum limit the correlator becomes discontinuous.
This means that, even when imposing as initial condition
for example ∂tFΛ

pð0; 0Þ ¼ 0 the continuum limit effectively
corresponds to a nonzero initial value ∂tF∞

p ð0; 0Þeff≡
limt→0;t>0∂tF∞

p ðt; 0Þ ¼ −γF∞
p ð0; 0Þ.

We checked that this behavior persists also when using
instead dimensional regularization and for nonzero p and
mχ . Furthermore, it does not depend on the perturbative
expansion performed in (38), which would become secular
for large t. To show this we consider again the case
p ¼ mχ ¼ T ¼ 0, for which the continuum limit of the
spectral function can be computed analytically, and is given
by the Fourier transformation of (19),

ρ∞p¼0ðtÞ ¼
sinðmφtÞ

mφ
e−

1
2
γt: ð43Þ

For a Gaussian initial condition one obtains similarly
σ∞p¼0ðtÞGauss ¼ −γρ∞p¼0ðtÞ=2þ cosðmφtÞe−1

2
γt. Using these

10 3 10 2 10 1 100 101

t 1 m

G1 G2

NG

m 100
25
10

tFp t,0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

FIG. 4. Time-evolution of the unequal-time correlation function
∂tFpðt; 0Þ for the same set of initial conditions and values ofΛ as in
Fig. 3. Note that both Gaussian initial conditions (G1) and (G2)
coincide for this correlator (dashed lines), and approach the
continuum limit shown by the grey dot-dashed line for Λ → ∞.
For the non-Gaussian initial condition (NG) the (solid) lines for the
three values Λ=mφ ¼ 100, 25, 10 lie almost on top of each other.
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expressions one recovers (41) and (42) using in particular
that ∂tσ

∞
p¼0ðtÞGauss → −γ for t → 0; t > 0.

For a non-Gaussian initial condition σpðtÞ receives an
additional contribution in (23) involving the self-energy
Πλα

F . When including the non-Gaussian initial three-point
correlation (35) it is, up to order Oðλ2Þ, given by

σΛpðtÞnG¼λ2
Z
Λ

ddq
ð2πÞd

cosðΩqtÞ−cosðνptÞ
4ωqωp−qðΩqþνpÞðν2p−Ω2

qÞ
: ð44Þ

Using (38) one finds that in the sum σΛpðtÞ ¼ σΛpðtÞGauss þ
σΛpðtÞnG the superficial degree of divergence is lowered by
one unit, and therefore the loop integral contributing to
∂tσp becomes absolutely convergent. This ensures that
∂tσ

∞
p ðtÞ → 0 for t → 0, and therefore we find that the

continuum and initial time limits commute for the non-
Gaussian initial condition (NG), i.e.

∂tF∞
p ðt; 0Þjt→0 ¼ ∂tFΛ

pð0; 0ÞjΛ→∞ for ðNGÞ: ð45Þ

This is also confirmed by our numerical analysis shown by
the solid lines in Fig. 4, which display almost no sensitivity
on the cutoff for any t ≥ 0.
Let us now briefly discuss the general case with t; t0 ≥ 0.

For the Gaussian initial conditions (G1) the continuum
limit does not exist at any t; t0 > 0. For (G2), on the other
hand, the continuum limit for Fpðt; t0Þ exists and commutes
also with the initial-time limit t; t0 → 0. However, as
discussed in the previous section, for ∂t∂t0ΔFpðt; t0Þ, where
ΔFp ¼ Fp − Fvac

p , the continuum limit exists only for
t; t0 > 0. When taking the limit t; t0 → 0 after the con-
tinuum limit, the correlation function becomes singular.
Thus, for (G2), the combined continuum- and initial time
limit of the momentum correlator ∂t∂t0ΔFpðt; t0Þ is singu-
lar. Similarly, for the first derivative ∂tFpðt; t0Þ the limit
t → 0, at finite t0, leads to a logarithmic divergence when
choosing the initial conditions according to (G2), as
discussed above. The combined limit t → 0, Λ → ∞ at
finite t0 is therefore again singular, independent of the order
in which it is taken.
As was shown in the previous section, the non-Gaussian

initial conditions (NG) render all two-point correlation
functions involving the field φ and its canonical momentum
∂tφ finite (when subtracting the vacuum contribution for
the momentum correlator). For these correlators a well-
defined continuum limit can be taken. In particular, all
contributions to Fp, ∂tFp and ∂t∂t0ΔFpðt; t0Þ are absolutely
convergent for all t; t0 ≥ 0, including the initial time t ¼

t0 ¼ 0 itself. This implies in particular that the initial-time
and the continuum limit commute. These observations
imply that the non-Gaussian initial conditions (NG) allow
for a continuum limit in a uniform manner for all times,
including the initial time, and are therefore suitable to set up
a renormalized initial value problem.

VI. CONCLUSION

We have shown for the first time how a proper account of
initial, non-Gaussian vacuum correlations yields a UV
finite time-evolution of the field- and momentum two-
point correlator for all times, starting from an initial state
that can be arbitrarily far from equilibrium, within a
nonsecular approximation scheme that captures thermal-
ization at late times. The scheme is based on an expansion
of initial correlations around the interacting vacuum state,
complemented by usual vacuum counterterms, and is well-
suited for analytical and numerical evaluation. We have
applied it in a relatively simple context in order to illustrate
and solve the problem of the interplay between UV
singularities and initial conditions in an analytical way.
But the heart of our approach, namely the expansion of
initial correlations around the interacting vacuum state, is
quite general and can be straightforwardly extended to
other theories or settings. In particular, we checked that
the main features, including the property that only a finite
number of initial correlators are required for renormaliza-
tion can be generalized when taking the backreaction of the
various fields into account, that is a fully self-consistent
setting. This issue together with the discussion of the
renormalizable case will be considered in a future work.
This opens the way to the formulation of a renormalized
initial value problem in many physically relevant quantum
field theories involving scalar and spin 1=2 fields. The case
of gauge theories requires additional features related to how
the symmetries manifest in the 2PI framework [26], which
are still to be understood and lie beyond the scope of the
present work.
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