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We study planar Aharony-Bergman-Jafferis-Maldacena (ABJM) theory in a limit where one coupling is
negligible compared to the other. We provide a recipe for exactly solving the expectation value of bosonic
Bogomol’nyi-Prasad-Sommerfield (BPS) Wilson loops on arbitrary smooth contours, or the leading
divergence for cusped ones, using results from localization. As an application, we compute the exact
(generalized) cusp anomalous dimension and Bremsstrahlung function and use it to determine the
interpolating h-function. We finally prove a conjecture on the exact form of the dilatation operator in a
closed sector, hinting at the integrability of this limit.
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I. INTRODUCTION

Aharony-Bergman-Jafferis-Maldacena (ABJM) theory is
a three-dimensional N ¼ 6 superconformal theory with a
Chern-Simons action for the gauge groupsUðNÞk×UðNÞ−k
and bifundamental matter [1]. As for N ¼ 4 super-Yang-
Mills in four dimensions, this theory possesses a gravity
dual via the AdS=CFT correspondence [2] allowing for
strong coupling computations. Moreover, several exact
results are available from other techniques. On the one
hand the model is believed [3–9] to be integrable in the
planar limit [10], despite the appearance of an interpolating
function of the coupling, whose exact expression has been
conjectured in [11] and tested at weak [12–14] and strong
coupling [15]. On the other hand the theory can be localized
[16], which allows for an exact evaluation of the expectation
values of supersymmetric Wilson loop operators [17–19].
In this paper we consider ABJM theory with different

ranks for the gaugegroupsUðN1Þk ×UðN2Þ−k, also referred
to as the ABJ model [20]. We focus on its planar limit,
where we define the effective ’t Hooft couplings λi ≡ Ni

k .
We consider the limit where one is negligible compared to
the other, namely λ1 ≪ λ2 [21]. We refer to such a limit as
extremalABJ [22]. It was argued [20] that unitarity imposes
the bound jN1–N2j < k. This can be satisfied in the extremal
case by restricting to jλ2j < 1, which does not require λ2 to
be perturbative.
We claim that in the extremal limit the expectation values

of certain Wilson loops can be computed exactly. We arrive
at this conclusion by the following chain of reasoning, on
which we elaborate in the following sections. First, a
Feynman diagram analysis of such a computation reveals
that only a restricted class of diagrams contributes in this

limit, namely the (quantum corrected) two-point functions
of the connections. Next, we analyze the matrix model
average computing the 1=6-BPS circular Wilson loop via
localization. We provide an ansatz solving it perturbatively
in the extremal limit and find the exact result for the Wilson
loop. Comparing its expectation value to the perturbative
computation, we are able to extract exact expressions for
the two-point functions of the connections. The knowledge
of these building blocks then allows us to compute the
expectation value of all Wilson loops on arbitrary contours.
As an applicationwe compute the exact (generalized) cusp

anomalous dimension and Bremsstrahlung function [26] in
the extremal limit. These are central objects of the theory,
providing a connection to integrability [27–29]. There are
doubts on whether the ABJ model is integrable or not. We
provide strong indications that at least in the extremal limit
the theory benefits from integrability. Indeed we argue via
superfield diagrammatics that, in a closed subsector, the
dilatation operator has the formof twodecoupledHeisenberg
spin chains to all loops, as conjectured in [21].Using the cusp
anomalous dimension result we also fix the interpolating
h-function appearing in front of the dilatation operator,
proving the full exact form conjectured in [21].

II. WILSON LOOPS IN THE EXTREMAL LIMIT

We consider bosonic Wilson loop operators for the
UðN1Þ gauge group of the form

W½C� ¼ 1

N1

TrP exp

�
−i

Z
C
dτLðτÞ

�
: ð1Þ

The connection for the ordinary operator is L ¼ Aμ _xμ, Aμ

being the UðN1Þ gauge field. For the 1=6-BPS it reads
L1=6¼Aμ _xμ−2πi

k j_xjO, whereO ¼ MI
JCIC̄J, the fields C, C̄

are the bifundamental scalars and M ¼ diagð−1;−1; 1; 1Þ
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[30–33]. The contour C is an arbitrary curve in R3

parametrized by τ. We recall that the BPS Wilson loop
is finite for smooth contours, thanks to supersymmetry. One
can also define Wilson loops for the UðN2Þ connection. In
the extremal limit λ1 ≪ λ2 their expectation value reduces
at leading order to the pure Chern-Simons result [19] and
we will not be interested in them in this paper.
When evaluating expectation values in a perturbative

expansion for λ1 ≪ λ2 ≪ 1, one computes correlation
functions of the objects appearing in the connections,
namely the gauge vectors Aμ and the scalar bilinears O.
We enforce the extremal limit by keeping only the first
nontrivial order in λ1 in the expectation values of theWilson
loops, which means only one power of this coupling. Then,
in the planar limit, it is easy to see that since both the gauge
vector and the scalar bilinear transform in the adjoint of
UðN1Þ, the perturbative expansion of the expectation values
is truncated to their (color stripped) two-point functions only

hWi ¼ 1 − N1

Z
τ1>τ2

hLðτ1ÞLðτ2Þi þOðλ21Þ: ð2Þ

We note that the same logic applies also to arbitrary
correlation functions of Wilson loop operators. In the
extremal limit the two-point functions have a restricted
class of planar quantum corrections, which do not generate
further powers of λ1. Yet they are still nontrivial functions of
the λ2 coupling. For the gauge propagator, gauge invariance
fixes the form of the quantum corrections to possess the
form, in Feynman gauge, [34]

hAμðxÞAνðyÞi ¼ fCSðλiÞ
i
k
εμνρ

ðx − yÞρ
jx − yj3

þ fYMðλiÞ
1

k

�
δμν

jx − yj2 þ � � �
�
; ð3Þ

where the ellipsis stands for a total derivative term which
vanishes in all the computation of this paper. The functions
fCS and fYM occur at even and odd loop order, respectively
and their indices stand for theChern-Simons andYang-Mills
tensor structure of their propagators. These are generated
by the geometric sum of all the 1PI contributions. In the
extremal limit, the latter are in turn a bubble of scalars or
fermions with all possible Chern-Simons interactions of the
UðN2Þ gauge group inside.
The quantum corrections to the scalar bilinear two-point

function are all 1PI thanks to the tracelessness ofM. Their
backbone is basically given by the scalar bubble or a
sequence of an odd number of alternating scalar and
fermion bubbles joint by quartic Yukawa interactions.
On top of this all possible UðN2Þ Chern-Simons quantum
corrections inside the bubbles contribute in the extremal
limit. Finally, mixed two-point functions of a gauge vector
with a scalar bilinear are forbidden since M is traceless.

III. LOCALIZATION RESULT IN THE
EXTREMAL LIMIT

ABJ theory can be localized on S3 and its partition
function is given by the matrix model

ZðN1; N2; kÞ ¼
Z YN1

i¼1

dμi
YN2

j¼1

dνj
Y
i<j

sinh2
μi − μj

2

× sinh2
νi − νj

2

×
Y
i;j

cosh2
μi − νj

2
e−

k
4πið
P

i
μ2iþ

P
j
ν2j Þ:

The expectation value of the 1=6-BPS Wilson loop can be
computed exactly as an average in this matrix model,
whose solution is nevertheless nontrivial. In particular it
was shown that it can be computed via the integral
(t1 ¼ 2πiλ1, t2 ¼ −2πiλ2) [18]

hW1=6i ¼
1

πt1
I1; I1 ¼

Z
a

1=a
tan−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αX − 1 − X2

βX þ 1þ X2

s
dX;

where α≡ aþ 1
a, β≡ bþ 1

b and a, b are the endpoints of
the cuts around which the eigenvalues condense in the large
N limit. Their expressions in terms of the couplings in the
weak regime can be obtained inverting perturbatively a map
specified in [18]. In the extremal limit the expectation value
is at most linear in t1 and hence it is easier to compute the
derivative

∂I1
∂t1 ¼ ∂I1

∂ζ
∂ζ
∂t1 þ 2

∂I1
∂ξ ξet1þt2 ; ð4Þ

where the parameters are defined as

ζ ¼ 1

2
ðα − βÞ; ξ ¼ 1

2
ðαþ βÞ:

In turn one finds

∂I1
∂ζ ¼ −

1ffiffiffiffiffiffi
ab

p ð1þ abÞ ðaKðkÞ − ðaþ bÞΠðnjkÞÞ; ð5Þ

∂I1
∂ξ ¼

ffiffiffiffiffiffi
ab

p

aþ b
EðkÞ; ð6Þ

where ΠðnjkÞ is the complete elliptic integral of the third
kind,KðkÞ, EðkÞ are elliptic integrals of the first and second
kind, respectively, and the modulus and characteristic are
given by

k2 ¼ ða2 − 1Þðb2 − 1Þ
ð1þ abÞ2 ; n ¼ b

a
a2 − 1

1þ ab
:
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We have verified that the following ansatz up to Oðt31Þ
terms

α ¼ 2þ 4t1e
t2
2 t1 þ

1

2
ð4et2

2 þ et2 − 1Þt21

β ¼ −2þ 4et2 þ 4ðet2 − e
t2
2 Þt1 þ

1

2
ð1 − 4e

t2
2 þ 3et2Þt21

is a solution of the inversion problem for a and b up to
the specified order in the extremal limit. The Oðt21Þ terms
are needed to obtain the expectation value to the desired
order. Following the steps of [18] and integrating in t1 we
finally find

hW1=6i ¼ 1þ πiλ1e−πiλ2 þOðλ21Þ: ð7Þ

One can also compute the expectation value of the 1=6-BPS
wound m times around the great circle [18,35]. From the
explicit result of [36], we find indication that in the
extremal limit

hWm
1=6i ¼ 1þ πiλ1e−πiλ2m2 þOðλ21Þ: ð8Þ

The fact that the winding number appears only with power
m2 is in perfect agreement with the perturbative insight that
only two-point functions contribute to the expectation value
in the extremal limit.

IV. EXACT STRUCTURES IN EXTREMAL ABJ

We interpret the localization result for extremal ABJ in
light of the perturbative structure (2) applied to the circular
Wilson loop. At odd loops only the quantum corrected
gauge propagator contributes, since corrections to the
scalar bilinear two-point function vanish identically, thanks
to the following argument. The Feynman rules imply that at
odd loops an odd number of ε tensors is generated. These
can always be reduced to a single antisymmetric tensor,
whose indices are contracted with derivatives acting on an
integral which only depends on the vector ðx1 − x2Þμ. The
contraction then vanishes by antisymmetry. At odd loops
the gauge contributions are proportional to the Gauss
integral

1

4π

I
C
dxμ1dx

ν
2εμνρ

ðx1 − x2Þρ
jx1 − x2j3

¼ n; n ∈ Z: ð9Þ

The latter is proportional to an integer n, specifying the
linking number between the original path and the framing
contour introduced to regularize the Wilson loop in a
topologically invariant manner [37]. While the framing
number is in principle arbitrary, the localization procedure
induces a particular framing [17]. Comparing the pertur-
bative and the localization results and matching our
conventions, we ascertain that the latter has been derived
at framing n ¼ −1 and we find

fCSðλ2Þ ¼
1

2
cos πλ2: ð10Þ

This induces a nontrivial dependence of the effect of
framing on the coupling in ABJ, at a difference with
respect to the pure Chern-Simons case, and in agreement
with the perturbative findings of [38].
At even loops two structures contribute, namely the

quantum corrected propagator and the two-point function
of the scalar bilinear O. These are two separated objects,
contributing with the integrands

ð11Þ

ð12Þ

where the coefficients of the structures are a priori two
unrelated functions of λ2. We point out that the quantum
corrections to the scalar two-point function are finite.
Indeed this is practically the same computation as for
the two-point function of the operator TrO, which is
protected (being the matrix M traceless) and hence should
not have an anomalous dimension. Then we analyze
separately the contour integrals of (11) and (12) on the
straight line. In this case the spacetime structures coincide
and the resulting contour integral is ultraviolet divergent.
Since fO is finite and the expectation value of the 1=6-BPS
Wilson loop on the line is trivial, we conclude that the
coefficients must be equal and combine into the integrand

ð13Þ

where the divergence at coincident points is mitigated by
the vanishing of the numerator, leading to a finite integral
for an arbitrary smooth contour. Comparing the localization
result with the integral of (13) on the circle we find

fOðλ2Þ ¼ fYMðλ2Þ ¼
1

π
sin πλ2: ð14Þ

We have also successfully tested this statement by comput-
ing the two-loop corrections to the scalar two-point
function. Indeed, using partial results from [13] one can
check that

1

N1

�
2π

k

�
2

TrhOðx1ÞOðx2Þið2Þ ¼ −
π2

6

λ1λ
3
2

jx1 − x2j2
;
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in agreement with (14). We stress that the results (10) and
(14) are gauge dependent and only valid in strictly three
dimensions. Moreover an implicit choice of regularization
might be implied in their derivation. Hence they cannot be
employed in other computations using different gauges or
regularization schemes. Yet they are perfectly suitable for
evaluating other Wilson loops expectation values in the
extremal limit, provided the contour integration is finite, or
one only focuses on the leading divergence.

V. EXACT WILSON LOOPS

Using the results from the previous sections and in
particular (10) and (14) we are able to formulate the main
statements of the paper. We claim that in the extremal limit
the exact expectation value of the ordinaryWilson loop on a
generic contour is given by

hWi ¼ 1 − λ1

�
2πinfCSðλ2Þ

þ
Z
τ1>τ2

_x1 · _x2
jx1 − x2j2

fYMðλ2Þ
�
þOðλ21Þ; ð15Þ

whereas the expectation value of the 1=6-BPS Wilson loop
evaluates

hW1=6i ¼ 1 − λ1

�
2πinfCSðλ2Þ

þ
Z
τ1>τ2

_x1 · _x2 − j_x1jj_x2j
jx1 − x2j2

fYMðλ2Þ
�
þOðλ21Þ;

ð16Þ

allowing for a framing of the path. Similar exact formulas
apply for all correlation functions of Wilson loops, at
leading nontrivial order in the extremal limit. We recall that
the results above require the finiteness of the Wilson loop
expectation value to hold. This is true for the 1=6-BPS
Wilson loop as long as it is evaluated on a smooth (not
lightlike) path. For the ordinary Wilson loop this depends
on the particular path. It is for instance finite on a circle (if
evaluated in dimensional regularization [39–41]) but diver-
gent on a straight line. Nevertheless the technique above
can also be used for divergent objects, if one focuses on
the coefficient of the leading divergence. As a particularly
interesting example of such a situation we compute the
cusp anomalous dimension of extremal ABJ. Using the
formulas above and the computation of [42–45] we find
the exact result

Γcusp ¼ 4λ1
sin πλ2

π
þOðλ21Þ: ð17Þ

The prescription (16) can be adapted to cases with different
coupling matrices M, for instance in the configuration

of the generalized cusp [46]. It suffices inserting a
factor TrðM1M2Þ

4
in front of the scalar bilinear contribu-

tion. From this we derive the exact expression of the
generalized cusp anomaly for extreme ABJ (hWi∼
exp ð−Γ1=6ðϕ; θÞ log Λ

ϵÞ) [47]

Γ1=6ðϕ; θÞ ¼ λ1
sin πλ2

π

�
cosϕ − cos2

θ

2

�
ϕ

sinϕ
þOðλ21Þ;

where ϕ is the deviation from the straight line configuration
and θ is an internal angle in R-symmetry space. Taking the
coefficient of ϕ2 in the small angle expansion we find the
exact Bremsstrahlung function [48]

B1=6 ¼
λ1 sin πλ2

2π
þOðλ21Þ: ð18Þ

VI. PROOF OF THE MOSS CONJECTURE

Finally we analyze the dilatation operator of ABJ in the
SUð2Þ × SUð2Þ sector. This was determined up to four
loops in [12–14], and its form in the extremal limit was
conjectured in [21] by Minahan, Ohlsson Sax and Sieg. We
refer to this as the MOSS conjecture. We prove this
conjecture in two steps. First we determine the form of
the dilatation operator to all loops up to a function of λ2.
Second we fix this function using the cusp anomalous
dimension of the previous section.
We consider the dilatation operator D in superfield

formalism, taking a chiral operator as the vacuum of a
spin chain of asymptotic length 2L. The use of superfields
perturbation theory allows us to describe this sector in
terms of organized structures which naturally emerge from
the formalism itself. More specifically, one defines recur-
sively the basis of chiral functions

χðÞ ¼ fg; χðaÞ ¼ fag − χðÞ;
χða; bÞ ¼ fa; bg − χðaÞ − χðbÞ − χðÞ; ð19Þ

and so on, as combinations of permutations fg of fields,
defined e.g. in [21,49]. These objects capture the nature
of the chiral superpotential vertices, which are the only
interactions that exchange flavor. Specifically, when one
lists all the diagrams which contribute to the renormaliza-
tion of operators, the chiral skeleton of a diagram (namely
the chiral vertices and propagators on which vector
interactions can be added) produces only one chiral
function. The converse is not true as two different chiral
skeletons may generate the same chiral function.
By construction, in any diagram the number of chiral and

antichiral vertices is the same. Therefore, it is always
possible to group them into adjacent pairs, connected by
none, one, two or three chiral propagators. The last two
possibilities are flavor-trivial, whereas the first two con-
tribute to the chiral structures χð1; 2Þ and χð1Þ, forming

MARCO S. BIANCHI and MATIAS LEONI PHYSICAL REVIEW D 94, 045011 (2016)

045011-4



effective eight and six-vertices. In this way we can
unambiguously determine a one to one correspondence
between chiral functions and effective chiral skeletons.
Then, combining effective vertices, gives rise to chiral
functions with higher degree, see [49].
In terms of color contributions, however we combine

multiple effective six and eight-vertices produces higher
powers of λ1. Moreover the effective eight-vertex alone
already contributes with λ21λ

2
2 [14]. Thus, in the extremal

limit, the only leading chiral structure is the effective 6-
vertex, appearing first at two loops. Consequently, deter-
mining the full dilatation operator boils down to computing
all the relevant flavor neutral, subleading in λ1, corrections
to the two-loop diagram. Hence at (even) loop order 2l
the dilatation operator reads D2l → G2lðχð1Þ þ χð2ÞÞ, with
χð1Þ (χð2Þ) acting on odd (even) sites. The function G2l ¼
G2lðλ1; λ2Þ is completely determined in terms of the h-
function coefficients by imposing the magnon dispersion
relation

EðpÞ ¼ −
1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16h2ðλ1; λ2Þsin2

p
2

r
: ð20Þ

on the single magnon states. In the leading λ1 limit only
G2l → −h2l survives, since further products and powers
of the h coefficients h2ðλ1; λ2Þ ¼

P∞
l¼1 h2l are subleading.

This means that we can resum the full dilatation operator in
this limit to obtain

D ¼ L − h2ðλ1; λ2Þðχð1Þ þ χð2ÞÞ þOðλ21Þ: ð21Þ

Hence, in the extremal limit the dilatation operator, at least
within the SUð2Þ × SUð2Þ sector, is the same as that of two
decoupled Heisenberg spin chains and hence the spectral
problem is integrable to all loop orders. It is therefore
natural to assume that the ABJ theory is integrable in this
limit. Under this assumption we can use the integrability
machinery of [7] and claim that the cusp anomalous
dimension of ABJ is given by

Γcusp ¼ 4h2ðλ1; λ2Þ þOðh4Þ; ð22Þ

where h is the same interpolating function appearing in the
magnon dispersion relation (20). From both the Wilson
loop and dilatation operator computations we see that h2

contains a factor λ1λ2, therefore in the extremal limit only
the first order in h2 contributes in the perturbative expan-
sion. Thus, comparing (22) with (17) we determine the
h-function of extremal ABJ

h2ðλ1; λ2Þ ¼ λ1
sin πλ2

π
þOðλ21Þ; ð23Þ

which concludes the proof of the MOSS conjecture.
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