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We study various supersymmetric renormalization group (RG) flows of N = 3 Chern-Simons-Matter
theory in three dimensions by using four-dimensional N = 3 gauged supergravity coupled to eight vector
multiplets with SO(3) x SU(3) gauge group. The AdS, critical point preserving the full SO(3) x SU(3)
provides a gravity dual of N = 3 superconformal field theory with flavor symmetry SU(3). We study the
scalar potential and identify a new supersymmetric AdS, critical point preserving the full N =3
supersymmetry and unbroken SO(3) x U(1) symmetry. An analytic RG flow solution interpolating
between SO(3) x SU(3) and SO(3) x U(1) critical points is explicitly given. We then investigate possible
RG flows from these AdS, critical points to nonconformal field theories in the IR. All of the singularities
appearing in the IR turn out to be physically acceptable. Furthermore, we look for supersymmetric
solutions of the form AdS, x X, with X, being a two-sphere or a two-dimensional hyperbolic space and
find a number of AdS, geometries preserving four supercharges with SO(2) x SO(2) x SO(2) and

SO(2) x SO(2) symmetries.
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I. INTRODUCTION

AdS,/CFT; correspondence is interesting in many
aspects such as its applications in the study of M2-brane
dynamics and in the holographic dual of condensed
matter physics systems. There are a few examples of
supersymmetric AdS, backgrounds with known M-theory
origins. Apart from the maximally supersymmetic N = 8
AdS, x S7 compactification, there is an AdS, background
with N = 3 supersymmetry arising from a compactification
of M-theory on a tri-sasakian manifold N°'* [1]. This is a
unique solution for 2 < N < 8 supersymmetry. The spec-
trum of the former example has been studied in [2] and the
massless modes can be described by the maximally SO(8)
gauged supergravity constructed in [3]. The lowest modes
of the latter are on the other hand encompassed in the
gauged N = 3 supergravity coupled to eight vector mul-
tiplets constructed in [4], see also [5,6]. The holographic
study of this background within the framework of
N = 8 gauged supergravity and eleven-dimensional super-
gravity has appeared in many previous works, see for
example [7-9].

The analysis of the complete spectrum of the Kaluza-
Klein reduction of M-theory on AdS, x N°'° has been
carried out in [10], see also [11]. It has been argued that the
compactification can be described by a four-dimensional
effective theory in the form of N = 3 supergravity coupled
to eight vector multiplets with SO(3) x SU(3) gauge
group. From the AdS/CFT point of view, the SO(3) and
SU(3) factors correspond respectively to the SO(3)
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R-symmetry and SU(3) flavor symmetry of the dual
N = 3 superconformal field theory (SCFT) in three dimen-
sions with the superconformal group OSp(3|4) x SU(3).
The structure of N = 3 multiplets and some properties of
the dual SCFT have been studied in [12—17]. Furthermore,
a generalization to quiver gauge theories has been consid-
ered more recently in [18-23].

In the present work, we are interested in exploring
possible supersymmetric solutions within four-dimensional
N =3 gauged supergravity. The N =3 gauged super-
gravity coupled to n vector multiplets has been constructed
in [4]. The theory contains 6n scalar fields parametrizing
the SU(3,n)/SU(3) x SU(n) x U(1) coset manifold. We
will focus on the case of n = 8 which, together with the
other three vectors from the supergravity multiplet,
gives rise to eleven vector fields corresponding to a gauging
of the SO(3) x SU(3) subgroup of the global symmetry
group SU(3,8). The maximally supersymmetric AdS,
critical point of the resulting gauged supergravity with all
scalars vanishing is expected to describe the AdS, x N°1°
background of eleven-dimensional supergravity.

We will look for other possible supersymmetric AdS,
critical points. According to the standard dictionary of the
AdS/CFT correspondence, these should be dual to other
conformal fixed points in the IR of the UV N = 3 SCFT
with the SU(3) flavor symmetry. We find that indeed there
exists a nontrivial supersymmetric AdS, critical point with
SO(3) x U(1) symmetry and unbroken N = 3 supersym-
metry. We will also investigate holographic RG flows from
the UV N =3 SCFT to nonconformal field theories by
looking for domain wall solutions interpolating between
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the AdS, critical points and some singular domain wall
geometries in the IR.

Finally, we will look for supersymmetric AdS, x %,
solutions with X, being a Riemann surface. Like the higher-
dimensional solutions, these solutions should be interpreted
as twisted compactifications of the N = 3 SCFTs in three
dimensions to one dimensional space-time. These results
could be interesting both in the holography of three-
dimensional SCFTs and in the context of AdS,/CFT,
correspondence which plays an important role in black hole
physics, see for example [24] and [25]. Along this line, the
topologically twisted indices for these theories on S? have
been computed in [26,27]. These results can be used to find
the microscopic entropy of AdS, black holes by following
the approach of [28].

The paper is organized as follow. In Sec. II, we review
N = 3 gauged supergravity in four dimensions coupled to
eight vector multiplets. In Sec. III, we will give an explicit
parametrization of SU(3,8)/SU(3) x SU(8) x U(1) coset
and study the scalar potential for the SO(3)y;,, singlet
scalars and identify possible supersymmetric vacua. An
analytic renormalization group (RG) flow from the UV
SO(3) x SU(3) SCFT to a new IR fixed point with residual
symmetry SO(3)g,, X U(1) is also given. We then move
to possible supersymmetric RG flows to nonconformal
field theories in Sec. IV. Supersymetric AdS, backgrounds
obtained from twisted compactifications of AdS; on a
Riemann surface are given in Sec. V. Some conclusions and
comments on the results reported in this paper are presented
in Sec. VL

II. N=3 GAUGED SUPERGRAVITY COUPLED
TO VECTOR MULTIPLETS

In order to fix the notation and describe the relevant
framework from which all the results are obtained, we will
give a brief description of N =3 gauged supergravity
coupled to n vector multiplets and finally restrict ourselves
to the case of n = 8. The theory has been constructed in [4]
by using the geometric group manifold approach. For
the present work, the space-time bosonic Lagrangian and
supersymmetry transformations of fermionic component
fields are sufficient. Therefore, we will focus only on these
parts. The interested reader can find a more detailed
construction in [4].

In four dimensions, the matter fields allowed in N = 3
supersymmetry are given by the fields in a vector multiplet
with the following field content

(A/U;LA’/L ZA)'

Indices A, B, ... =1, 2, 3 denote the fundamental repre-
sentation of the SU(3), part of the full SU(3)z x U(1)g
R-symmetry. Each vector multiplet contains a vector field
A, four spinor fields 4 and 14 which are respectively
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singlet and triplet of SU(3), and three complex scalars z,
in the fundamental of SU(3). For n vector multiplets, we
use indices i, j, ... = 1, ..., n to label each of them. Space-
time and tangent space indices will be denoted by y, v, ...
and a, b, ..., respectively. In contrast to the construction
in [4], we will use the metric signature (— + ++) through-
out this paper.

The N = 3 supergravity multiplet consists of the follow-
ing fields

(eZ, WﬂA’AﬂA’)()‘

ey, is the usual graviton, and y,, are three gravitini. The
gravity multiplet also contains three vector fields A4 and
an SU(3) singlet spinor field y. It should be noted that the

fermions are subject to the chirality projection conditions

A= —ysi.
(1)

WA = V5¥WpuAs X =YX Aa = V54,

These also imply y = —ysys and 24 = —ys24.

With n vector multiplets, there are 3n complex scalar
fields z,' living in the coset space SU(3,n)/SU(3)x
SU(n) x U(1). These scalars are conveniently parame-
trized by the coset representative L(z),*. From now on,
indices A, X, ... will take the values 1, ..., n + 3. The coset
representative transforms under the global G = SU(3, n)
and the local H = SU(3) x SU(n) x U(1) symmetries by
a left and right multiplications, respectively. It is convenient
to split the index corresponding to H transformation as
Y = (A, i), so we can write L,* = (L4, L,").

Together with three vector fields from the gravity
multiplet, there are n + 3 vectors which, accompanying
by their magnetic dual, transform as the fundamental
representation n + 3 of the global symmetry SU(3,n).
These vector fields will be grouped together by a single
notation A, = (A4, A;). From the result of [4], after
gauging, a particular subgroup of SO(3,n) c SU(3,n)
becomes a local symmetry. The corresponding non-
Abelian gauge field strengths are given by

Fy =dAy + fA™As A Ap (2)

where f,s' denote the structure constants of the gauge
group. The gauge generators 7', satisfy

[TA» Tz] = fAzFTr- (3)

Indices on f,s! are raised and lowered by the SU(3, n)
invariant tensor

Jas = JAE = <5ABv —5ij) (4)
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which will become the Killing form of the gauge group in
the presence of gauging.

As pointed out in [4], one of the possible gauge groups
takes the form of SO(3) x H, with SO(3) c SU(3) and
H,, being an n-dimensional subgroup of SO(n) C SU(n). In
this case, only electric vector fields participate in the gauging.
As a general requirement, gaugings consistent with super-
symmetry impose the condition that f,sr obtained from the
gauge structure constants via fasr = f Ast Jpr are totally
antisymmetric. In the present paper, we are interested only in
this compact gauge group with a particular choice of Hg =
SU(3) with fas" =(gi€apc.92f i) This choice clearly
satisfies the consistency condition. f;;; denote the SU(3)
structure constants while g; and g, are SO(3) x SU(3) gauge
couplings. The independent, nonvanishing, components of
fijx can be explicitly written as

1
f123:17 fl47:f246:f257:f345:§v
1 V3
f]56:f367:_§’ f458:f678:7' (5)

Other possible gauge groups will be explored in the
forthcoming paper [29].

The bosonic Lagrangian of the resulting gauged super-
gravity can be written as

1 1 .
e_lﬁ :ZR_EP/;APZI

i Ay
—5e tero(aMFy — ' Fy ) Fye = V. (6)

_ aA):FJr

Y S AS = phY
AuyFZ —a FA;wFZ

We have translated the first order Lagrangian in the differ-
ential form language given in [4] to the usual space-time
Lagrangian. In addition, we have multiplied the whole
Lagrangian by a factor of 3. This results in a factor of 3
in the scalar potential compared to that given in [4].

Before giving the definitions of all quantities appearing
in the above Lagrangian, we will present the fermionic
supersymmetry transformations read off from the rheo-
nomic parametrization of the fermionic curvatures as
follow

SWyua = Dyes — 2e4pcGEy €€ + Sppy,€P, (7)

1
5)( = _EGﬁuyﬂbeA +UA€A’ (8)
84 = =Py yreq + Njpeh, )

Odia = _PiuByﬂeABCec = Giur™es + MiyBep. (10)

From the coset representative, we can define the Mourer-
Cartan one-form
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Q" = (L7, ZdLs" 4 (L7 > fsP AL, (11)

The inverse of L * is related to the coset representative via
the following relation

(L7)a% = Jand* (LA™ (12)
The component Q4 = (Q,/)* gives the vielbein P4 of
the SU(3,n)/SU(3) x SU(n) x U(1) coset. Other compo-

nents give the composite connections (Q4%,Q;/, Q) for
SU(3) x SU(n) x U(1) symmetry
Q,f = 0,F —nsf0. @/ =0/+350. (13)

It should be noted that 0,4 = Q,/ = 0.
The covariant derivative for ¢4 is defined by

1 1
Dey = dey + ZwabyabeA + OxPep + EnQ' (14)

The scalar matrices S5, U4, Ny and M2 are given in
terms of the “boosted structure constants” Cyr as follow

1
Sap = a (eBPQCAPQ + €4pcCuy™C)
1
=3 (CAPQeBPQ + CBPQ€APQ),
1 1
Ut = ——Cy™4, Nig = ——€APQCiPQ7
4 2
1
MiAB = 5 (@?CiMM - 2CiAB) (15)
where

Chur = LyM L7 )" (L) frr® and
CAHF _ JAA’JHH/JFF/(CAIH’F’)*- (16)

With all these definitions, the scalar potential can be
written as

2 1 . 1, .
V — —2SACsCM + gUAUA + gNiANlA + EMIBAM[BA
1 1 1
= CuP P+ |G = (ICA 2P = |Cp?)  (17)
8 8 4
with Cp = —CPMM.

We now come to the gauge fields. The self-dual and
antiself-dual field strengths are defined by

i
Fy, = FAah:Fieahchf\d (18)
. l " .
with 1eeaFi! = +iFy,, and Fy, = (Ff,)". The
explicit form of the symmetric matrix a,y in term of the
coset representative is quite involved. We will not repeat it

045006-3



PARINYA KARNDUMRI

here, but the interested reader can find a detailed discussion
in the appendix of [4].

Finally, the field strengths appearing in the supersym-
metry transformations are given in terms of F£, by

Auv
i 1Mij L—l AF—
G/w - _E ( )j Auv?
1
G/el/ = EMAB(L_I)BAFXpu (19)

where M and MA® are respectively inverse matrices of

ij =L)AL, Yan and

My = (L)AL an (20)

In subsequent sections, we will study supersymmetric
solutions to this gauged supergravity with SO(3) x SU(3)

gauge group.

IIL. FLOWS TO SO(3) i, x U(1) IR FIXED
POINT WITH N =3 SUPERSYMMETRY

We now consider the case of n = 8 vector multiplets
and SO(3) x SU(3) gauge group. There are 48 scalars
transforming in (3, 8) + (3,8) representation of the local
symmetry SU(3) x SU(8). It is efficient and more con-
venient to study the scalar potential on a particular
submanifold of the full SU(3,8)/SU(3) x SU(8) x U(1)
coset space. This submanifold consists of all scalars which
are singlets under a particular subgroup of the full gauge
group SO(3) x SU(3). All vacua found on this submani-
fold are guaranteed to be vacua on the full scalar manifold
by a simple group theory argument [30].

A. Supersymmetric AdS, critical points

In terms of the dual N = 3 SCFT, the SO(3) part of the
full gauge group corresponds to the R-symmetry of N = 3
supersymmetry in three dimensions while the SU(3)
part plays the role of the global symmetry. There are no
singlet scalars under the SO(3) R-symmetry. In order to
have SO(3) symmetry, we then consider scalars invariant
under a diagonal SO(3) subgroup of SO(3) x SO(3) C
SO(3) x SU(3).

Before going to the detail of an explicit parametrization,
we first introduce an element of 11 x 11 matrices

(eAZ)HF = Spnfsr- (21)

The SO(3) x SU(3) gauge generators can be obtained
from the structure constant (T,)yg" = fan'. Accordingly,

the SO(3) part is generated by (Tgl))nr =fan',A=1,2,
3, and the SU(3) generators are given by (ng))nF =
fivam, i=1,...,8. The SO(3) is then generated

1 2
by (T\)" + (T "

diag
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Under SU(3) — SO(3) x U(1), we have the branching

8=30+1yp+2;+2_;. (22)
This implies that the 48 scalars transform under
SO(3)giae X U(1) as

2% [39 % (39 +1p + 23 +2.3)]
:2X(10+30+50+23+43+2_3+4_3). (23)

A factor of 2 comes from the fact that both (3,8) and (3, 8)
of SU(3) x SU(8) become (3,8) under SO(3) x SU(3).
We see that there are two SO(3)g,, singlets. These
correspond to the SU(3, 8) noncompact generators

Yi = e+ eq + €5+ esy + €36 + €3,
Yz = —i€]4 + i€41 - i€25 + ieSZ - i€36 + i663. (24)
These two generators are noncompact generators of

SL(2,R) C SU(3,8) commuting with SO(3)4;,,- The
SO(2) compact generator of this SL(2,R) is given by

J = diag(2i6"B, —2i61*37+3,0,0,0,0,0), i, j=1,2,3.

(25)

From (23), it should be noted that the two singlets are
uncharged under the U(1) factor from SU(3). Therefore,
the full symmetry of ¥, is in fact SO(3)giag x U(1).

By using a Euler angle parametrization of SL(2,R)/
SO(2) ~S0(2,1)/S0(2) ~SU(1,1)/U(1), we parame-
trize the coset representative by

L= e ethiem0l, (26)

The resulting scalar potential can be written as

V== 2SI+ R + (- 1)
+2(e* = 1)* cos(49) 91 9. (27)

The above potential admits two supersymmetric AdS,
critical points. The first one is a trivial critical point,
preserving the full SO(3) x SU(3) symmetry, with all
scalars vanishing

Vo=— % g (28)
where V|, is the value of the potential at the critical point,
the cosmological constant. This AdS, critical point should
be identified with a compactification of M-theory on N°'0
manifold and dual to an N = 3 SCFT in three dimensions
with SU(3) flavor symmetry. In the present convention, the
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AdS, radius L is related to the value of the cosmological
constant by

3 1

At this critical point, all of the 48 scalars have m?L? = —2
in agreement with the spectrum of M-theory on AdS, x
NO10 These scalars are dual to operators of dimension
A =1, 2 in the dual SCFT.

Another supersymmetric critical point is given by

92 — 91} Vo = — 39195 _
9P+ 9 2(55 - 91)
(30)

1
=0, A==l
0 jin|

This critical point is an AdS, critical point for g3 > ¢7 as
required by the reality of A. That this critical point preserves
supersymmetry can be checked from the supersymmetry
transformations given in the next subsection. The AdS,
radius can be found to be

% -9

L* =
919

(31)

More precisely, there are many critical points, equivalent to
the one given above, with sin(4¢,) =0 or ¢ =%, n € Z.
At this critical point, we can determine the full scalar
masses as shown in Table L.

From the table, we see seven massless scalars corre-
sponding to Goldstone bosons of the symmetry breaking of
SO(3) x SU(3) t0 SO(3) 4, x U(1). The singlet scalar 4 is
dual to an irrelevant operator of dimension 4 at this critical
point while ¢ is still dual to a relevant operator of
dimension A = 1, 2. It should also be noted that all the
masses satisfy the Breitenlohner-Freedman bound as
expected for a supersymmetric critical point.

TABLE 1. Scalar masses at the N = 3 supersymmetric AdS,
critical point with SO(3)g,, X U(1) symmetry and the corre-
sponding dimensions of the dual operators.

SO(3)giag x U(1) representations m2L? A
1, 4, =2 4, (1,2)
23 O(x2)» =2(x2) 3, (1,2
2, Ox2)s —2(x2) 3,(12)
3o Ox3)> =2(x3) 3,(L2)
43 _%(X4)’ —2(x4) % (1,2)
4 _%(x4)’ ~2(x4) 512
So =2 (x10) (1,2)
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There is also a nonsupersymmetric critical point, but we
will not give its location and value of the cosmological
constant here due to its complexity.

B. A supersymmetric RG flow

In this subsection, we will find a supersymmetric
domain wall solution interpolating between two AdS,
critical points identified previously. In order to do this,
we will set up the corresponding Bogomol'nyi—Prasad—
Sommerfield (BPS) equations by setting the supersym-
metry transformations of fermions to zero. The nonvanish-
ing bosonic fields are the metric and SO(3)4,, singlet
scalars.

We adopt the standard domain wall ansatz for the four-
dimensional metric

diag

ds® = A0 dx? , + dr? (32)

with dxi, being the flat Minkowski metric in three
dimensions. We will use the same convention as in [31].
All spinors will be written as chiral projected Majorana
spinors. For example, we have

(1 +ys)et, e ==(1-ys)et  (33)

€p =

N[ =

1
2

where é4 is a Majorana spinor. In this Majorana represen-
tation, all of the gamma matrices y“ are real while y5 =
iyoY17275 is purely imaginary. As a consequence, €/ and €,
are simply related by a complex conjugation, €, = (e*)*.

In the present case, it turns out that CyM4 =0.
Therefore, the variation Jy is identically zero. To satisfy
the conditions 64, =0 and 61,4, =0, we impose the
following projector

Ve, = ethet (34)

which implies y"e* = e~*e,. With this projector, the
conditions dy,4 = 0, for 4 =0, 1, 2, reduce to a single
condition

Ale™ —W =0 (35)
where ' is used to denote the r-derivative. The “super-
potential” W is related to the eigenvalues of S,p. It turns
out that in the present case, S,p is diagonal

1
SAB :§W5AB‘ (36)

This would imply unbroken N = 3 supersymmetry pro-
vided that the conditions 64, =0 and 64,4 =0 can be
satisfied. The explicit form of WV is given by

045006-5



PARINYA KARNDUMRI
1
W= e+ g + (¢ -

+i[(1 + e*)g, — (e** -

1)*g5] cos(2¢)
1)°g2] sin(2¢)]. (37)

By writing W = |W|e” = We'®, the imaginary part of
Eq. (35) gives rise to the relation

A= el (38)

On the other hand, 64; = 0 and 64,4 = 0 equations reduce
to two independent equations that can be written as

yi _le—iA_ + ie—le(e4/1 _

3¢ D¢ =0.  (39)

These two equations imply ¢’ = 0 or ¢ = ¢, with ¢, being
a constant. It turns out that consistency with the field
equations require sin(4¢,) = O or ¢y =%, n € Z. To make
the solution interpolates between the two cr1t1ca1 points, we
will set ¢g = 0.

With this choice, W is real, and the phase factor et
simply given by

A= 41, (40)
We can finally write down all the relevant BPS equations as

p :':16—31(64/1 _

. DI+ e¥)gy + (e =

Dgl,  (41)

.
A=+

86—31[(1 + 62/1)391 + (82}“

Vol (42)
In what follows, we will choose the upper signs in order to
identify the trivial critical point with the UV fixed point of
the RG flow.

As in other cases, W = |[W)| provides the “real super-
potential” in term of which the scalar potential can be

written as
1 /0W\2 3 )
=——|——] =—=W- 4
v 6<8/1> 2W (43)

In the present case, the scalar kinetic terms are given by

1 3 3
_EP;JAP” — _56—41(641 _ 1)2(‘0/2_51/2_ (44)
With all these results, it can be verified that the second
order field equations are satisfied by the first order BPS
equations (41) and (42).

We now solve for the RG flow solution. Equation (41)
clearly admits two fixed points at A = 0 and A = 1 7 In[Z24.
These are supersymmetric critical points identified previ-
ously. The solution for Eq. (41) is given by
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91927 = C; +2g tan~"e* — 2\/9%—79%tanh_1 [ei\/éﬂq
92— 91

1+¢
7

— (45)

+gzhl|:

where the constant C; can be set to zero by shifting the r
coordinate. By choosing ¢;, g, > 0, it can be seen that as

A — 0, we find r - co, and r = —co as ﬂ—»‘ln[§§+f}ll]

These correspond to the UV and IR fixed points of the RG
flow, respectively. Near the two critical points, we find

__r
UV: A~e ™9 ~e Ty
9192 r

IR: A~ eV2™ ~ elr. (46)
Therefore, the flow is driven by an operator of dimension
A =1, 2, and this operator becomes irrelevant in the IR
with the corresponding scaling dimension A = 4.

Finally, by combining Eqgs. (41) and (42), we obtain

dA (1+e*)g + (¥ = 1)g, (47)
di (¥ =1)[(1+e)gi + (¥ = 1)g)]
whose solution is given by
A=Cy+A-In(1—-e*) +1In[g (1 +e*) + gy(e* = 1)].
(48)

The integration constant C, can be neglected by rescaling
the coordinates of dxi,. It can readily be verified that

A — £ when 1 -0, lln[g2 T2 as expected for the two

conformal fixed points.

We now identify a possible dual operator driving this
flow. From the results of [11,12], the eight vector multiplets
in the N = 3 gauged supergravity correspond to the global
SU(3) flavor current given, in terms of the N = 2 language,
by the superfield

4 1
i —
J \/j

The trace (Tr) above is over the gauge group SU(N) x
SU(N) under which U’ and V; transform as a bifunda-
mental. The hypermultiplets (U, iV?) form a doublet of
SU(2)g and transform in a fundamental representation the
SU(3) flavor. The flow given above is driven by scalar
fields in the vector multiplets, and these scalars arise from
the eleven-dimensional metric rather than the three-
form field [10]. According to the UV behavior in (46),
we then expect that the flow is driven by turning on an
SO(3) x U(1) invariant combination of the scalar mass
terms within ;.

—=Tr(U'U; + V'V;) — flavor trace.  (49)
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IV. FLOWS TO NONCONFORMAL
FIELD THEORIES

In this section, we consider RG flows to nonconformal
field theories. The supergravity solutions will interpolate
between UV AdS, critical points and domain walls in
the IR.

A. Flows within SO(2) x SO(2) x SO(2) singlet scalars

We first consider scalars invariant under SO(2) x
SO(2) x SO(2) symmetry. The first SO(2) is embedded
in the SO(3) such that 3 — 2 + 1. From the branching of
3y + 1y in (22) under SO(2) Cc SO(3) c SU(3), we find
2y + 1, + 1. Combining the two decompositions together,
we finally obtain the relevant scalar representations under
SO(2) x SO(2) x SO(2)

2x[(30,30 +10)] =2 x[2(1, 1), (1,2),2(2, 1), (2,2)o]-

(50)

There are accordingly four singlets corresponding to the
noncompact generators

Y =e311 +en3, Y, =iej 3 —iesq,

Y3 =e36+ €63, Yy =ieos—iezq. (51)
It should be noted that 171.2 are invariant under a bigger
symmetry SO(2) x SU(2) x U(1). The above four singlets
correspond to mnoncompact directions of SU(2,1) C
SU(3,8). We then effectively need to parametrize the
SU(2,1)/SU(2) x U(1) coset manifold. It is more con-
venient to adopt a parametrization using SU(2) Euler
angles. The SU(2) x U(1) compact subgroup of the
SU(2,1) group is generated by

i 1
Ji = §<€11,11 - 366)v Jy = 5(66,11 - 611,6),
i A i
Ji=——(ec1) +e , J=—=(2e33 — e, — €
3 2( 6,11 1.6) 2\/§( 33 66 11,11)
(52)

with [J,.J4] = €,5,J, and J corresponding to the U(1).
The coset representative for SO(2) x SO(2) x SO(2)
invariant scalars is accordingly parametrized by

L — o1 09202 00303 p®V1 =033 =273 p=01 1 (53)

The scalar potential turns out to be independent of all the ¢;
1

V= ~59 [1 + 2cosh(29)] (54)

which clearly has only the trivial critical point at ® = 0.
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The matrix S,z in this case is diagonal
1
SAB :Eg] COSh(I)éAB (55)

implying that the maximal N = 3 supersymmetry is pre-
served if the conditions 64; =0 and 64;4 =0 can be
satisfied. This is similar to solutions studied in the maximal
N = 8 gauged supergravity in [32].

We can proceed as in the previous section to analyze
other BPS equations. Since W is real in this case, we
simply have @ =0 and e = +1. Generally, the flow
equations for a scalar ¢; is, up to a numerical factor, given
by G"fg%; in which G being the inverse of the scalar
matrix appearing in the scalar kinetic terms. The above
superpotential depending only on ® will immediately give
@: = 0. Remarkably, this precisely agrees with the results
from solving 64; =0 and J4;4 = 0 equations. This is
another consistency check for our results.

We now give the flow equations after choosing a choice
of signs such that the SO(3) x SU(3) AdS, critical point is
identified with » — oo

P =—g sinh® @, =0, i=123,
A’ = g, cosh ®. (56)

A solution to the above equations can be readily obtained

ar _ ,C
¢_imF__1}

ed’ + e€
A=®—1In(1-e>®)+C. (57)

As r — o0, the solution approaches the UV AdS, critical
point with & ~¢™9" and A ~ g;r. At g,r ~ C, there is a
singularity with ® becoming infinite

® ~+tIn(g,r—C). (58)

Both of the signs give rise to the same domain wall metric
in the IR

ds* = (gir — C)dxi, +dr. (59)

It can also be checked that the potential (54) is bounded
above for ® - +oo namely V(® — +o0) > —o0. The
singularity is then physical according to the criterion of
[33]. Therefore, the solution should be interpreted as an RG
flow from the UV N = 3 SCFT to an N = 3 nonconformal
field theory in the IR.

B. Flows within SO(2)

The solutions considered in the previous subsection
describe RG flows from the trivial N = 3 critical point.
These solutions do not connect to the nontrivial AdS,

diag X SO(2) singlet scalars
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critical point identified in Sec. III. We now consider another
class of flow solutions describing RG flows from both the
trivial and nontrivial critical points to IR gauge theories
with SO(2) x SO(2) symmetry.

We will consider scalars which are singlets under
SO(2)giag X SO(2) C SO(2) x SO(2) x SO(2) symmetry.
Further decomposing the scalar representations gives eight
singlets under this symmetry. These correspond to the
following SU(3,8) noncompact generators

Yi=esteg, Yy=—iess+ieq,

Yi=exptesytetey. Yi=—ieptiesy—ieg+iey,

Ys=ejstesi—ey—epn, Ye=—ies+ies +iey—iey,

Vi=esqtens Yg=—iesy +ieqs. (60)

In this case, using Euler parametrization does not
simplify the result to any useful extent. We then simply
parametrize the coset representative in a straightforward
way

L = 7102720373 o471 0575 060 0017 00575 (1)

The resulting scalar potential and BPS equations are much
more complicated than the previous cases. We refrain from
giving their explicit form here.

However, there are some interesting truncations. We
will simply consider these and give the full result within
these truncations. With only ®; and ®g nonvanishing,
the residual symmetry is enhanced to SO(2) x SU(2)x
SO(2). Furthermore, if one of these two scalars is set to
zero, we recover the result obtained in the previous
subsection. A new deformation arises from ®, and Pg
both being nonzero. In this case, the N = 3 supersymmetry
is broken to N = 1.

The matrix S,p is diagonal with two different eigenval-
ues, with S;; = Sy,. It turns out that the third eigenvalue
gives the true superpotential

W = 2833 = g; cosh @5 cosh g + ig; sinh P sinh Pg
(62)

in terms of which the scalar potential can be written as

LG OWOW 3

27 09190 2
1
=- Eg% [1 4 2cosh(2®;) cosh(2Pg)] (63)

V=

where the real superpotential is given by

1

W= W=

g1\/1 + cosh(2®,) cosh(2dg).  (64)
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In the above result, we have used the scalar kinetic term

1 . . |
_EGU&”¢ 8ﬂ®j - —EPI/} PI:A

1 1
=-3 cosh?(2®g) P2 — > o2 (65)

which gives G;;, i, j = 7, 8. The inverse G” can readily be
read off. The supersymmetry transformations of
corresponding to €1, can be satisfied by setting €1, = 0.
Accompanied by the usual y” projection, the unbroken
supersymmetry is then N = 1 Poincaré supersymmetry in
three dimensions.

The BPS equations coming from 64,4 =0 has no
components along e¢;3. They are accordingly automatically
satisfied with ¢, , = 0. 64; = 0 equations become

e cosh(2®g) P, + i®}] = g, cosh By sinh P,
+ ig, cosh @5 sinh dg. (66)

By a similar analysis as in the previous section, we find
e = +e® with e = ‘—W| The above equations can be

W
solved by
o — gy sinh(2®;)sech(2dy) (67)
! /2 + 2 cosh(2®;) cosh(2®y)
inh(2® h(2
(I)g — :F gl s ( 8)COS ( 7) (68)

/2 + 2 cosh(2®;) cosh(2®g)

Together with A’ = +W, these form the full set of flow
equations.

By combining these equations, we can solve for ®g and
A as a function of ¢,

coth(2dg) = csch(2®,), (69)
1 2 cosh(2® 1
A = ——tanh™! [M] — —In[cosh(4®;) — 3]
2 3 —cosh(4®;)| 4
1
+ Eln sinh(2®,). (70)

In principle, we can put the solution for ®g in ¢ equation
and solve for ®;(r). However, we have not found the full
analytic solution for ®,(r). In the following, we simply
study the ®, behaviors near the UV AdS, critical point and
near the IR singularity. As r — oo, we find

Dy~ Dy ~ eI, A~gr. (71)

At large ||, we find
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1
Dy~ + gln(gl r), dg ~ constant,

ds> = (g, r)%dxf2 +dr?, (72)

where we have put the singularity at r = 0 by choosing an
integration constant. These singularities are also physical.
The solution preserves two supercharges and describes an
|

PHYSICAL REVIEW D 94, 045006 (2016)

RG flow from N = 3 SCFT to a nonconformal field theory
in the IR with N = 1 supersymmetry.

We will now make another truncation by setting ®; = 0
for i =2, 4, 6, 8. This can be verified to be consistent
with both the BPS equations and the second order field
equations. In this truncation, the scalar potential is
given by

V= _ L [(1 + cosh(2®3) cosh(2®5))[4 cosh(2®) — 4 + 3 cosh[2(P — D3 — Ps)]

64

+ 2 cosh[2(P + @3 — P5)] + 3 cosh[2(P; — D3 + D5)] + 2 cosh[2(P3 + Ps)]

+ 3 cosh[2(®; + @3 + Ps)] + 8cosh?® | [1 + 3 cosh(2®3) cosh(2®5)] cosh(2®;)]g?
— 12(cosh(4®;) + 2cosh?(2®5) cosh(4®s) — 3)cosh?®; sinh(2®,)g, 9,

+ [cosh(2®3) cosh(2®5) — 1][4 + 4 cosh(2®,) — 3 cosh[2(P; — P53 — Ds)]

+ 2 cosh[2(P3 — P5)] — 3 cosh[2(D; + P3 — Ds)] — 3 cosh2(P) — D3 + Ps)]

+ 2C05h[2(®3 —+ (I)S)] -3 COSh[Z((I)l + @3 + @5)]
+ 8[1 — 3 cosh(2®3) cosh(2®s)] cosh(2®;)sinh? P, ]g3]. (73)

Using the same procedure as before, we find the full set of the BPS equations within this particular truncation

1 e~ P17 2(P3+05+P9)

L e e el (Gl UR e R 43Pt 0s) 4 A5t Ps)) g,
e 7
+ (1 4+ €2®)(1 + €*®5 + 45 — 42 Ps+®Ps) 1 pHP3+®s)) g ] (74)
o~ ®1-205 1205 -0,
¥ = o (€ = D1+ (14 g+ (20 = 1)gs) @
1
@} = PR (8 1) (14 20— 1)[(1 4 gy + (¢~ 1)), (76)
(I)/7 — _%e—él—z%—ws—%(l _ e2f1>7)[(6,2<1>| _ 1)[1 4 64(1’3 + e4‘1>5 +462(<I>3+<I>5)
+ e ®H)] g 4 (1 + &22)[1 4 s 4 4P — 42 P3HPs) 4 MO+ Ps)]g ], (77)
A = 3%6—‘?1—2‘1’3—2‘1)5—‘1’7(1 + e227)[(e2® = 1)[1 + e*®s 4 *®5 4 42(P3+Ps)
+ 64@3@5)]91 + (14 e22)[1 + e*®s + ¥ — 4203+ 0s) 4 e4(¢3+®5)]92]- (78)

Due to the y, projector, the solutions will preserve six super-
charges or N = 3 supersymmetry in three dimensions. When
®; = &y and 5 = P; = 0, the above equations reduce to
those considered in Sec. III. These equations do not admit any
nontrivial AdS, fixed points apart fromthe N = 3 SO(3) 4, %
U(1) critical point already identified in Sec. III. This agrees
with the remark given in [6] in which partial supersymmetry
breaking has been shown to be impossible.

We are now in a position to consider various possible RG
flows from the UV N = 3 SCFTs. In this case, we have not

[

found any possible analytic solutions. Therefore, numerical
solutions will be needed in order to obtain the full flow
solutions. Although these solutions always exist and can be
found by imposing suitable boundary conditions, we will
not give them here. Instead, we will give the behavior near
the IR singularity which can be put to r = 0 by choosing
appropriate constants of integration. This is similar to the
analysis given in [34]. Note also that, from the above
equations, setting ®5 = 0 and ®; = 0 is also a consistent
truncation.
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We will now consider RG flows to the IR with infinite
values of scalar fields. From the above equations, as
®; — +oo, we find that &5 — 0. Since both of the
AdS, critical points have &5 =0, we will set &5 =0
throughout the analysis.

At the trivial N =3 AdS, critical point, all scalars
are dual to relevant operator of dimensions A =1, 2.
For @5 > 0, there are flows with the IR behavior

8
ds> = ridx}, + dr’ (79)

1 3.
D ~ ¢y, ®; ~ s, ¢3~—§ln [—gr},

where ¢, is a constant and g = g; cosh ¢y + g, sinh ¢.
There is also another flow with asymptotic behavior

1 1.
(P] N¢O, (1)7’\‘—2@3, (1)3’\’—111'1 |:§gr:|,

ds* = r%abc%2 +dr?. (80)
For ®; < 0, we have flows with
1. {3
D ~ Py~ —=1In |=g
1~ o, 3 3 n [8 gr],

ds> = ridx}, + dr?. (81)

(1)7 ~ :l:(I>3,

It should be noted that when ®; # 0, we always have
constant ®; in the IR. This is however not the case when
®; = 0. An example of this flow is given by

1 1
(I)1~—2<I>3, (1)7:0, ®3N_Zln |:§(gl_92)r:|’

ds® = rdx}, + dr’. (82)

Remarkably, all of these flows are physical according to the
criterion of [33] as can be checked from (73) that all the
flows give V — —c0.

The nontrivial AdS, critical point can be approached by
setting &, = +&; = ¢ = %ln[ﬁ] in the UV with differ-
ent signs corresponding to different combinations of
SO(3) x SO(3) generators in forming SO(3);,,- We will
additionally set ®; = ®5 = 0 in the following analysis.

For &5 > @, there is a flow with asymptotic behavior

1 3
D) ~ Dy ~—§ln [g(éh +92)”]v

ds* = r%dx%.z +dr. (83)

For ®; < ®,, we have flows with the IR behavior

1 3
D) ~ £Ps, D5 ~§ln [g (91?92)’”]’

ds® = ridx}, + dr’. (84)
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All of these flows are also physical with V — —oo near the
IR singularity.

V. FLOWS TO LOWER DIMENSIONS

In this section, we consider supersymmetric solutions
of the form AdS, x %, in which %, is a Riemann surface in
the form of a two-sphere S or a two-dimensional hyper-
bolic space H?. Domain wall solutions interpolating
between AdS, critical points and these geometries should
be interpreted as RG flows to lower dimensional super-
conformal field theories. In the present case, the lower
dimensional SCFTs would be described by twisted com-
pactifications of the N =3 SCFTs in three dimensions
resulting in one-dimensional SCFTs. We will look for
supersymmetric AdS, solutions with SO(2) x SO(2) x
SO(2) and SO(2) x SO(2) symmetries within N =3
SO(3) x SU(3) gauged supergravity.

A. AdS, critical points with
SO(2) x SO(2) x SO(2) symmetry
We begin with the BPS equations relevant for the present
analysis. The gauge fields are now nonvanishing. We adopt
the twist procedure in order to preserve some amount of
supersymmetry. This involves turning on some gauge field
to cancel the spin connection along the X, directions. We
will primarily consider the case of curved X, in the form of
S? and H>.
The four-dimensional metric is taken to be

ds; = —eAdf? + dr? + Pds?(Z,)  (85)

where ds*(%,) is the metric on Z,. Its explicit form can be
written as

1
ds*(8%) = d6? +sin*0d¢?* and ds*(H?)= 2

(dx*+dy?)
(86)

for the S? and H? cases, respectively. In the following, we
will only give the detail of the S? case. The H? case can be
done in a similar way.

The component of the spin connection on S? that needs
to be canceled is given by

w?? = ¢B cotfe?. (87)

This appears in the oy 4 variation. To cancel this con-
tribution, we turn on some of the gauge fields A,

appearing in the SU(3) composite connection Q5. We
will choose the nonvanishing gauge field to be

A3z = acosfdg (88)
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which gives rise to the nonvanishing components of the
composite connection

0> =-0,! =-ajg or Qap=—gieapcA°.  (89)

The cancellation is achieved by imposing the following
twist and projection conditions

Ypo€a = i65,"€y, a,b=1,2. (90)

1
a9 :E’

In the above equation, o,,” denotes the usual second Pauli
matrix. We have split the index A into (a,3) such that
e* = (€4, €%). It should be noted that with only A; non-
vanishing, the supersymmetry corresponding to € cannot
be preserved, so we will set €> = 0. Eventually, there are
only four unbroken supercharges corresponding to ¢ that
are subject to the Yoo projection.

In addition, there are other two gauge fields that can
be turned on along with A;. These correspond to the
SO(2) x SO(2) c SU(3) symmetry and are given by

A% =bcosOdgp and A'' =ccosfdp. (91)

All other gauge fields are zero. The field strengths of
(A3, A8, A!) are given by

Fy=—aye 2B n b (92)

with nonvanishing a, = (a3, ag, a;;) = (a, b, ¢). With the
convention €79% = 1, we find the dual field strength
Fy=aye el A el (93)
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The four-dimensional chirality on €, relates the V4o 1O the
73 as follows

Y5€a = IViY3YpY j€a = €a (94)
implying that

Vir€q = 62ab€b- (95)

We are now in a position to set up the BPS equations by
using all of the above conditions and the formulas given in
Sec. II. In the presence of gauge fields, unlike the solutions
considered in Sec. III, it turns out that the parametrization
of the coset representative for SO(2) x SO(2) x SO(2)
invariant scalars using SU(2) Euler angles does not
simplify the resulting equations to any appreciable degree.
We will rather choose to parametrize the coset represen-
tative in the form of

L = V121 2®2 Y305 ,Y4 0y (96)

Furthermore, we will make a truncation &, = &, =0 to
make things more manageable. This can also be verified to
be consistent with all of the BPS equations as well as the
corresponding field equations.

As in the previous cases, the equations coming from
8y = 0 are identically satisfied since CyM4 =0, and the
particular ansatz for the gauge fields given above gives
G;‘Uy/‘” = 0. In addition, 64; = 0 equations are identically
satisfied provided that we set ¢’ = 0. In our particular
truncation, W is real, so we can impose the y; projection
simply as y;e, = £e,. With the usual choice of signs
chosen, the independent BPS equations coming from
0As; = 0 are given by

1
(I>/l — 16—@1—<I>3—23[4ce¢>3(1 + 62‘I>1) +2b<62<1>1 _ 1)(62<I>3 _ 1)

—2a(e*M = 1)(1 4 €**) + g1e* (1 — &%) 4 g 2* 72 (1 — M), (97)
/ et 2h 20 20 2B (20
Oy == 2ale™ 1) = 2b(1 4+ &™) + gre (e — 1], (98)

With the twist conditions (90), oy a = 0 equations are the same as oy, = 0 equations. All of these conditions reduce to a

single equation for the function B while the conditions 6y 4, for u = ¢, give an equation for the function A. These are given by

1
B = _Ze—<1>,—<1>3—28 [2ce® (1 — e®®1) — b(1 + *1)(e*® - 1)

+a(l+e?P)(1 4 e*®) — g1e?B(1 + &2%1) — g 2P3+28(1 4 &27)), (99)

1

A= —Ze_¢1_¢3_23[—2ce¢3(1 —e2) + b(1 + 1) (2P - 1)

—a(1 4 22)(1 4 2) — ge?B(1 + €2®1) — g, 28428 (1 + &21))].

(100)
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For the H? case, a similar analysis can be carried out. The
result is the same as the above equations with (a,b, c)
replaced by (—a, —b, —c).

An AdS, x X, geometry is given by a fixed point

PHYSICAL REVIEW D 94, 045006 (2016)

The expression for the AdS, radius is much more com-
plicated. We will not give it here, but in any case this can be
obtained by substituting the values of B, ®; and @ in the A’
equation.

of the above equations satisfying @) =, =
B'=0 and A’ :ﬁ. We find a class of solutions B. AdS, critical points with
given by ’ S0(2) x SO(2) symmetry
We now look for AdS, solutions that can be obtained from
1. [2[a(1 = ) + b(1 + €2%)] twisted compactifications of the non-trivial AdS, critical
B = 3 In (@ 1) ] ) point. As in Sec. IV, we consider SO(2) ;,, X SO(2) invariant
- - @1 scalars. The coset representative is still given by (61). The
o, = lln c(1 —e"™) —2be 3] ansatze for the gauge fields are similar to the previous case but
2 [e(e®® = 1) — 2bes with b = % a to implement the gauge field of SO(2)q,-
1 22+ \/bz 9a2 = 8(0% + )] Following the same procedure as in the previous sub-
D, 25111 3ab = 357 — & . (101) section, we obtain a set of BPS equations, again in a
L a ¢ consistent truncation with ®; =0, for i =2, 4, 6, 8§,
2e® a
¥ =1 [—5‘3‘@"23[(1 + g+ (1= e*)g,)]
+%e—<1>1—2<1>3—2<1>5[(e2<1>1 —1)(1 + &4 4 45 4 423405
+ e4(<I>3+<I>5))gl + (1 -+ 62(1)1)(1 + &40 + e4%s 462(<I’3+<D5) + e4(¢’3+¢5))92] , (102)
/ L P F2Ds— D, (4D 20 20
= = o] € P e 1) x (14 ¥ )g, + (2 — 1)) (103)
1
B = 5 PR (| ) (¢4 — 1)1+ ¢7) x (14 €M)gy + (2 = 1)ga), (104)
<I)’7 — 3%6—@—2@3—2@5—@7(1 _ 624)7)[(1 + ezél)[] 4 et 1 et 4£2(23+25)
+ e4(<1)3+<1>5)]g] 4 (62<I>| _ 1)(1 4 4P o p4Ps — 42(23+05) 4 e4(<1>3+<1>5))92]
1
+ z—gze“D“‘I’7‘2B 2ce® (1+€*)gy +a(e?™ = 1[(e*™ = 1)g; = (1 4+ &**)g)]], (105)
B — _3%6—@—@7—23 [8_‘1 (1+e2®)[(1 = €2®) gy + (1 + €221)gy] — 2B H)[| G +205+205 (0207 _ 1)
92
+ (€21 — 1)(1 + e*® + 45 — 4e2(Ps+®s) 4 64@3*@5))92]}, (106)
1 8
Al = §€—¢1—<1>7—23 |:ga (1 + 62‘1)7)[(1 _ 82<I>|)gl 4 (1 + eZQ,)gz] _ e—2(<1>3+‘1>5)[16ce<1>]+2<1>3+2<1>5 (€2<I>7 _ 1)
2
=+ <62<I>1 _ 1)(1 4 et p4Ps _ 402(D340s) e4(¢>3+<ﬁ5))gz]} (107)

From these equations, we find a number of AdS, x X, solutions given below.
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(1) For &3 = &5 =0, we find a critical point
B = %ln
b, = %ln
d, = %ln

[2a[(1 +€**)gy + (1 = 62‘1’1)92]]
L (™ = 1)g19 ’
[2ae® g + c(*™ — 1)92}
2aeq’lgl —c(e* - 1) '
- g+’ gila*(9g; — 847) - 8629%]] (108)
i 3a* 91(92 — 91) —-C 9% .

(2) For ¢ =0, ®; can be consistently set to zero. If we further set ®; = 0, we find the following critical point

1

&, =~In [91 £9¢ - 89%]
2 3(92 = 91)
5 — 11124092~ 911291 + 39:F /993 — 8]
2 9192491 — 39, £ /993 — 847]
Lags, = 201+ 39:F 99~ 891 3 ~9) (109)
: 4g1 g1+ /9% — 8
(3) For ¢ =0 and ®; = 0 but 3 # 0, we find a critical point
b, = L1 u]
9 + g1
1
B=-In [ + agl]
9 92
o 11 gt + 109795 + g5 — 2\/59192+269?92+59192
——In ,
) 92 91
2
9 _9%
=" 110
AdS: 2919 (110)

It can be checked that all of the above solutions are valid by
choosing suitable choices of the two coupling (g;, g,) and

the parameters (a, ¢) in a manner that is cons

twist condition 2g;a = 1. For example, taking b = 2¢ and

a = 5c¢ in the solution (101) leads to

—In {0.9274411 141
g1

®, = 0.146711,
D, = 0.287363.

There might be more critical points, but we have not found

any other real solutions.

We end this section with a remark on AdS, x 72
solutions. Since T2 is flat, the twist is not needed. We
will set A; = 0 or equivalently a = 0. From the above two
cases, we have not found any valid AdS, x T2 solutions.

istent with the

VI. CONCLUSIONS

In this paper, we have studied N =3 gauged super-
gravity in four dimensions with SO(3) x SU(3) gauge
group. We have found a new supersymmetric AdS, critical
point, with SO(3) x U(1) symmetry and unbroken N = 3
supersymmetry, and given the full mass spectrum of all 48
scalars at this critical point. An analytic RG flow inter-
polating between this new critical point and the trivial UV
fixed point has also been explicitly given. The flow

(111)
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describes a supersymmetric deformation by a relevant
operator of dimension A = 1, 2. It would be of particular
interest to precisely identify the dual operator that drives
the flow in the dual N =3 SCFT. This result provides
another example of supersymmetric deformations of N = 3
Chern-Simons-Matter gauge theories which might be
useful in the holographic study of Aharony-Bergman-
Jafferis-Maldacena (ABJM)-type theories coupled to mat-
ter multiplets.

In addition, we have studied RG flows to non-conformal
N = 3 gauge theories in three dimensions with SO(2) x
SU(2) x U(1) and SO(2);,e x SO(2) symmetries. In the
former class of solutions, we have found N = 3 super-
symmetric deformations in the absence of the “pseudosca-
lars” corresponding to the imaginary part of the complex
scalars. When a pseudoscalar is turned on, the correspond-
ing deformation breaks supersymmetry to N = 1. The latter
class includes supersymmetric deformations that break
conformal symmetry of the SO(3) x U(1) N =3 SCFT
dual to the nontrivial AdS critical point. Remarkably, all of
these solutions have physically acceptable IR singularities.
This is due to the particular form of the scalar potential
which is always bounded above in the scalar sectors
considered in this paper. This is very similar to the solution
studied in [32]. These results would be of particular interest
in describing world volume theory of M2-branes and
hopefully in condensed matter physics systems along the
line of [35].

The last result of this paper consists of supersymmetric
AdS, x X, solutions preserving four supercharges or
N = 2 Poincaré supersymmetry in three dimensions. We
have given AdS, solutions with SO(2) x SO(2) x SO(2)
and SO(2)g,e X SO(2) symmetries. In the context of
twisted field theories, these solutions describe possible
twisted compactifications of N = 3 SCFTs dual to the two
AdS, critical points mentioned above. These should be
useful in the context of AdS,/CFT,; correspondence and
black hole physics. It should also be noted that there is no
AdS, x T? solutions within the scalar submanifolds con-
sidered here.

There are many possible future directions to investigate.
First, it is interesting to find whether the new SO(3) x U(1)
critical point and the corresponding RG flows can be
uplifted to eleven dimensions. This would give a geometric
interpretation to the solutions obtained here in the context
of M-theory in much the same way as the recent work
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for the N = 8 gauged supergravity in [36]. The complete
truncation of eleven-dimensional supergravity on N!0
keeping only SU(3) singlet fields is given in [37].
However, the result of [37] obviously cannot be used to
uplift the AdS, critical point and the RG flows given in this
paper since the scalars that transform nontrivially under the
flavor group SU(3) are also turned on.

It should be remarked here about the condition ¢35 >
g° related to the existence of the SO(3) x U(1) critical
point. Within the four-dimensional framework, the two
coupling constants are completely free. The consistency
of the gauging does not impose any relation between
them. On the other hand, from the eleven-dimensional
point of view, the ratio between g; and g, should be
fixed since there is no continuous parameter in N°'0.
This might indicate that the SO(3) x U(1) critical point
in eleven dimensions does not exist if the condition
g5 > g7 is not satisfied. Alternatively, this critical point
might arise from a more complicated compactification.
It would be interesting to investigate these issues in
more detail.

In finding AdS, x Z, solutions, we have truncated out
the pseudoscalars. It would be interesting to investigate
their role in AdS, x X, backgrounds as well as in the
holographic AdS,/CFT, context. In particular, finding
black hole solutions interpolating between N = 3 AdS,
and these AdS, x X, geometries and comparing the black
hole entropy with the result from superconformal indices in
the dual N = 3 SCFT, as in the AdS, x S7 case studied in
[28], would provide an example of this study in a less
supersymmetric case. The solutions found here would also
be useful in this context. We leave all these issues for future
investigations.
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