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We study various supersymmetric renormalization group (RG) flows of N ¼ 3 Chern-Simons-Matter
theory in three dimensions by using four-dimensional N ¼ 3 gauged supergravity coupled to eight vector
multiplets with SOð3Þ × SUð3Þ gauge group. The AdS4 critical point preserving the full SOð3Þ × SUð3Þ
provides a gravity dual of N ¼ 3 superconformal field theory with flavor symmetry SUð3Þ. We study the
scalar potential and identify a new supersymmetric AdS4 critical point preserving the full N ¼ 3

supersymmetry and unbroken SOð3Þ × Uð1Þ symmetry. An analytic RG flow solution interpolating
between SOð3Þ × SUð3Þ and SOð3Þ ×Uð1Þ critical points is explicitly given. We then investigate possible
RG flows from these AdS4 critical points to nonconformal field theories in the IR. All of the singularities
appearing in the IR turn out to be physically acceptable. Furthermore, we look for supersymmetric
solutions of the form AdS2 × Σ2 with Σ2 being a two-sphere or a two-dimensional hyperbolic space and
find a number of AdS2 geometries preserving four supercharges with SOð2Þ × SOð2Þ × SOð2Þ and
SOð2Þ × SOð2Þ symmetries.

DOI: 10.1103/PhysRevD.94.045006

I. INTRODUCTION

AdS4=CFT3 correspondence is interesting in many
aspects such as its applications in the study of M2-brane
dynamics and in the holographic dual of condensed
matter physics systems. There are a few examples of
supersymmetric AdS4 backgrounds with known M-theory
origins. Apart from the maximally supersymmetic N ¼ 8

AdS4 × S7 compactification, there is an AdS4 background
withN ¼ 3 supersymmetry arising from a compactification
of M-theory on a tri-sasakian manifold N010 [1]. This is a
unique solution for 2 < N < 8 supersymmetry. The spec-
trum of the former example has been studied in [2] and the
massless modes can be described by the maximally SOð8Þ
gauged supergravity constructed in [3]. The lowest modes
of the latter are on the other hand encompassed in the
gauged N ¼ 3 supergravity coupled to eight vector mul-
tiplets constructed in [4], see also [5,6]. The holographic
study of this background within the framework of
N ¼ 8 gauged supergravity and eleven-dimensional super-
gravity has appeared in many previous works, see for
example [7–9].
The analysis of the complete spectrum of the Kaluza-

Klein reduction of M-theory on AdS4 × N010 has been
carried out in [10], see also [11]. It has been argued that the
compactification can be described by a four-dimensional
effective theory in the form of N ¼ 3 supergravity coupled
to eight vector multiplets with SOð3Þ × SUð3Þ gauge
group. From the AdS=CFT point of view, the SOð3Þ and
SUð3Þ factors correspond respectively to the SOð3Þ

R-symmetry and SUð3Þ flavor symmetry of the dual
N ¼ 3 superconformal field theory (SCFT) in three dimen-
sions with the superconformal group OSpð3j4Þ × SUð3Þ.
The structure of N ¼ 3 multiplets and some properties of
the dual SCFT have been studied in [12–17]. Furthermore,
a generalization to quiver gauge theories has been consid-
ered more recently in [18–23].
In the present work, we are interested in exploring

possible supersymmetric solutions within four-dimensional
N ¼ 3 gauged supergravity. The N ¼ 3 gauged super-
gravity coupled to n vector multiplets has been constructed
in [4]. The theory contains 6n scalar fields parametrizing
the SUð3; nÞ=SUð3Þ × SUðnÞ ×Uð1Þ coset manifold. We
will focus on the case of n ¼ 8 which, together with the
other three vectors from the supergravity multiplet,
gives rise to eleven vector fields corresponding to a gauging
of the SOð3Þ × SUð3Þ subgroup of the global symmetry
group SUð3; 8Þ. The maximally supersymmetric AdS4
critical point of the resulting gauged supergravity with all
scalars vanishing is expected to describe the AdS4 × N010

background of eleven-dimensional supergravity.
We will look for other possible supersymmetric AdS4

critical points. According to the standard dictionary of the
AdS=CFT correspondence, these should be dual to other
conformal fixed points in the IR of the UV N ¼ 3 SCFT
with the SUð3Þ flavor symmetry. We find that indeed there
exists a nontrivial supersymmetric AdS4 critical point with
SOð3Þ × Uð1Þ symmetry and unbroken N ¼ 3 supersym-
metry. We will also investigate holographic RG flows from
the UV N ¼ 3 SCFT to nonconformal field theories by
looking for domain wall solutions interpolating between*parinya.ka@hotmail.com
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the AdS4 critical points and some singular domain wall
geometries in the IR.
Finally, we will look for supersymmetric AdS2 × Σ2

solutions with Σ2 being a Riemann surface. Like the higher-
dimensional solutions, these solutions should be interpreted
as twisted compactifications of the N ¼ 3 SCFTs in three
dimensions to one dimensional space-time. These results
could be interesting both in the holography of three-
dimensional SCFTs and in the context of AdS2=CFT1

correspondence which plays an important role in black hole
physics, see for example [24] and [25]. Along this line, the
topologically twisted indices for these theories on S2 have
been computed in [26,27]. These results can be used to find
the microscopic entropy of AdS4 black holes by following
the approach of [28].
The paper is organized as follow. In Sec. II, we review

N ¼ 3 gauged supergravity in four dimensions coupled to
eight vector multiplets. In Sec. III, we will give an explicit
parametrization of SUð3; 8Þ=SUð3Þ × SUð8Þ ×Uð1Þ coset
and study the scalar potential for the SOð3Þdiag singlet
scalars and identify possible supersymmetric vacua. An
analytic renormalization group (RG) flow from the UV
SOð3Þ × SUð3Þ SCFT to a new IR fixed point with residual
symmetry SOð3Þdiag ×Uð1Þ is also given. We then move
to possible supersymmetric RG flows to nonconformal
field theories in Sec. IV. Supersymetric AdS2 backgrounds
obtained from twisted compactifications of AdS4 on a
Riemann surface are given in Sec. V. Some conclusions and
comments on the results reported in this paper are presented
in Sec. VI.

II. N = 3 GAUGED SUPERGRAVITY COUPLED
TO VECTOR MULTIPLETS

In order to fix the notation and describe the relevant
framework from which all the results are obtained, we will
give a brief description of N ¼ 3 gauged supergravity
coupled to n vector multiplets and finally restrict ourselves
to the case of n ¼ 8. The theory has been constructed in [4]
by using the geometric group manifold approach. For
the present work, the space-time bosonic Lagrangian and
supersymmetry transformations of fermionic component
fields are sufficient. Therefore, we will focus only on these
parts. The interested reader can find a more detailed
construction in [4].
In four dimensions, the matter fields allowed in N ¼ 3

supersymmetry are given by the fields in a vector multiplet
with the following field content

ðAμ; λA; λ; zAÞ:

Indices A;B;… ¼ 1, 2, 3 denote the fundamental repre-
sentation of the SUð3ÞR part of the full SUð3ÞR ×Uð1ÞR
R-symmetry. Each vector multiplet contains a vector field
Aμ, four spinor fields λ and λA which are respectively

singlet and triplet of SUð3ÞR, and three complex scalars zA
in the fundamental of SUð3ÞR. For n vector multiplets, we
use indices i; j;… ¼ 1;…; n to label each of them. Space-
time and tangent space indices will be denoted by μ; ν;…
and a; b;…, respectively. In contrast to the construction
in [4], we will use the metric signature ð−þþþÞ through-
out this paper.
The N ¼ 3 supergravity multiplet consists of the follow-

ing fields

ðeaμ;ψμA; AμA; χÞ:

eaμ is the usual graviton, and ψμA are three gravitini. The
gravity multiplet also contains three vector fields AμA and
an SUð3ÞR singlet spinor field χ. It should be noted that the
fermions are subject to the chirality projection conditions

ψμA ¼ γ5ψμA; χ ¼ γ5χ; λA ¼ γ5λA; λ ¼ −γ5λ:

ð1Þ

These also imply ψA
μ ¼ −γ5ψA

μ and λA ¼ −γ5λA.
With n vector multiplets, there are 3n complex scalar

fields zAi living in the coset space SUð3; nÞ=SUð3Þ×
SUðnÞ ×Uð1Þ. These scalars are conveniently parame-
trized by the coset representative LðzÞΛΣ. From now on,
indices Λ;Σ;… will take the values 1;…; nþ 3. The coset
representative transforms under the global G ¼ SUð3; nÞ
and the local H ¼ SUð3Þ × SUðnÞ ×Uð1Þ symmetries by
a left and right multiplications, respectively. It is convenient
to split the index corresponding to H transformation as
Σ ¼ ðA; iÞ, so we can write LΛ

Σ ¼ ðLΛ
A; LΛ

iÞ.
Together with three vector fields from the gravity

multiplet, there are nþ 3 vectors which, accompanying
by their magnetic dual, transform as the fundamental
representation nþ 3 of the global symmetry SUð3; nÞ.
These vector fields will be grouped together by a single
notation AΛ ¼ ðAA; AiÞ. From the result of [4], after
gauging, a particular subgroup of SOð3; nÞ ⊂ SUð3; nÞ
becomes a local symmetry. The corresponding non-
Abelian gauge field strengths are given by

FΛ ¼ dAΛ þ fΛΣΓAΣ ∧ AΓ ð2Þ

where fΛΣΓ denote the structure constants of the gauge
group. The gauge generators TΛ satisfy

½TΛ; TΣ� ¼ fΛΣΓTΓ: ð3Þ

Indices on fΛΣΓ are raised and lowered by the SUð3; nÞ
invariant tensor

JΛΣ ¼ JΛΣ ¼ ðδAB;−δijÞ ð4Þ
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which will become the Killing form of the gauge group in
the presence of gauging.
As pointed out in [4], one of the possible gauge groups

takes the form of SOð3Þ ×Hn with SOð3Þ ⊂ SUð3Þ and
Hn being an n-dimensional subgroup of SOðnÞ ⊂ SUðnÞ. In
this case, only electric vector fields participate in the gauging.
As a general requirement, gaugings consistent with super-
symmetry impose the condition that fΛΣΓ obtained from the
gauge structure constants via fΛΣΓ ¼ fΛΣΓ

0
JΓ0Γ are totally

antisymmetric. In the present paper, we are interested only in
this compact gauge group with a particular choice of H8¼
SUð3Þ with fΛΣΓ¼ðg1ϵABC;g2fijkÞ. This choice clearly
satisfies the consistency condition. fijk denote the SUð3Þ
structure constantswhile g1 and g2 areSOð3Þ × SUð3Þ gauge
couplings. The independent, nonvanishing, components of
fijk can be explicitly written as

f123 ¼ 1; f147 ¼ f246 ¼ f257 ¼ f345 ¼
1

2
;

f156 ¼ f367 ¼ −
1

2
; f458 ¼ f678 ¼

ffiffiffi
3

p

2
: ð5Þ

Other possible gauge groups will be explored in the
forthcoming paper [29].
The bosonic Lagrangian of the resulting gauged super-

gravity can be written as

e−1L ¼ 1

4
R −

1

2
PiA
μ Pμ

Ai − aΛΣFþ
ΛμνF

þμν
Σ − āΛΣF−

ΛμνF
−μν
Σ

−
i
2
e−1ϵμνρσðaΛΣFþ

Λμν − āΛΣF−
ΛμνÞFΣρσ − V: ð6Þ

We have translated the first order Lagrangian in the differ-
ential form language given in [4] to the usual space-time
Lagrangian. In addition, we have multiplied the whole
Lagrangian by a factor of 3. This results in a factor of 3
in the scalar potential compared to that given in [4].
Before giving the definitions of all quantities appearing

in the above Lagrangian, we will present the fermionic
supersymmetry transformations read off from the rheo-
nomic parametrization of the fermionic curvatures as
follow

δψμA ¼ DμϵA − 2ϵABCGB
μνγ

νϵC þ SABγμϵB; ð7Þ

δχ ¼ −
1

2
GA

μνγ
μνϵA þ UAϵA; ð8Þ

δλi ¼ −Piμ
AγμϵA þN iAϵ

A; ð9Þ

δλiA ¼ −Piμ
BγμϵABCϵ

C −Giμνγ
μνϵA þMiA

BϵB: ð10Þ

From the coset representative, we can define the Mourer-
Cartan one-form

ΩΛ
Π ¼ ðL−1ÞΛΣdLΣ

Π þ ðL−1ÞΛΣfΣΩΓAΩLΓ
Π: ð11Þ

The inverse of LΛ
Σ is related to the coset representative via

the following relation

ðL−1ÞΛΣ ¼ JΛΠJΣΔðLΔ
ΠÞ�: ð12Þ

The component Ωi
A ¼ ðΩA

iÞ� gives the vielbein Pi
A of

the SUð3; nÞ=SUð3Þ × SUðnÞ ×Uð1Þ coset. Other compo-
nents give the composite connections ðQA

B;Qi
j; QÞ for

SUð3Þ × SUðnÞ ×Uð1Þ symmetry

ΩA
B ¼ QA

B − nδBAQ; Ωi
j ¼ Qi

j þ 3δjiQ: ð13Þ

It should be noted that QA
A ¼ Qi

i ¼ 0.
The covariant derivative for ϵA is defined by

DϵA ¼ dϵA þ 1

4
ωabγabϵA þQA

BϵB þ 1

2
nQ: ð14Þ

The scalar matrices SAB, UA, N iA and MiA
B are given in

terms of the “boosted structure constants” CΛ
ΠΓ as follow

SAB ¼ 1

4
ðϵBPQCA

PQ þ ϵABCCM
MCÞ

¼ 1

8
ðCA

PQϵBPQ þ CB
PQϵAPQÞ;

UA ¼ −
1

4
CM

MA; N iA ¼ −
1

2
ϵAPQCi

PQ;

MiA
B ¼ 1

2
ðδBACiM

M − 2CiA
BÞ ð15Þ

where

CΛ
ΠΓ ¼ LΛ0ΛðL−1ÞΠΠ0 ðL−1ÞΓΓ0

fΠ0Γ0Λ
0

and

CΛ
ΠΓ ¼ JΛΛ0JΠΠ

0
JΓΓ

0 ðCΛ0
Π0Γ0 Þ�: ð16Þ

With all these definitions, the scalar potential can be
written as

V ¼ −2SACSCM þ 2

3
UAUA þ 1

6
N iAN iA þ 1

6
MiB

AMiB
A

¼ 1

8
jCiA

Bj2 þ 1

8
jCi

PQj2 − 1

4
ðjCA

PQj2 − jCPj2Þ ð17Þ

with CP ¼ −CPM
M.

We now come to the gauge fields. The self-dual and
antiself-dual field strengths are defined by

F�
Λab ¼ FΛab∓ i

2
ϵabcdFcd

Λ ð18Þ

with 1
2
ϵabcdF�cd

Λ ¼ �iF�
Λab and F�

Λab ¼ ðF∓
ΛabÞ�. The

explicit form of the symmetric matrix aΛΣ in term of the
coset representative is quite involved. We will not repeat it
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here, but the interested reader can find a detailed discussion
in the appendix of [4].
Finally, the field strengths appearing in the supersym-

metry transformations are given in terms of F�
Λμν by

Gi
μν ¼ −

1

2
MijðL−1ÞjΛF−

Λμν;

GA
μν ¼

1

2
MABðL−1ÞBΛFþ

Λμν ð19Þ

where Mij and MAB are respectively inverse matrices of

Mij ¼ ðL−1ÞiΛðL−1ÞjΠJΛΠ and

MAB ¼ ðL−1ÞAΛðL−1ÞBΠJΛΠ: ð20Þ

In subsequent sections, we will study supersymmetric
solutions to this gauged supergravity with SOð3Þ × SUð3Þ
gauge group.

III. FLOWS TO SOð3Þdiag × Uð1Þ IR FIXED
POINT WITH N = 3 SUPERSYMMETRY

We now consider the case of n ¼ 8 vector multiplets
and SOð3Þ × SUð3Þ gauge group. There are 48 scalars
transforming in ð3; 8̄Þ þ ð3̄; 8Þ representation of the local
symmetry SUð3Þ × SUð8Þ. It is efficient and more con-
venient to study the scalar potential on a particular
submanifold of the full SUð3; 8Þ=SUð3Þ × SUð8Þ ×Uð1Þ
coset space. This submanifold consists of all scalars which
are singlets under a particular subgroup of the full gauge
group SOð3Þ × SUð3Þ. All vacua found on this submani-
fold are guaranteed to be vacua on the full scalar manifold
by a simple group theory argument [30].

A. Supersymmetric AdS4 critical points

In terms of the dual N ¼ 3 SCFT, the SOð3Þ part of the
full gauge group corresponds to the R-symmetry of N ¼ 3
supersymmetry in three dimensions while the SUð3Þ
part plays the role of the global symmetry. There are no
singlet scalars under the SOð3Þ R-symmetry. In order to
have SOð3Þ symmetry, we then consider scalars invariant
under a diagonal SOð3Þ subgroup of SOð3Þ × SOð3Þ ⊂
SOð3Þ × SUð3Þ.
Before going to the detail of an explicit parametrization,

we first introduce an element of 11 × 11 matrices

ðeΛΣÞΠΓ ¼ δΛΠδΣΓ: ð21Þ

The SOð3Þ × SUð3Þ gauge generators can be obtained
from the structure constant ðTΛÞΠΓ ¼ fΛΠΓ. Accordingly,

the SOð3Þ part is generated by ðTð1Þ
A ÞΠΓ ¼ fAΠΓ, A ¼ 1, 2,

3, and the SUð3Þ generators are given by ðTð2Þ
i ÞΠΓ ¼

fiþ3;Π
Γ, i ¼ 1;…; 8. The SOð3Þdiag is then generated

by ðTð1Þ
A ÞΠΓ þ ðTð2Þ

A ÞΠΓ.

Under SUð3Þ → SOð3Þ ×Uð1Þ, we have the branching

8 ¼ 30 þ 10 þ 23 þ 2−3: ð22Þ

This implies that the 48 scalars transform under
SOð3Þdiag ×Uð1Þ as

2 × ½30 × ð30 þ 10 þ 23 þ 2−3Þ�
¼ 2 × ð10 þ 30 þ 50 þ 23 þ 43 þ 2−3 þ 4−3Þ: ð23Þ

A factor of 2 comes from the fact that both ð3; 8̄Þ and ð3̄; 8Þ
of SUð3Þ × SUð8Þ become ð3; 8Þ under SOð3Þ × SUð3Þ.
We see that there are two SOð3Þdiag singlets. These
correspond to the SUð3; 8Þ noncompact generators

Ŷ1 ¼ e14 þ e41 þ e25 þ e52 þ e36 þ e63;

Ŷ2 ¼ −ie14 þ ie41 − ie25 þ ie52 − ie36 þ ie63: ð24Þ

These two generators are noncompact generators of
SLð2;RÞ ⊂ SUð3; 8Þ commuting with SOð3Þdiag. The
SOð2Þ compact generator of this SLð2;RÞ is given by

J ¼ diagð2iδAB;−2iδiþ3;jþ3; 0; 0; 0; 0; 0Þ; i; j ¼ 1; 2; 3:

ð25Þ

From (23), it should be noted that the two singlets are
uncharged under the Uð1Þ factor from SUð3Þ. Therefore,
the full symmetry of Ŷ1;2 is in fact SOð3Þdiag ×Uð1Þ.
By using a Euler angle parametrization of SLð2;RÞ=

SOð2Þ ∼ SOð2; 1Þ=SOð2Þ ∼ SUð1; 1Þ=Uð1Þ, we parame-
trize the coset representative by

L ¼ eφJeλŶ1e−φJ: ð26Þ

The resulting scalar potential can be written as

V ¼ −
3

64
e−6λ½ð1þ e4λÞ½ð1þ e2λÞ4g21 þ ðe2λ − 1Þ4g22�

þ 2ðe4λ − 1Þ3 cosð4φÞg1g2�: ð27Þ

The above potential admits two supersymmetric AdS4
critical points. The first one is a trivial critical point,
preserving the full SOð3Þ × SUð3Þ symmetry, with all
scalars vanishing

λ ¼ φ ¼ 0; V0 ¼ −
3

2
g21 ð28Þ

where V0 is the value of the potential at the critical point,
the cosmological constant. This AdS4 critical point should
be identified with a compactification of M-theory on N010

manifold and dual to an N ¼ 3 SCFT in three dimensions
with SUð3Þ flavor symmetry. In the present convention, the
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AdS4 radius L is related to the value of the cosmological
constant by

L2 ¼ −
3

2V0

¼ 1

g21
: ð29Þ

At this critical point, all of the 48 scalars have m2L2 ¼ −2
in agreement with the spectrum of M-theory on AdS4 ×
N010. These scalars are dual to operators of dimension
Δ ¼ 1, 2 in the dual SCFT.
Another supersymmetric critical point is given by

φ ¼ 0; λ ¼ 1

2
ln

�
g2 − g1
g2 þ g1

�
; V0 ¼ −

3g21g
2
2

2ðg22 − g21Þ
:

ð30Þ

This critical point is an AdS4 critical point for g22 > g21 as
required by the reality of λ. That this critical point preserves
supersymmetry can be checked from the supersymmetry
transformations given in the next subsection. The AdS4
radius can be found to be

L2 ¼ g22 − g21
g21g

2
2

: ð31Þ

More precisely, there are many critical points, equivalent to
the one given above, with sinð4φ0Þ ¼ 0 or φ ¼ nπ

4
, n ∈ Z.

At this critical point, we can determine the full scalar
masses as shown in Table I.
From the table, we see seven massless scalars corre-

sponding to Goldstone bosons of the symmetry breaking of
SOð3Þ × SUð3Þ to SOð3Þdiag × Uð1Þ. The singlet scalar λ is
dual to an irrelevant operator of dimension 4 at this critical
point while φ is still dual to a relevant operator of
dimension Δ ¼ 1, 2. It should also be noted that all the
masses satisfy the Breitenlohner-Freedman bound as
expected for a supersymmetric critical point.

There is also a nonsupersymmetric critical point, but we
will not give its location and value of the cosmological
constant here due to its complexity.

B. A supersymmetric RG flow

In this subsection, we will find a supersymmetric
domain wall solution interpolating between two AdS4
critical points identified previously. In order to do this,
we will set up the corresponding Bogomol'nyi–Prasad–
Sommerfield (BPS) equations by setting the supersym-
metry transformations of fermions to zero. The nonvanish-
ing bosonic fields are the metric and SOð3Þdiag singlet
scalars.
We adopt the standard domain wall ansatz for the four-

dimensional metric

ds2 ¼ e2AðrÞdx21;2 þ dr2 ð32Þ

with dx21;2 being the flat Minkowski metric in three
dimensions. We will use the same convention as in [31].
All spinors will be written as chiral projected Majorana
spinors. For example, we have

ϵA ¼ 1

2
ð1þ γ5Þ~ϵA; ϵA ¼ 1

2
ð1 − γ5Þ~ϵA ð33Þ

where ~ϵA is a Majorana spinor. In this Majorana represen-
tation, all of the gamma matrices γa are real while γ5 ¼
iγ0γ1γ2γ3 is purely imaginary. As a consequence, ϵA and ϵA
are simply related by a complex conjugation, ϵA ¼ ðϵAÞ�.
In the present case, it turns out that CM

MA ¼ 0.
Therefore, the variation δχ is identically zero. To satisfy
the conditions δλi ¼ 0 and δλiA ¼ 0, we impose the
following projector

γr̂ϵA ¼ eiΛϵA ð34Þ

which implies γr̂ϵA ¼ e−iΛϵA. With this projector, the
conditions δψμA ¼ 0, for μ ¼ 0, 1, 2, reduce to a single
condition

A0eiΛ −W ¼ 0 ð35Þ

where 0 is used to denote the r-derivative. The “super-
potential” W is related to the eigenvalues of SAB. It turns
out that in the present case, SAB is diagonal

SAB ¼ 1

2
WδAB: ð36Þ

This would imply unbroken N ¼ 3 supersymmetry pro-
vided that the conditions δλi ¼ 0 and δλiA ¼ 0 can be
satisfied. The explicit form of W is given by

TABLE I. Scalar masses at the N ¼ 3 supersymmetric AdS4
critical point with SOð3Þdiag × Uð1Þ symmetry and the corre-
sponding dimensions of the dual operators.

SOð3Þdiag × Uð1Þ representations m2L2 Δ

10 4, −2 4, (1,2)
23 0ð×2Þ, −2ð×2Þ 3, (1,2)

2−3 0ð×2Þ, −2ð×2Þ 3, (1,2)

30 0ð×3Þ, −2ð×3Þ 3, (1,2)

43 −9
4ð×4Þ, −2ð×4Þ

3
2
, (1,2)

4−3 −9
4ð×4Þ, −2ð×4Þ

3
2
, (1,2)

50 −2ð×10Þ (1,2)
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W ¼ −
1

8
e−3λ½½ð1þ e2λÞ3g1 þ ðe2λ − 1Þ3g2� cosð2φÞ

þ i½ð1þ e2λÞ3g1 − ðe2λ − 1Þ3g2� sinð2φÞ�: ð37Þ

By writing W ¼ jWjeiω ≡Weiω, the imaginary part of
Eq. (35) gives rise to the relation

eiΛ ¼ �eiω: ð38Þ

On the other hand, δλi ¼ 0 and δλiA ¼ 0 equations reduce
to two independent equations that can be written as

λ0 −
1

3
e−iΛ

∂W
∂λ � ie−2λðe4λ − 1Þφ0 ¼ 0: ð39Þ

These two equations imply φ0 ¼ 0 or φ ¼ φ0 with φ0 being
a constant. It turns out that consistency with the field
equations require sinð4φ0Þ ¼ 0 or φ0 ¼ nπ

4
, n ∈ Z. To make

the solution interpolates between the two critical points, we
will set φ0 ¼ 0.
With this choice, W is real, and the phase factor eiΛ is

simply given by

eiΛ ¼ �1: ð40Þ

We can finally write down all the relevant BPS equations as

λ0 ¼ ∓ 1

8
e−3λðe4λ − 1Þ½ð1þ e2λÞg1 þ ðe2λ − 1Þg2�; ð41Þ

A0 ¼ � 1

8
e−3λ½ð1þ e2λÞ3g1 þ ðe2λÞ3g2�: ð42Þ

In what follows, we will choose the upper signs in order to
identify the trivial critical point with the UV fixed point of
the RG flow.
As in other cases, W ¼ jWj provides the “real super-

potential” in term of which the scalar potential can be
written as

V ¼ −
1

6

�∂W
∂λ

�
2

−
3

2
W2: ð43Þ

In the present case, the scalar kinetic terms are given by

−
1

2
PiA
μ Pμ

Ai ¼ −
3

2
e−4λðe4λ − 1Þ2φ02 −

3

2
λ02: ð44Þ

With all these results, it can be verified that the second
order field equations are satisfied by the first order BPS
equations (41) and (42).
We now solve for the RG flow solution. Equation (41)

clearly admits two fixed points at λ ¼ 0 and λ ¼ 1
2
ln½g2−g1g2þg1

�.
These are supersymmetric critical points identified previ-
ously. The solution for Eq. (41) is given by

g1g2r¼C1þ2g1tan−1eλ−2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g22−g21

q
tanh−1

�
eλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þg1
g2−g1

r �

þg2 ln

�
1þeλ

1−eλ

�
ð45Þ

where the constant C1 can be set to zero by shifting the r
coordinate. By choosing g1; g2 > 0, it can be seen that as
λ → 0, we find r → ∞, and r → −∞ as λ → 1

2
ln½g2−g1g2þg1

�.
These correspond to the UV and IR fixed points of the RG
flow, respectively. Near the two critical points, we find

UV∶ λ ∼ e−g1r ∼ e−
r

LUV

IR∶ λ ∼ e

g1g2ffiffiffiffiffiffiffi
g2
2
−g2

1

p r

∼ e
r

LIR : ð46Þ

Therefore, the flow is driven by an operator of dimension
Δ ¼ 1, 2, and this operator becomes irrelevant in the IR
with the corresponding scaling dimension Δ ¼ 4.
Finally, by combining Eqs. (41) and (42), we obtain

dA
dλ

¼ −
ð1þ e2λÞ3g1 þ ðe2λ − 1Þ3g2

ðe4λ − 1Þ½ð1þ e2λÞg1 þ ðe2λ − 1Þg2�
ð47Þ

whose solution is given by

A ¼ C2 þ λ − lnð1 − e4λÞ þ ln ½g1ð1þ e2λÞ þ g2ðe2λ − 1Þ�:
ð48Þ

The integration constant C2 can be neglected by rescaling
the coordinates of dx21;2. It can readily be verified that
A → r

L when λ → 0; 1
2
ln½g2−g1g2þg1

� as expected for the two
conformal fixed points.
We now identify a possible dual operator driving this

flow. From the results of [11,12], the eight vector multiplets
in the N ¼ 3 gauged supergravity correspond to the global
SUð3Þ flavor current given, in terms of theN ¼ 2 language,
by the superfield

Σi
j ¼

1ffiffiffi
2

p TrðUiŪj þ V̄iVjÞ − flavor trace: ð49Þ

The trace (Tr) above is over the gauge group SUðNÞ ×
SUðNÞ under which Ui and Vi transform as a bifunda-
mental. The hypermultiplets ðUi; iV̄iÞ form a doublet of
SUð2ÞR and transform in a fundamental representation the
SUð3Þ flavor. The flow given above is driven by scalar
fields in the vector multiplets, and these scalars arise from
the eleven-dimensional metric rather than the three-
form field [10]. According to the UV behavior in (46),
we then expect that the flow is driven by turning on an
SOð3Þ × Uð1Þ invariant combination of the scalar mass
terms within Σi

j.
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IV. FLOWS TO NONCONFORMAL
FIELD THEORIES

In this section, we consider RG flows to nonconformal
field theories. The supergravity solutions will interpolate
between UV AdS4 critical points and domain walls in
the IR.

A. Flows within SOð2Þ × SOð2Þ × SOð2Þ singlet scalars
We first consider scalars invariant under SOð2Þ ×

SOð2Þ × SOð2Þ symmetry. The first SOð2Þ is embedded
in the SOð3ÞR such that 3 → 2þ 1. From the branching of
30 þ 10 in (22) under SOð2Þ ⊂ SOð3Þ ⊂ SUð3Þ, we find
20 þ 10 þ 10. Combining the two decompositions together,
we finally obtain the relevant scalar representations under
SOð2Þ × SOð2Þ × SOð2Þ

2× ½ð30;30þ10Þ�¼2× ½2ð1;1Þ0;ð1;2Þ0;2ð2;1Þ0;ð2;2Þ0�:
ð50Þ

There are accordingly four singlets corresponding to the
noncompact generators

~Y1 ¼ e3;11 þ e11;3; ~Y2 ¼ ie11;3 − ie3;11;

~Y3 ¼ e3;6 þ e6;3; ~Y4 ¼ ie6;3 − ie3;6: ð51Þ

It should be noted that ~Y1;2 are invariant under a bigger
symmetry SOð2Þ × SUð2Þ ×Uð1Þ. The above four singlets
correspond to noncompact directions of SUð2; 1Þ ⊂
SUð3; 8Þ. We then effectively need to parametrize the
SUð2; 1Þ=SUð2Þ ×Uð1Þ coset manifold. It is more con-
venient to adopt a parametrization using SUð2Þ Euler
angles. The SUð2Þ ×Uð1Þ compact subgroup of the
SUð2; 1Þ group is generated by

J1 ¼
i
2
ðe11;11 − e66Þ; J2 ¼

1

2
ðe6;11 − e11;6Þ;

J3 ¼ −
i
2
ðe6;11 þ e11;6Þ; Ĵ ¼ i

2
ffiffiffi
3

p ð2e33 − e66 − e11;11Þ

ð52Þ

with ½Jα; Jβ� ¼ ϵαβγJγ and Ĵ corresponding to the Uð1Þ.
The coset representative for SOð2Þ × SOð2Þ × SOð2Þ

invariant scalars is accordingly parametrized by

L ¼ eφ1J1eφ2J2eφ3J3eΦ ~Y1e−φ3J3e−φ2J2e−φ1J1 : ð53Þ

The scalar potential turns out to be independent of all the φi

V ¼ −
1

2
g21½1þ 2 coshð2ΦÞ� ð54Þ

which clearly has only the trivial critical point at Φ ¼ 0.

The matrix SAB in this case is diagonal

SAB ¼ 1

2
g1 coshΦδAB ð55Þ

implying that the maximal N ¼ 3 supersymmetry is pre-
served if the conditions δλi ¼ 0 and δλiA ¼ 0 can be
satisfied. This is similar to solutions studied in the maximal
N ¼ 8 gauged supergravity in [32].
We can proceed as in the previous section to analyze

other BPS equations. Since W is real in this case, we
simply have ω ¼ 0 and eiΛ ¼ �1. Generally, the flow
equations for a scalar ϕi is, up to a numerical factor, given
by Gij ∂W

∂ϕj in which Gij being the inverse of the scalar

matrix appearing in the scalar kinetic terms. The above
superpotential depending only on Φ will immediately give
φ0
i ¼ 0. Remarkably, this precisely agrees with the results

from solving δλi ¼ 0 and δλiA ¼ 0 equations. This is
another consistency check for our results.
We now give the flow equations after choosing a choice

of signs such that the SOð3Þ × SUð3Þ AdS4 critical point is
identified with r → ∞

Φ0 ¼ −g1 sinhΦ; φ0
i ¼ 0; i ¼ 1; 2; 3;

A0 ¼ g1 coshΦ: ð56Þ

A solution to the above equations can be readily obtained

Φ ¼ � ln

�
eg1r − eC

eg1r þ eC

�
;

A ¼ Φ − lnð1 − e2ΦÞ þ C0: ð57Þ

As r → ∞, the solution approaches the UV AdS4 critical
point with Φ ∼ e−g1r and A ∼ g1r. At g1r ∼ C, there is a
singularity with Φ becoming infinite

Φ ∼� lnðg1r − CÞ: ð58Þ

Both of the signs give rise to the same domain wall metric
in the IR

ds2 ¼ ðg1r − CÞ2dx21;2 þ dr2: ð59Þ

It can also be checked that the potential (54) is bounded
above for Φ → �∞ namely VðΦ → �∞Þ → −∞. The
singularity is then physical according to the criterion of
[33]. Therefore, the solution should be interpreted as an RG
flow from the UV N ¼ 3 SCFT to an N ¼ 3 nonconformal
field theory in the IR.

B. Flows within SOð2Þdiag × SOð2Þ singlet scalars
The solutions considered in the previous subsection

describe RG flows from the trivial N ¼ 3 critical point.
These solutions do not connect to the nontrivial AdS4
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critical point identified in Sec. III. We now consider another
class of flow solutions describing RG flows from both the
trivial and nontrivial critical points to IR gauge theories
with SOð2Þ × SOð2Þ symmetry.
We will consider scalars which are singlets under

SOð2Þdiag × SOð2Þ ⊂ SOð2Þ × SOð2Þ × SOð2Þ symmetry.
Further decomposing the scalar representations gives eight
singlets under this symmetry. These correspond to the
following SUð3; 8Þ noncompact generators

Ȳ1¼e36þe63; Ȳ2¼−ie36þ ie63;

Ȳ3¼e25þe52þe14þe41; Ȳ4¼−ie25þ ie52− ie14þ ie41;

Ȳ5¼e15þe51−e24−e42; Ȳ6¼−ie15þ ie51þ ie24− ie42;

Ȳ7¼e3;11þe11;3; Ȳ8¼−ie3;11þ ie11;3: ð60Þ

In this case, using Euler parametrization does not
simplify the result to any useful extent. We then simply
parametrize the coset representative in a straightforward
way

L ¼ eΦ1Ȳ1eΦ2Ȳ2eΦ3Ȳ3eΦ4Ȳ4eΦ5Ȳ5eΦ6Ȳ6eΦ7Ȳ7eΦ8Ȳ8 : ð61Þ

The resulting scalar potential and BPS equations are much
more complicated than the previous cases. We refrain from
giving their explicit form here.
However, there are some interesting truncations. We

will simply consider these and give the full result within
these truncations. With only Φ7 and Φ8 nonvanishing,
the residual symmetry is enhanced to SOð2Þ × SUð2Þ×
SOð2Þ. Furthermore, if one of these two scalars is set to
zero, we recover the result obtained in the previous
subsection. A new deformation arises from Φ7 and Φ8

both being nonzero. In this case, the N ¼ 3 supersymmetry
is broken to N ¼ 1.
The matrix SAB is diagonal with two different eigenval-

ues, with S11 ¼ S22. It turns out that the third eigenvalue
gives the true superpotential

W ¼ 2S33 ¼ g1 coshΦ7 coshΦ8 þ ig1 sinhΦ7 sinhΦ8

ð62Þ

in terms of which the scalar potential can be written as

V ¼ 1

2
Gij ∂W

∂Φi

∂W
∂Φj −

3

2
W2

¼ −
1

2
g21½1þ 2 coshð2Φ7Þ coshð2Φ8Þ� ð63Þ

where the real superpotential is given by

W ¼ jWj ¼ 1ffiffiffi
2

p g1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ coshð2Φ7Þ coshð2Φ8Þ

p
: ð64Þ

In the above result, we have used the scalar kinetic term

−
1

2
Gij∂μΦi∂μΦj ¼ −

1

2
PAi
μ Pμ

iA

¼ −
1

2
cosh2ð2Φ8ÞΦ02

7 −
1

2
Φ02

8 ð65Þ

which gives Gij, i, j ¼ 7, 8. The inverse Gij can readily be
read off. The supersymmetry transformations of ψμA

corresponding to ϵ1;2 can be satisfied by setting ϵ1;2 ¼ 0.
Accompanied by the usual γr projection, the unbroken
supersymmetry is then N ¼ 1 Poincaré supersymmetry in
three dimensions.
The BPS equations coming from δλiA ¼ 0 has no

components along ϵ3. They are accordingly automatically
satisfied with ϵ1;2 ¼ 0. δλi ¼ 0 equations become

eiΛ½coshð2Φ8ÞΦ0
7 þ iΦ0

8� ¼ g1 coshΦ8 sinhΦ7

þ ig1 coshΦ7 sinhΦ8: ð66Þ

By a similar analysis as in the previous section, we find
eiΛ ¼ �eiω with eiω ¼ W

jWj. The above equations can be

solved by

Φ0
7 ¼ ∓ g1 sinhð2Φ7Þsechð2Φ8Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ 2 coshð2Φ7Þ coshð2Φ8Þ
p ; ð67Þ

Φ0
8 ¼ ∓ g1 sinhð2Φ8Þ coshð2Φ7Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ 2 coshð2Φ7Þ coshð2Φ8Þ
p : ð68Þ

Together with A0 ¼ �W, these form the full set of flow
equations.
By combining these equations, we can solve for Φ8 and

A as a function of Φ7

cothð2Φ8Þ ¼ cschð2Φ7Þ; ð69Þ

A ¼ −
1

2
tanh−1

� ffiffiffi
2

p
coshð2Φ7Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 − coshð4Φ7Þ
p �

−
1

4
ln½coshð4Φ7Þ − 3�

þ 1

2
ln sinhð2Φ7Þ: ð70Þ

In principle, we can put the solution for Φ8 in Φ0
7 equation

and solve for Φ7ðrÞ. However, we have not found the full
analytic solution for Φ7ðrÞ. In the following, we simply
study the Φ7 behaviors near the UV AdS4 critical point and
near the IR singularity. As r → ∞, we find

Φ7 ∼ Φ8 ∼ e−g1r; A ∼ g1r: ð71Þ

At large jΦ7j, we find

PARINYA KARNDUMRI PHYSICAL REVIEW D 94, 045006 (2016)

045006-8



Φ7 ∼� 1

3
lnðg1rÞ; Φ8 ∼ constant;

ds2 ¼ ðg1rÞ23dx21;2 þ dr2; ð72Þ

where we have put the singularity at r ¼ 0 by choosing an
integration constant. These singularities are also physical.
The solution preserves two supercharges and describes an

RG flow from N ¼ 3 SCFT to a nonconformal field theory
in the IR with N ¼ 1 supersymmetry.
We will now make another truncation by setting Φi ¼ 0

for i ¼ 2, 4, 6, 8. This can be verified to be consistent
with both the BPS equations and the second order field
equations. In this truncation, the scalar potential is
given by

V ¼ −
1

64
½ð1þ coshð2Φ3Þ coshð2Φ5ÞÞ½4 coshð2Φ1Þ − 4þ 3 cosh½2ðΦ1 − Φ3 − Φ5Þ�

þ 2 cosh½2ðΦ1 þ Φ3 − Φ5Þ� þ 3 cosh½2ðΦ1 − Φ3 þ Φ5Þ� þ 2 cosh½2ðΦ3 þ Φ5Þ�
þ 3 cosh½2ðΦ1 þ Φ3 þ Φ5Þ� þ 8cosh2Φ1½1þ 3 coshð2Φ3Þ coshð2Φ5Þ� coshð2Φ7Þ�g21
− 12ðcoshð4Φ3Þ þ 2cosh2ð2Φ3Þ coshð4Φ5Þ − 3Þcosh2Φ7 sinhð2Φ1Þg1g2
þ ½coshð2Φ3Þ coshð2Φ5Þ − 1�½4þ 4 coshð2Φ1Þ − 3 cosh½2ðΦ1 − Φ3 − Φ5Þ�
þ 2 cosh½2ðΦ3 − Φ5Þ� − 3 cosh½2ðΦ1 þ Φ3 − Φ5Þ� − 3 cosh½2ðΦ1 − Φ3 þ Φ5Þ�
þ 2 cosh½2ðΦ3 þ Φ5Þ� − 3 cosh½2ðΦ1 þ Φ3 þ Φ5Þ�
þ 8½1 − 3 coshð2Φ3Þ coshð2Φ5Þ� coshð2Φ7Þsinh2Φ1�g22�: ð73Þ

Using the same procedure as before, we find the full set of the BPS equations within this particular truncation

Φ1
0 ¼ −

1

8

e−Φ1−2ðΦ3þΦ5þΦ7Þ

1þ e2Φ7
½ðe2Φ1 − 1Þð1þ e4Φ3 þ e4Φ5 þ 4e2ðΦ3þΦ5Þ þ e4ðΦ3þΦ5ÞÞg1

þ ð1þ e2Φ1Þð1þ e4Φ3 þ e4Φ5 − 4e2ðΦ3þΦ5Þ þ e4ðΦ3þΦ5ÞÞg2�; ð74Þ

Φ0
3 ¼ −

e−Φ1−2Φ3þ2Φ5−Φ7

8ð1þ e4Φ5Þ ðe4Φ3 − 1Þð1þ e2Φ7Þ½ð1þ e2Φ1Þg1 þ ðe2Φ1 − 1Þg2�; ð75Þ

Φ0
5 ¼ −

1

32
e−Φ1−2Φ3−2Φ5−Φ7ðe4Φ3 þ 1Þð1þ e2Φ7Þðe4Φ5 − 1Þ½ð1þ e2Φ1Þg1 þ ðe2Φ1 − 1Þg2�; ð76Þ

Φ0
7 ¼ −

1

32
e−Φ1−2Φ3−2Φ5−Φ7ð1 − e2Φ7Þ½ðe2Φ1 − 1Þ½1þ e4Φ3 þ e4Φ5 þ 4e2ðΦ3þΦ5Þ

þ e4ðΦ3þΦ5Þ�g1 þ ð1þ e2Φ1Þ½1þ e4Φ3 þ e4Φ5 − 4e2ðΦ3þΦ5Þ þ e4ðΦ3þΦ5Þ�g2�; ð77Þ

A0 ¼ 1

32
e−Φ1−2Φ3−2Φ5−Φ7ð1þ e2Φ7Þ½ðe2Φ1 − 1Þ½1þ e4Φ3 þ e4Φ5 þ 4e2ðΦ3þΦ5Þ

þ e4ðΦ3þΦ5Þ�g1 þ ð1þ e2Φ1Þ½1þ e4Φ3 þ e4Φ5 − 4e2ðΦ3þΦ5Þ þ e4ðΦ3þΦ5Þ�g2�: ð78Þ

Due to the γr projector, the solutions will preserve six super-
charges or N ¼ 3 supersymmetry in three dimensions. When
Φ3 ¼ Φ1 and Φ5 ¼ Φ7 ¼ 0, the above equations reduce to
those considered in Sec. III. These equations do not admit any
nontrivialAdS4 fixedpoints apart fromtheN ¼ 3SOð3Þdiag ×
Uð1Þ critical point already identified in Sec. III. This agrees
with the remark given in [6] in which partial supersymmetry
breaking has been shown to be impossible.
We are now in a position to consider various possible RG

flows from the UV N ¼ 3 SCFTs. In this case, we have not

found any possible analytic solutions. Therefore, numerical
solutions will be needed in order to obtain the full flow
solutions. Although these solutions always exist and can be
found by imposing suitable boundary conditions, we will
not give them here. Instead, we will give the behavior near
the IR singularity which can be put to r ¼ 0 by choosing
appropriate constants of integration. This is similar to the
analysis given in [34]. Note also that, from the above
equations, setting Φ5 ¼ 0 and Φ7 ¼ 0 is also a consistent
truncation.
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We will now consider RG flows to the IR with infinite
values of scalar fields. From the above equations, as
Φ3 → �∞, we find that Φ0

5 → 0. Since both of the
AdS4 critical points have Φ5 ¼ 0, we will set Φ5 ¼ 0
throughout the analysis.
At the trivial N ¼ 3 AdS4 critical point, all scalars

are dual to relevant operator of dimensions Δ ¼ 1, 2.
For Φ3 > 0, there are flows with the IR behavior

Φ1 ∼ ϕ0; Φ7 ∼ Φ3; Φ3 ∼ −
1

3
ln

�
3

8
~gr

�
;

ds2 ¼ r
2
3dx21;2 þ dr2 ð79Þ

where ϕ0 is a constant and ~g ¼ g1 coshϕ0 þ g2 sinhϕ0.
There is also another flow with asymptotic behavior

Φ1 ∼ ϕ0; Φ7 ∼ −2Φ3; Φ3 ∼ −
1

4
ln

�
1

2
~gr

�
;

ds2 ¼ r
1
2dx21;2 þ dr2: ð80Þ

For Φ3 < 0, we have flows with

Φ1 ∼ ϕ0; Φ7 ∼�Φ3; Φ3 ∼ −
1

3
ln

�
3

8
~gr

�
;

ds2 ¼ r
2
3dx21;2 þ dr2: ð81Þ

It should be noted that when Φ7 ≠ 0, we always have
constant Φ1 in the IR. This is however not the case when
Φ7 ¼ 0. An example of this flow is given by

Φ1 ∼ −2Φ3; Φ7 ¼ 0; Φ3 ∼ −
1

4
ln

�
1

2
ðg1 − g2Þr

�
;

ds2 ¼ r
1
2dx21;2 þ dr2: ð82Þ

Remarkably, all of these flows are physical according to the
criterion of [33] as can be checked from (73) that all the
flows give V → −∞.
The nontrivial AdS4 critical point can be approached by

setting Φ1 ¼ �Φ3 ¼ Φ0 ¼ 1
2
ln½g2−g1g2þg1

� in the UV with differ-
ent signs corresponding to different combinations of
SOð3Þ × SOð3Þ generators in forming SOð3Þdiag. We will
additionally set Φ7 ¼ Φ5 ¼ 0 in the following analysis.
For Φ3 > Φ0, there is a flow with asymptotic behavior

Φ1 ∼ Φ3 ∼ −
1

3
ln

�
3

8
ðg1 þ g2Þr

�
;

ds2 ¼ r
2
3dx21;2 þ dr2: ð83Þ

For Φ3 < Φ0, we have flows with the IR behavior

Φ1 ∼�Φ3; Φ3 ∼
1

3
ln

�
3

8
ðg1∓g2Þr

�
;

ds2 ¼ r
2
3dx21;2 þ dr2: ð84Þ

All of these flows are also physical with V → −∞ near the
IR singularity.

V. FLOWS TO LOWER DIMENSIONS

In this section, we consider supersymmetric solutions
of the form AdS2 × Σ2 in which Σ2 is a Riemann surface in
the form of a two-sphere S2 or a two-dimensional hyper-
bolic space H2. Domain wall solutions interpolating
between AdS4 critical points and these geometries should
be interpreted as RG flows to lower dimensional super-
conformal field theories. In the present case, the lower
dimensional SCFTs would be described by twisted com-
pactifications of the N ¼ 3 SCFTs in three dimensions
resulting in one-dimensional SCFTs. We will look for
supersymmetric AdS2 solutions with SOð2Þ × SOð2Þ ×
SOð2Þ and SOð2Þ × SOð2Þ symmetries within N ¼ 3
SOð3Þ × SUð3Þ gauged supergravity.

A. AdS2 critical points with
SOð2Þ × SOð2Þ × SOð2Þ symmetry

We begin with the BPS equations relevant for the present
analysis. The gauge fields are now nonvanishing. We adopt
the twist procedure in order to preserve some amount of
supersymmetry. This involves turning on some gauge field
to cancel the spin connection along the Σ2 directions. We
will primarily consider the case of curved Σ2 in the form of
S2 and H2.
The four-dimensional metric is taken to be

ds24 ¼ −e2AðrÞdt2 þ dr2 þ e2BðrÞds2ðΣ2Þ ð85Þ

where ds2ðΣ2Þ is the metric on Σ2. Its explicit form can be
written as

ds2ðS2Þ¼dθ2þsin2θdϕ2 and ds2ðH2Þ¼ 1

y2
ðdx2þdy2Þ

ð86Þ

for the S2 and H2 cases, respectively. In the following, we
will only give the detail of the S2 case. The H2 case can be
done in a similar way.
The component of the spin connection on S2 that needs

to be canceled is given by

ωϕ̂ θ̂ ¼ e−B cot θeϕ̂: ð87Þ

This appears in the δψϕA variation. To cancel this con-
tribution, we turn on some of the gauge fields AμA

appearing in the SUð3Þ composite connection QA
B. We

will choose the nonvanishing gauge field to be

A3 ¼ a cos θdϕ ð88Þ
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which gives rise to the nonvanishing components of the
composite connection

Q1
2 ¼ −Q2

1 ¼ −a1g1 or QAB ¼ −g1ϵABCAC: ð89Þ

The cancellation is achieved by imposing the following
twist and projection conditions

a1g1 ¼
1

2
; γϕ̂ θ̂ϵa ¼ iσ2abϵb; a; b ¼ 1; 2: ð90Þ

In the above equation, σ2ab denotes the usual second Pauli
matrix. We have split the index A into ða; 3Þ such that
ϵA ¼ ðϵa; ϵ3Þ. It should be noted that with only A3 non-
vanishing, the supersymmetry corresponding to ϵ3 cannot
be preserved, so we will set ϵ3 ¼ 0. Eventually, there are
only four unbroken supercharges corresponding to ϵa that
are subject to the γϕ̂ θ̂ projection.
In addition, there are other two gauge fields that can

be turned on along with A3. These correspond to the
SOð2Þ × SOð2Þ ⊂ SUð3Þ symmetry and are given by

A6 ¼ b cos θdϕ and A11 ¼ c cos θdϕ: ð91Þ

All other gauge fields are zero. The field strengths of
ðA3; A6; A11Þ are given by

FΛ ¼ −aΛe−2Beθ̂ ∧ eϕ̂ ð92Þ

with nonvanishing aΛ ¼ ða3; a6; a11Þ ¼ ða; b; cÞ. With the
convention ϵt̂ r̂ θ̂ ϕ̂ ¼ 1, we find the dual field strength

~FΛ ¼ aΛe−2Bet̂ ∧ er̂: ð93Þ

The four-dimensional chirality on ϵA relates the γϕ̂ θ̂ to the
γ t̂ r̂ as follows

γ5ϵa ¼ iγ t̂γr̂γθ̂γϕ̂ϵa ¼ ϵa ð94Þ
implying that

γ t̂ r̂ϵa ¼ σ2a
bϵb: ð95Þ

We are now in a position to set up the BPS equations by
using all of the above conditions and the formulas given in
Sec. II. In the presence of gauge fields, unlike the solutions
considered in Sec. III, it turns out that the parametrization
of the coset representative for SOð2Þ × SOð2Þ × SOð2Þ
invariant scalars using SUð2Þ Euler angles does not
simplify the resulting equations to any appreciable degree.
We will rather choose to parametrize the coset represen-
tative in the form of

L ¼ e ~Y1Φ1e ~Y2Φ2e ~Y3Φ3e ~Y4Φ4 : ð96Þ
Furthermore, we will make a truncation Φ2 ¼ Φ4 ¼ 0 to
make things more manageable. This can also be verified to
be consistent with all of the BPS equations as well as the
corresponding field equations.
As in the previous cases, the equations coming from

δχ ¼ 0 are identically satisfied since CM
MA ¼ 0, and the

particular ansatz for the gauge fields given above gives
GA

μνγ
μν ¼ 0. In addition, δλi ¼ 0 equations are identically

satisfied provided that we set ϵ3 ¼ 0. In our particular
truncation, W is real, so we can impose the γr̂ projection
simply as γr̂ϵa ¼ �ϵa. With the usual choice of signs
chosen, the independent BPS equations coming from
δλAi ¼ 0 are given by

Φ0
1 ¼

1

4
e−Φ1−Φ3−2B½4ceΦ3ð1þ e2Φ1Þ þ 2bðe2Φ1 − 1Þðe2Φ3 − 1Þ

− 2aðe2Φ1 − 1Þð1þ e2Φ3Þ þ g1e2Bð1 − e2Φ1Þ þ g1e2Φ3þ2Bð1 − e2Φ1Þ�; ð97Þ

Φ0
3 ¼ −

eΦ1−Φ3−2B

1þ e2Φ1
½2aðe2Φ3 − 1Þ − 2bð1þ e2Φ3Þ þ g1e2Bðe2Φ3 − 1Þ�: ð98Þ

With the twist conditions (90), δψϕ̂A ¼ 0 equations are the same as δψθ̂A ¼ 0 equations. All of these conditions reduce to a
single equation for the function Bwhile the conditions δψμA, for μ ¼ t, give an equation for the function A. These are given by

B0 ¼ −
1

4
e−Φ1−Φ3−2B½2ceΦ3ð1 − e2Φ1Þ − bð1þ e2Φ1Þðe2Φ3 − 1Þ

þ að1þ e2Φ1Þð1þ e2Φ3Þ − g1e2Bð1þ e2Φ1Þ − g1e2Φ3þ2Bð1þ e2Φ1Þ�; ð99Þ

A0 ¼ −
1

4
e−Φ1−Φ3−2B½−2ceΦ3ð1 − e2Φ1Þ þ bð1þ e2Φ1Þðe2Φ3 − 1Þ

− að1þ e2Φ1Þð1þ e2Φ3Þ − g1e2Bð1þ e2Φ1Þ − g1e2Φ3þ2Bð1þ e2Φ1Þ�: ð100Þ
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For the H2 case, a similar analysis can be carried out. The
result is the same as the above equations with ða; b; cÞ
replaced by ð−a;−b;−cÞ.
An AdS2 × Σ2 geometry is given by a fixed point

of the above equations satisfying Φ0
1 ¼ Φ0

3 ¼
B0 ¼ 0 and A0 ¼ 1

LAdS2
. We find a class of solutions

given by

B ¼ 1

2
ln

�
2½að1 − e2Φ3Þ þ bð1þ e2Φ3Þ�

ðe2Φ3 − 1Þg1

�
;

Φ1 ¼
1

2
ln

�
cð1 − e2Φ3Þ − 2beΦ3

cðe2Φ3 − 1Þ − 2beΦ3

�
;

Φ3 ¼
1

2
ln

"
b2 − c2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2½9a2 − 8ðb2 þ c2Þ�

p
3ab − 3b2 − c2

#
: ð101Þ

The expression for the AdS2 radius is much more com-
plicated. We will not give it here, but in any case this can be
obtained by substituting the values of B,Φ1 andΦ3 in the A0
equation.

B. AdS2 critical points with
SOð2Þ × SOð2Þ symmetry

We now look for AdS2 solutions that can be obtained from
twisted compactifications of the non-trivial AdS4 critical
point. As in Sec. IV, we consider SOð2Þdiag×SOð2Þ invariant
scalars. The coset representative is still given by (61). The
ansatze for the gauge fields are similar to the previous case but
with b ¼ g1

g2
a to implement the gauge field of SOð2Þdiag.

Following the same procedure as in the previous sub-
section, we obtain a set of BPS equations, again in a
consistent truncation with Φi ¼ 0, for i ¼ 2, 4, 6, 8,

Φ0
1 ¼ −

2eΦ7

1þ e2Φ7

�
−

a
g2

e−Φ1−2B½ð1þ e2Φ1Þg1 þ ð1 − e2Φ1Þg2�

þ 1

16
e−Φ1−2Φ3−2Φ5 ½ðe2Φ1 − 1Þð1þ e4Φ3 þ e4Φ5 þ 4e2ðΦ3þΦ5Þ

þ e4ðΦ3þΦ5ÞÞg1 þ ð1þ e2Φ1Þð1þ e4Φ3 þ e4Φ5 − 4e2ðΦ3þΦ5Þ þ e4ðΦ3þΦ5ÞÞg2�
�
; ð102Þ

Φ0
3 ¼ −

1

8

�
1þ e2Φ7

1þ e4Φ5

�
e−Φ1−2Φ3þ2Φ5−Φ7ðe4Φ3 − 1Þ × ½ð1þ e2Φ1Þg1 þ ðe2Φ1 − 1Þg2�; ð103Þ

Φ0
5 ¼ −

1

32
e−Φ1−2Φ3−2Φ5−Φ7ð1þ e4Φ3Þðe4Φ5 − 1Þð1þ e2Φ7Þ × ½ð1þ e2Φ1Þg1 þ ðe2Φ1 − 1Þg2�; ð104Þ

Φ0
7 ¼

1

32
e−Φ1−2Φ3−2Φ5−Φ7ð1 − e2Φ7Þ½ð1þ e2Φ1Þ½1þ e4Φ3 þ e4Φ5 þ 4e2ðΦ3þΦ5Þ

þ e4ðΦ3þΦ5Þ�g1 þ ðe2Φ1 − 1Þð1þ e4Φ3 þ e4Φ5 − 4e2ðΦ3þΦ5Þ þ e4ðΦ3þΦ5ÞÞg2�

þ 1

2g2
e−Φ1−Φ7−2B½2ceΦ1ð1þ e2Φ7Þg2 þ aðe2Φ7 − 1Þ½ðe2Φ1 − 1Þg1 − ð1þ e2Φ1Þg2��; ð105Þ

B0 ¼ −
1

32
e−Φ1−Φ7−2B

�
8a
g2

ð1þ e2Φ7Þ½ð1 − e2Φ1Þg1 þ ð1þ e2Φ1Þg2� − e−2ðΦ3þΦ5Þ½16ceΦ1þ2Φ3þ2Φ5ðe2Φ7 − 1Þ

þ e2Bð1þ e2Φ7Þ½ð1þ e2Φ1Þð1þ e4Φ3 þ e4Φ5 þ 4e2ðΦ3þΦ5Þ þ e4ðΦ3þΦ5ÞÞg1
þ ðe2Φ1 − 1Þð1þ e4Φ3 þ e4Φ5 − 4e2ðΦ3þΦ5Þ þ e4ðΦ3þΦ5ÞÞg2�

�
; ð106Þ

A0 ¼ 1

32
e−Φ1−Φ7−2B

�
8a
g2

ð1þ e2Φ7Þ½ð1 − e2Φ1Þg1 þ ð1þ e2Φ1Þg2� − e−2ðΦ3þΦ5Þ½16ceΦ1þ2Φ3þ2Φ5ðe2Φ7 − 1Þ

− e2Bð1þ e2Φ7Þ½ð1þ e2Φ1Þð1þ e4Φ3 þ e4Φ5 þ 4e2ðΦ3þΦ5Þ þ e4ðΦ3þΦ5ÞÞg1
þ ðe2Φ1 − 1Þð1þ e4Φ3 þ e4Φ5 − 4e2ðΦ3þΦ5Þ þ e4ðΦ3þΦ5ÞÞg2�

�
: ð107Þ

From these equations, we find a number of AdS2 × Σ2 solutions given below.
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(1) For Φ3 ¼ Φ5 ¼ 0, we find a critical point

B ¼ 1

2
ln

�
2a½ð1þ e2Φ1Þg1 þ ð1 − e2Φ1Þg2�

ðe2Φ1 − 1Þg1g2

�
;

Φ7 ¼
1

2
ln
�
2aeΦ1g1 þ cðe2Φ1 − 1Þg2
2aeΦ1g1 − cðe2Φ1 − 1Þg2

�
;

Φ1 ¼
1

2
ln

"
a2g21 − c2g22 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2g21½a2ð9g22 − 8g21Þ − 8c2g22�

p
3a2g1ðg2 − g1Þ − c2g22

#
: ð108Þ

(2) For c ¼ 0, Φ7 can be consistently set to zero. If we further set Φ3 ¼ 0, we find the following critical point

Φ1 ¼
1

2
ln

�
g1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9g22 − 8g21

p
3ðg2 − g1Þ

�
;

B ¼ 1

2
ln

"
2aðg2 − g1Þ½2g1 þ 3g2∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9g22 − 8g21

p
�

g1g2½4g1 − 3g2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9g22 − 8g21

p
�

#
;

LAdS2 ¼
2g1 þ 3g2∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9g22 − 8g21

p
4g21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðg2 − g1Þ

g1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9g22 − 8g21

p
s

: ð109Þ

(3) For c ¼ 0 and Φ7 ¼ 0 but Φ3 ≠ 0, we find a critical point

Φ1 ¼
1

2
ln

�
g2 − g1
g2 þ g1

�
;

B ¼ 1

2
ln

�
a
g1

þ ag1
g22

�
;

Φ3 ¼
1

2
ln

2
64g41 þ 10g21g

2
2 þ g42 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5g61g

2
2 þ 26g41g

4
2 þ 5g21g

6
2

q
g42 − g41

3
75;

LAdS2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22 − g21

p
2g1g2

: ð110Þ

It can be checked that all of the above solutions are valid by
choosing suitable choices of the two coupling ðg1; g2Þ and
the parameters ða; cÞ in a manner that is consistent with the
twist condition 2g1a ¼ 1. For example, taking b ¼ 2c and
a ¼ 5c in the solution (101) leads to

B ¼ ln

�
0.927441

ffiffiffiffiffi
a
g1

r �
;

Φ1 ¼ 0.146711;

Φ3 ¼ 0.287363: ð111Þ

There might be more critical points, but we have not found
any other real solutions.

We end this section with a remark on AdS2 × T2

solutions. Since T2 is flat, the twist is not needed. We
will set A3 ¼ 0 or equivalently a ¼ 0. From the above two
cases, we have not found any valid AdS2 × T2 solutions.

VI. CONCLUSIONS

In this paper, we have studied N ¼ 3 gauged super-
gravity in four dimensions with SOð3Þ × SUð3Þ gauge
group. We have found a new supersymmetric AdS4 critical
point, with SOð3Þ ×Uð1Þ symmetry and unbroken N ¼ 3
supersymmetry, and given the full mass spectrum of all 48
scalars at this critical point. An analytic RG flow inter-
polating between this new critical point and the trivial UV
fixed point has also been explicitly given. The flow
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describes a supersymmetric deformation by a relevant
operator of dimension Δ ¼ 1, 2. It would be of particular
interest to precisely identify the dual operator that drives
the flow in the dual N ¼ 3 SCFT. This result provides
another example of supersymmetric deformations of N ¼ 3
Chern-Simons-Matter gauge theories which might be
useful in the holographic study of Aharony-Bergman-
Jafferis-Maldacena (ABJM)-type theories coupled to mat-
ter multiplets.
In addition, we have studied RG flows to non-conformal

N ¼ 3 gauge theories in three dimensions with SOð2Þ ×
SUð2Þ × Uð1Þ and SOð2Þdiag × SOð2Þ symmetries. In the
former class of solutions, we have found N ¼ 3 super-
symmetric deformations in the absence of the “pseudosca-
lars” corresponding to the imaginary part of the complex
scalars. When a pseudoscalar is turned on, the correspond-
ing deformation breaks supersymmetry toN ¼ 1. The latter
class includes supersymmetric deformations that break
conformal symmetry of the SOð3Þ ×Uð1Þ N ¼ 3 SCFT
dual to the nontrivial AdS4 critical point. Remarkably, all of
these solutions have physically acceptable IR singularities.
This is due to the particular form of the scalar potential
which is always bounded above in the scalar sectors
considered in this paper. This is very similar to the solution
studied in [32]. These results would be of particular interest
in describing world volume theory of M2-branes and
hopefully in condensed matter physics systems along the
line of [35].
The last result of this paper consists of supersymmetric

AdS2 × Σ2 solutions preserving four supercharges or
N ¼ 2 Poincaré supersymmetry in three dimensions. We
have given AdS2 solutions with SOð2Þ × SOð2Þ × SOð2Þ
and SOð2Þdiag × SOð2Þ symmetries. In the context of
twisted field theories, these solutions describe possible
twisted compactifications of N ¼ 3 SCFTs dual to the two
AdS4 critical points mentioned above. These should be
useful in the context of AdS2=CFT1 correspondence and
black hole physics. It should also be noted that there is no
AdS2 × T2 solutions within the scalar submanifolds con-
sidered here.
There are many possible future directions to investigate.

First, it is interesting to find whether the new SOð3Þ ×Uð1Þ
critical point and the corresponding RG flows can be
uplifted to eleven dimensions. This would give a geometric
interpretation to the solutions obtained here in the context
of M-theory in much the same way as the recent work

for the N ¼ 8 gauged supergravity in [36]. The complete
truncation of eleven-dimensional supergravity on N010

keeping only SUð3Þ singlet fields is given in [37].
However, the result of [37] obviously cannot be used to
uplift the AdS4 critical point and the RG flows given in this
paper since the scalars that transform nontrivially under the
flavor group SUð3Þ are also turned on.
It should be remarked here about the condition g22 >

g21 related to the existence of the SOð3Þ ×Uð1Þ critical
point. Within the four-dimensional framework, the two
coupling constants are completely free. The consistency
of the gauging does not impose any relation between
them. On the other hand, from the eleven-dimensional
point of view, the ratio between g1 and g2 should be
fixed since there is no continuous parameter in N010.
This might indicate that the SOð3Þ × Uð1Þ critical point
in eleven dimensions does not exist if the condition
g22 > g21 is not satisfied. Alternatively, this critical point
might arise from a more complicated compactification.
It would be interesting to investigate these issues in
more detail.
In finding AdS2 × Σ2 solutions, we have truncated out

the pseudoscalars. It would be interesting to investigate
their role in AdS2 × Σ2 backgrounds as well as in the
holographic AdS2=CFT1 context. In particular, finding
black hole solutions interpolating between N ¼ 3 AdS4
and these AdS2 × Σ2 geometries and comparing the black
hole entropy with the result from superconformal indices in
the dual N ¼ 3 SCFT, as in the AdS4 × S7 case studied in
[28], would provide an example of this study in a less
supersymmetric case. The solutions found here would also
be useful in this context. We leave all these issues for future
investigations.
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