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Holographic models of QCD, collectively known as anti-de Sitter/QCD, have been proven useful in
deriving several properties of hadrons. One particular feature well reproduced by such models is the Regge
trajectories, both for mesons and glueballs. We focus on scalar and tensor glueballs and derive an effective
theory for the Pomeron by analytic continuation along the leading trajectory from the tensor glueball. It
then follows that the Pomeron, as the tensor glueball itself, should possess a two-index polarization tensor,
inherited from the graviton. The three-graviton interaction is deduced from the Einstein-Hilbert action.
Using this structure in the cross section of double-Pomeron production of the tensor glueball, we calculate
certain angular distributions of production and compare them with those from the CERN WA102
experiment. We find that the agreement is very good for the f2ð2300Þ tensor glueball candidate. At the
same time, other tensor states—such as f2ð1270Þ and f02ð1520Þ—have completely different distributions,
which we interpret as a consequence of the fact that they are not glueballs and thus, in our model, unrelated
to the gravitational excitations, which are dual to spin-2 glueballs.
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I. INTRODUCTION

A. Pomerons

Phenomenology of high-energy hadronic collisions dates
back to the 1960s, when total, elastic, and diffractive cross
sections were first measured and systematically analyzed.
Consequences of unitarity and themulticomponent nature of
intermediate states led to the understanding of the diffractive
processes. While first explained from the s-channel point of
view, the focus of study shifted to the t-channel approach
soon thereafter. The shape and energy dependence of the
amplitudes of scattering processes suggested existence of
certain effective objects—the Reggeons—being the analytic
continuations of the t-channel-exchanged hadrons to the
appropriate kinematical domain. Cross-channel unitarities
and dualities led to Veneziano amplitudes, which eventually
revealed the existence of QCD strings; development of their
theory led to the beginnings of string theory.
The leading term in high-energy behavior of the cross

section,

dσ
dt

∼ sαðtÞ−1; ð1Þ

corresponding to the Regge trajectory with the highest
intercept, is known as the Pomeron trajectory. At small
negative t ≈ 0, its linear expansion,

αðtÞ ¼ αð0Þ þ α0t; ð2Þ

can be used. The original papers of Pomeranchuk assumed
a Pomeron intercept of αð0Þ ¼ 1 and that the asymptotic
cross section is constant. Discovery of growing cross
sections in the 1970s altered the theory into that of a
supercritical Pomeron, with the intercept slightly larger
than 1,

αð0Þ ¼ 1þ Δ; Δ ∼ 0.08; ð3Þ

where the value of Δ depends on the scale of the
momentum transfer. Universality of the rising part of the
total cross sections at large s was tested by pp and p̄p
collisions and is well supported by experimental data.
The phenomenology of high-energy hadronic scattering

is significantly complicated by the issue of multi-Pomeron
corrections. The proton size is large compared to the natural
string scale ðα0Þ−1=2, masking s-dependence of the diffu-
sion process related to Pomeron. Ideally, high-energy
collisions of two virtual photons with large Q2 would be
best suited to probe these effects. The data available from
LEP have, unfortunately, too low aQ2; one has to wait for a
future high-energy eþe− collider.
There are three theoretical approaches claiming a der-

ivation of the Pomeron amplitude:
(i) An approach based on the fundamental QCD La-

grangian and perturbative diagrams. In the leading
logðsÞ approximation, the scattering is dominated by
gluonic ladders. The Balitsky-Fadin-Kuraev-Lipatov
(BFKL) Pomeron [1–3] explains smallness of
ΔBFKL ¼ OðαsÞ, which approximately matches the
observed “hard Pomeron” properties at large t,
although next-order corrections to the intercept do
not appear to be small. A generic feature of the
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perturbative approach (with nonrunning coupling) is
that it lacks any dimensional parameters, is con-
formal, and leads to zero slope in leading order,
α0 ¼ 0. Obviously, it cannot be related to Regge
trajectories; mesonic, baryonic, or glueball masses;
or similar quantities.

(ii) Holographic string-based models, on the other
hand, relate mesonic and baryonic Regge trajectories
to rotating open-string states in the bulk spacetime.
In this context, the glueballs are related to rotating
states of the closed strings. The Reggeon slopes
(including the Pomeron’s α0), in those models, are
related to the fundamental parameter string tension
in the bulk, which is related to the dual nonpertur-
bative QCD string tension. For a recent derivation
and discussions of the Pomeron from stringy holo-
graphic perspective, see Refs. [4–6].

(iii) With the advent of the gauge-string AdS/CFT
duality and models collectively called AdS/QCD,
it was naturally questioned whether Reggeons and
Pomerons can be effectively described by these
constructions. Pioneering papers, such as Ref. [7],
used such an approach to study high-energy scatter-
ing processes and related the Pomeron with the
“Reggeized” graviton. Current AdS/QCD models
describe mesonic and glueball states via quantized
(in the holographic dimension) states of a few local
bulk fields. Conformal invariance of AdS/CFT is
broken explicitly, by effective “confining walls,”
reproducing dimensional quantities like hadronic
masses and the Pomeron slope, α0. Regge trajecto-
ries, including their “daughters,” naturally appear in
such an approach. For a recent update, see
e.g. Ref. [8].

Debates about the role of approaches i and ii in scattering
amplitudes have lead some authors (e.g. Donnachie and
Landshoff [9]) to suggest that the “hard” and “soft”
Pomerons are two different objects, contributing to the
scattering amplitude separately, by two additive terms.
In the holographic models, we discuss all hadrons—and

presumably the Pomeron as well—have a single wave
function depending on the holographic coordinate z,
incorporating the hard (small z) and soft (large z) parts
into a single object. This does not prevent existence of
different regimes of soft and hard scattering amplitude,
with smooth or nonsmooth transition between those. For a
recent discussion of the Pomeron profile in various regimes
and its connection to string dynamics and thermodynamics,
see Ref. [6].
Reggeons and Pomerons are complicated nonlocal

objects, and their understanding in terms of basic QCD
fields is quite difficult. The nontrivial promise of the
holographic approach (iii) is that such complicated objects
can perhaps be treated by a dual field theory, operating with
a local and weakly coupled set of a few bulk fields. The

nonlocal objects on the boundary, where the gauge theory
resides, are obtained after the bulk calculations, via a direct
holographic correspondence.
In this paper, we will follow this last direction (iii)

mentioned above. We will further focus on the question of
whether bulk gravity, in the familiar general relativistic
form, can be related with the tensor structure of the
Pomerons. Our pragmatic philosophy will be to start with
the tensor glueball, describe it in a certain holographic
model, derive the scattering amplitudes in question, and
only then switch to the issue of the Pomeron, treated by an
analytic continuation along the leading Regge trajectory,
from spin 2 to 1þ Δ. We thus start with physical, on-shell,
tensor glueball T and proceed toward the near-massless P,
both being certain quantum states of the bulk gravity field.
While “sliding” (t-dependent) spin is the basis of the

Regge approach, the index structure of the effective vertex
can only be formulated with some fixed integer number of
indices. In this paper, we study a possibility that the
Pomeron can be described by symmetric spin-2 tensors.
Our focus will be on the Pomeron-Pomeron-tensor six-
index vertex. We discuss the far-reaching conjecture,
namely that those should be described by the holographic
triple-graviton vertices, following from the Einstein-
Hilbert action of a five-dimensional holographic model
of QCD. We will show how one can, in principle, check
those and attempt to do so using known details of double-
Pomeron processes observed experimentally.

B. Pomeron interactions

Diffractive processes provide an assessment of Pomeron
interactions. The Pomeron-Pomeron-Reggeon diagram is
related to the so called single diffractive events, in which
the rapidity interval, Δ < logðsÞ, is not populated by
secondaries. The double-diffractive events have two
unpopulated rapidity intervals, Δ1 þ Δ2 < logðsÞ. The
populated part can be as small as a single hadron at
midrapidity; we will discuss such events in the second
part of the paper.
The Pomeron-Pomeron-Pomeron (PPP) and Pomeron-

Pomeron-Reggeon couplings was extracted from the data
in the 1970s; for a review of those early works, see
Ref. [10]. The PPP coupling value that was extracted,

GPPPðt ¼ 0Þ ¼ 0.05� 0.01 GeV−1; ð4Þ

is small on the natural scale of about 1 GeV. Its magnitude
is better understood from a dimensionless combination that
enters the Pomeron loops,

ðGPPPÞ2
4α0P

∼ 10−2; ð5Þ

suggesting that the Pomeron loop diagrams can be
neglected at current energies (in spite of the fact that this
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parameter appeared to be enhanced by the factor sΔ,
growing with energy). For a recent application of the
Pomeron effective field theory and the PPP vertex and
diagrams, see e.g. Ref. [11] and references therein. As
explained there, another combination of couplings,

H ¼ gGPPPsΔ > 1; ð6Þ
appears in “fan” (nonloop) diagrams, which do not have a
small parameter and thus need to be resummed. Those
diagrams are especially relevant for hadron-nucleus inter-
actions at the LHC.
We will not go into details of that and just emphasize one

basic empirical fact: Gribov’s Pomeron effective theory
appears to be weakly coupled [12]. Holographic approaches
naturally relate this to the large-Nc suppression of all
interactions of the bulk fields. One may wonder what
happens when t is large enough, so that perturbative QCD
can be used and the triple-Pomeron vertex can be evaluated
explicitly. It is by no means simple to do but was done; the
so-called bare triple vertex [13] comes from complicated
conformal diagrams and provides an answer of the form

GPPP × jtj1=2 ∼
�
g2Nc

4π2

�
2

; ð7Þ

with a rather large coefficient, in no way hinting toward a
small GPPP.
In the strong coupling regime, the issue has been studied

using the AdS/CFT correspondence, where the bulk five-
dimensional theory is weakly coupled. Scattering of vector
mesons is modeled by diagrams with vector R-fields,
coupled to gravitons. The closest to our paper is that by
Bartels et al. [14], in which a six-point R-current correlator
has been calculated. It includes one diagram with the three-
graviton vertex, but unfortunately it was found that it gives
no contribution to the kinematic structure they look for. As
wewill show below, the double-diffractive production cross
section (which is of the second order in this vertex) is not
only nonzero but is even successful phenomenologically.

C. WA102 experiment and the tensor structure of the
Pomeron interactions

Significant progress in Pomeron phenomenology
occurred due to the CERN WA102 experiment [15–17],
which studied double-diffractive production of JP ¼ 0þ,
0−, 2þ hadrons in fixed-target pp collisions at CERN Super
Proton Synchrotron (SPS) at

ffiffiffi
s

p ¼ 29.1 GeV. This experi-
ment remains, to this day, the main source of information
about the double-Pomeron processes. Its analysis has been
carried out over the years, resulting in published distribu-
tions in both momentum transfers and the angle between
them, which we will call ϕ34, together with the invariant
mass distributions for many final-state hadronic channels.
Below, we will reproduce some of the most relevant plots
from these analyses.

The collision energy of the WA102 experiment is not
high enough to discard non-Pomeron contributions as
small. Furthermore, since we deal with double diffraction,
these contributions can be dominant. Current LHC experi-
ments with elastic/diffractive events and inelastic collisions
are done with different detectors; we call on experimen-
talists to perform double-diffractive studies of the kind
addressed by the WA102 experiment.
The most significant feature discovered by this experi-

ment was strong dependence on the angle ϕ34 between the
two momenta transferred to the protons. Furthermore, this
dependence appears to be qualitatively different for
“mesonic” and “glueball” hadronic states, both for scalar
and tensor states.
The very existence of a nontrivial distribution was a

surprise, suggesting that rather radical changes in our views
of the effective description of the Pomeron may be needed.
Close and Schuler [18] have famously argued, on the basis of
WA102 data, that the Pomeron must have at least a
polarization vector, interacting with some nonconserved
current. In particular, they pointed out that a pseudoscalar
vertex can only be made with the four-dimensional anti-
symmetric ϵ tensor and therefore includes a vector product of
two transverse vectors ~q1 × ~q2. As a result, the 0− produc-
tion cross section must be proportional to sin2ϕ34. Ellis and
Kharzeev [19] added an interesting comment: if the Pomeron
is described by a vector field, the vertex is of the form
ϵαβγδGαβGγδ, which is the same as in the chiral anomaly and
is perhaps related to it. The data from the WA102
Collaboration confirmed the sin2 ϕ34 dependence quite well.
It is also important that it is the same for η and η0; the former
is a meson, while the latter has gluonic admixture via the
anomaly. Thus, in the pseudoscalar case, this angular
distribution cannot be used as a “glueball filter.”
On the other hand, positive C-parity of the Pomeron is

hard to reconcile with a vector coupling to a current.
Therefore, it has been further proposed to use an effective
(symmetric) tensor description coupled to the stress tensor,
which naturally couples in the same way to a nucleon and
an antinucleon. For a relatively recent phenomenological
summary and historic references, see Ref. [20].
The holographic approach to the Pomeron problem also

has its history; let us jump to our direct predecessors who
prompted this work. Anderson et al. studied Pomeron
exchange in pp collisions [21] and the pseudoscalar 0−

channel production [22] in which the Pomeron is modeled
by a Reggeized 2þ (graviton) exchange. Since the tensor is
symmetric and cannot be convoluted with the antisym-
metric ϵ symbol, the only possibility is that the extra indices
are convoluted directly, from top to bottom of the diagram
of Fig. 2, producing another power of ðp1p2Þ ∼ s, while
keeping the sin2ϕ34 distribution intact. These authors also
evaluated the absolute value of the cross section, using the
Sakai-Sugimoto holographic model. Another approach in
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the study of the holographic diffractive scattering can be

found in Refs. [23] and [8].
From the perspective of the holographic models, the

most fundamental hadronic state is the tensor glueball
(which we will call T), since it is described by the gravity
field, with its uniquely fixed Einstein-Hilbert action. (Next
come scalar glueballs, associated with the bulk dilaton, but
those have more model-dependent terms in the action and
may have significant mixing with quark-related meson
fields. Hence, one can additionally study the diffractive
production of scalar glueball states, but since this case is
considerably more complicated, we leave this for a
future work.)
Which tensor hadron state is the best approximation to

the fundamental tensor glueball? A current consensus is the
tensor resonance f2ð2300Þ, as it is called in current particle
data tables. There are several reasons for this conclusion:

(i) Its mass fits well to pure-gauge lattice calculations of
glueball spectroscopy.

(ii) Its width,

Γ2300 ¼ 149� 40 MeV; ð8Þ

is rather small for such a high mass. In particular, it
is much smaller than that of the somewhat lower
tensor state f2ð1950Þ of “normal” magnitude

Γ1950 ¼ 472� 18 MeV: ð9Þ

This small width is taken as a sign of small meson-
glueball mixing.

(iii) This conclusion may appear to be in contradiction
with the WA102 paper, which lists the observed
tensor state as f2ð1950Þ in its title [17], but not our
preferred state f2ð2300Þ. This is, however, abso-
lutely not the case, as is illustrated by two plots from
this paper and reproduced in Fig. 1. Two plots, (a)
and (b), show the same data set, the invariant mass
distribution in the ϕϕ spin-2 channel (points) fitted
with two masses of the resonance. It is obvious that
the fit at the plot (b) has much better χ2. We therefore
conclude that preference given to the 1950 MeV
resonance was perhaps based on some prejudice
existing at the time; the data themselves clearly
select the other resonance as a clear dominant one, at
least in this channel.

(iv) Another feature (pointed out in Ref. [17]) is that the
p⊥ and angular ϕ34 distributions are different for
high-mass tensor T as compared to other J ¼ 2
states f2ð1270Þ, f02ð1520Þ observed in the same
experiment. Those states are undoubtedly mesonic
(quark-antiquark) states, as a tensor glueball with
such a small mass is excluded.

(v) Finally, the situation with ϕ34 distributions for
tensors is similar to that in the scalar channel

J ¼ 0. The distribution of another glueball candidate
f0ð1500Þ is similar to that of T but dissimilar to the
scalar mesons.

Compared to the pseudoscalar hadron production chan-
nel discussed by Ref. [22], the 2þ tensor channel is much
less restricted by basic symmetries. However, one would
argue that, precisely because of that, the tensor channel is
more informative. The observation we will make below,
that the structure of the Einstein-Hilbert action seems to be
in good correspondence with the WA102 data, provides a
very nontrivial support to a “Pomeron-as-graviton” general
conjectures.

II. KINEMATICS OF DOUBLE-DIFFRACTIVE
PRODUCTION

One starts the introduction of notation with the elastic
scattering amplitude: two initial momenta, denoted p1, p2,
and the final ones, p3, p4, are used to define the usual
Mandelstam invariants s ¼ ðp1 þ p2Þ2, t ¼ ðp3 − p1Þ2.
Regge kinematics corresponds to s ≫ t or near-forward
scattering, with the Pomeron amplitude already mentioned

FIG. 1. The invariant mass distribution of the ϕϕ channel with
total angular momentum J ¼ 2. The points on both (a) and (b)
plots are the same, from the WA102 papers [15,16], but are fitted
to with different masses of the resonance, 1950 MeV and
2300 MeV, in plots (a) and (b) respectively.
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in the Introduction. The maximal cross section is given by
an exchange of the highest spin trajectory, that of the
Pomeron. The tensor glueball with J ¼ 2 is the first
physical state after the Pomeron, at t ¼ m2

T > 0, on this
trajectory.
The actual experiments are mainly done with proton

beams, but let us first think of a generic fermion with
momentum, pμ, and spin helicity, s, emitting a tensor
particle. A proton-proton-glueball vertex is naturally
described by the effective action,

λ

Z
d4xTμνhμν; ð10Þ

with some coupling constant λ and the emitted tensor field
hμν. The stress tensor matrix element between the initial
and the final protons is given by

hp; sjTμνjp0; s0i ¼ AðtÞūðp0; s0Þ ðγ
μPν þ γνPμÞ

2
uðp; sÞ;

ð11Þ

where subleading terms are omitted, so that only one
“large” (symmetrically defined) momentum P ¼
ðpþ p0Þ=2 is retained. The form factor should, as usual,
satisfy Að0Þ ¼ 1, and the forward matrix element of the
stress tensor returns the on-shell nucleon mass.
The upper Pomeron has momentum k ¼ p1 − p3 ¼

p2 − p4, which is considered small compared to P.
Furthermore, the two momenta are orthogonal, k · P ¼ 0,
and thus the polarization directions of the glueball are
normal to its momenta. Therefore, in the glueball propa-
gator, terms containing kμ, kν can all be omitted since they
will be multiplied by momentum P from the stress tensor.
This allows one to simplify the propagator to

Dαβγδ ¼
ηαγηβδ þ ηαδηβγ
2ðk2 −m2

hÞ
ð12Þ

and calculate the elastic cross section to be

dσ
dt

¼ λ2s4A4ðtÞ
16πðt −m2

hÞ2
: ð13Þ

The transferred particle should then be Reggeized
according to the Veneziano cross-symmetric form,

A ∼
Γð−αðtÞÞΓð−αðuÞÞΓð−αðsÞÞ

Γð−αðtÞ − αðsÞÞΓð−αðtÞ − αðuÞÞΓð−αðuÞ − αðsÞÞ ;

ð14Þ

where the Regge trajectory is assumed to be linear,
αðxÞ ¼ αð0Þ þ α0ð0Þx. By picking only the t pole, one
gets the propagator replacement rule,

1

t −m2
h

→
−α0

2

ΓðχÞΓð1 − αðtÞ=2Þ
Γð−1þ αðtÞ=2Þ þ χÞ e

−iπαðtÞ=2
�
α0s
2

�
αðtÞ−2

;

ð15Þ

where the important new parameter, χ, in the denominator
is defined by

χ ¼ αðsÞ þ αðuÞ þ αðtÞ ¼ 4α0m2 þ 3αð0Þ: ð16Þ

Using such a substitution rule, one gets the standard
Pomeron scattering amplitude.
The next step is to consider the double-Pomeron pro-

duction of a single hadron and then apply the same rules of
Reggeization to the lines involved. The kinematics have
been discussed in Ref. [22] for the case of the pseudoscalar
hadron; we will follow the same procedure for a tensor
glueball. The momenta are defined as shown in Fig. 2
(notations coincide with Fig. 1, but not Fig. 2, of Ref. [22]).
Now, two momenta transfers, k1 ¼ p1 − p3, k2 ¼ p2 − p4,
must add up, to form an on-shell hadron with momentum
p5 ¼ k1 þ k2. We also define

Pup ¼ ðp1 þ p3Þ=2; Pdown ¼ ðp2 þ p4Þ=2; ð17Þ

which are orthogonal to the momenta transfer

ðPupk1Þ ¼ ðPdownk2Þ ¼ 0: ð18Þ

These two vectors, Pup and Pdown, written in capital letters,
are assumed to be large; their magnitude is ∼

ffiffiffi
s

p
and they

are longitudinal (indices 0 and 1, of the beam). Three
vectors k1, k2, and p5 will be considered of “medium”
magnitude, while the term “small” will be reserved to the
inverse size of the fifth holographic dimension. In the case
of the LHC, large momenta are ∼1000 GeV, medium are
∼1 GeV, and small ∼:1 GeV, respectively.
Suppose all three secondary particles, p3, p4, and p5, are

detected. In the transverse yz plane, these three momenta
should sum to zero, so two of them—that is four compo-
nents—are not fixed. One global axial rotation is redun-
dant, so there are two transverse momenta, p⊥

3 and p⊥
4 , and

an angle between them, ϕ34. Dependence on this angle is
determined by the tensor structure of the triple vertex
between two Pomerons and a hadron Pðk1Þ, Pðk2Þ, and p5,

FIG. 2. The kinematics of the double-Pomeron production.
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which is defined in an effective theory of those objects.
Below, we will focus on this dependence, in the model and
in the experiment.

III. ADS/QCD MODELS, REGGEONS,
AND THE POMERON

In this section, we discuss the accuracy of holographic
models in general, which should provide some expectations
on whether they should or should not be able to reproduce
the cross section we want to evaluate.
Let us start with generic Regge theory and the corre-

sponding trajectories. Semiclassically, the states with large
quantum numbers—large spin J ≫ 1 and/or large radial
quantum number n ≫ 1—correspond to classical rotating
or vibrating string states. The “soft confining-wall models”
currently used will all predict linear Regge trajectories,
such that J (and/or n) ∼m2

J;n, the square of the masses of
such states. This is well known, and wewill not discuss it. It
is also common knowledge that Regge trajectories for
mesons and baryons remain linear, with the same slope,
until small J, n, and m2.
The actual question is whether the Pomeron, with not-

too-large spin, J ≈ 1, and near-zero mass, t ≈ 0, is located
on a linear or a curved Regge trajectory. Since the quantum
numbers are not large and the trajectory is neither a
mesonic nor a baryonic one but a glueball one, one does
not a priori know the answer. Glueball trajectories corre-
spond to rotating closed strings, as opposed to open strings
for mesons and baryons. The naive picture of noninteract-
ing strings predicts the states to have twice the tension or
half the slope, but its accuracy for small J can be
questioned.
Spectroscopy of glueballs is a subject for pure-gauge

theory, and significant efforts have been made to solve
those theories numerically. A compilation of such lattice
results were compared to Regge phenomenology [24], and,
including the Pomeron, it can be found, for example, in
Fig. 5 of Ref. [6], reproduced as Fig. 3(a). The points
correspond to lattice states of positive parity found in the
SU(3) pure-gauge theory. While their authors have not
discuss or implied that the masses and J of them are related
by Regge theory, the reader can see that such a trajectory
does seem to exist. In particular, the leading one has, apart
from the Pomeron, three more states, with J ¼ 2, 4, 6. A
straight line through Pomeron and 2þ tensor state T passes
close to 4þ; together with the 6þ state, one perhaps has a
trajectory with some upward curvature. Let us also note that
the slope α0 of this straight line is also in agreement with
that observed in scattering experiments at negative t.
The second Regge trajectory through the J ¼ 0, 2, 3

states already looks perfectly straight. A few more scalar
J ¼ 0 states were found on the lattice, but their partners
with higher spins remain unknown, and thus these two
trajectories are all information we currently have.

We now ask what are the predictions of the specific
holographic models with respect to lowest glueball states
and their possible Regge description. Note that there is no
need to discuss more recently developed models, such as
Ref. [25], with the number of quark flavors Nf as large as
the number of colors Nc. Since the Pomeron physics is
expected to be gluonic, one may take the simpler Nf ¼ 0

version of this theory. The lowest glueball states—scalar
and tensor ones—have already been calculated in this limit.
We extended such calculations further, reaching the
radial quantum number n ¼ 15; the results are plotted in
Fig. 3(b). Since we have only pairs of points, we obviously
cannot comment on the linearity of these 15 trajectories, but
it is seen by eye that a slope has certain variations. The first
five scalars and two tensors from the lattice shown in (a)
correspond to our calculated masses rather well. The
Pomeron location is not calculated, but since we know
empirically that it is close to J ¼ 1, it is clear from the plot
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FIG. 3. The glueball Regge trajectories, on a plane of the total
angular momentum, J, vs the mass squared, MM ¼ t, in GeV2.
The points on the upper plot (a) show the glueball states obtained
by numerical lattice simulations [24], while the lower plot
(b) shows our own calculation of the lowest scalar and tensor
states in the holographic AdS/QCD model.
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that the slope of the leading—Pomeron—trajectory must be
quite different and smaller than that of the others.

IV. EXPANDING THE BULK ACTION
TO THE CUBIC TERMS

We use, as our effective description of the Pomeron
interactions, a model in the class of improved holographic
QCD models; see Ref. [26] for Nf ¼ 0 and [25,27] for
Nf ∼ Nc. In particular, we use the model for finite Nf in
order to compare our results to experimental data of strong
interactions, even though we do not expect a large con-
tribution from the flavor sector of the model.
The masses of the hadronic states are calculated holo-

graphically from the bulk Lagrangians expanded to the
second order in perturbations of the bulk fields, on top of
the static background minimizing the action. The main task
we perform in this section is expanding the Lagrangian—in
particular, the Hilbert-Einstein gravity Lagrangian

ffiffiffi
g

p
R—

to the cubic term in gravity perturbation h. The gravita-
tional excitation does not couple to any other bulk fields,
since there are no other spin-2 bulk fields in the model.
Those include (i) the terms with two derivatives, originated
from the curvature R, and (ii) terms without derivatives,
originated from the volume element

ffiffiffi
g

p
.

If there are no derivatives, the dimensionality comes
from curvature of the fifth dimension, which is small in our
classification. The same happens if the derivatives are along
the holographic coordinate, as it was analyzed at the end of
Sec. II. If the derivatives have Minkowskian indices 0…3,
they correspond to momenta k1, k2, and p5, which are
medium in our classification, and are therefore the leading
order we keep.
The action that we expand is

Sg ¼ M3N2
c

Z
d5x

ffiffiffiffiffiffiffi
−G

p �
R −

4

3
GMN∂MΦ∂NΦþ VðΦÞ

�
;

ð19Þ

where M is the five-dimensional Planck mass. The flavor
part will not contribute to the fluctuation analysis, so we do
not mention it here. The solution for the background metric
and dilaton is given in Ref. [25]. The choice of the dilaton
potential here is also not important for the fluctuation
analysis but only for the “ground-state solution,” and we
have used the Potentials I choice from Ref. [25]. The
background metric, describing the zero-temperature state of
the field theory, has the following ansatz,

ds2 ¼ e2AðzÞðdz2 þ dxμdxμÞ; ð20Þ

with AðzÞ functions depending on the fifth coordinate,
z, only.
By performing a conformal transformation,

GMN ¼ e2AgMN , the action is rewritten as

S ¼ M3N2
c

Z
d5xe3A

ffiffiffiffiffiffi
−g

p �
Rg þ 12gMN∂MA∂NA

−
4

3
gMN∂MΦ∂NΦþ e2AVðΦÞ

�
: ð21Þ

We now consider the fluctuation, gMN ¼ ηMN þ hMN .
We are interested in the spin-2 excitation of the metric; we
choose the gauge where hzz ¼ hzμ ¼ 0, hμμ ¼ 0, and
∂μhμν ¼ 0. The cubic term of the expansion is

S ¼ M3N2
c

Z
d5xe3A

�
−
1

4
hMNhKL∂M∂NhKL

þ 1

2
hMNhKL∂N∂LhMK þ 1

2
hMN∂PhNL∂PhLM

þ 1

3
hMNhNLhLMe

2AVðΦÞ
�
: ð22Þ

The above result, in the conformal limit, agrees with the
three-graviton vertex in N ¼ 4, which was first computed
in Ref. [28]. The transverse-traceless graviton field is

hMNðx; zÞ ¼
Z

d4q
ð2πÞ4 e

iqxψðq; zÞΠμν
MNðqÞhð0Þμν ðq2Þ; ð23Þ

where we have introduced the four-index tensor in D
dimensions,

Πμναβ ¼
1

2
ðΠμαΠνβ þ ΠμβΠναÞ −

1

d − 1
ΠμνΠαβ; ð24Þ

constructed out of the usual transverse two-index tensor of
polarizations transverse to momentum k,

ΠμνðkÞ ¼ ημν −
kμkν
k2

:

While only the particle p5 is the true on-shell spin-2 state,
from our discussion of the kinematics, it, however, follows
that this projector can also be applied to two Pomeron lines
as well, since those gravitons are also “transverse” and
“traceless.”
The coupling of the graviton to the energy-momentum

operator of the field theory is

Z
∂M

hμνTμν: ð25Þ

According to holography, the three-point function of Tμν

[29] reads

Tμνρσκλðq1; q2; q3Þ ¼ hTμνðq1ÞTκλðq2ÞTρσðq3Þi

¼ δ3Son-shell

hð0Þμν ðq1Þhð0Þκλ ðq2Þhð0Þρσ ðq3Þ
: ð26Þ
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Taking the graviton to be on shell, the third term of Eq. (22) vanishes. We also ignore all terms which have no derivatives
[such as the fourth term of Eq. (22)], since they do not contribute in the kinematic limit which we consider; see Sec. II. The
resulting expression for the three-point six-index interaction vertex is

Tμνρσκλðq1;q2;q3Þ¼ð2πÞ4δ4ðq1þq2þq3ÞM3N2
c

Z
∞

ϵ
dze3AðzÞψðq1;zÞψðq3;zÞψðq3;zÞ

�
−
1

2
q3bq3dðΠab

μνðq1ÞΠcd
ρσðq2ÞΠκλacðq3Þ

þΠab
μνðq1ÞΠcd

κλ ðq2ÞΠρσacðq3ÞþΠab
κλ ðq1ÞΠcd

μνðq2ÞΠρσacðq3ÞþΠab
ρσðq1ÞΠcd

μνðq2ÞΠκλacðq3Þ

þΠab
ρσðq1ÞΠcd

κλ ðq2ÞΠμνacðq3ÞþΠab
κλ ðq1ÞΠcd

ρσðq2ÞΠμνacðq3ÞÞþ
1

2
q3aq3bðΠab

μνðq1ÞΠcd
ρσðq2ÞΠκλcdðq3Þ

þΠab
ρσðq1ÞΠcd

μνðq2ÞΠκλcdðq3ÞþΠab
κλ ðq1ÞΠcd

μνðq2ÞΠρσcdðq3ÞÞ
�
þOðq0Þ: ð27Þ

The terms shown above are the ones which contribute to the
relevant amplitude for the double-Pomeron tensor glueball
production; see Sec. II. Even though the dilaton potential,
which is responsible for the nonconformality of the model,
does not directly enter the three-point function in this limit,
it affects the solution for the metric scale factor, AðzÞ, and
the glueball wave functions, ψðq; zÞ. The equation for the
wave function, ψ , of the transverse-traceless graviton is
found by expanding the action (21) to quadratic order
[25,30]. It reads

ψðq; zÞ00 þ 3A0ðzÞψ 0ðq; zÞ − q2ψðq; zÞ ¼ 0; ð28Þ

where the prime denotes the derivative in terms of z. The
above equation provides the discrete spectrum of the spin-
2þþ glueballs when it is solved by requiring normalizable
solutions both in the IR and UV. The wave function
corresponding to the Pomeron is the solution of the above
equation in the low q2 limit, where we can solve (28)
perturbatively in q2. Hence, we consider

ψðq; zÞ ¼ ψ0ðzÞ þ q2ψ1ðq; zÞ; ð29Þ

where q2 ≪ 1. The zeroth-order solution is

ψ0ðzÞ ¼ c1 þ c2

Z
z

0

e−3Aðz0Þdz0: ð30Þ

Since AðzÞ ¼ −z2 as z → ∞, the second solution in (30) is
non-normalizable in the IR, so c2 ¼ 0 for q2 ¼ 0.
Therefore, c1 ¼ 1, and ψ0ðzÞ ¼ 1. The first-order solution
in q2 is found by solving the following inhomogeneous
equation:

e−3AðzÞðe3AðzÞψ 0
1Þ0 − ψ0 ¼ 0: ð31Þ

We then have

ψ1 ¼
Z

z

0

e−3Aðz0Þ
Z

z0

0

e3Aðz00Þdz00dz0; ð32Þ

and the total solution for small q2 read

ψðq2; zÞ ¼ 1þ q2
Z

z

0

e−3Aðz0Þ
Z

z0

0

e3Aðz00Þdz00dz0 þOðq4Þ:

ð33Þ

The solution satisfies ψðq2; 0Þ ¼ 1 and is normalizable in
the infrared region.

V. DOUBLE-POMERON PRODUCTION OF
TENSOR GLUEBALLS

Now, we are ready to collect all the ingredients prepared
above and calculate the production cross section. The
production amplitude depicted in Fig. 2 needs to be squared,
and summation over the polarizations of the final particles 3,
4, and 5 needs to be performed. The total structure sche-
matically looks as follows, where we have schematically
indicated the indices but suppressed momenta,

hupper
110 hlower

220 T110220330Π330440T550660440hupper
550 hlower

660 ;

where T denotes the graviton three-point function, Eq. (27),
which is contracted with the intermediate Pomerons medi-
ating the interaction, and Π is the projector of the on-shell
glueball state Eq. (24). Here, we have also suppressed the
four stress tensors of the protons coupled to the (tensor) field
h of the Pomerons, but we remind the reader that the
large momenta of the beam produce powers of the largest
invariant s.
Using expressions for each block, we used Mathematica

to sum all of the indices, which generated an extremely
large general expression for the cross section. We took a
series expansion of this expression in the small ratio of the
medium scale—momenta k1, k2, p5 and hadronic masses,
all Oð1 GeVÞ—to the large scale, p ¼ ffiffiffi

s
p

=2; the lowest
nontrivial power of the small parameter is 4. Unfortunately,
even this expression is far too large to be put into a paper.
We therefore put in specific numbers, corresponding to the
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kinematics of the WA102 experiment, along with those of
the LHC, and plotted the resulting distributions.
We note that the transversemomentumdistributions for all

states are, according to plots in Ref. [17], simply exponential
in momentum transfer squared, dN=dq2 ∼ expð−bq2Þ.
Thus, we will use, as representative of the momentum
transfer values, their rms q̄ ¼ 1=

ffiffiffi
b

p
≈ 0.41 GeV, where

the value of b is from the fit reported in Table 2 of Ref. [17].
The cross section is, by symmetry, maximal for longitudinal
rapidity corresponding to that of the c.m. frame. We thus
selected this symmetric kinematics in which the outgoing
tensor glueball has zero longitudinal momentum in the
c.m. frame.
The results are seen in Fig. 4. Plotted is the fraction of

particles produced at particular separations ϕ34, integrated

over angular bins of width (a) π=4 and (b) π=6 and
normalized. The angle ϕ34 is the angle of the transverse
momenta p⊥

3 and p⊥
4 on the transverse plane; see Sec. II.

One can see that the results predicted by our model fall
firmly within the error bars of the data for the f2ð2300Þ
production collected by the WA102 Collaboration. The
model’s predicted distribution for this particle is only
modified slightly as energies are increased to LHC levels.
On the other hand, as one can see from Fig. 4(b), the
production of another particle, f2ð1270Þ—a tensor meson
[31,32], studied in AdS/QCD in Ref. [33]—follows a
completely different (opposite) trend, with the highest
yield occurring in the bin with largest azimuthal separation.
We interpret this as a consequence of the fact that this
particle is not a glueball and is, in holographic models,
associated with the bulk quark-related fields coming from
the flavor sector of the theory (i.e. the flavor branes) rather
than gravity (i.e. the color branes); the triple vertex from the
Einstein-Hilbert action, therefore, should not apply. One
could add such tensor bulk fields in the action of the flavor
branes in order to describe spin-2 mesons, but this is
beyond the scope of this work.

VI. SUMMARY AND DISCUSSION

As discussed in the Introduction, the nature of the
Pomeron and a quest for its most effective description
has occupied the minds of high-energy physicists for half a
century. Modern developments in theory have allowed
completely new ways of approaching this old problem.
Complicated nonlocal objects—mesons, glueballs, and
perhaps the Pomeron—are now treated as a holographic
images of a relatively simple local field theory in the five-
dimensional bulk.
The main idea we followed—that the Pomeron is a

modeled by a symmetric rank-2 tensor—is, in this
approach, quite natural (but by no means new [20]).
Then, according to standard AdS/CFT, symmetric spin-2
states that couple to the energy-momentum tensor (such as
the Pomeron) in the boundary field theory are known to be
dual to the bulk graviton [21]. In fact, holographic AdS/
QCD models had already described the main phases of the
matter, their thermodynamics, and gave a good effective
description of masses and other properties of the lowest
glueballs and mesons [25,26]. What is, in our opinion, new
in this work is an attempt to describe the next-order effects:
the interactions between those effective objects.
We have derived the triple-graviton vertex, which fol-

lows from the famous Einstein-Hilbert action. The inter-
action of tensor glueballs was then Reggeized, or
analytically continued along the Regge trajectory from
the on-shell tensor to the Pomeron. We applied the effective
description of the Pomeron via the tensor field to double-
diffractive processes and modeled effective vertices of the
Pomeron-Pomeron-hadron type. The results are compared
to experimental data of f2ð2300Þ production from the

(a)

(b)

FIG. 4. (a) Double-Pomeron normalized production yield of the
2.3 GeV glueball, f2ð2300Þ, integrated over four azimuthal
angular bins. The (black) circles are the data from the WA102
experiment (

ffiffiffi
s

p ¼ 29.1 GeV) [17], downward (blue) triangles
are the results of our model at the WA102 energy, and the upward
(red) triangles are predicted results at LHC energies
(

ffiffiffi
s

p ¼ 13 TeV). (b) Normalized production yield of 1.27 GeV
spin-2 particle, f2ð1270Þ, integrated over six azimuthal angular
bins. (Black) circles are the data of the WA102 experiment [34],
and the (red) triangles are our model’s predictions.
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WA102 experiment at CERN SPS, with unexpectedly good
reproduction of this distribution.
The collision energy of the WA102 experiment at CERN

SPS was not large enough to avoid a contamination of the
non-Pomeron effects, which can, in principle, be significant
[35]. Also, this experiment was performed many years ago,
in a fixed target setting. One should perhaps seriously
consider performing new generation of double-diffractive
experiments at current colliders, Relativistic Heavy Ion
Collider (RHIC) at Brookhaven National Laboratory and
LHC at CERN, which have convenient kinematics and large-
solid-angle hadronic detectors capable of separating various
produced hadrons and their decay channels, to a
much better degree than was possible in the WA102
experiment.
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Note added.—After the current work was completed, a new
study of the spin structure of the Pomeron [36] appeared.
Recent RHIC data are in good agreement with its tensor
structure and seem to rule out other alternatives.
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