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We provide a gauge-covariant decomposition of the Yang-Mills field with the exceptional gauge group
G(2), which extends the field decomposition proposed by Cho, Duan-Ge, and Faddeev-Niemi for the
SU(N) Yang-Mills field. As an application of the decomposition, we derive a new expression of the non-
Abelian Stokes theorem for the Wilson loop operator in an arbitrary representation of G(2). The resulting
new form is used to define gauge-invariant magnetic monopoles in the G(2) Yang-Mills theory. Moreover,
we obtain the quantization condition to be satisfied by the resulting magnetic charge. The method given in
this paper is general enough to be applicable to any semisimple Lie group other than SU(N) and G(2).

DOI: 10.1103/PhysRevD.94.045004

I. INTRODUCTION

Understanding the mechanism underlying quark con-
finement from first principles of QCD is still a challenging
problem in theoretical particle physics [1]. As a possible
step towards this goal, it will be efficient to extract the
dominant field mode 7 responsible for confinement from
the Yang-Mills field .« to clarify the physics behind the
phenomena of confinement. The well-known mathematical
identity called the Cartan decomposition [2] is used to
decompose the field variable <7 valued in the Lie algebra
¢ = Lie(G) of a gauge group G into the simultaneously
diagonalizable part in the Cartan subalgebra .7 = Lie(H)
and the remaining off-diagonal part in the orthogonal
complement of Lie(H). However, the Cartan decomposi-
tion is not suited for studying the nonperturbative features
of the gauge field theory with local gauge invariance,
because the Cartan decomposition cannot retain the origi-
nal form after the gauge transformation, namely, the local
rotation of the Cartan-Weyl basis for the Lie algebra.

In view of this, the novel decomposition called the Cho-
Duan-Ge-Faddeev-Niemi (CDGFN) decomposition [3—14]
is quite attractive, because the CDGFN decomposition
given in the form & = ¥ 4+ 2 is gauge covariant; i.e.,
it keeps its form under gauge transformation or local color
rotation. In the CDGFN decomposition, the unit Lie-
algebra-valued field n; called the color direction field,
or the color field for short, plays a crucial role for retaining
the local gauge covariance of the decomposition. For
G =SU(N), the color field n;(x) is constructed from the
maximally commuting generators H; (j = 1, ..., rankG) in
the Cartan subalgebra .7 = Lie(H) according to the local
adjoint rotation by a group element g of the gauge group G
at every point x of spacetime,
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n;(x) = g(x)H;g'(x).  g(x) €G. (1)

The colordirection field belongsto the subsetof Lie(G) thatis
topologically equivalent to G/H, where a subgroup H called
the maximal stability subgroup of G is specified from the
degeneracy among the eigenvalues of a representation matrix
of H;. Inother words, the color field n; is regarded as the local
embedding of the Cartan direction H ; in the internal space of
the non-Abelian group G. From this viewpoint, the Cartan
decomposition isidentified with a global limit of the CDGFN
decomposition; this urges us to consider that the Abelian
projectionmethod [15]isnothing buta gauge-fixed version of
the gauge-covariant CDGFN decomposition. The applica-
tion of the novel decomposition to the Yang-Mills non-
Abelian gauge field paves the way for understanding quark
confinement in a gauge-independent manner. In fact, this
method has been extensively used to investigate quark
confinement in the SU(N) Yang-Mills theory in the last
decade; see, e.g., [14] for a review.

A promising mechanism for understanding quark con-
finement is known as dual superconductivity [16]. It is a
hypothesis based on the electromagnetic dual analog of the
type II superconductor, in which the magnetic field applied
to the bulk of the superconductor is squeezed to form the
magnetic vortex due to the Meissner effect of excluding the
magnetic field from the superconductor [17]. The color
electric field created by a pair of a quark and an antiquark
would be squeezed to form an electric flux tube or a hadron
string with its ends on a quark and an antiquark. For the
dual superconductivity to work, therefore, one needs
magnetic objects (say, magnetic monopoles) to be con-
densed in the vacuum of the Yang-Mills theory, which is
supposed to be dual to the ordinary superconductivity
caused by condensation of electric objects consisting of a
pair of electrons called the Cooper pair [17].

The magnetic monopole in the pure Yang-Mills theory
has been mostly constructed by the Abelian projection
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method [15], which explicitly breaks the original non-
Abelian gauge group G to the maximal torus subgroup H.
However, this is not the only way to define magnetic
monopoles in pure Yang-Mills theory without the Higgs
field. In fact, one can define gauge-invariant magnetic
monopoles in pure Yang-Mills theory without breaking the
original gauge symmetry by using the non-Abelian Stokes
theorem [18-25] for the Wilson loop operator, which is in
itself gauge invariant [1]. The gauge-invariant magnetic
monopole is specified by the maximal stability subgroup
H, which is uniquely determined for the highest-weight
state of a given representation for a quark source. For
quarks in the fundamental representation of SU(N), espe-
cially, the maximal stability subgroup H is given by
H = U(N — 1), which is distinct from the maximal torus
group U(1)N=! for N > 3.

The contribution of magnetic monopoles to the Wilson
loop average can be calculated by using the path-integral
framework, using the reformulation of the Yang-Mills
theory based on change of variables in accord with the
field decomposition. We find that there are some options
for reformulating the SU(N) Yang-Mills theory (N > 3)
corresponding to different choices of the color direction
field compatible with the maximal stability group, although
there is only one way to reformulate the SU(2) Yang-Mills
theory. Whichever options we use, we need the field
decomposition formula, which allows us to decompose
an arbitrary element .7 of a Lie algebra ¢ to the part .% ; in
the Lie algebra of H and the remaining part .7 G/ir> See,
e.g., [13,23] and also [14] for a review.

Another popular object of topological nature believed to
be responsible for confinement is the center vortex [26,27],
which is associated to the center subgroup of G. In fact, the
confinement/deconfinement phase transition at finite tem-
perature in the SU(N) Yang-Mills theory is associated with
the restoration/spontaneous breaking of the center sym-
metry Z(N), which is signaled by vanishing/nonvanishing
of the Polyakov loop average. See, e.g., [28] for reviews.
We suppose, however, that magnetic monopoles and
magnetic vortices cannot be independent topological
objects. They could be different views of a single physical
object, just like two sides of a coin, to be simultaneously
defined in a self-consistent way [14,24]. However, this
statement remains still a conjecture to be proved.

The purpose of this paper is to extend the gauge-
covariant field decomposition of the Yang-Mills field
and the non-Abelian Stokes theorem for the Wilson loop
operator developed so far for SU(N) to the exceptional
group G(2), which is a preliminary step toward reformu-
lating the G(2) Yang-Mills theory [29] to discuss the
mechanism for confinement/deconfinement. Our interest
in the exceptional group G(2) lies in the fact that the G(2)
Yang-Mills theory has linear potential [30-32] and that the
center vortex confinement mechanism has been argued to
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work for G(2) in [32], although G(2) has a trivial center
subgroup consisting only of the identity element [33,34].
We want to define the gauge-invariant magnetic monopole
in the G(2) Yang-Mills theory and then examine whether
the magnetic monopole defined in our framework can be a
universal topological object responsible for confinement,
irrespective of the gauge group. This investigation will help
us to prove or disprove the above conjecture on the
interrelation between magnetic monopoles and magnetic
vortices.

The present paper is organized as follows. In Sec. II, we
first determine the maximal stability subgroup for a given
representation of G(2), after presenting some basic proper-
ties of G(2). In Sec. III, we subsequently derive the gauge-
covariant decomposition formula for the G(2) Yang-Mills
field corresponding to each maximal stability subgroup. We
show that the G(2) Yang-Mills field has different gauge-
covariant decompositions depending on the maximal sta-
bility subgroup, which are more complicated than those
obtained for the SU(N) Yang-Mills field. In fact, it turns
out that the decomposition formula for G(2) cannot be
obtained as a simple extension of that for SU(N). This is
because the fact that all roots of SU(N) have the same norm
was used in deriving the decomposition formula for
SU(N). However, some roots of G(2) have different norms
from the other roots. Consequently, the relevant decom-
position for G(2) cannot be obtained by using the double
commutators, in sharp contrast to SU(3). Nevertheless,
multiple commutators with the Cartan generators enable us
to obtain the desired decomposition. Remarkably, we have
found that the decomposition formula for G(2) can be
obtained using sextuple commutators with the Cartan
generators or the color fields. Moreover, the method
presented in this paper for obtaining the decomposition
formula for G(2) can be applied to any semisimple Lie
algebra, and therefore the reformulation of the Yang-Mills
theory would be possible for an arbitrary semisimple
gauge group.

In Sec. IV, we derive a non-Abelian Stokes theorem for
the Wilson loop operator of the G(2) Yang-Mills field,
which is written using sextuple commutators with the color
direction fields, as an application of the decomposition
formula. This enables us to define gauge-invariant mag-
netic monopoles in the G(2) Yang-Mills theory in Sec. V.
What kind of magnetic monopoles can be defined is
determined by the stability subgroup of G. We show that
the magnetic charge derived from the gauge-invariant
magnetic monopole is subject to a novel quantization
condition, which is similar to, but different from, the
quantization condition for the Dirac magnetic monopole
and the 't Hooft—Polyakov magnetic monopole. The final
section is devoted to conclusions and discussion. Some
technical derivations are collected in Appendixes A, B,
and C.
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II. THE EXCEPTIONAL GROUP G(2)
A. Basic properties of G(2)

In this section, we give some basic properties of the
exceptional group G(2). We begin with the Dynkin dia-
gram of G(2) given by Fig. 1. It indicates that G(2) has two
simple roots (i.e., rank 2) with the opening angle 57/3. In
this paper, we use

as simple roots. We see that the other positive roots are
obtained as

1 1
a1+a2:(,— )=a<6>,

27 23

o 420 — (l,L o),
2 2V3
1 V3

al +3a? = 5,%) =),

20! +3a% = (1,0) = a® (3)

Figure 2 is the root diagram of G(2). Hence, there are two
Cartan generators H; (k = 1, 2) and twelve shift operators
E, (0 € R), where R is the root system, i.e., the set of
positive and negative root vectors. They satisfy the com-
mutation relation called the Cartan standard form,

H H]=0 (j.k=1,2),

[Hy. Eo] = oy By
EnE . ]=a H
E, +PER
T S
0 (otherwise)

where o, denotes the kth component of the root vector
and a - H is the inner product defined by a - H:=a*H,. In
this paper we consider a unitary representation. Therefore,
representation matrices satisfy the Hermiticity

R(H,)" =R(Hy).  R(E)"=R(E,). (5

and the normalization

=0

FIG. 1. The Dynkin diagram of G(2).
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FIG. 2. The root diagram of G(2).

r(R(H,)R(Hy)) = 55
1 (p=-a)

0 (otherwise)’

m@@»ﬂ@»z{ (6)

where the value of x depends on the representation. Using
this property, we can define the inner product in the Lie
algebra as

(F1.F2) = ku(R(F1)R(F)), (7)

which is independent of the representation R.

The weight vector ji of a representation specified by the
Dynkin index [my, ..., m,| of the Lie group with the rank r
is obtained from the relation

20k - ji
ak . ak k ( )

For G(2), the highest-weight vector p/ (j =1, 2) of a
representation with the Dynkin index [1, 0] or [0, 1]
satisfies

= O ©)

and hence is determined as

pt=(10), p= (%%)

The weight diagrams are determined by u/ (j = 1, 2), as
given in Fig. 3. The highest-weight vector u' corresponds
to the 14-dimensional adjoint representation 14 with the
Dynkin index [1, 0], while the highest-weight vector z?
corresponds to the 7-dimensional fundamental representa-
tion 7 with the Dynkin index [0, 1]. An arbitrary irreducible
representation of G(2) is labeled by the two Dynkin indices
[n, m] and its highest weight A can be written as

(10)
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FIG. 3. The weight diagrams of the fundamental
representations.
2n+m m
A:nl—i—mz:(—,—). 11
'+ mu RN (11)

Notice that G(2) contains the Lie group SU(3) as a
subgroup. We can see from the root diagram that the Lie
algebra su(3) of SU(3), denoted as su(3) = Lie(SU(3)), is
generated by a set of elements in su(3),

{H|,Hy,E ), E 0. E0, E_y0), E_y0, E_y } C su(3)
— Lie(SU(3)). (12)

Therefore, a representation of G(2) is written as a direct
sum of representations of SU(3). For example, the funda-
mental representations of G(2) are written as

7=3+3+1, (13)

14=8+3+3" (14)

B. Maximal stability subgroups

It is known [13,14] that one can construct a number of
reformulations of the Yang-Mills theory which are dis-
criminated by the maximal stability subgroup. Therefore, it
is important to know which subgroup is identified with the
maximal stability subgroup for each representation. In view
of this, we first derive a certain property to be satisfied by
the generators belonging to the Lie algebra of the maximal
stability subgroup of G(2). By using this property, then,
we determine the maximal stability subgroup for each
representation of G(2).

The maximal stability subgroup H for the representation
R of a group G is defined to be a subgroup whose element

h € H leaves the highest-weight state |A) of the repre-
sentation R invariant up to a phase factor'

'Strictly speaking, we should write R(h)|A) = |A)e®™), but if
we do so the presentation become rather cumbersome. Therefore
we omit R(-) throughout this subsection.
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hIA) = [A)eh), (15)

Hence, an element of its Lie algebra i = Lie(H) can be
written as a linear combination of the Cartan generators and
shift-up and -down operators E, and E_, (where a is a
positive root) such that E,|A) =0 and E_,|A) = 0. Here
notice that if there is E, in the linear combination, then
there is also E_,; that is to say, the mutually Hermitian-
conjugate generators E, and E_, must appear in pairs in the
linear combination, since all matrices in a unitary repre-
sentation of the Lie algebra are Hermitian.

We show in the following that E,|A) = 0 and E_,|A) =
0 if and only if A - a = 0. Here, we should remember that
(a-H)/a* and E,,/|a| satisfy the commutation relations
of su(2). We see from this fact that if a- H|y) =0 and
E,lu) =0, then |u) belongs to the space of the trivial
representation of SU(2) and, hence, E_,|u) = 0. Because
|A) is highest-weight state, E,|A) = 0. Hence, if A-a =0
then E_,|A) = 0. In the same way, the converse can be
proven. B

Thus we arrive at the conclusion that X € & can be
written as a linear combination of the Cartan generators H ;
and shift operators E, with positive root vectors « that are
orthogonal to the highest-weight vector A,

a-A=0. (16)

Thus, it is easy to see that all representations of G(2) are

classified into the following three categories:

(1) For the highest-weight A = mu?, the positive root
orthogonal to the highest weight is a' = a!!) alone.
Hence, the maximal stability subgroup is a U(2)
with the generators Hy, H,, E ), and E_ ),

H (2);
LIC(U(z)) = u(2) D) {H17H27Ea(l>’E—a(l>}? (17)

|
i~

which agrees with a subset of SU(3) specified
by (12).

(2) For the highest-weight A = nu', the positive root
orthogonal to the highest weight is o> = a!®) alone.
Hence, the maximal stability subgroup is another
U(2) with the generators Hy, H,, E s, and E_s),

H=U ),
Lie(U'(2)) = u'(2) D {H\.Hy. Ey9. E_y5}.  (18)

which differs from a subset of SU(3) specified
by (12).

(3) For the highest-weight A = nu' + mu> (n #0 #
m), the maximal stability subgroup is equal to the
maximal torus subgroup U(1) x U(1) generated by
the Cartan subalgebra {H, H,},
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H=U(1)x U(1);
Lie(U(1) x U(1)) D {H,.H,}. (19)

This fact is confirmed as follows. We can write any
positive root as ka' + la?, where k and [ are non-
negative integers that are not zero simultaneously.
Hence, the relation A-a = (nu' + my?) - (ka' +
la?) = nk + ml implies that all positive roots are
not orthogonal to the highest weight when n # 0 and
m # 0. Thus, in this case, the generators of the
maximal stability subgroup are given by H; and H,.

III. DECOMPOSITION FORMULA

Let .Z be an arbitrary element of the Lie algebra. To write
the Wilson loop using the color direction fields, and to
reformulate the G(2) Yang-Mills theory, we have to decom-

pose .# into the part .% j; belonging to 4 = Lie(H) and the
remaining part .7 /i using its commutators with H . This is
achieved by using double commutators in the case of
SU(N), see [14]. However, in the case of G(2), we have
to use sextuple commutators. The proof of this is given in
Appendix A. In this section, we give the explicit form of
such a decomposition for any representation.

A. Decomposing SU(3)

Before proceeding to the G(2) case, we reconsider the
SU(3) case from the viewpoint of this paper. For SU(3), it
is known [14] that the maximal stability subgroup is U(2)
or U(1)x U(1). In the case of the maximal stability
subgroup U(2) with generators H, H,, E o), and E__0),
the decomposition formula is written as

4
%m=§[Hz,[Hz,ﬁ]]» (20)
while in the case of the maximal stability subgroup
U(1) x U(1), the decomposition formula is written as

T = Z[Hj [Hj, 7]]. (21)

j=12

The derivation of these formulas is written in Appendixes C
and D in [14]. We rederive them using another method
which can be applied also to G(2). First, we consider the
commutator of an arbitrary element of the Cartan sub-
algebra with .#. An arbitrary element of the Cartan
subalgebra can be written as v - H, where v is an arbitrary
two-dimensional vector. Using the Cartan decomposition

F =Y FHj+ > (FiE,+ FE,) (22)
j=12 aER.,

and the commutation relation (4), we can write the
commutator as

PHYSICAL REVIEW D 94, 045004 (2016)
v-H.F) =) (v-a)(FsEa— FE,). (23)

AER

Here, we choose y':=(1/3/2,1/2) as v, which is orthogonal
to all), ie., y' - @) = 0. Then the commutator reads

[71 “H, 7] = (71 '“(2))(32*0115

wEat

+ (7 N T B = T g E_gw). (24)

» — FoE_yo)

a

where the terms corresponding to a(!) disappear. By taking
the commutator once more, we can eliminate another term.
For the vector y%:=(0, 1), which is orthogonal to a?), i.e.,
y? - al?) =0, the double commutator is written as

X (T Ey + F wE_yo)
= 2 (F By + FE_g).  (25)
Thus we obtain
Fri B+ F 0By =317 Bl .. (20)

In this way, we can extract the element of .% corresponding
to a particular positive root by taking the double commu-
tator. For the other positive roots, a similar identity holds,

f:;(l)Ea(l) + % WE (27)

F B + Ty E_go =2y H.[P - H.F]|,  (28)
where we have introduced y3:=(1/3/2,—1/2), which is
orthogonal to a®®). Using these expressions, we can write
the decomposition formula for any case of the maximal

stability subgroup. For H = U(2), the decomposition
formula is written as

yﬁ = (&, Hj)Hj + (9Z<2>Ea<2> + ﬁaa)E_a(z))
j=12

= " (FH)H + [Hy [Hy, F) =5 [, 7]

(29)

while for H = U(1) x U(1), the decomposition formula is
written as

045004-5
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Foiin = (B + FwE_yn)
H(FrEg + F 0 E_ye)
T (F B + F s E_y0)
= 12[Hj’ [H, Z]l, (30)
=

where we have used the commuting property

[H. [Hi. 71| = [[H;. Hy]. 7] + [Hy. [H). 7]

= [Hy [H}, 71| (31)

following from [H;, H;] = 0.

B. Decomposing G(2)
Now we consider the G(2) case. We want to write the
coset part .7 /i of .7 as a linear combination of multiple
commutators with the Cartan generators,

n]lJn[H]I”[HJn’y]}’ (32)

where the sum is over independent terms by taking account
of the commuting property (31). We can obtain (32) for any
choice of  if, for every positive root f, the relevant shift
part R is written in the form

(33)

In the following, we give a derivation of (33). In a way
similar to that written above for SU(3), we can indeed
obtain (33). By using the commutation relation (4), the
commutator is calculated as

[U'H’y] = Z (y'a)(‘gz;Ea_yaE—a)' (34)

AER,

If v is chosen to be orthogonal to a particular «, then the
corresponding terms of E, and E_, disappear from this
expression. Thus, by taking the commutator repeatedly, we
can eliminate all shift terms except one, %;, which
corresponds to a particular positive root . Because there
are six positive roots in G(2), we have to eliminate five shift
terms. We can do so using the quintuple commutator

W'-H.[W* H [P -HVH [V -H F)]
=W -p) PP B - PIT jEs — T sE_p),
(35)

PHYSICAL REVIEW D 94, 045004 (2016)

FIG. 4. Unit vectors that are orthogonal to one of the positive
roots.

5 2

where !, ..., 17 are appropriate two-dimensional vectors.
In this expression, the sign of the term of Ej is opposite to
that of E_z. To make both signs equal, we need to take the
commutator once more. We choose a two-dimensional
vector v which is nonorthogonal to f to obtain the non-
vanishing commutator of v - H and (35),

v-H.(35)] = @- A" BB - h)
x (W B) W - BT Ep + FpE_p).  (36)

Thus we obtain the key relation

Fy= il H W H W2 B2 H A HL L H

N=(v-p)W'-B)@*-B)(v* - B) (- B) (@ - B). (37)

Although this expression is nothing but the desired one
[Eq. (33)], it should be remarked that the coefficients 77, ;.
are not uniquely determined. If we multiply v by a constant,
the coefficients 7; ;. do not change. This point will be
observed more concretely shortly.

To obtain the expression (37) for each positive root
concretely, we introduce six unit vectors y¢ (a =1, ...,6)
such that y¢ is positive and orthogonal to one of the positive

roots, saya ) (a=1,...,6),

V31 V3 o1
1 _ _ 2 3 _ _
7—(2,2), y>=(0,1), 7/—(2 2),
4 l_\/:)_’ s 1 \/_

(38)

*The reason why we need a quintuple commutator is that we
can eliminate only one term by taking the commutator once. This
is because the roots of G(2) are two-dimensional. If the
dimension of the root vectors is larger, we can eliminate more
than one term by taking the commutator once.
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see Fig. 4. Consequently, these vectors satisfy the following conditions:

r'La e, Pla®@, e, e, e, Pel). (39)

For example, % ) is obtained as

Ry =Ny -H [y*-H [y -H[y* HI[yP H[° H.Z]].

a

N=(y-aD)(y?-aD)(*-aD)(y* - aV)(y* - aD)(y° - aV), (40)

where y is an arbitrary two-dimensional vector that is not orthogonal to a(!).

To obtain more explicit form, we put an arbitrary two-dimensional vector y in the form y = ay' + by* (orthogonal
decomposition of ), where y' is orthogonal to a!) and y* is parallel to aV): y' La(") and y*|la"). Here b # 0 to avoid
y-aV =by*-a) =0. Using y'-al) =0, we have y?-al) =—/3laV|/2, ¥*-al) =/3laV]/2, y* o) =
lal|, y° - aV) = |aV|/2, y0 - alV) = —|a(V|/2, and y - aV) = by* - alV) = b|a(V)|, which yields

3b

3
N=b—|aV® ==,
TS

(41)

Combining the result N~' = 18 with y - H = ay' - H + by* - H, therefore, we obtain

16
Ry ==

3 y'-H. [y HI/ -H H[-H[-HZ+aly -H [ H@ H*-HI[y-H[y°H .Z]]].

(42)

where ¢; = 16a/3b. We can see from this expression that the nonuniqueness of an expression of % 1) comes from the fact
that the following sextuple commutator is identically vanishing:

Ze=ly' H.[*-H.[@-H [ H[P-H-HZ\) = Y & lH, [H [H. [H,. [H,.[H,. Z] =0,
Jis-sJ6€L2
_ R 5 - 3
511112 = R75111222 = _§5§122222 = 1_6 (43)

Thus, the nonuniqueness of the decomposition formula is attributed to degree of freedom due to one parameter c;.
In the same way as the above, we obtain

R =S H L H Y HL B H A 2 (44)

B == O HL Y HL H L HL L )+ s (45)

Ry =5 VY Bl H2 HL P L H G 1 + 2, (46)

Ry =5 VI H - HLP H P L HL B F + 2. (@)

R == I H - HL 2B H 1L 1+ 2. (48)
where ¢,, ..., cg are arbitrary constants. Here, we have used the commuting property (31).

Collecting an appropriate set of &,, we obtain the desired decomposition formula corresponding to each category of
representations given in (17)—(19):
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(1) For H = U(2) c SU(3) with the generators H,, H,, E 1), and E__), the highest weight is A = (m/2,m/(2v/3)).
Here, we redefine the highest weight as (0, m/+/3) in order to obtam a simpler form. This is possible because the new
one is obtained by acting a Weyl group element on an old one. Thus H has the generators H,, H», E,»,and E_,
The H-commutative part .7 j and the coset part .#; 5 of .7 are given by

ylj] — Z(E’H])Hj+‘%a(z)’
=12
ﬁc/g = %a(l) + @am + @am) + %a<5) + %a(s). (49)

The explicit form is given by

Fu=) (FH)H;+ D jlH [Hy [Hy [H [H [H ZI + 62,

Jj=1.2 JiseeesJ6
10
é’ll]ll]_1 5111122—_? §112222 1
tQEG/I:I Z él/l Jﬁ /1 [sz’ [Hj4’ [H [Hfﬁ’ ﬂ]]]]]] +cZ,
721
C111122 = T?€112222 = _1549 6.:222222 = 27’ (50)

where the other ¢; ; s and (:“j]_,jﬁ are zero and c:=c| + ¢3 + ¢4 + ¢5 + c4. The simplest choice is ¢ =0

and ¢, = 0.
(2) For H=U'(2)(¢SU(3)) with the generators H;, H,, Es, and E_,
Fp=Y (F.H)H;+ Ry
=12
ﬁG/fJ :%a(l) +<%a(2> +%a(3) +<%a(4) +<%a<6). (51)
We obtain
yltl = Z (ﬁ\’ H.i)Hj + Z g’.’/‘l-Hj(m [Hjl’ [sz’ [Hjs’ [H.f4 [H [H16’ JH]H] +os2,
Jj=12 Jiseeeids
Clinm = 27, 5’112222 = -90, 5/222222 =27,
i = Z g, joo (Hjo [H [H [H e ZU] A+ 2,
S = 1, C111122 = 210, {1599, = —63, (52)

where the other C’ _j, s and Z’ j,...j. are zero. We can take the simplest choice ¢ =0and ¢s =0.

(3) For H=U(1) x U(])

27

ll(l

mx
I

‘Q\G/fi - )+ '% )+ '% ) + e% ) + 9‘2(1(5) + '%a(")' (53)

We obtain
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F o = Z o H [H [Hy L [Hy, [Hy [H F] A+ 2,
T = L8 = 237,100 = =153, 8990 = 27, (54)
where the other {7/ ;s are zero. We can take the simplest choice ¢ = 0.

Using the decomposition formula, we can define the field decomposition in a similar way to the case of the gauge group
SU(N). For this purpose, we define the color direction field for G(2) as

nj(x)::Adg(x) (Hj), (55)

where Ady,) is the adjoint representation of g(x) which is an arbitrary group-valued field.* For any Lie-algebra-valued field
7 (x), by applying the decomposition formula to Ad-1,) (% (x)) and operating Ad,(,) on the both sides, we can decompose

- (x) into the part .% 7 (x) belonging to Ad,,) (h) and the remaining part .7, (%),

F(x) = Fx) +Fga(x),
Fx) = Z(ﬁ“(X),nj(X))nj(X) + Z Sirdo (%), s [ (2), [ (x), F ()],

~~~~~ J6

Foa() = D Mjislty, (1), oo [, (0). [ (6). F ()], (56)

where &; i andn; ;. areappropriate coefficients specified by the maximal stability subgroup. We decompose the Yang-
Mills field .27,,(x) into two pieces, ¥ ,(x) and 27,(x),

A (x) =V, (x) + X (x), (57)
where the decomposed fields #,(x) and 27,(x) are obtained as the solution of the defining equations,

0= 2,[7n;(x)=0,m;(x) — igym[V,(x), n;(x)], (58)

0=2,(07 & L) = Y gl (). o gy (6). (). 2, ()] . (59)

,,,,, Je

Using the first defining equation (58), we find
Dl nj(x) = 2, [V nj(x) = igym[ 2 (x).n;(x)] = igymln;(x). 27, (x)]. (60)

By substituting this relation into the second defining equation (59), 27, (x) is rewritten as

X (x) == iga_nle.Z nj, g (x). ... [0 (x). 2,[n; (x)]...]. (61)

..... Jo

Then 7,(x) is written as

3This definition of the color direction field is consistent with the definition adopted in the previous works for the gauge group SU(N)
because

R(n;(x)) = R(Ady( (H;)) = R(g(x))R(H;)R(g(x))".

Here we have used the same notation R to denote the group representation and the corresponding algebra representation, which does not
cause the confusion because the domains are different.
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’Vﬂ(x) = %ﬂ('x) - %ﬂ(x>

= %ﬂ('x) + igﬁ_{Il\/I Z ”jlmja[njl <x>’ e
J1

j15e-22J6

PHYSICAL REVIEW D 94, 045004 (2016)

[n; (x), 2,1 n; (x)]...]. (62)

Thus 7, (x) and Z7,(x) are written in terms of the original Yang-Mills field .7, (x) and the color fields n;(x).

Notice that #,(x) is further cast into

—Z

=12 Jiseeede

+ ig\_{ll\/l Z ’7]1--~j6[nj1 (x)’ e [njs(x

x))n;j(x) + Z il (x), ...,

[ (x), [ (x), 7, ()]

,O,m; (x)]...], (63)

where we have applied the formula (56) to .7, (x) in the last step. Therefore, ¥, (x) is decomposed into %, (x) and %, (x),

Vu(x) = Cu(x) + B,(x )
¢ (x)== (,gz

u AEIN I

For the sake of convenience, we define the field m(x) for
the highest-weight A = (A, A,) by

m(x):=A;n;(x). (65)
Here ¢, (x) commutes with m(x),
[€u(x), m(x)] =0, (66)
while %, (x) is orthogonal to n;(x),
(#B(x),n;(x)) = 0. (67)

The first term in the right-hand side of €, (x) corresponds
to the element of the Cartan subalgebra Lie(H) and the
second term to the remaining part Lie(H) — Lie(H), which
vanishes when the maximal stability group coincides with
the maximal torus group H = H. [This is the case for the
maximal option of SU(N)]. Notice that %, (x) is the
extension of the SU(N) Cho connection to G(2). An
appropriate set of the above fields will be used in the
reformulation of the G(2) Yang-Mills theory.

We suppose that the dominant mode for quark confine-
ment is the restricted field #/,(x) extracted from the
original G(2) Yang-Mills field <7, (x) through the decom-
position given above. In fact, this observation is exempli-
fied for the G(2) Wilson loop operator by using the

Z 5]1 Js 11

Omj(x)].]. (64)

Znh 16 11 [ ()

s g (x), g (%), 7, ()],

non-Abelian Stokes theorem in the same manner as in
SU(N), as given in the next section.

IV. NON-ABELIAN STOKES THEOREM

In this section, we derive the non-Abelian Stokes theorem
for the Wilson loop operator in an arbitrary representation of
the G(2) gauge group using the color direction fields n,.

A. General gauge group

Before proceeding to the case of the gauge group G(2),
we discuss the general case.

It is known [14,23,25] that the Wilson loop operator
defined for any Lie algebra valued Yang-Mills field .7’ and
the irreducible (unitary) representation R is cast into the
following (path-integral) representation”:

4Strictly speaking, we should write F Z,, in (68) as

Fjy =1{8,tr(R(m(x))R (<, (x))) =

+igymtr(R (m(x))([€2,(x),€, (x

R(m(x)) = A;R(g(x))R(H;)R(g(x))" = A;
Q,(x) = igymR(9(x))9,R(g(x))".

To simplify the notation, we omit the symbol R(-) throughout this
section, and in Appendixes B and C.

O, (R(m(x))R(7,(x)))
)}
(Ady() (H;)),
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%W%/W@Mme%mcﬂ,

F9 = %Fz,,dx” A dx?
Fi(x) = k{0, tr(m(x) ,(x)) — O tr
Q, (x)=igymg(x)0,g" (x),

PHYSICAL REVIEW D 94, 045004 (2016)

(m(x)e,(x)) + igymtr(m(x)[Q,(x). Q,(x)])}.
g(x) € G, (68)

where [du(g)]s is the product measure of the Haar measure on the gauge group G over X and A in m:=An; is the highest-
weight vector of the representation R. Here the gauge-invariant field strength F%, is equal to the non-Abelian field strength

ffﬂy[”f]zaﬂ/,, — 6,,”1/”
color field m,

F, = xtr{m.Z ,[V]} = A, /w’

—igym[” . V] of the restricted field ¥, (in the decomposition .o/ = ¥+ Z) projected to the

£ = wkuwl{n, 7,11}, (69)

Therefore, the restricted field ¥, is regarded as the dominant mode for quark confinement, since the remaining field 27,
does not contribute to the Wilson loop operator. The derivation of this fact is given in Appendix C.

Let .% be an arbitrary element of the Lie algebra ¢ = Lie(G). Suppose that .%

is decomposed as

T =T+ T
.
Fu=> (FHYH+ Y & lH, ... [H;, F]...],
j=1 Jiseeesd
Foja = D i Hjpo oo [}, 71, (70)
j] ----- jn

where r is the rank of the gauge group. This relation for the
decomposition has already been proven for G(2) in the
previous section, and the method is applicable to any
semisimple compact Lie group.

In order to complete the non-Abelian Stokes theorem, we
can follow the same procedures as those for SU(N) given in
[25], if gTaﬂmg does not have the part belonging to the

Lie(H),
(¢'0,mg); = 0. (71)

This enables us to rewrite [Q,(x),Q,(x)] in terms of the
color fields n;(x):=Ady)(H,), which is indeed shown in
Appendix B.

The relevant relation (71) is verified as follows. By
applying (70) to Ad-+(0,m), we obtain the decomposition

r

(g'0,mg); = Z ktr(g'0,mgH ) H;

e [H  g"0,myg)..]. (72)

The first term on the right-hand side vanishes, because

= MNtr(¢'0,9H:H; + H;0,9"gH ;)
= Aitr(g'0,9H;H ; — Hga H;)
= Aitr(g'0,9H H ; —

= MAtr(g'0,9/H;, H,])
=0, (73)

tr(g'0,mgH ;) = Atr(g70,(9H,9")gH ;)
(9°0
(9'0
( ang]Hl)
(9"0

where we have used g'g = 1 in the second equality, the
relation 9,9'g = —¢'0,g following from 9,(gg") =0 in
the third equality, and the cyclicity of the trace in the fourth
equality. In addition, by taking account of

g'0,mg = g'9,(g\-Hg")g
=g'0,9N-H+A-Hd,g'g
= - ”ngA‘H+A-H8Mg‘Lg
=[A-H,0,9'g), (74)

the second term is rewritten as
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H;....|H; g'0mg.]

.....

where we have used the commuting property (31) in the
second equality and (70) for .# = 8,,g"'g in the third
equality. By substituting the Cartan decomposition of
(0,9%9)j; in h given by

(6/4ng)1~{ = Z Ktr(aungHj)Hj + Z ((8M9Tg)ZEa
Jj=1 a€R.:E,,Eh
+ (9,97 9)uE-a) (76)

into (75), we find that the second term also vanishes,

(75) = {A‘H, > (((9,49*9)2Ea+(5‘,49*9),115_{1)]

a€R 'Ei,,eiz

> Aa((9,9°9)E

a€R ‘Er,€h

=0, (77)

— (0,9 9)oE—0)

where we have used A-a =0 for a satisfying E, € h.
Thus we have confirmed (71).
We obtain the final form of Wilson loop operator as’

Welot) = [lau(a)lzexp [—igYM [ F]

1
F9 = EF;Z,,dx” A dx?,

) = {0, m(2) 7, (1) - 0, (m(0), (1)

il (). 0,1, <x>J...n>}. (78)

*We can rewrite F %0 of (78) using the inner product instead of

using the trace as
+ ngM Z 'Iz, t,,
l

[Ouni, (x), [, (%), ... i, (%), Oy, (x)]....]]),

so that the Wilson loop depends on the representation only
through the highest-weight vector A.

Fj, = 0,(m, /) = 0,(

PHYSICAL REVIEW D 94, 045004 (2016)

The detail of the derivation of (78) is given in Appendix B,
which is almost the same as that given in [25] for SU(N),
once (71) is established.

B. G(2) case
In each case of representations, we can write the new
form for the Wilson loop operator using the decomposition
formula based on the above general consideration.
(1) For H = U(2) c SU(3), the Wilson loop operator is
written as (78) where n = 6 and

= €11~-~jo’

where (; ; is defined in (50).

(2) For H = U (2)ZSU(3), the Wilson loop operator is
written as (78) where n = 6 and

(79)

Nji...Js

Nji.je = },...jﬁv (80)
where ¢, is defined in (52).

(3) For H = U(1) x U(1), the Wilson loop operator is
written as (78) where n = 6 and

" (81)

Njy.ojs = Ji---Je’

where ¢ is defined in (54).
By using m = An; = (2n+ m)n,/2 + mn,/
(24/3), another form is obtained as

2n+m ()+ )
2 2\/— Fu

FU(x) = K{amnl (x)7, () = Bytr(my (1), ()

Z(:Jl ot (1 (x) [0, (x),

Fiu(x) =

(x)

+ igyiy
m,, ..., [nj5 (x), abnj(,(x)]...]])}

F(x) = x{a,,tr<n2<x>m<x>> _ 0, tr(ma(x) 7, (x))

+ngM Z gjl Jotr n2< )[8/4”]1( )
Jis-eiJ6

[nh,...,[njs(x>,aynjb(x)]...]])}. (82)

V. MAGNETIC MONOPOLES

We can define magnetic-monopole current k as the
codifferential of the Hodge dual of FY,

k= 5"F. (83)
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In the D-dimensional spacetime, k is expressed by a
differential form, (D — 3)-form. For D =4, especially,
the magnetic monopole current reads

1
k= 56"”"”8DF§6. (84)
Then, the magnetic charge ¢,, is defined by
1 . :
= / Bxkd = /d3x26-’k’81F§k = /sz[e’leﬁk.
(85)

We examine the quantization condition for the magnetic
charge. The magnetic charge can have nonzero value
because the map defined by

, - [G(2)/UQ)
me 8~ G@/E ={ Conum oy
has the nontrivial homotopy group
7 (G(2)/H) = =, (H)
{m ($(2) xU(1)) == (U(1)) =Z
= (U(1) xU(l)):Z+Z '
(87)

Because the value of the magnetic charge depends only on
the topological character of n;, we can use specific group
elements g to obtain the quantization condition for the
magnetic charge. Now, we consider a case in which g(x)
belongs to SU(3). In this case, Fj, reduces to

Z%F}fy),

Ff,ly) =x{0,tr(n,7,) =0, tr(n, ) + igyrtr(ny [0,n,,0,n,]
+n,[0,n,0,m))},

Fi2 = k{O,tr(nye? ) — O,tr(nyo ) + igyptr(na [0,my,0,n |
+n,[0,n,,0,m,))}

= K{é‘ﬂtr(nzdb) —Oytr(nye/ )

4.
0,15, 0m) . (58)

Here, notice that two field strengths F’ ,(,ly) and F ,(,zy) appear in

the non-Abelian Stokes theorem for SU(3). It is shown

[14,23] that the two kinds of gauge-invariant charges qg,})

2)

and ¢g;,” obey different quantization conditions,

PHYSICAL REVIEW D 94, 045004 (2016)

2n+m (1)+ m (g

qdm = ) qm 2\/§CIm s

(1) s b ks o A7 1,
mi= | &Px=eOF, =—— | —=¢"),
7 / x2€ ok gYM( 2

1 4z 1
g?= /d3x2€’kfaka:”\/_f’ £.0eZ. (89)

Thus, we obtain the quantization condition for the magnetic
charge in G(2),

4 2
qm:_”<f 2f—f’)+%f> =

nk + mt),
gym 2( 9YM< )

(90)

where we have defined k:=27 — ¢, which can take an
arbitrary integer. The observation based on the homotopy
group (87) implies that there need to be two integers in g,,,.
There exist already two integers in ¢,,. Therefore, it is
enough to consider a case g(x) € SU(3) for deriving the
quantization condition for the magnetic charge in G(2).

VI. CONCLUSIONS AND DISCUSSIONS

For the exceptional group G(2), we first showed that
there exist three cases of the maximal stability subgroup.
Then, we derived the gauge-covariant decomposition for-
mula, which is written using multiple commutators with the
color direction fields, in accord with each stability group. In
addition, we have obtained the non-Abelian Stokes theorem
for the Wilson loop operator that is written in terms of the
relevant color direction fields. These results indicate that
there exist three options for the reformulation of the G(2)
Yang-Mills theory. In any option, we need two kinds of
color fields, since the two Cartan generators are inevitably
required in the decomposition formula; this is in marked
contrast to the minimal option of the SU(N) group.
Nevertheless, each option would be utilized for describing
confinement of quarks in the relevant representation of
G(2). This is because the non-Abelian Stokes theorem for
the Wilson loop operator is attributed to the decomposition
formula available for a given representation. This can be
confirmed more explicitly when the reformulation is ready
to be checked.

The method we have used in this paper for obtaining the
decomposition formula is so general that the decomposition
formula is written for any semisimple Lie group using
multiple commutators with the Cartan generators. In
addition, once the decomposition formula given in the
above is obtained, we can immediately obtain the expres-
sion of the Wilson loop operator written in terms of the
color direction fields, because we derived the non-Abelian
Stokes theorem in a general way. This observation suggests
that the reformulation of the Yang-Mills theory with an
arbitrary semisimple gauge group would be possible.
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APPENDIX A: NECESSITY OF SEXTUPLE
COMMUTATORS IN THE DECOMPOSITION
FORMULA FOR G(2)

In Sec. III, we have seen that sextuple commutators
are used to obtain the decomposition formula for G(2). In
this appendix we show that such a formula for G(2)
cannot be obtained by taking the commutator fewer than
six times. Taking the commutator an odd number of times,
we obtain

Hj,,....[H}, . 7]...]

- z : (ajl"'aJZnH‘/aEa a/l"'ajznu‘/a
aER

E.). (Al)

In this expression, the sign of the term E,, is different from
the sign of the term E_,; therefore this is not appropriate.
Thus we see that we need to consider only the cases of
double and quadruple commutators.

First, we consider the case of double commutators. We
can decompose an arbitrary element .% of the Lie algebra if
and only if there are real numbers k|, k,, and k5 that satisfy

ki[Hy,[Hy, Z]]| + ky[H\, [Hy, F]| + ks3[Hy, [Hy, F]]

=

a€R, : Eiu¢;l

(yflE(l + y{lE—(l)' (AZ)

Using the Cartan decomposition of .%, we find that the left-
hand side of (A2) is equal to

Z ((0)*ky + ajaaky + () ks )(FoEq + T (E_,),

a€R

(A3)
where we set @ = (a;, @, ). Hence, (A2) is equivalent to

(o)?k) + ayanky + (p)?ky = 1 for E, ¢ h,

(a1)%k; + ayaxky + (,)*k3 =0 for E, € h. (A4)

In the case of H = U(2) C SU(3), the three equations (A4)
for aV, a®, and a® can be written in a matrix form as

V3

TN

1 0 of|lk]|=]1 (A5)
3

S I VACVARAN
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The solution of this equation is k; =k, =0, k3 =4/3.
This solution is consistent with the decomposition formula
for SU(3). However, these values of &, k,, and k3 do not
satisfy the equation (A4) for a®, a®, and a(©®. For
example, Eq. (A4) for a®® is given by

1
—ky =1, A6
Sk (46)

which is not satisfied by k3 = 4/3. Therefore, there is no
solution for all of (A4). _

In the case of H = U(2)ZSU(3) and of H = U(1)x
U(1), Eq. (A4) for aV), @, and a®) reads

VAN

1 0 oflk]|=]1 (A7)
V3

S VACVERN

The solution of this equation is k; = k3 = 1, k, = 0. This
solution is also consistent with the decomposition formula
for SU(3). However, this does not satisfy Eq. (A4) for a®),
%, and a9, Therefore, there are no solutions for all of
(A4) in this case as well. Thus, we confirm that there are no
decomposition formulas using double commutators for all
representations.

Next, we consider the case of quadruple commutators.
There exist decomposition formulas if and only if there are
real numbers ky, k,, k3, k4, and ks that satisfy

ki[Hy,[Hy, [Hy, [H,, Z]|]| + k,[H,, [H,, [Hy, [Hy, F]]]]

+k3[Hy, [Hy, [Hy, [Hy, Z]| + k4[Hy, [Ha, [Ha, [Hy, Z]]]]
+ ks[H,, [Hy, [Hy, [Hy, F]]]]
= Y (FLE.+ FLE). (A8)

a€R . E . ¢h
This is equivalent to

(1) + (a1 aoks + (1) () ks + oy (@0) kg + (a2) s
=1 forE, ¢ h,

(a1)*ky + (1P oy + (1) (@) 2 ks 4y (@) 2 kg + (a2) ks
=0 forE,€h. (A9)

The equivalent matrix form is given as
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1 V3 3 -3 9
6 0 0 0 o[k
1 1 \/§ 3 3% 9 k2
— k
T R
ky
0o 0 0 o &
k
| L 1 _1 1 >
\/§ 3 3% 9
0 1 1
1 1 1
1 1 1
= | ) or . (A10)
1 0 1
1 1 1

Calculating the rank of the matrix, we see that these
equations do not have solutions. Thus we have confirmed
that quadruple commutators are not enough to obtain the
desired decomposition formula.

APPENDIX B: DERIVATION OF THE NON-
ABELIAN STOKES THEOREM FOR THE
GENERAL GAUGE GROUP USING (71)

From the fact [Eq. (71)] that the H part of g"'(?ﬂmg is
vanishing, we have
9'9mg = (4’0 mg)G/H

Z mi, i [Hi.....[H; .g"0,mg]...].

.....

igymtr(m(x)[€,(x), Q,(x)]) =

PHYSICAL REVIEW D 94, 045004 (2016)

Multiplying both sides of this equation, by g from the left
and by ¢' from the right, we obtain

Qm(x) = D iy, 11, (0). ... g, (x). Om(0)]...]

where we have used [n;, 0,m] = [m, 9,n;] following from
O,[m;,m] =0 in the second equality, the commuting
property (31) in the third equality, and we have introduced

By=ighe 3 i, (5)s o, (6), 0 ()]
o (B3)
in last equality. On the other hand, we find
d,m(x) = igym[,.m(x)]. (B4)
Combining (B2) and (B4), we obtain
(@, m(x)] = [2,,(x), m(x)]. (B5)

Using this relation, we can rewrite the third term in
Fi,(x) as

(B6)
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where we have used the cyclicity of the trace in the
first, third, sixth, and eighth equalities, (B4) in the
fourth equality, [0,m.n; ] = —[m,0,n; | following from
d,lm.n; ] = 0 in the seventh equality, and the fact that the
first expression is antisymmetric in g and v in the last
equality. This completes the proof of the non-Abelian
Stokes theorem (78).

APPENDIX C: DERIVATION
OF Fj, =xtr(m.Z ,,[7])

In this appendix, we show that the remaining field 2~
does not contribute to the Wilson loop operator by deriving
the equality (69). Using the decomposition (64), we obtain
tr(m.%7,[V]) = tr(m(0,€, — 0,€, — igym[C . €]

- igYM [Cg/n '%)u} - igYM [‘%;u Cgu]
+ aﬂ‘%)y - auf%y - igYM['%;u %v]) (Cl)
From the fact (66) we see that the third, fourth, and fifth
terms vanish. Thus we obtain
tr(m.%,,[V]) = tr(m(0,%, - 0,%, + 0,4,

_aw@y _igYM['@ﬂ"@IJ]))' (C2)

The first term of (C2) reads

PHYSICAL REVIEW D 94, 045004 (2016)
dtr(me/,)) = 0,(tr(mE,))
= tr(0,m%, +mo,G,)

= tr(md, ¢ ,), (C3)

where we have used (¢g79,mg); = 0 and €, € gLie(H)g'.
The third term of (C2) reads

tr(mo,#,) = —tr(0,m%,)
= _igYMtr([%w m]%y)
= igymtr(m[%,, %)), (C4)

where we have used tr(m%,) = 0 in the first equality, (B2)
in the second equality, and the cyclicity of the trace in the
last equality. Thus, we obtain

(C2) = O,tr(met ) — O, tr(msd ) + igymtr(m|HB,, B,))
= dtr((ma/ ) — O tr(me ) + igYMtr(m[Qﬂ, Q)

1
:;F.ZIJ?

(C5)

where we have used (C3) and (C4) in the first equality and
(B5) in the second equality.

[1] K. Wilson, Phys. Rev. D 10, 2445 (1974).
[2] R. Gilmore, Lie Groups, Lie Algebras, and Some of Their
Applications (Dover, New York, 20006)
[3] Y.S. Duan and M. L. Ge, Sci. Sin. 11, 1072 (1979).
[4] Y.M. Cho, Phys. Rev. D 21, 1080 (1980); 23, 2415
(1981).
[5] L. Faddeev and A.J. Niemi, Phys. Rev. Lett. 82, 1624
(1999); L. D. Faddeev and A.J. Niemi, Nucl. Phys. B776,
38 (2007).
[6] S.V. Shabanov, Phys. Lett. B 458, 322 (1999); 463, 263
(1999).
[7]1 K.-I. Kondo, T. Murakami, and T. Shinohara, Prog. Theor.
Phys. 115, 201 (2006).
[8] K.-I. Kondo, T. Murakami, and T. Shinohara, Eur. Phys. J. C
42, 475 (2005).
[9] K.-I. Kondo, Phys. Rev. D 74, 125003 (2006).
[10] Y.M. Cho, Report No. MPI-PAE/PTh 14/80,
(unpublished); Phys. Rev. Lett. 44, 1115 (1980).
[11] L. Faddeev and A.J. Niemi, Phys. Lett. B 449, 214 (1999);
464, 90 (1999); T. A. Bolokhov and L. D. Faddeev, Theor.
Math. Phys. 139, 679 (2004).
[12] W.S. Bae, Y. M. Cho, and S. W. Kimm, Phys. Rev. D 65,
025005 (2001); Y. M. Cho, arXiv:hep-th/0301013.

1980

[13] K.-I. Kondo, T. Shinohara, and T. Murakami, Prog. Theor.
Phys. 120, 1 (2008).

[14] K.-I. Kondo, S. Kato, A. Shibata, and T. Shinohara, Phys.
Rep. 579, 1 (2015).

[15] G. ’t Hooft, Nucl. Phys. B190, 455 (1981).

[16] Y. Nambu, Phys. Rev. D 10, 4262 (1974); G. 't Hooft, in
High Energy Physics, edited by A. Zichichi (Editorice
Compositori, Bologna, 1975); S. Mandelstam, Phys. Rep.
23, 245 (1976); A.M. Polyakov, Phys. Lett. B 59, 82
(1975); Nucl. Phys. B120, 429 (1977).

[17] M. Tinkham, Introduction to Superconductivity: Second
Edition (Dover, New York, 2004).

[18] D. 1. Diakonov and V. Yu. Petrov, Phys. Lett. B 224, 131
(1989).

[19] D. Diakonov and V. Petrov, arXiv:hep-th/9606104; arXiv:
hep-1at/0008004; J. Exp. Theor. Phys. 92, 905 (2001).

[20] K.-I. Kondo, Phys. Rev. D 58, 105016 (1998).

[21] K.-I. Kondo and Y. Taira, Mod. Phys. Lett. A 15, 367
(2000).

[22] K.-I. Kondo and Y. Taira, Prog. Theor. Phys. 104, 1189
(2000).

[23] K.-I. Kondo, Phys. Rev. D 77, 085029 (2008).

[24] K.-I. Kondo, J. Phys. G 35, 085001 (2008).

045004-16


http://dx.doi.org/10.1103/PhysRevD.10.2445
http://dx.doi.org/10.1103/PhysRevD.21.1080
http://dx.doi.org/10.1103/PhysRevD.23.2415
http://dx.doi.org/10.1103/PhysRevD.23.2415
http://dx.doi.org/10.1103/PhysRevLett.82.1624
http://dx.doi.org/10.1103/PhysRevLett.82.1624
http://dx.doi.org/10.1016/j.nuclphysb.2006.12.011
http://dx.doi.org/10.1016/j.nuclphysb.2006.12.011
http://dx.doi.org/10.1016/S0370-2693(99)00612-7
http://dx.doi.org/10.1016/S0370-2693(99)01024-2
http://dx.doi.org/10.1016/S0370-2693(99)01024-2
http://dx.doi.org/10.1143/PTP.115.201
http://dx.doi.org/10.1143/PTP.115.201
http://dx.doi.org/10.1140/epjc/s2005-02344-4
http://dx.doi.org/10.1140/epjc/s2005-02344-4
http://dx.doi.org/10.1103/PhysRevD.74.125003
http://dx.doi.org/10.1103/PhysRevLett.44.1115
http://dx.doi.org/10.1016/S0370-2693(99)00100-8
http://dx.doi.org/10.1016/S0370-2693(99)01035-7
http://dx.doi.org/10.1023/B:TAMP.0000026184.25502.f8
http://dx.doi.org/10.1023/B:TAMP.0000026184.25502.f8
http://dx.doi.org/10.1103/PhysRevD.65.025005
http://dx.doi.org/10.1103/PhysRevD.65.025005
http://arXiv.org/abs/hep-th/0301013
http://dx.doi.org/10.1143/PTP.120.1
http://dx.doi.org/10.1143/PTP.120.1
http://dx.doi.org/10.1016/j.physrep.2015.03.002
http://dx.doi.org/10.1016/j.physrep.2015.03.002
http://dx.doi.org/10.1016/0550-3213(81)90442-9
http://dx.doi.org/10.1103/PhysRevD.10.4262
http://dx.doi.org/10.1016/0370-1573(76)90043-0
http://dx.doi.org/10.1016/0370-1573(76)90043-0
http://dx.doi.org/10.1016/0370-2693(75)90162-8
http://dx.doi.org/10.1016/0370-2693(75)90162-8
http://dx.doi.org/10.1016/0550-3213(77)90086-4
http://dx.doi.org/10.1016/0370-2693(89)91062-9
http://dx.doi.org/10.1016/0370-2693(89)91062-9
http://arXiv.org/abs/hep-th/9606104
http://arXiv.org/abs/hep-lat/0008004
http://arXiv.org/abs/hep-lat/0008004
http://dx.doi.org/10.1134/1.1385630
http://dx.doi.org/10.1103/PhysRevD.58.105016
http://dx.doi.org/10.1142/S0217732300000359
http://dx.doi.org/10.1142/S0217732300000359
http://dx.doi.org/10.1143/PTP.104.1189
http://dx.doi.org/10.1143/PTP.104.1189
http://dx.doi.org/10.1103/PhysRevD.77.085029
http://dx.doi.org/10.1088/0954-3899/35/8/085001

GAUGE-COVARIANT DECOMPOSITION AND MAGNETIC ...

[25] R. Matsudo and K.-I. Kondo, Phys. Rev. D 92, 125038
(2015).

[26] L. Del Debbio, M. Faber, J. Greensite, and S. Olejnik, Phys.
Rev. D 55, 2298 (1997); M. Faber, J. Greensite, and S.
Olejnik, Phys. Rev. D 57, 2603 (1998); L. Del Debbio, M.
Faber, J. Giedt, J. Greensite, and S. Olejnik, Phys. Rev. D
58, 094501 (1998).

[27] J. M. Cornwall, Phys. Rev. D 61, 085012 (2000).

[28] J. Greensite, Prog. Part. Nucl. Phys. 51, 1 (2003); J.
Greensite, An Introduction to the Confinement Problem,
Lecture Notes in Physics Vol. 821 (Springer-Verlag, Berlin,
2011).

PHYSICAL REVIEW D 94, 045004 (2016)

[29] K. Holland, P. Minkowski, M. Pepe, and U. J. Wiese, Nucl.
Phys. B668, 207 (2003).

[30] B. H. Wellegehausen, A. Wipf, and C. Wozar, Phys. Rev. D
83, 016001 (2011).

[31] M. Bruno, M. Caselle, M. Panero, and R. Pellegrini, J. High
Energy Phys. 03 (2015) 057.

[32] J. Greensite, K. Langfeld, S. Olejnik, H. Reinhardt, and T.
Tok, Phys. Rev. D 75, 034501 (2007).

[33] M. Gunaydin and F. Gursey, J. Math. Phys. (N.Y.) 14, 1651
(1973).

[34] S.L. Cacciatori, B. L. Cerchiai, A. D. Vedova, G. Ortenzi,
and A. Scotti, J. Math. Phys. (N.Y.) 46, 083512 (2005).

045004-17


http://dx.doi.org/10.1103/PhysRevD.92.125038
http://dx.doi.org/10.1103/PhysRevD.92.125038
http://dx.doi.org/10.1103/PhysRevD.55.2298
http://dx.doi.org/10.1103/PhysRevD.55.2298
http://dx.doi.org/10.1103/PhysRevD.57.2603
http://dx.doi.org/10.1103/PhysRevD.58.094501
http://dx.doi.org/10.1103/PhysRevD.58.094501
http://dx.doi.org/10.1103/PhysRevD.61.085012
http://dx.doi.org/10.1016/S0146-6410(03)90012-3
http://dx.doi.org/10.1016/S0550-3213(03)00571-6
http://dx.doi.org/10.1016/S0550-3213(03)00571-6
http://dx.doi.org/10.1103/PhysRevD.83.016001
http://dx.doi.org/10.1103/PhysRevD.83.016001
http://dx.doi.org/10.1007/JHEP03(2015)057
http://dx.doi.org/10.1007/JHEP03(2015)057
http://dx.doi.org/10.1103/PhysRevD.75.034501
http://dx.doi.org/10.1063/1.1666240
http://dx.doi.org/10.1063/1.1666240
http://dx.doi.org/10.1063/1.1993549

