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We provide a gauge-covariant decomposition of the Yang-Mills field with the exceptional gauge group
Gð2Þ, which extends the field decomposition proposed by Cho, Duan-Ge, and Faddeev-Niemi for the
SUðNÞ Yang-Mills field. As an application of the decomposition, we derive a new expression of the non-
Abelian Stokes theorem for the Wilson loop operator in an arbitrary representation of Gð2Þ. The resulting
new form is used to define gauge-invariant magnetic monopoles in the Gð2Þ Yang-Mills theory. Moreover,
we obtain the quantization condition to be satisfied by the resulting magnetic charge. The method given in
this paper is general enough to be applicable to any semisimple Lie group other than SUðNÞ and Gð2Þ.
DOI: 10.1103/PhysRevD.94.045004

I. INTRODUCTION

Understanding the mechanism underlying quark con-
finement from first principles of QCD is still a challenging
problem in theoretical particle physics [1]. As a possible
step towards this goal, it will be efficient to extract the
dominant field mode V responsible for confinement from
the Yang-Mills field A to clarify the physics behind the
phenomena of confinement. The well-known mathematical
identity called the Cartan decomposition [2] is used to
decompose the field variable A valued in the Lie algebra
G ¼ LieðGÞ of a gauge group G into the simultaneously
diagonalizable part in the Cartan subalgebra H ¼ LieðHÞ
and the remaining off-diagonal part in the orthogonal
complement of LieðHÞ. However, the Cartan decomposi-
tion is not suited for studying the nonperturbative features
of the gauge field theory with local gauge invariance,
because the Cartan decomposition cannot retain the origi-
nal form after the gauge transformation, namely, the local
rotation of the Cartan-Weyl basis for the Lie algebra.
In view of this, the novel decomposition called the Cho-

Duan-Ge-Faddeev-Niemi (CDGFN) decomposition [3–14]
is quite attractive, because the CDGFN decomposition
given in the form A ¼ V þX is gauge covariant; i.e.,
it keeps its form under gauge transformation or local color
rotation. In the CDGFN decomposition, the unit Lie-
algebra-valued field nj called the color direction field,
or the color field for short, plays a crucial role for retaining
the local gauge covariance of the decomposition. For
G¼SUðNÞ, the color field njðxÞ is constructed from the
maximally commuting generators Hj (j ¼ 1;…; rankG) in
the Cartan subalgebra H ¼ LieðHÞ according to the local
adjoint rotation by a group element g of the gauge group G
at every point x of spacetime,

njðxÞ ¼ gðxÞHjg†ðxÞ; gðxÞ ∈ G: ð1Þ

Thecolordirectionfieldbelongsto thesubsetofLieðGÞ that is
topologically equivalent toG= ~H, where a subgroup ~H called
the maximal stability subgroup of G is specified from the
degeneracyamong the eigenvaluesof a representationmatrix
ofHj. Inotherwords, thecolor fieldnj is regardedas the local
embedding of theCartan directionHj in the internal space of
the non-Abelian group G. From this viewpoint, the Cartan
decomposition is identifiedwith aglobal limit of theCDGFN
decomposition; this urges us to consider that the Abelian
projectionmethod[15]isnothingbutagauge-fixedversionof
the gauge-covariant CDGFN decomposition. The applica-
tion of the novel decomposition to the Yang-Mills non-
Abelian gauge field paves the way for understanding quark
confinement in a gauge-independent manner. In fact, this
method has been extensively used to investigate quark
confinement in the SUðNÞ Yang-Mills theory in the last
decade; see, e.g., [14] for a review.
A promising mechanism for understanding quark con-

finement is known as dual superconductivity [16]. It is a
hypothesis based on the electromagnetic dual analog of the
type II superconductor, in which the magnetic field applied
to the bulk of the superconductor is squeezed to form the
magnetic vortex due to the Meissner effect of excluding the
magnetic field from the superconductor [17]. The color
electric field created by a pair of a quark and an antiquark
would be squeezed to form an electric flux tube or a hadron
string with its ends on a quark and an antiquark. For the
dual superconductivity to work, therefore, one needs
magnetic objects (say, magnetic monopoles) to be con-
densed in the vacuum of the Yang-Mills theory, which is
supposed to be dual to the ordinary superconductivity
caused by condensation of electric objects consisting of a
pair of electrons called the Cooper pair [17].
The magnetic monopole in the pure Yang-Mills theory

has been mostly constructed by the Abelian projection
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method [15], which explicitly breaks the original non-
Abelian gauge group G to the maximal torus subgroup H.
However, this is not the only way to define magnetic
monopoles in pure Yang-Mills theory without the Higgs
field. In fact, one can define gauge-invariant magnetic
monopoles in pure Yang-Mills theory without breaking the
original gauge symmetry by using the non-Abelian Stokes
theorem [18–25] for the Wilson loop operator, which is in
itself gauge invariant [1]. The gauge-invariant magnetic
monopole is specified by the maximal stability subgroup
~H, which is uniquely determined for the highest-weight
state of a given representation for a quark source. For
quarks in the fundamental representation of SUðNÞ, espe-
cially, the maximal stability subgroup ~H is given by
~H ¼ UðN − 1Þ, which is distinct from the maximal torus
group Uð1ÞN−1 for N ≥ 3.
The contribution of magnetic monopoles to the Wilson

loop average can be calculated by using the path-integral
framework, using the reformulation of the Yang-Mills
theory based on change of variables in accord with the
field decomposition. We find that there are some options
for reformulating the SUðNÞ Yang-Mills theory (N ≥ 3)
corresponding to different choices of the color direction
field compatible with the maximal stability group, although
there is only one way to reformulate the SUð2Þ Yang-Mills
theory. Whichever options we use, we need the field
decomposition formula, which allows us to decompose
an arbitrary elementF of a Lie algebra G to the partF ~H in
the Lie algebra of ~H and the remaining part FG= ~H; see,
e.g., [13,23] and also [14] for a review.
Another popular object of topological nature believed to

be responsible for confinement is the center vortex [26,27],
which is associated to the center subgroup of G. In fact, the
confinement/deconfinement phase transition at finite tem-
perature in the SUðNÞ Yang-Mills theory is associated with
the restoration/spontaneous breaking of the center sym-
metry ZðNÞ, which is signaled by vanishing/nonvanishing
of the Polyakov loop average. See, e.g., [28] for reviews.
We suppose, however, that magnetic monopoles and
magnetic vortices cannot be independent topological
objects. They could be different views of a single physical
object, just like two sides of a coin, to be simultaneously
defined in a self-consistent way [14,24]. However, this
statement remains still a conjecture to be proved.
The purpose of this paper is to extend the gauge-

covariant field decomposition of the Yang-Mills field
and the non-Abelian Stokes theorem for the Wilson loop
operator developed so far for SUðNÞ to the exceptional
group Gð2Þ, which is a preliminary step toward reformu-
lating the Gð2Þ Yang-Mills theory [29] to discuss the
mechanism for confinement/deconfinement. Our interest
in the exceptional group Gð2Þ lies in the fact that the Gð2Þ
Yang-Mills theory has linear potential [30–32] and that the
center vortex confinement mechanism has been argued to

work for Gð2Þ in [32], although Gð2Þ has a trivial center
subgroup consisting only of the identity element [33,34].
We want to define the gauge-invariant magnetic monopole
in the Gð2Þ Yang-Mills theory and then examine whether
the magnetic monopole defined in our framework can be a
universal topological object responsible for confinement,
irrespective of the gauge group. This investigation will help
us to prove or disprove the above conjecture on the
interrelation between magnetic monopoles and magnetic
vortices.
The present paper is organized as follows. In Sec. II, we

first determine the maximal stability subgroup for a given
representation of Gð2Þ, after presenting some basic proper-
ties of Gð2Þ. In Sec. III, we subsequently derive the gauge-
covariant decomposition formula for the Gð2Þ Yang-Mills
field corresponding to each maximal stability subgroup. We
show that the Gð2Þ Yang-Mills field has different gauge-
covariant decompositions depending on the maximal sta-
bility subgroup, which are more complicated than those
obtained for the SUðNÞ Yang-Mills field. In fact, it turns
out that the decomposition formula for Gð2Þ cannot be
obtained as a simple extension of that for SUðNÞ. This is
because the fact that all roots of SUðNÞ have the same norm
was used in deriving the decomposition formula for
SUðNÞ. However, some roots of Gð2Þ have different norms
from the other roots. Consequently, the relevant decom-
position for Gð2Þ cannot be obtained by using the double
commutators, in sharp contrast to SUð3Þ. Nevertheless,
multiple commutators with the Cartan generators enable us
to obtain the desired decomposition. Remarkably, we have
found that the decomposition formula for Gð2Þ can be
obtained using sextuple commutators with the Cartan
generators or the color fields. Moreover, the method
presented in this paper for obtaining the decomposition
formula for Gð2Þ can be applied to any semisimple Lie
algebra, and therefore the reformulation of the Yang-Mills
theory would be possible for an arbitrary semisimple
gauge group.
In Sec. IV, we derive a non-Abelian Stokes theorem for

the Wilson loop operator of the Gð2Þ Yang-Mills field,
which is written using sextuple commutators with the color
direction fields, as an application of the decomposition
formula. This enables us to define gauge-invariant mag-
netic monopoles in the Gð2Þ Yang-Mills theory in Sec. V.
What kind of magnetic monopoles can be defined is
determined by the stability subgroup of G. We show that
the magnetic charge derived from the gauge-invariant
magnetic monopole is subject to a novel quantization
condition, which is similar to, but different from, the
quantization condition for the Dirac magnetic monopole
and the ’t Hooft–Polyakov magnetic monopole. The final
section is devoted to conclusions and discussion. Some
technical derivations are collected in Appendixes A, B,
and C.
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II. THE EXCEPTIONAL GROUP Gð2Þ
A. Basic properties of Gð2Þ

In this section, we give some basic properties of the
exceptional group Gð2Þ. We begin with the Dynkin dia-
gram ofGð2Þ given by Fig. 1. It indicates thatGð2Þ has two
simple roots (i.e., rank 2) with the opening angle 5π=3. In
this paper, we use

α1 ¼
�
1

2
;−

ffiffiffi
3

p

2

�
≕ αð1Þ;

α2 ¼
�
0;

1ffiffiffi
3

p
�

≕ αð5Þ ð2Þ

as simple roots. We see that the other positive roots are
obtained as
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1
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;−

1

2
ffiffiffi
3

p
�

≕ αð6Þ;

α1 þ 2α2 ¼
�
1

2
;

1

2
ffiffiffi
3

p
�

≕ αð4Þ;

α1 þ 3α2 ¼
�
1

2
;

ffiffiffi
3

p

2

�
≕ αð3Þ;

2α1 þ 3α2 ¼ ð1; 0Þ ≕ αð2Þ: ð3Þ

Figure 2 is the root diagram of Gð2Þ. Hence, there are two
Cartan generators Hk (k ¼ 1, 2) and twelve shift operators
Eα (α ∈ R), where R is the root system, i.e., the set of
positive and negative root vectors. They satisfy the com-
mutation relation called the Cartan standard form,

½Hj;Hk� ¼ 0 ðj; k ¼ 1; 2Þ;
½Hk; Eα� ¼ αkEα;

½Eα; E−α� ¼ α ·H

½Eα; Eβ� ∝
�
Eαþβ ðαþ β ∈ RÞ
0 ðotherwiseÞ ; ð4Þ

where αk denotes the kth component of the root vector α
and α ·H is the inner product defined by α ·H≔αkHk. In
this paper we consider a unitary representation. Therefore,
representation matrices satisfy the Hermiticity

RðHkÞ† ¼ RðHkÞ; RðEαÞ† ¼ RðE−αÞ; ð5Þ

and the normalization

κtrðRðHjÞRðHkÞÞ ¼ δjk;

κtrðRðEαÞRðEβÞÞ ¼
�
1 ðβ ¼ −αÞ
0 ðotherwiseÞ ; ð6Þ

where the value of κ depends on the representation. Using
this property, we can define the inner product in the Lie
algebra as

ðF 1;F 2Þ ¼ κtrðRðF 1ÞRðF 2ÞÞ; ð7Þ

which is independent of the representation R.
The weight vector ~μ of a representation specified by the

Dynkin index ½m1;…; mr� of the Lie group with the rank r
is obtained from the relation

2~αk · ~μ
~αk · ~αk

¼ mk: ð8Þ

For Gð2Þ, the highest-weight vector μj (j ¼ 1, 2) of a
representation with the Dynkin index [1, 0] or [0, 1]
satisfies

2αk · μj

αk · αk
¼ δkj; ð9Þ

and hence is determined as

μ1 ¼ ð1; 0Þ; μ2 ¼
�
1

2
;

1

2
ffiffiffi
3

p
�
: ð10Þ

The weight diagrams are determined by μj (j ¼ 1, 2), as
given in Fig. 3. The highest-weight vector μ1 corresponds
to the 14-dimensional adjoint representation 14 with the
Dynkin index [1, 0], while the highest-weight vector μ2

corresponds to the 7-dimensional fundamental representa-
tion 7with the Dynkin index [0, 1]. An arbitrary irreducible
representation ofGð2Þ is labeled by the two Dynkin indices
½n;m� and its highest weight Λ can be written asFIG. 1. The Dynkin diagram of Gð2Þ.

FIG. 2. The root diagram of Gð2Þ.
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Λ ¼ nμ1 þmμ2 ¼
�
2nþm

2
;
m

2
ffiffiffi
3

p
�
: ð11Þ

Notice that Gð2Þ contains the Lie group SUð3Þ as a
subgroup. We can see from the root diagram that the Lie
algebra suð3Þ of SUð3Þ, denoted as suð3Þ ¼ LieðSUð3ÞÞ, is
generated by a set of elements in suð3Þ,

fH1; H2; Eαð1Þ ; Eαð2Þ ; Eαð3Þ ; E−αð1Þ ; E−αð2Þ ; E−αð3Þg ⊂ suð3Þ
¼ LieðSUð3ÞÞ: ð12Þ

Therefore, a representation of Gð2Þ is written as a direct
sum of representations of SUð3Þ. For example, the funda-
mental representations of Gð2Þ are written as

7 ¼ 3þ 3� þ 1; ð13Þ

14 ¼ 8þ 3þ 3�: ð14Þ

B. Maximal stability subgroups

It is known [13,14] that one can construct a number of
reformulations of the Yang-Mills theory which are dis-
criminated by the maximal stability subgroup. Therefore, it
is important to know which subgroup is identified with the
maximal stability subgroup for each representation. In view
of this, we first derive a certain property to be satisfied by
the generators belonging to the Lie algebra of the maximal
stability subgroup of Gð2Þ. By using this property, then,
we determine the maximal stability subgroup for each
representation of Gð2Þ.
The maximal stability subgroup ~H for the representation

R of a group G is defined to be a subgroup whose element
h ∈ ~H leaves the highest-weight state jΛi of the repre-
sentation R invariant up to a phase factor1

hjΛi ¼ jΛieiϕðhÞ: ð15Þ

Hence, an element of its Lie algebra ~h ¼ Lieð ~HÞ can be
written as a linear combination of the Cartan generators and
shift-up and -down operators Eα and E−α (where α is a
positive root) such that EαjΛi ¼ 0 and E−αjΛi ¼ 0. Here
notice that if there is Eα in the linear combination, then
there is also E−α; that is to say, the mutually Hermitian-
conjugate generators Eα and E−α must appear in pairs in the
linear combination, since all matrices in a unitary repre-
sentation of the Lie algebra are Hermitian.
We show in the following that EαjΛi ¼ 0 and E−αjΛi ¼

0 if and only if Λ · α ¼ 0. Here, we should remember that
ðα ·HÞ=α2 and E�α=jαj satisfy the commutation relations
of suð2Þ. We see from this fact that if α ·Hjμi ¼ 0 and
Eαjμi ¼ 0, then jμi belongs to the space of the trivial
representation of SUð2Þ and, hence, E−αjμi ¼ 0. Because
jΛi is highest-weight state, EαjΛi ¼ 0. Hence, if Λ · α ¼ 0
then E−αjΛi ¼ 0. In the same way, the converse can be
proven.
Thus we arrive at the conclusion that X ∈ ~h can be

written as a linear combination of the Cartan generators Hj

and shift operators E�α with positive root vectors α that are
orthogonal to the highest-weight vector Λ,

α · Λ ¼ 0: ð16Þ

Thus, it is easy to see that all representations of Gð2Þ are
classified into the following three categories:
(1) For the highest-weight Λ ¼ mμ2, the positive root

orthogonal to the highest weight is α1 ¼ αð1Þ alone.
Hence, the maximal stability subgroup is a Uð2Þ
with the generators H1, H2, Eαð1Þ , and E−αð1Þ ,

~H ¼ Uð2Þ;
LieðUð2ÞÞ ¼ uð2Þ ⊃ fH1; H2; Eαð1Þ ; E−αð1Þg; ð17Þ

which agrees with a subset of SUð3Þ specified
by (12).

(2) For the highest-weight Λ ¼ nμ1, the positive root
orthogonal to the highest weight is α2 ¼ αð5Þ alone.
Hence, the maximal stability subgroup is another
Uð2Þ with the generators H1, H2, Eαð5Þ , and E−αð5Þ ,

~H ¼ U0ð2Þ;
LieðU0ð2ÞÞ ¼ u0ð2Þ ⊃ fH1; H2; Eαð5Þ ; E−αð5Þg; ð18Þ

which differs from a subset of SUð3Þ specified
by (12).

(3) For the highest-weight Λ ¼ nμ1 þmμ2 (n ≠ 0 ≠
m), the maximal stability subgroup is equal to the
maximal torus subgroup Uð1Þ ×Uð1Þ generated by
the Cartan subalgebra fH1; H2g,

FIG. 3. The weight diagrams of the fundamental
representations.

1Strictly speaking, we should write RðhÞjΛi ¼ jΛieiϕðhÞ, but if
we do so the presentation become rather cumbersome. Therefore
we omit Rð·Þ throughout this subsection.
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~H ¼ Uð1Þ × Uð1Þ;
LieðUð1Þ ×Uð1ÞÞ ⊃ fH1; H2g: ð19Þ

This fact is confirmed as follows. We can write any
positive root as kα1 þ lα2, where k and l are non-
negative integers that are not zero simultaneously.
Hence, the relation Λ · α ¼ ðnμ1 þmμ2Þ · ðkα1 þ
lα2Þ ¼ nkþml implies that all positive roots are
not orthogonal to the highest weight when n ≠ 0 and
m ≠ 0. Thus, in this case, the generators of the
maximal stability subgroup are given by H1 and H2.

III. DECOMPOSITION FORMULA

LetF be an arbitrary element of the Lie algebra. To write
the Wilson loop using the color direction fields, and to
reformulate the Gð2Þ Yang-Mills theory, we have to decom-
pose F into the part F ~H belonging to ~h ¼ Lieð ~HÞ and the
remaining partFG= ~H using its commutators withHk. This is
achieved by using double commutators in the case of
SUðNÞ, see [14]. However, in the case of Gð2Þ, we have
to use sextuple commutators. The proof of this is given in
Appendix A. In this section, we give the explicit form of
such a decomposition for any representation.

A. Decomposing SU(3)

Before proceeding to the Gð2Þ case, we reconsider the
SUð3Þ case from the viewpoint of this paper. For SUð3Þ, it
is known [14] that the maximal stability subgroup is Uð2Þ
or Uð1Þ ×Uð1Þ. In the case of the maximal stability
subgroup Uð2Þ with generators H1, H2, Eαð2Þ , and E−αð2Þ ,
the decomposition formula is written as

FG= ~H ¼ 4

3
½H2; ½H2;F ��; ð20Þ

while in the case of the maximal stability subgroup
Uð1Þ ×Uð1Þ, the decomposition formula is written as

FG= ~H ¼
X
j¼1;2

½Hj; ½Hj;F ��: ð21Þ

The derivation of these formulas is written in Appendixes C
and D in [14]. We rederive them using another method
which can be applied also to Gð2Þ. First, we consider the
commutator of an arbitrary element of the Cartan sub-
algebra with F . An arbitrary element of the Cartan
subalgebra can be written as ν ·H, where ν is an arbitrary
two-dimensional vector. Using the Cartan decomposition

F ¼
X
j¼1;2

F jHj þ
X
α∈ℛþ

ðF �
αEα þF αE−αÞ ð22Þ

and the commutation relation (4), we can write the
commutator as

½ν ·H;F � ¼
X
α∈ℛþ

ðν · αÞðF �
αEα −F αE−αÞ: ð23Þ

Here, we choose γ1≔ð ffiffiffi
3

p
=2; 1=2Þ as ν, which is orthogonal

to αð1Þ, i.e., γ1 · αð1Þ ¼ 0. Then the commutator reads

½γ1 ·H;F � ¼ ðγ1 · αð2ÞÞðF �
αð2ÞEαð2Þ −F αð2ÞE−αð2Þ Þ

þ ðγ1 · αð3ÞÞðF �
αð3ÞEαð3Þ −F αð3ÞE−αð3Þ Þ; ð24Þ

where the terms corresponding to αð1Þ disappear. By taking
the commutator once more, we can eliminate another term.
For the vector γ2≔ð0; 1Þ, which is orthogonal to αð2Þ, i.e.,
γ2 · αð2Þ ¼ 0, the double commutator is written as

½γ2 ·H; ½γ1 ·H;F �� ¼ ðγ2 · αð3ÞÞðγ1 · αð3ÞÞ
× ðF �

αð3ÞEαð3Þ þF αð3ÞE−αð3Þ Þ

¼ 3

4
ðF �

αð3ÞEαð3Þ þF αð3ÞE−αð3Þ Þ: ð25Þ

Thus we obtain

F �
αð3ÞEαð3Þ þF αð3ÞE−αð3Þ ¼

4

3
½γ2 ·H; ½γ1 ·H;F ��: ð26Þ

In this way, we can extract the element ofF corresponding
to a particular positive root by taking the double commu-
tator. For the other positive roots, a similar identity holds,

F �
αð1ÞEαð1Þ þF αð1ÞE−αð1Þ ¼ −

4

3
½γ3 ·H; ½γ2 ·H;F ��; ð27Þ

F �
αð2ÞEαð2Þ þF αð2ÞE−αð2Þ ¼

4

3
½γ1 ·H; ½γ3 ·H;F ��; ð28Þ

where we have introduced γ3≔ð ffiffiffi
3

p
=2;−1=2Þ, which is

orthogonal to αð3Þ. Using these expressions, we can write
the decomposition formula for any case of the maximal
stability subgroup. For ~H ¼ Uð2Þ, the decomposition
formula is written as

F ~H ¼
X
j¼1;2

ðF ; HjÞHj þ ðF �
αð2ÞEαð2Þ þF αð2ÞE−αð2Þ Þ

¼
X
j¼1;2

ðF ; HjÞHj þ ½H1; ½H1;F �� − 1

3
½H2; ½H2;F ��

FG= ~H ¼ ðF �
αð1ÞEαð1Þ þF αð1ÞE−αð1Þ Þ

þ ðF �
αð3ÞEαð3Þ þFαð3ÞE−αð3Þ Þ

¼ 4

3
½H2; ½H2;F ��; ð29Þ

while for ~H ¼ Uð1Þ ×Uð1Þ, the decomposition formula is
written as
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F ~H ¼
X
j¼1;2

ðF ; HjÞHj

FG= ~H ¼ ðF �
αð1ÞEαð1Þ þF αð1ÞE−αð1Þ Þ

þ ðF �
αð2ÞEαð2Þ þF αð2ÞE−αð2Þ Þ

þ ðF �
αð3ÞEαð3Þ þF αð3ÞE−αð3Þ Þ

¼
X
j¼1;2

½Hj; ½Hj;F ��; ð30Þ

where we have used the commuting property

½Hj; ½Hk;F �� ¼ ½½Hj;Hk�;F � þ ½Hk; ½Hj;F ��
¼ ½Hk; ½Hj;F �� ð31Þ

following from ½Hj;Hk� ¼ 0.

B. Decomposing Gð2Þ
Now we consider the Gð2Þ case. We want to write the

coset part FG= ~H of F as a linear combination of multiple
commutators with the Cartan generators,

FG= ~H ¼
X

j1;…;jn∈f1;2g
ηj1…jn ½Hj1 ;…; ½Hjn;F �…�; ð32Þ

where the sum is over independent terms by taking account
of the commuting property (31). We can obtain (32) for any
choice of ~h if, for every positive root β, the relevant shift
part ℛβ is written in the form

ℛβ≔F �
βEβ þF βE−β ¼

X
j1;…;jn

~ηj1…jn ½Hj1 ;…; ½Hjn;F �…�:

ð33Þ

In the following, we give a derivation of (33). In a way
similar to that written above for SUð3Þ, we can indeed
obtain (33). By using the commutation relation (4), the
commutator is calculated as

½ν ·H;F � ¼
X
α∈ℛþ

ðν · αÞðF �
αEα −F αE−αÞ: ð34Þ

If ν is chosen to be orthogonal to a particular α, then the
corresponding terms of Eα and E−α disappear from this
expression. Thus, by taking the commutator repeatedly, we
can eliminate all shift terms except one, ℛβ, which
corresponds to a particular positive root β. Because there
are six positive roots inGð2Þ, we have to eliminate five shift
terms. We can do so using the quintuple commutator

½ν1 ·H; ½ν2 ·H; ½ν3 ·H; ½ν4 ·H; ½ν5 ·H;F �����
¼ ðν1 · βÞðν2 · βÞðν3 · βÞðν4 · βÞðν5 · βÞðF �

βEβ −F βE−βÞ;
ð35Þ

where ν1;…; ν5 are appropriate two-dimensional vectors.2

In this expression, the sign of the term of Eβ is opposite to
that of E−β. To make both signs equal, we need to take the
commutator once more. We choose a two-dimensional
vector ν which is nonorthogonal to β to obtain the non-
vanishing commutator of ν ·H and (35),

½ν ·H; ð35Þ� ¼ ðν · βÞðν1 · βÞðν2 · βÞðν3 · βÞ
× ðν4 · βÞðν5 · βÞðF �

βEβ þF βE−βÞ: ð36Þ

Thus we obtain the key relation

ℛβ ¼
1

N
½ν ·H; ½ν1 ·H; ½ν2 ·H; ½ν3 ·H; ½ν4 ·H; ½ν5 ·H;F ������;

N≔ðν · βÞðν1 · βÞðν2 · βÞðν3 · βÞðν4 · βÞðν5 · βÞ: ð37Þ
Although this expression is nothing but the desired one
[Eq. (33)], it should be remarked that the coefficients ~ηj1…j6
are not uniquely determined. If we multiply ν by a constant,
the coefficients ~ηj1…j6 do not change. This point will be
observed more concretely shortly.
To obtain the expression (37) for each positive root

concretely, we introduce six unit vectors γa (a ¼ 1;…; 6)
such that γa is positive and orthogonal to one of the positive
roots, say αðaÞ (a ¼ 1;…; 6),

γ1 ¼
� ffiffiffi

3
p

2
;
1

2

�
; γ2 ¼ ð0; 1Þ; γ3 ¼

� ffiffiffi
3

p

2
;−

1

2

�
;

γ4 ¼
�
1

2
;−

ffiffiffi
3

p

2

�
; γ5 ¼ ð1; 0Þ; γ6 ¼

�
1

2
;

ffiffiffi
3

p

2

�
;

ð38Þ

FIG. 4. Unit vectors that are orthogonal to one of the positive
roots.

2The reason why we need a quintuple commutator is that we
can eliminate only one term by taking the commutator once. This
is because the roots of Gð2Þ are two-dimensional. If the
dimension of the root vectors is larger, we can eliminate more
than one term by taking the commutator once.
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see Fig. 4. Consequently, these vectors satisfy the following conditions:

γa⊥αðaÞ; γ4∥αð1Þ; γ5∥αð2Þ; γ6∥αð3Þ; γ1∥αð4Þ; γ2∥αð5Þ; γ3∥αð6Þ: ð39Þ

For example, ℛαð1Þ is obtained as

ℛαð1Þ ¼ N−1½γ ·H; ½γ2 ·H; ½γ3 ·H; ½γ4 ·H; ½γ5 ·H; ½γ6 ·H;F ������;
N ¼ ðγ · αð1ÞÞðγ2 · αð1ÞÞðγ3 · αð1ÞÞðγ4 · αð1ÞÞðγ5 · αð1ÞÞðγ6 · αð1ÞÞ; ð40Þ

where γ is an arbitrary two-dimensional vector that is not orthogonal to αð1Þ.
To obtain more explicit form, we put an arbitrary two-dimensional vector γ in the form γ ¼ aγ1 þ bγ4 (orthogonal

decomposition of γ), where γ1 is orthogonal to αð1Þ and γ4 is parallel to αð1Þ: γ1⊥αð1Þ and γ4∥αð1Þ. Here b ≠ 0 to avoid
γ · αð1Þ ≡ bγ4 · αð1Þ ¼ 0. Using γ1 · αð1Þ ¼ 0, we have γ2 · αð1Þ ¼ −

ffiffiffi
3

p jαð1Þj=2, γ3 · αð1Þ ¼ ffiffiffi
3

p jαð1Þj=2, γ4 · αð1Þ ¼
jαð1Þj, γ5 · αð1Þ ¼ jαð1Þj=2, γ6 · αð1Þ ¼ −jαð1Þj=2, and γ · αð1Þ ¼ bγ4 · αð1Þ ¼ bjαð1Þj, which yields

N ¼ b
3

16
jαð1Þj6 ¼ 3b

16
: ð41Þ

Combining the result N−1 ¼ 16
3b with γ ·H ¼ aγ1 ·H þ bγ4 ·H, therefore, we obtain

ℛαð1Þ ¼
16

3
½γ4 ·H; ½γ2 ·H; ½γ3 ·H; ½γ4 ·H; ½γ5 ·H; ½γ6 ·H;F ������ þ c1½γ1 ·H; ½γ2 ·H; ½γ3 ·H; ½γ4 ·H; ½γ5 ·H; ½γ6 ·H;F ������;

ð42Þ

where c1 ¼ 16a=3b. We can see from this expression that the nonuniqueness of an expression ofℛαð1Þ comes from the fact
that the following sextuple commutator is identically vanishing:

Z≔½γ1 ·H; ½γ2 ·H; ½γ3 ·H; ½γ4 ·H; ½γ5 ·H; ½γ6 ·H;F ������ ¼
X

j1;…;j6∈1;2
ζ̄j1…j6 ½Hj1 ; ½Hj2 ; ½Hj3 ; ½Hj4 ; ½Hj5 ; ½Hj6 ;F ������ ¼ 0;

ζ̄11112 ¼
3

16
; ζ̄111222 ¼ −

5

8
; ζ̄122222 ¼

3

16
: ð43Þ

Thus, the nonuniqueness of the decomposition formula is attributed to degree of freedom due to one parameter c1.
In the same way as the above, we obtain

ℛαð2Þ ¼
16

3
½γ5 ·H; ½γ1 ·H; ½γ3 ·H; ½γ4 ·H; ½γ5 ·H; ½γ6 ·H;F ������ þ c2Z; ð44Þ

ℛαð3Þ ¼ −
16

3
½γ6 ·H; ½γ1 ·H; ½γ2 ·H; ½γ4 ·H; ½γ5 ·H; ½γ6 ·H;F ������ þ c3Z; ð45Þ

ℛαð4Þ ¼
16

3
ð

ffiffiffi
3

p
Þ6½γ1 ·H; ½γ1 ·H; ½γ2 ·H; ½γ3 ·H; ½γ5 ·H; ½γ6 ·H;F ������ þ c4Z; ð46Þ

ℛαð5Þ ¼
16

3
ð

ffiffiffi
3

p
Þ6½γ2 ·H; ½γ1 ·H; ½γ2 ·H; ½γ3 ·H; ½γ4 ·H; ½γ6 ·H;F ������ þ c5Z; ð47Þ

ℛαð6Þ ¼ −
16

3
ð

ffiffiffi
3

p
Þ6½γ3 ·H; ½γ1 ·H; ½γ2 ·H; ½γ3 ·H; ½γ4 ·H; ½γ5 ·H;F ������ þ c6Z; ð48Þ

where c2;…; c6 are arbitrary constants. Here, we have used the commuting property (31).
Collecting an appropriate set of ℛα, we obtain the desired decomposition formula corresponding to each category of

representations given in (17)–(19):
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(1) For ~H ¼ Uð2Þ ⊂ SUð3Þ with the generators H1, H2, Eαð1Þ , and E−αð1Þ , the highest weight is Λ ¼ ðm=2; m=ð2 ffiffiffi
3

p ÞÞ.
Here, we redefine the highest weight as ð0; m=

ffiffiffi
3

p Þ in order to obtain a simpler form. This is possible because the new
one is obtained by acting a Weyl group element on an old one. Thus ~H has the generators H1, H2, Eαð2Þ , and E−αð2Þ .
The ~H-commutative part F ~H and the coset part FG= ~H of F are given by

F ~H ¼
X
j¼1;2

ðF ; HjÞHj þℛαð2Þ ;

FG= ~H ¼ ℛαð1Þ þℛαð3Þ þℛαð4Þ þℛαð5Þ þℛαð6Þ : ð49Þ

The explicit form is given by

F ~H ¼
X
j¼1;2

ðF ; HjÞHj þ
X

j1;…;j6

~ζj1…j6 ½Hj1 ; ½Hj2 ; ½Hj3 ; ½Hj4 ; ½Hj5 ; ½Hj6 ;F ������ þ c2Z;

~ζ111111 ¼ 1; ~ζ111122 ¼ −
10

3
; ~ζ112222 ¼ 1;

FG= ~H ¼
X

j1;…;j6

ζj1…j6 ½Hj1 ; ½Hj2 ; ½Hj3 ; ½Hj4 ; ½Hj5 ; ½Hj6 ;F ������ þ cZ;

ζ111122 ¼
721

3
; ζ112222 ¼ −154; ζ222222 ¼ 27; ð50Þ

where the other ζj1…j6 s and ~ζj1…j6 are zero and c≔c1 þ c3 þ c4 þ c5 þ c6. The simplest choice is c ¼ 0

and c2 ¼ 0.
(2) For ~H ¼ U0ð2Þð⊄SUð3ÞÞ with the generators H1, H2, Eαð5Þ , and E−αð5Þ ,

F ~H ¼
X
j¼1;2

ðF ; HjÞHj þℛαð5Þ ;

FG= ~H ¼ ℛαð1Þ þℛαð2Þ þℛαð3Þ þℛαð4Þ þℛαð6Þ : ð51Þ

We obtain

F ~H ¼
X
j¼1;2

ðF ; HjÞHj þ
X

j1;…;j6

~ζ0j1…j6 ½Hj1 ; ½Hj2 ; ½Hj3 ; ½Hj4 ; ½Hj5 ; ½Hj6 ;F ������ þ c5Z;

~ζ0111122 ¼ 27; ~ζ0112222 ¼ −90; ~ζ0222222 ¼ 27;

FG= ~H ¼
X

j1;…;j6

ζ0j1…j6
½Hj1 ; ½Hj2 ; ½Hj3 ; ½Hj4 ; ½Hj5 ; ½Hj6 ;F ������ þ c0Z;

ζ0111111 ¼ 1; ζ0111122 ¼ 210; ζ0112222 ¼ −63; ð52Þ

where the other ζ0j1…j6
s and ~ζj1…j6 are zero. We can take the simplest choice c0 ¼ 0 and c5 ¼ 0.

(3) For ~H ¼ Uð1Þ ×Uð1Þ,

F ~H ¼
X
j¼1;2

ðF ; HjÞHj;

FG= ~H ¼ ℛαð1Þ þℛαð2Þ þℛαð3Þ þℛαð4Þ þℛαð5Þ þℛαð6Þ : ð53Þ

We obtain
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FG= ~H ¼
X

j1;…;j6

ζ00j1…j6
½Hj1 ; ½Hj2 ; ½Hj3 ; ½Hj4 ; ½Hj5 ; ½Hj6 ;F ������ þ c00Z;

ζ00111111 ¼ 1; ζ00111122 ¼ 237; ζ00112222 ¼ −153; ζ00222222 ¼ 27; ð54Þ

where the other ζ00j1…j6
s are zero. We can take the simplest choice c00 ¼ 0.

Using the decomposition formula, we can define the field decomposition in a similar way to the case of the gauge group
SUðNÞ. For this purpose, we define the color direction field for Gð2Þ as

njðxÞ≔AdgðxÞðHjÞ; ð55Þ

where AdgðxÞ is the adjoint representation of gðxÞwhich is an arbitrary group-valued field.3 For any Lie-algebra-valued field
FðxÞ, by applying the decomposition formula to Adg−1ðxÞðFðxÞÞ and operating AdgðxÞ on the both sides, we can decompose

FðxÞ into the part F ~HðxÞ belonging to AdgðxÞð ~hÞ and the remaining part FG= ~HðxÞ,

FðxÞ ¼ F ~HðxÞ þFG= ~HðxÞ;
F ~HðxÞ ¼

X
j¼1;2

ðFðxÞ; njðxÞÞnjðxÞ þ
X

j1;…;j6

ξj1…j6 ½nj1ðxÞ;…; ½nj5ðxÞ; ½nj6ðxÞ;FðxÞ��…�;

FG= ~HðxÞ ¼
X

j1;…;j6

ηj1…j6 ½nj1ðxÞ;…; ½nj5ðxÞ; ½nj6ðxÞ;FðxÞ��…�; ð56Þ

where ξj1;…;j6 and ηj1…j6 are appropriate coefficients specified by the maximal stability subgroup. We decompose the Yang-
Mills field A μðxÞ into two pieces, V μðxÞ and X μðxÞ,

A μðxÞ ¼ V μðxÞ þX μðxÞ; ð57Þ

where the decomposed fields V μðxÞ and X μðxÞ are obtained as the solution of the defining equations,

0 ¼ Dμ½V �njðxÞ≔∂μnjðxÞ − igYM½V μðxÞ; njðxÞ�; ð58Þ

0 ¼ X μðxÞ ~H ⇔ X μðxÞ ¼
X

j1;…;j6

ηj1…j6 ½nj1ðxÞ;…; ½nj5ðxÞ; ½nj6ðxÞ;X μðxÞ��…�: ð59Þ

Using the first defining equation (58), we find

Dμ½A �njðxÞ ¼ Dμ½V �njðxÞ − igYM½X μðxÞ; njðxÞ� ¼ igYM½njðxÞ;X μðxÞ�: ð60Þ

By substituting this relation into the second defining equation (59), X μðxÞ is rewritten as

X μðxÞ ¼ − ig−1YM
X

j1;…;j6

ηj1…j6 ½nj1ðxÞ;…; ½nj5ðxÞ;Dμ½A �nj6ðxÞ�…�: ð61Þ

Then V μðxÞ is written as

3This definition of the color direction field is consistent with the definition adopted in the previous works for the gauge group SUðNÞ
because

RðnjðxÞÞ ¼ RðAdgðxÞðHjÞÞ ¼ RðgðxÞÞRðHjÞRðgðxÞÞ†:

Here we have used the same notation R to denote the group representation and the corresponding algebra representation, which does not
cause the confusion because the domains are different.
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V μðxÞ ¼ A μðxÞ −X μðxÞ
¼ A μðxÞ þ ig−1YM

X
j1;…;j6

ηj1…j6 ½nj1ðxÞ;…; ½nj5ðxÞ;Dμ½A �nj6ðxÞ�…�: ð62Þ

Thus V μðxÞ and X μðxÞ are written in terms of the original Yang-Mills field A μðxÞ and the color fields njðxÞ.
Notice that V μðxÞ is further cast into

V μðxÞ ¼ A μðxÞ þ
X

j1;…;j6

ηj1…j6 ½nj1ðxÞ;…; ½nj5ðxÞ; ½A μðxÞ; nj6ðxÞ��…�

þ ig−1YM
X

j1;…;j6

ηj1…j6 ½nj1ðxÞ;…; ½nj5ðxÞ; ∂μnj6ðxÞ�…�

¼
X
j¼1;2

ðA μðxÞ; njðxÞÞnjðxÞ þ
X

j1;…;j6

ξj1…j6 ½nj1ðxÞ;…; ½nj5ðxÞ; ½nj6ðxÞ;A μðxÞ��…�

þ ig−1YM
X

j1;…;j6

ηj1…j6 ½nj1ðxÞ;…; ½nj5ðxÞ; ∂μnj6ðxÞ�…�; ð63Þ

where we have applied the formula (56) to A μðxÞ in the last step. Therefore, V μðxÞ is decomposed into C μðxÞ andBμðxÞ,

V μðxÞ ¼ C μðxÞ þBμðxÞ
C μðxÞ≔

X
j¼1;2

ðA μðxÞ;njðxÞÞnjðxÞ þ
X

j1;…;j6

ξj1…j6 ½nj1ðxÞ;…; ½nj5ðxÞ; ½nj6ðxÞ;A μðxÞ��…�;

BμðxÞ≔ig−1YM
X

j1;…;j6

ηj1…j6 ½nj1ðxÞ;…; ½nj5ðxÞ; ∂μnj6ðxÞ�…�: ð64Þ

For the sake of convenience, we define the field mðxÞ for
the highest-weight Λ ¼ ðΛ1;Λ2Þ by

mðxÞ≔ΛjnjðxÞ: ð65Þ

Here C μðxÞ commutes with mðxÞ,

½C μðxÞ;mðxÞ� ¼ 0; ð66Þ

while BμðxÞ is orthogonal to njðxÞ,

ðBμðxÞ;njðxÞÞ ¼ 0: ð67Þ

The first term in the right-hand side of C μðxÞ corresponds
to the element of the Cartan subalgebra LieðHÞ and the
second term to the remaining part Lieð ~HÞ − LieðHÞ, which
vanishes when the maximal stability group coincides with
the maximal torus group ~H ¼ H. [This is the case for the
maximal option of SUðNÞ]. Notice that BμðxÞ is the
extension of the SUðNÞ Cho connection to Gð2Þ. An
appropriate set of the above fields will be used in the
reformulation of the Gð2Þ Yang-Mills theory.
We suppose that the dominant mode for quark confine-

ment is the restricted field V μðxÞ extracted from the
original Gð2Þ Yang-Mills field A μðxÞ through the decom-
position given above. In fact, this observation is exempli-
fied for the Gð2Þ Wilson loop operator by using the

non-Abelian Stokes theorem in the same manner as in
SUðNÞ, as given in the next section.

IV. NON-ABELIAN STOKES THEOREM

In this section, we derive the non-Abelian Stokes theorem
for theWilson loop operator in an arbitrary representation of
the Gð2Þ gauge group using the color direction fields nk.

A. General gauge group

Before proceeding to the case of the gauge group Gð2Þ,
we discuss the general case.
It is known [14,23,25] that the Wilson loop operator

defined for any Lie algebra valued Yang-Mills field A and
the irreducible (unitary) representation R is cast into the
following (path-integral) representation4:

4Strictly speaking, we should write Fg
μν in (68) as

Fg
μν¼ κf∂μtrðRðmðxÞÞRðA νðxÞÞÞ−∂νtrðRðmðxÞÞRðA μðxÞÞÞ

þ igYMtrðRðmðxÞÞð½ΩμðxÞ;ΩνðxÞ�ÞÞg;
RðmðxÞÞ¼ΛjRðgðxÞÞRðHjÞRðgðxÞÞ†¼ΛjRðAdgðxÞðHjÞÞ;

ΩμðxÞ¼ ig−1YMRðgðxÞÞ∂μRðgðxÞÞ†:

To simplify the notation, we omit the symbol Rð·Þ throughout this
section, and in Appendixes B and C.
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WC½A � ¼
Z

½dμðgÞ�Σ exp
�
−igYM

Z
Σ∶∂Σ¼C

Fg

�
;

Fg ¼ 1

2
Fg
μνdxμ ∧ dxν

Fg
μνðxÞ ¼ κf∂μtrðmðxÞA νðxÞÞ − ∂νtrðmðxÞA μðxÞÞ þ igYMtrðmðxÞ½ΩμðxÞ;ΩνðxÞ�Þg;
ΩμðxÞ≔ig−1YMgðxÞ∂μg†ðxÞ; gðxÞ ∈ G; ð68Þ

where ½dμðgÞ�Σ is the product measure of the Haar measure on the gauge group G over Σ and Λ in m≔Λjnj is the highest-
weight vector of the representation R. Here the gauge-invariant field strength Fg

μν is equal to the non-Abelian field strength
F μν½V �≔∂μV ν − ∂νV μ − igYM½V μ;V ν� of the restricted field V μ (in the decomposition A ¼ V þX ) projected to the
color field m,

Fg
μν ¼ κtrfmF μν½V �g ¼ Λjf

ðjÞ
μν ; fðjÞμν ¼ κtrfnjF μν½V �g: ð69Þ

Therefore, the restricted field V μ is regarded as the dominant mode for quark confinement, since the remaining field X μ

does not contribute to the Wilson loop operator. The derivation of this fact is given in Appendix C.
Let F be an arbitrary element of the Lie algebra G ¼ LieðGÞ. Suppose that F is decomposed as

F ¼ F ~H þFG= ~H;

F ~H ¼
Xr

j¼1

ðF ; HjÞHj þ
X

j1;…;jn

ξj1…jn ½Hj1 ;…; ½Hjn;F �…�;

FG= ~H ¼
X

j1;…;jn

ηj1…jn ½Hj1 ;…; ½Hjn;F �…�; ð70Þ

where r is the rank of the gauge group. This relation for the
decomposition has already been proven for Gð2Þ in the
previous section, and the method is applicable to any
semisimple compact Lie group.
In order to complete the non-Abelian Stokes theorem, we

can follow the same procedures as those for SUðNÞ given in
[25], if g†∂μmg does not have the part belonging to the
Lieð ~HÞ,

ðg†∂μmgÞ ~H ¼ 0: ð71Þ

This enables us to rewrite ½ΩμðxÞ;ΩνðxÞ� in terms of the
color fields niðxÞ≔AdgðxÞðHjÞ, which is indeed shown in
Appendix B.
The relevant relation (71) is verified as follows. By

applying (70) to Adg−1ð∂μmÞ, we obtain the decomposition

ðg†∂μmgÞ ~H ¼
Xr

j¼1

κtrðg†∂μmgHjÞHj

þ
X

i1;…;in

ξi1…in ½Hi1 ;…; ½Hin; g
†∂μmg�…�: ð72Þ

The first term on the right-hand side vanishes, because

trðg†∂μmgHjÞ ¼ Λitrðg†∂μðgHig†ÞgHjÞ
¼ Λitrðg†∂μgHiHj þHi∂μg†gHjÞ
¼ Λitrðg†∂μgHiHj −Hig†∂μgHjÞ
¼ Λitrðg†∂μgHiHj − g†∂μgHjHiÞ
¼ Λitrðg†∂μg½Hi;Hj�Þ
¼ 0; ð73Þ

where we have used g†g ¼ 1 in the second equality, the
relation ∂μg†g ¼ −g†∂μg following from ∂μðgg†Þ ¼ 0 in
the third equality, and the cyclicity of the trace in the fourth
equality. In addition, by taking account of

g†∂μmg ¼ g†∂μðgΛ ·Hg†Þg
¼ g†∂μgΛ ·H þ Λ ·H∂μg†g

¼ −∂μg†gΛ ·H þ Λ ·H∂μg†g

¼ ½Λ ·H; ∂μg†g�; ð74Þ

the second term is rewritten as
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X
i1;…;in

ξi1…in ½Hi1 ;…; ½Hin; g
†∂μmg�…�

¼
X

i1;…;in

ξi1…in ½Hi1 ;…; ½Hin; ½Λ ·H; ∂μg†g��…�

¼
X

i1;…;in

ξi1…in ½Λ ·H; ½Hi1 ;…; ½Hin; ∂μg†g�…��

¼ ½Λ ·H; ð∂μg†gÞ ~H�; ð75Þ

where we have used the commuting property (31) in the
second equality and (70) for F ¼ ∂μg†g in the third
equality. By substituting the Cartan decomposition of
ð∂μg†gÞ ~H in ~h given by

ð∂μg†gÞ ~H ¼
Xr
j¼1

κtrð∂μg†gHjÞHj þ
X

α∈Rþ∶E�α∈ ~h

ðð∂μg†gÞ�αEα

þ ð∂μg†gÞαE−αÞ ð76Þ

into (75), we find that the second term also vanishes,

ð75Þ ¼
�
Λ ·H;

X
α∈Rþ∶E�α∈ ~h

ðð∂μg†gÞ�αEα þ ð∂μg†gÞαE−αÞ
�

¼
X

α∈Rþ∶E�α∈ ~h

Λ · αðð∂μg†gÞ�αEα − ð∂μg†gÞαE−αÞ

¼ 0; ð77Þ

where we have used Λ · α ¼ 0 for α satisfying Eα ∈ ~h.
Thus we have confirmed (71).
We obtain the final form of Wilson loop operator as5

WC½A � ¼
Z

½dμðgÞ�Σ exp
�
−igYM

Z
Σ∶∂Σ¼C

Fg

�
;

Fg ¼ 1

2
Fg
μνdxμ ∧ dxν;

Fg
μνðxÞ ¼ κ

�
∂μtrðmðxÞA νðxÞÞ − ∂νtrðmðxÞA μðxÞÞ

þ ig−1YM
X

i1;…;in

ηi1…in trðmðxÞ½∂μni1ðxÞ;

½ni2 ;…; ½nin−1ðxÞ; ∂νninðxÞ�…��Þ
�
: ð78Þ

The detail of the derivation of (78) is given in Appendix B,
which is almost the same as that given in [25] for SUðNÞ,
once (71) is established.

B. Gð2Þ case
In each case of representations, we can write the new

form for the Wilson loop operator using the decomposition
formula based on the above general consideration.
(1) For ~H ¼ Uð2Þ ⊂ SUð3Þ, the Wilson loop operator is

written as (78) where n ¼ 6 and

ηj1…j6 ¼ ζj1…j6 ; ð79Þ

where ζj1…j6 is defined in (50).
(2) For ~H ¼ Uð2Þ⊄SUð3Þ, the Wilson loop operator is

written as (78) where n ¼ 6 and

ηj1…j6 ¼ ζ0j1…j6
; ð80Þ

where ζ0j1…j6
is defined in (52).

(3) For ~H ¼ Uð1Þ ×Uð1Þ, the Wilson loop operator is
written as (78) where n ¼ 6 and

ηj1…j6 ¼ ζ00j1…j6
; ð81Þ

where ζ00j1…j6
is defined in (54).

By using m ¼ Λini ¼ ð2nþmÞn1=2þmn2=
ð2 ffiffiffi

3
p Þ, another form is obtained as

Fg
μνðxÞ ¼ 2nþm

2
Fð1Þ
μν ðxÞ þ m

2
ffiffiffi
3

p Fð2Þ
μν ðxÞ

Fð1Þ
μν ðxÞ ¼ κ

�
∂μtrðn1ðxÞA νðxÞÞ − ∂νtrðn1ðxÞA μðxÞÞ

þ ig−1YM
X

j1;…;j6

ζ0j1…j6
trðn1ðxÞ½∂μnj1ðxÞ;

½nj2 ;…; ½nj5ðxÞ; ∂νnj6ðxÞ�…��Þ
�

Fð2Þ
μν ðxÞ ¼ κ

�
∂μtrðn2ðxÞA νðxÞÞ − ∂νtrðn2ðxÞA μðxÞÞ

þ ig−1YM
X

j1;…;j6

ζj1…j6 trðn2ðxÞ½∂μnj1ðxÞ;

½nj2 ;…; ½nj5ðxÞ; ∂νnj6ðxÞ�…��Þ
�
: ð82Þ

V. MAGNETIC MONOPOLES

We can define magnetic-monopole current k as the
codifferential of the Hodge dual of Fg,

k ¼ δ�Fg: ð83Þ

5We can rewrite Fg
μν of (78) using the inner product instead of

using the trace as

Fg
μν ¼ ∂μðm;A Þ − ∂νðm;A Þ þ igYM

X
i1;…;in

ηi1…inðmðxÞ;

½∂μni1ðxÞ; ½ni2ðxÞ;…; ½nin−1ðxÞ; ∂νninðxÞ�…��Þ;
so that the Wilson loop depends on the representation only
through the highest-weight vector Λ.
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In the D-dimensional spacetime, k is expressed by a
differential form, (D − 3)-form. For D ¼ 4, especially,
the magnetic monopole current reads

kμ ¼ 1

2
ϵμνρσ∂νF

g
ρσ: ð84Þ

Then, the magnetic charge qm is defined by

qm≔
Z

d3xk0 ¼
Z

d3x
1

2
ϵjkl∂lF

g
jk ¼

Z
d2SlϵjklF

g
jk:

ð85Þ

We examine the quantization condition for the magnetic
charge. The magnetic charge can have nonzero value
because the map defined by

m∶ S2 → Gð2Þ= ~H ¼
�
Gð2Þ=Uð2Þ
Gð2Þ=ðUð1Þ ×Uð1ÞÞ ð86Þ

has the nontrivial homotopy group

π2ðGð2Þ= ~HÞ ¼ π1ð ~HÞ

¼
�
π1ðSð2Þ ×Uð1ÞÞ ¼ π1ðUð1ÞÞ ¼ Z

π1ðUð1Þ ×Uð1ÞÞ ¼ Zþ Z
:

ð87Þ

Because the value of the magnetic charge depends only on
the topological character of ni, we can use specific group
elements g to obtain the quantization condition for the
magnetic charge. Now, we consider a case in which gðxÞ
belongs to SUð3Þ. In this case, Fg

μν reduces to

Fg
μν ¼ 2nþm

2
Fð1Þ
μν þ m

2
ffiffiffi
3

p Fð2Þ
μν ;

Fð1Þ
μν ¼ κf∂μtrðn1A νÞ−∂νtrðn1A μÞþ ig−1YMtrðn1½∂μn1;∂νn1�

þn1½∂μn2;∂νn2�Þg;
Fð2Þ
μν ¼ κf∂μtrðn2A νÞ−∂νtrðn2A μÞþ ig−1YMtrðn2½∂μn1;∂νn1�

þn2½∂μn2;∂νn2�Þg

¼ κ

�
∂μtrðn2A νÞ−∂νtrðn2A μÞ

þ4

3
ig−1YMtrðn2½∂μn2;∂νn2�Þ

�
: ð88Þ

Here, notice that two field strengths Fð1Þ
μν and Fð2Þ

μν appear in
the non-Abelian Stokes theorem for SUð3Þ. It is shown

[14,23] that the two kinds of gauge-invariant charges qð1Þm

and qð2Þm obey different quantization conditions,

qm¼ 2nþm
2

qð1Þm þ m

2
ffiffiffi
3

p qð2Þm ;

qð1Þm ≔
Z

d3x
1

2
ϵjkl∂lF

g
jk ¼

4π

gYM

�
l−

1

2
l0
�
;

qð2Þm ≔
Z

d3x
1

2
ϵjkl∂lF

g
jk ¼

4π

gYM

1

2

ffiffiffi
3

p
l0; l; l0 ∈Z: ð89Þ

Thus, we obtain the quantization condition for the magnetic
charge in Gð2Þ,

qm ¼ 4π

gYM

�
n
2
ð2l − l0Þ þm

2
l
�

¼ 2π

gYM
ðnkþmlÞ; ð90Þ

where we have defined k≔2l − l0, which can take an
arbitrary integer. The observation based on the homotopy
group (87) implies that there need to be two integers in qm.
There exist already two integers in qm. Therefore, it is
enough to consider a case gðxÞ ∈ SUð3Þ for deriving the
quantization condition for the magnetic charge in Gð2Þ.

VI. CONCLUSIONS AND DISCUSSIONS

For the exceptional group Gð2Þ, we first showed that
there exist three cases of the maximal stability subgroup.
Then, we derived the gauge-covariant decomposition for-
mula, which is written using multiple commutators with the
color direction fields, in accord with each stability group. In
addition, we have obtained the non-Abelian Stokes theorem
for the Wilson loop operator that is written in terms of the
relevant color direction fields. These results indicate that
there exist three options for the reformulation of the Gð2Þ
Yang-Mills theory. In any option, we need two kinds of
color fields, since the two Cartan generators are inevitably
required in the decomposition formula; this is in marked
contrast to the minimal option of the SUðNÞ group.
Nevertheless, each option would be utilized for describing
confinement of quarks in the relevant representation of
Gð2Þ. This is because the non-Abelian Stokes theorem for
the Wilson loop operator is attributed to the decomposition
formula available for a given representation. This can be
confirmed more explicitly when the reformulation is ready
to be checked.
The method we have used in this paper for obtaining the

decomposition formula is so general that the decomposition
formula is written for any semisimple Lie group using
multiple commutators with the Cartan generators. In
addition, once the decomposition formula given in the
above is obtained, we can immediately obtain the expres-
sion of the Wilson loop operator written in terms of the
color direction fields, because we derived the non-Abelian
Stokes theorem in a general way. This observation suggests
that the reformulation of the Yang-Mills theory with an
arbitrary semisimple gauge group would be possible.
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APPENDIX A: NECESSITY OF SEXTUPLE
COMMUTATORS IN THE DECOMPOSITION

FORMULA FOR Gð2Þ
In Sec. III, we have seen that sextuple commutators

are used to obtain the decomposition formula for Gð2Þ. In
this appendix we show that such a formula for Gð2Þ
cannot be obtained by taking the commutator fewer than
six times. Taking the commutator an odd number of times,
we obtain

½Hj1 ;…; ½Hj2nþ1
;F �…�

¼
X
α∈Rþ

ðαj1…αj2nþ1
F �

αEα − αj1…αj2nþ1
FαE−αÞ: ðA1Þ

In this expression, the sign of the term Eα is different from
the sign of the term E−α; therefore this is not appropriate.
Thus we see that we need to consider only the cases of
double and quadruple commutators.
First, we consider the case of double commutators. We

can decompose an arbitrary elementF of the Lie algebra if
and only if there are real numbers k1, k2, and k3 that satisfy

k1½H1; ½H1;F �� þ k2½H1; ½H2;F �� þ k3½H2; ½H2;F ��
¼

X
α∈Rþ∶E�α∉ ~h

ðF �
αEα þFαE−αÞ: ðA2Þ

Using the Cartan decomposition ofF , we find that the left-
hand side of (A2) is equal to

X
α∈Rþ

ððα1Þ2k1 þ α1α2k2 þ ðα2Þ2k3ÞðF �
αEα þF αE−αÞ;

ðA3Þ

where we set α ¼ ðα1; α2Þ. Hence, (A2) is equivalent to

ðα1Þ2k1 þ α1α2k2 þ ðα2Þ2k3 ¼ 1 for Eα ∉ ~h;

ðα1Þ2k1 þ α1α2k2 þ ðα2Þ2k3 ¼ 0 for Eα ∈ ~h: ðA4Þ

In the case of ~H ¼ Uð2Þ ⊂ SUð3Þ, the three equations (A4)
for αð1Þ, αð2Þ, and αð3Þ can be written in a matrix form as

0
BB@

1
4

−
ffiffi
3

p
4

3
4

1 0 0

1
4

ffiffi
3

p
4

3
4

1
CCA
0
B@

k1
k2
k3

1
CA ¼

0
B@

0

1

1

1
CA: ðA5Þ

The solution of this equation is k1 ¼ k2 ¼ 0, k3 ¼ 4=3.
This solution is consistent with the decomposition formula
for SUð3Þ. However, these values of k1, k2, and k3 do not
satisfy the equation (A4) for αð4Þ, αð5Þ, and αð6Þ. For
example, Eq. (A4) for αð5Þ is given by

1

3
k3 ¼ 1; ðA6Þ

which is not satisfied by k3 ¼ 4=3. Therefore, there is no
solution for all of (A4).
In the case of ~H ¼ Uð2Þ⊄SUð3Þ and of ~H ¼ Uð1Þ×

Uð1Þ, Eq. (A4) for αð1Þ, αð2Þ, and αð3Þ reads

0
BB@

1
4

−
ffiffi
3

p
4

3
4

1 0 0

1
4

ffiffi
3

p
4

3
4

1
CCA
0
B@

k1
k2
k3

1
CA ¼

0
B@

1

1

1

1
CA: ðA7Þ

The solution of this equation is k1 ¼ k3 ¼ 1, k2 ¼ 0. This
solution is also consistent with the decomposition formula
for SUð3Þ. However, this does not satisfy Eq. (A4) for αð4Þ,
αð5Þ, and αð6Þ. Therefore, there are no solutions for all of
(A4) in this case as well. Thus, we confirm that there are no
decomposition formulas using double commutators for all
representations.
Next, we consider the case of quadruple commutators.

There exist decomposition formulas if and only if there are
real numbers k1, k2, k3, k4, and k5 that satisfy

k1½H1; ½H1; ½H1; ½H1;F ���� þ k2½H1; ½H1; ½H1; ½H2;F ����
þ k3½H1; ½H1; ½H2; ½H2;F ���� þ k4½H1; ½H2; ½H2; ½H2;F ����
þ k5½H2; ½H2; ½H2; ½H2;F ����
¼

X
α∈Rþ∶E�α∉ ~h

ðF �
αEα þFαE−αÞ: ðA8Þ

This is equivalent to

ðα1Þ4k1þðα1Þ3α2k2þðα1Þ2ðα2Þ2k3þα1ðα2Þ2k4þðα2Þ4k5
¼1 forEα ∉ ~h;

ðα1Þ4k1þðα1Þ3α2k2þðα1Þ2ðα2Þ2k3þα1ðα2Þ2k4þðα2Þ4k5
¼0 forEα∈ ~h: ðA9Þ

The equivalent matrix form is given as
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1

16

0
BBBBBBBBBB@

1 −
ffiffiffi
3

p
3 −33

2 9

16 0 0 0 0

1
ffiffiffi
3

p
3 3

3
2 9

1 1ffiffi
3

p 1
3

1

3
3
2

1
9

0 0 0 0 16
9

1 − 1ffiffi
3

p 1
3

− 1

3
3
2

1
9

1
CCCCCCCCCCA

0
BBBBBB@

k1
k2
k3
k4
k5

1
CCCCCCA

¼

0
BBBBBBBBB@

0

1

1

1

1

1

1
CCCCCCCCCA
;

0
BBBBBBBBB@

1

1

1

1

0

1

1
CCCCCCCCCA

or

0
BBBBBBBBB@

1

1

1

1

1

1

1
CCCCCCCCCA
: ðA10Þ

Calculating the rank of the matrix, we see that these
equations do not have solutions. Thus we have confirmed
that quadruple commutators are not enough to obtain the
desired decomposition formula.

APPENDIX B: DERIVATION OF THE NON-
ABELIAN STOKES THEOREM FOR THE
GENERAL GAUGE GROUP USING (71)

From the fact [Eq. (71)] that the ~H part of g†∂μmg is
vanishing, we have

g†∂μmg ¼ ðg†∂μmgÞG=H
¼

X
i1;…;in

ηi1…in ½Hi1 ;…; ½Hin; g
†∂μmg�…�: ðB1Þ

Multiplying both sides of this equation, by g from the left
and by g† from the right, we obtain

∂μmðxÞ ¼
X

i1;…;in

ηi1…in ½ni1ðxÞ;…; ½ninðxÞ; ∂μmðxÞ�…�

¼
X

i1;…;in

ηi1…in ½ni1ðxÞ;…; ½mðxÞ; ∂μninðxÞ�…�

¼
X

i1;…;in

ηi1…in ½m; ½ni1ðxÞ;…; ½nin−1 ; ∂μninðxÞ�…��

¼ igYM½BμðxÞ;mðxÞ�; ðB2Þ

where we have used ½ni; ∂μm� ¼ ½m; ∂μni� following from
∂μ½ni;m� ¼ 0 in the second equality, the commuting
property (31) in the third equality, and we have introduced

BμðxÞ≔ig−1YM
X

i1;…;in

ηi1…in ½ni1ðxÞ;…; ½nin−1ðxÞ; ∂μninðxÞ�…�:

ðB3Þ

in last equality. On the other hand, we find

∂μmðxÞ ¼ igYM½Ωμ;mðxÞ�: ðB4Þ

Combining (B2) and (B4), we obtain

½Ωμ;mðxÞ� ¼ ½BμðxÞ;mðxÞ�: ðB5Þ

Using this relation, we can rewrite the third term in
Fg
μνðxÞ as

igYMtrðmðxÞ½ΩμðxÞ;ΩνðxÞ�Þ ¼ igYMtrð½mðxÞ;ΩμðxÞ�ΩνðxÞÞ
¼ igYMtrð½mðxÞ;BμðxÞ�ΩνðxÞÞ
¼ igYMtrð½ΩνðxÞ;mðxÞ�BμðxÞÞ
¼ trð∂νmðxÞBμðxÞÞ
¼ ig−1YM

X
i1;…;in

ηi1…in trð∂νmðxÞ½ni1ðxÞ;…; ½nin−1ðxÞ; ∂μninðxÞ�…�Þ

¼ ig−1YM
X

i1;…;in

ηi1…in trð½∂νmðxÞ; ni1ðxÞ�½ni2 ;…; ½nin−1ðxÞ; ∂μninðxÞ�…�Þ

¼ −ig−1YM
X

i1;…;in

ηi1…in trð½mðxÞ; ∂νni1ðxÞ�½ni2 ;…; ½nin−1ðxÞ; ∂μninðxÞ�…�Þ

¼ −ig−1YM
X

i1;…;in

ηi1…in trðmðxÞ½∂νni1ðxÞ; ½ni2 ;…; ½nin−1ðxÞ; ∂μninðxÞ�…��Þ

¼ ig−1YM
X

i1;…;in

ηi1…in trðmðxÞ½∂μni1ðxÞ; ½ni2 ;…; ½nin−1ðxÞ; ∂νninðxÞ�…��Þ; ðB6Þ
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where we have used the cyclicity of the trace in the
first, third, sixth, and eighth equalities, (B4) in the
fourth equality, ½∂νm; ni1 � ¼ −½m; ∂νni1 � following from
∂ν½m; ni1 � ¼ 0 in the seventh equality, and the fact that the
first expression is antisymmetric in μ and ν in the last
equality. This completes the proof of the non-Abelian
Stokes theorem (78).

APPENDIX C: DERIVATION
OF Fg

μν = κtrðmFμν½V �Þ
In this appendix, we show that the remaining field X

does not contribute to the Wilson loop operator by deriving
the equality (69). Using the decomposition (64), we obtain

trðmF μν½V �Þ ¼ trðmð∂μC ν − ∂νC μ − igYM½C μ;C ν�
− igYM½C μ;Bν� − igYM½Bμ;C ν�
þ ∂μBν − ∂νBμ − igYM½Bμ;Bν�Þ: ðC1Þ

From the fact (66) we see that the third, fourth, and fifth
terms vanish. Thus we obtain

trðmF μν½V �Þ ¼ trðmð∂μC ν − ∂νC μ þ ∂μBν

− ∂νBμ − igYM½Bμ;Bν�ÞÞ: ðC2Þ

The first term of (C2) reads

∂μtrðmA νÞ ¼ ∂μðtrðmC νÞÞ
¼ trð∂μmC ν þm∂μC νÞ
¼ trðm∂μC νÞ; ðC3Þ

where we have used ðg†∂μmgÞ ~H ¼ 0 and C ν ∈ gLieð ~HÞg†.
The third term of (C2) reads

trðm∂μBνÞ ¼ −trð∂μmBνÞ
¼ −igYMtrð½Bμ;m�BνÞ
¼ igYMtrðm½Bμ;Bν�Þ; ðC4Þ

where we have used trðmBνÞ ¼ 0 in the first equality, (B2)
in the second equality, and the cyclicity of the trace in the
last equality. Thus, we obtain

ðC2Þ ¼ ∂μtrðmA νÞ − ∂νtrðmA μÞ þ igYMtrðm½Bμ;Bν�Þ
¼ ∂μtrðmA νÞ − ∂νtrðmA μÞ þ igYMtrðm½Ωμ;Ων�Þ

¼ 1

κ
Fg
μν; ðC5Þ

where we have used (C3) and (C4) in the first equality and
(B5) in the second equality.
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