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The effective average action (EAA) is a scale-dependent effective action where a scale k is introduced via
an infrared regulator. The k dependence of the EAA is governed by an exact flow equation to which one
associates a boundary condition at a scale μ. We show that the μ dependence of the EAA is controlled by an
equation fully analogous to the Callan-Symanzik equation which allows one to define scaling quantities
straightforwardly. Particular attention is paid to composite operators which are introduced along with new
sources. We discuss some simple solutions to the flow equation for composite operators and comment on
their implications in the case of a local potential approximation.
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I. INTRODUCTION

The renormalization group (RG) provides an ideal
framework to discuss the scaling of operators in quantum
field theory. In this work we consider the scaling properties
of a quantum field theory within the effective average
action (EAA) formalism, which is a functional realization
of the Wilsonian renormalization program [1–3]. The EAA
is a scale-dependent effective action whose associated action
has been modified by the introduction of an infrared cutoff
depending on a scale k in such a way that low-momentum
modes are suppressed in the integration. In order to discuss
the scaling properties within this formalism we show that
the EAA satisfies, besides an exact flow equation involv-
ing the scale k, an equation which involves the scale μ at
which the boundary conditions are imposed. This equation
entails an invariance under changes of “floating normali-
zation point” μ very similar to one expressed by the Callan-
Symanzik equation. In this sense this equation recalls the
connection between the methods of perturbative renorm-
alization and the Wilsonian RG studied in [4].
We carefully investigate composite operators by modi-

fying the original action with a source-dependent term
which allows us to consider composite operator insertions
via functional derivatives with respect to the source. We
will see that the above-mentioned μ invariance allows
defining scaling operators straightforwardly. Then we
comment on the relation between the so-defined scaling
dimension and critical exponents and show that, if total
derivative terms are neglected, the results are easily related.
Moreover we will show that introducing the sources for
composite operators allows us to identify some general
types of composite operators among which are the descend-
ant operators of the scaling operators at the fixed point. To
make our discussion concrete we revisit the result of the
local potential approximation from our perspective.

The paper is organized as follows. In Sec. II we introduce
the flow equation for the EAA and for composite operators.
In Sec. III we discuss the μ dependence of the EAA and
how scaling dimensions can be identified while in Sec. IV
we consider the local potential approximation in view of the
previous discussion. In Sec. V we summarize our results
and discuss possible outlooks.

II. RG FLOW OF COMPOSITE OPERATORS

In a quantum field theory a composite operator is defined
as a function of the field and its derivatives, i.e. O ¼
Oðφ; ∂μφÞ. Generically, once such an operator is inserted in
a correlation function new divergences appear. Owing to
these divergences one has to renormalize, besides the
couplings of the theory, also the composite operator itself.
As a result one finds that a renormalized composite
operator, which we denote [O] using square brackets, is
a sum of various operators. For instance, at one loop in a six-
dimensional φ3 theory one finds ½φ2� ¼ c1φþ c2Δφþ c3φ2,
where ci are suitable coefficients [5]. A convenient way to
keep track of composite operators and their insertion into
Green’s functions is to couple them to a source ε adding a
term ε ·O to the action as follows1:

hOi ¼ N
Z

DχOe−S

¼ −
δ

δεx
N

Z
Dχe−S−ε·O;

where N is a suitable normalization. Let us consider the
generating functional W½J; ε� for the connected Green’s
functions associated to the modified action Sþ ε ·O:

*capagani@uni‑mainz.de

1Whenever a dot appears in a mathematical expression, e.g.
f · g, the DeWitt notation is used meaning that integration and
index summation is intended.
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eW½J;ε� ≡
Z

Dχe−S−ε·OþJ·χ :

The connected part of the correlation function hOi will be
given just by the derivative − δ

δεW½J; ε�. Via a Legendre
transform we obtain the associated effective action, Γ½φ; ε�:

Γ½φ; ε� ¼ J · φ −W½J; ε�; φ ¼ δJW:

Note that we do not perform a Legendre transform with
respect to the source ε.2 Since the insertion of one composite
operator is related to a functional differentiation with respect
to the source ε let us consider

δεΓ½φ; ε� ¼ δεðJ · φ −W½J; ε�Þ

¼ δJ
δε

· φ −
�
δW
δε

½J; ε� þ δJ
δε

· δJW

�

δΓ
δε

½φ; ε� ¼ −
δW
δε

½J; ε�: ð1Þ

This tells us that we can obtain information regarding the
renormalization of composite operators by considering the
renormalization of δεΓ½φ; ε�.
As already said we shall work within the functional

renormalization group (FRG) framework. In particular we
consider the RG flow of the EAA which is a scale-
dependent generalization of the standard effective action.
One first defines a modified generating functional of
connected Green’s functions, Wk½J�:

eWk½J� ≡
Z

Dχe−S−ΔSkþJ·χ ;

where ΔSk suppresses the integration of momentum modes
p2 < k2 and is quadratic in the fields with a kernel Rk, i.e.
ΔSk ¼ 1

2

R
χRkχ.

3 Note that this cutoff action acts like an
infrared cutoff. Let us denote ~Γk the Legendre transform of
Wk and define the EAA subtracting the cutoff action which
we added at the beginning:

Γk ≡ ~Γk − ΔSk:

The k dependence of the functional Γk satisfies the
following exact equation [1–3]:

∂tΓk ¼
1

2
Tr½ðΓð2Þ

k þ RkÞ−1∂tRk�; ð2Þ

where ∂t ¼ k∂k is the logarithmic derivative with respect to
the cutoff and Γð2Þ

k is the Hessian of the EAA. To concretely

employ Eq. (2) one needs to resort to some approximations
and makes an Ansatz for Γk. On top of this approximation
there remains the dependence of the EAA on the choice of
the cutoff profile Rk; this freedom can be used as a quality
test for a truncation or as an optimization criteria, and we
refer to [7–11] for further details. Such a procedure has
been proved robust in many fields, especially to determine
scaling properties of statistical systems at criticality; see
[12,13] for an overview.
The inclusion of composite operators in this framework

is straightforward: we simply upgrade the above definitions
employing the modified action Sþ ε ·O instead of S (we
refer to [14] for a detailed discussion regarding the flow of
composite operators; see also [10,15]). In this manner we
obtain a modified generating functional Wk½J; ε� for con-
nected Green’s functions which depends also on the source ε.
In full analogy with the derivation of relation (1) we obtain

−
δ

δε
Wk½J; ε� ¼

δ

δε
Γk½φ; ε�:

We also introduce the notation

½Ok�≡ δ

δε
Γk½φ; ε�;

where the subscript k indicates that ½Ok� depends on the scale
k. In order to obtain the scale dependence of com-
posite operators we observe that the flow equation (2) holds
in full generality also for the modified EAA Γk½φ; ε�:

∂tΓk½φ; ε� ¼
1

2
Tr½ðΓð2Þ

k ½φ; ε� þ RkÞ−1∂tRk�; ð3Þ

where Γð2Þ
k ½φ; ε� denotes the Hessian of the EAA with res-

pect to the field φ. The scale dependence of ½Ok� is obtained
taking a single functional derivative with respect to the source
ε and setting ε ¼ 0 afterwards. In this way we have

∂t

�
δ

δε
Γk½φ; ε�

�����
ε¼0

¼ −
1

2
Tr

�
ðΓð2Þ

k þ RkÞ−1
δΓð2Þ

k

δε

× ðΓð2Þ
k þ RkÞ−1∂tRk

�����
ε¼0

: ð4Þ

Let us observe that we can avoid performing a functional
derivative with respect to the source ε and just compare order
by order in ε. Clearly, since we are interested just in a single
insertion of the composite operator, we can limit ourselves to
consider an ε such that ε2 ¼ 0 (the flow equation of order
Oðε2Þ is considered in Appendix A). We can rewrite the flow
equation as

∂tðε · ½Ok�Þ ¼ −
1

2
Tr½ðΓð2Þ

k þ RkÞ−1ðε · ½Ok�ð2ÞÞ

× ðΓð2Þ
k þ RkÞ−1∂tRk�; ð5Þ

2Such a Legendre transform is performed on a bilocal source
when considering the 2PI effective action [6] after adding a term
φðxÞ · εðx; yÞ · φðyÞ to the action.

3One usually requires Rk ≈ k2 for p2 ≪ k2 and Rk ≈ 0 for
p2 ≫ k2.

CARLO PAGANI PHYSICAL REVIEW D 94, 045001 (2016)

045001-2



where ½Ok�ð2Þ is the Hessian of the operator ½Ok� with respect
to the field φ. Equation (5) can be seen as an RG-improved
version of a one-loop equation. To see this let us consider
the one-loop EAA Γk;1 associated to the modified action
Sþ ε ·O:

Γk;1 ¼ Sþ ε ·Oþ 1

2
Tr log ðSð2Þ þ Rk þ ε ·Oð2ÞÞ;

where Sð2Þ and Oð2Þ are the Hessians for the action and the
composite operator, respectively. If we now differentiate the
above expression with respect to the scale k we obtain

∂tΓk;1 ¼
1

2
Tr½ðSð2Þ þ Rk þ ε ·Oð2ÞÞ−1∂tRk�:

Finally, in order to derive the running of the composite
operator, we just need to take a functional derivative with
respect to the source ε and set this to zero:

∂t½Ok� ¼ −
1

2
Tr½ðSð2Þ þ RkÞ−1 ·Oð2Þ

· ðSð2Þ þ RkÞ−1∂tRk�: ð6Þ

Equation (6) is fully analogous to Eq. (4) with the micro-
scopic action S in place of the EAA and the bare operator in
place of the renormalized one.
As in the case of the flow equation (2), also the flow

equation (5) has to be equipped with suitable boundary
conditions; see also [14]. When the scale k has been
lowered to zero the integration has been fully performed
and we have that hOBi ¼ ½Ok¼0�, where OB is the bare
operator (see [16] for an analogous observation using the
Wilsonian action).
Finally we would like to stress the following point: in

principle the renormalization of composite operators must
be carried out in addition to the usual renormalization and
some “extra” work is needed. Since Eq. (5) is essentially
the linearization of the flow equation one may get the
impression that the operator dimensions at the fixed point
are given by the linearization of the RG, i.e. by the critical
exponents.4 Although critical exponents and scaling dimen-
sions of composite operators are closely related (as we will
discuss in Secs. III C and IVA) there are some notable
differences. To understand why this is the case let us con-
sider a simple example: in a six-dimensional φ3 theory the
operator ½φ2� contains the operator Δφ [5], with Δ ¼ −∂2.
If we consider Δφ as a term appearing in the action, this
would result simply in a surface term and as such this term
would usually be neglected. When considering composite

operators it is no longer so, given that ε · Δφ is not a surface
term. For the same reason one should distinguish between
φΔφ and ∂φ∂φ when dealing with composite operators, in
contrast to what one does with couplings appearing in the
action. In the standard formulation of quantum field theory
one indeed considers [18]

ε · ½φ4� ¼ ε · ðZ21Zφφ
2 þ Z22Z2

φφ
4 þ Z23Zφð∂φÞ2

þ Z24ZφφΔφÞ; ð7Þ

where Zφ is the wave function renormalization.
Furthermore, Eq. (5) can be used not only for scalar

operators, but also for higher spin ones. In this case the
source will carry an index, for instance εμ in the case of a
spin-one operator. It appears clear that the renormalization
of such a term cannot be extracted directly from the renor-
malization of the theory alone and its linearization around
the fixed point. Finally it may happen that one is interested
in the flow of some particular operator while neglecting
some others. In such a case our framework is particularly
convenient; see [19] for an example of such an application.

III. FLOATING NORMALIZATION POINT
AND SCALING DIMENSIONS

In this section we discuss how RG quantities and scaling
dimensions are related in the functional renormalization
group framework. In particular we shall show that it is
possible to infer an equation which resembles the Callan-
Symanzik equation. By reformulating scaling arguments
via the Callan-Symanzik equation we will obtain a generic
framework which can be applied to any system of interest.
Besides this, our equation shows an obvious connection with
the standard framework of quantum field theory and may be
a useful tool for comparison with results obtained via other
approaches. In Sec. III A we describe the invariance of the
EAAwith respect to suitable changes of boundary conditions
of the flow equation and derive a Callan-Symanzik type of
equation. In Sec. III B we extend those arguments including
composite operators, while in Sec. III C we relate these
results to the usual quantities computed via the FRG.
We will often work within the so-called LPA0 truncation

where one takes into account up to two derivatives of the
field and a generic potential, including the wave function
renormalization of the field5:

Γk½φ� ¼
Z �

Zk

2
∂μφ∂μφþUkðZ1=2

k φÞ
�
: ð8Þ

The extension of our arguments to more general truncations
is obvious. In the above Ansatz we made explicit the fact4Here critical exponents are associated to deformations of the

type Sþ δS and not of the type Sþ g · δS, where g is an arbitrary
source. The latter case is considered by Wilson and Kogut in
[17]. However, in FRG computations one usually takes source-
independent deformations.

5The acronym LPA, without the prime, is generally used for
the local potential approximation without the wave function
renormalization.
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that the wave function renormalization can be looked at as
an inessential coupling and can be removed via a rescaling
of the field (see [15] for a similar discussion in the context
of the Wilsonian action). One can eventually define the
field ϕ ¼ Z1=2

k φ and insist on having a canonically nor-
malized kinetic term. When the flow equation is expressed
in terms of ϕ the effect of the wave function renormaliza-
tion is fully contained in the appearance of the anomalous
dimension. In this work we shall express the EAA as a
function of φ or ϕ according to convenience.

A. Invariance under changes of the floating
normalization point

Let us takeUk to be a polynomial of a given order whose
coefficients are parametrized by a set of dimensionful
couplings fgig, whose dimensionless version is denoted
f~gig.6 The RG flow can be described by a set of first-order
differential equations. In particular the couplings f~gig
satisfy an equations of the following form:

∂t ~gi ¼ fiðf~gjgÞ:

Let us consider a given trajectory which is associated to a
boundary condition

~giðμÞ ¼ ~gðRÞ

at the scale μ, which we could call “floating normalization
point.” We observe that this trajectory can be labeled by
many other equivalent boundary conditions along the RG
trajectory at some other scale μ0. In order to make this clear
let us consider a simple example of a dynamical system
which mimics our system of beta functions:

_xðtÞ ¼ fðxÞ; xðt0Þ ¼ x0: ð9Þ

Let FðtÞ be the generic solution of the first equation in (9)
and suppose that we can implement the boundary condition
xðt0Þ ¼ x0 explicitly via

xðtÞ ¼ FðtÞ − Fðt0Þ þ x0: ð10Þ

The fact that we can associate to this trajectory many other
boundary conditions is expressed by the vanishing of the
total derivative with respect to t0:

d
dt0

xðtÞ ¼ d
dt0

½FðtÞ − Fðt0Þ þ x0�

¼ −
d
dt0

Fðt0Þ þ _x0

¼ −_x0 þ _x0 ¼ 0:

In the second line we took care of both the explicit presence
of t0 in the first term and of the implicit dependence of x0
on the “normalization point” t0. Thus we can rewrite the
above equation as

d
dt0

xðtÞ ¼
� ∂
∂t0 þ _x0

∂
∂x0

�
xðtÞ ¼ 0: ð11Þ

Note that the boundary condition x0 may enter in the
solution in many possible ways and not just as shown in
(10). The invariance under the operator in the right-hand
side of Eq. (11) is guaranteed by the following reasoning:
given a trajectory (i.e. a solution of the equation) associated
to the boundary condition x0 at t0, we observe that the same
trajectory can be associated to many other boundary
conditions along the same trajectory at some other points
x00; x

00
0;…; see Fig. 1. This means that the selected trajectory

xðtÞ is invariant under translations of the boundary con-
dition along the trajectory itself. Thus the solution is not
invariant under any change of the couple ðt0; x0Þ but is
invariant under those changes which bring ðt0; x0Þ into
another point along the solution. Indeed this is exactly what
is implemented by the operator of Eq. (11). To see this let
us make explicit the presence of ðt0; x0Þ in the solution
denoting xðtÞ ¼ xðt; t0; x0Þ. Let us translate t0 infinitesi-
mally and move x0 accordingly:

xðt; t0; x0Þ ¼ xðt; t0 þ ε; x0 þ δx0Þ
¼ xðt; t0 þ ε; x0 þ _x0εÞ
¼ xðt; t0; x0Þ þ εð∂t0 þ _x0∂x0Þxðt; t0; x0Þ;

where we used x0 ¼ xðt0Þ and so δx0 ¼ _xðt0Þε. We can
rewrite the above equation as

ð∂t0 þ fðx0Þ∂x0ÞxðtÞ ¼ 0; ð12Þ

FIG. 1. Trajectory of the dynamical system (9). The couples
ðt0; x0Þ, ðt00; x00Þ and ðt000 ; x000Þ are possible boundary conditions
associated to the trajectory T .

6The following arguments apply equally well if one considers
an Ansatz Γk ¼

P
igiOi parametrized by generic operators Oi.
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where we exploited _x0 ¼ fðx0Þ. Thus, Eq. (12) entails in a
compact form the invariance under changes of boundary
conditions that we just discussed and that is represented in
Fig. 1 by the equivalent couples of boundary conditions
ðt0; x0Þ; ðt00; x00Þ;…. Now, having in mind RG trajectories,
one may wish to associate the boundary condition to a
condition given at a microscopic scale Λ. However, this is
not necessary and an equivalent condition can be given at
any other point along the flow. For this reason we referred
to μ as a floating normalization point; in principle it can be
chosen anywhere along the trajectory.
In fact, there is nothing preventing us from applying this

reasoning directly to our system of equation describing the
RG flow of the EAA. Let us denote with the superscript (R)
all the boundary conditions; for example ~gðRÞ ¼ ~gðμÞ is the
boundary condition associated to ~gðkÞ. The analogue of
Eq. (12) applied to the solution Γk of the flow equation is

μ
d
dμ

Γk½φ� ¼
�
μ∂μ þ ~βið~gðRÞÞ

∂
∂ ~gðRÞi

þ ∂ log μZðRÞ ∂
∂ZðRÞ

�
Γk½φ� ¼ 0; ð13Þ

where ∂ log μZðRÞ ≡ ∂tZkðμÞ. Recalling that in the Ansatz (8)
the field is always accompanied by a factor Z1=2

k we rewrite
Eq. (13) as follows:

0¼
�
μ∂μþ ~βið~gðRÞÞ

∂
∂ ~gðRÞi

þ1

2
∂ logμZðRÞðZðRÞÞ−1φ · δ

δφ

�
Γk½φ�:

ð14Þ

In going from (13) to (14) we have been able to trade
∂=∂ZðRÞ with δ=δφ by exploiting the fact that the flow
equation for the wave function renormalization has the form

∂tZk ¼ fð~gÞZk

and the associated solution is

ZðsolÞ
k ¼ ZðRÞ exp

�Z
k

μ
fð~gðk0ÞÞ dk

0

k0

�
: ð15Þ

This tells us that the solution ZðsolÞ
k of the wave function

renormalization is proportional to the boundary condition
ZðRÞ implying that the previous rewriting is correct.
If we think of the EAA as the sum of all the proper

vertices,7

Γk ¼
X
n

ΓðnÞ
k

n!
φn;

and we functionally differentiate Eq. (14) n times with
respect to φ before setting φ ¼ 0, we obtain

�
μ∂μ þ βðRÞi

∂
∂ ~gðRÞi

−
n
2
ð−ðZðRÞÞ−1∂ log μZðRÞÞ

�
ΓðnÞ
k ¼ 0:

ð16Þ

Equation (16) looks exactly like the Callan-Symanzik
equation of usual quantum field theory once k → 0.
Let us now discuss in some detail the meaning of

Eq. (16) in the limit k → 0 in presence of an IR fixed
point. In the fixed point regime the dimensionless cou-
plings ~g tend to a constant ~g� while the equation for the
wave function renormalization takes the simple form

∂tZk ¼ fð~g�ÞZk: ð17Þ

Let us impose the boundary condition in the fixed point
regime, i.e. μ is enough small that the running of Zk is given
approximatively by Eq. (17) (we will come back to an
arbitrary μ in a moment). In this limit the solution of the
Eq. (17) is particularly simple and reads

ZðsolÞ
k ¼ ZðRÞ

�
k
μ

�
−η
; ð18Þ

where η ¼ −fð~g�Þ and ZðRÞ is the value of ZðsolÞ
k at k ¼ μ.

As we will see in a moment η=2 can be identified with the
anomalous dimension of the field at the fixed point. In the
limit k → 0 all the couplings ~gðkÞ appearing in the EAA
tend to a constant and they no longer depend on μ.
However, there is still some μ dependence in the EAA
coming from the wave function renormalization. In this
case the invariance under changes in the normalization
point μ tells us that

�
μ∂μ −

n
2
η

�
ΓðnÞ
k→0½φ� ¼ 0: ð19Þ

This suggests to identify the anomalous dimension at the
fixed point with η ¼ −Z−1

k ∂tZk for k → 0. Indeed using
(19) and dimensional analysis for a given proper vertex, i.e.

�
μ∂μ þ p∂p þ n

d − 2

2

�
ΓðnÞ
k→0½φ� ¼ 0; ð20Þ

one can deduce the ðp; μÞ dependence of ΓðnÞ
k→0 (in (20) we

consider functional derivative with respect to the Fourier
transform of the field). For instance if we consider Γð2Þ

k→0 and
factor out the overall delta function entailing momentum
conservation, we obtain

Γð2Þ½φ� ∼ p2−η:
7Actually one should consider ~Γk; this modifies only the two-

point function for k > 0.
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This shows that η can indeed be identified with the ano-
malous dimension.
At this point the reader may wonder if the fact of having

chosen boundary conditions for an arbitrarily small μ
played any role in our arguments. The answer is no—it
is by no means necessary to impose boundary conditions
for μ arbitrarily small—this just leads to a quicker argu-
ment. To see this, let us denote ZðRÞ the boundary condition
imposed at some other scale μ. Again in the fixed point
regime the couplings in the EAA do not depend any longer
on the scale μ or on the boundary condition ~gðRÞ. Now,
however, the wave function renormalization has no longer
the simple structure of Eq. (18). In particular the solu-
tion ZðsolÞ

k depends also on the boundary condition ~gðRÞ
since the integral in the exponent of (15) depends on it.
Therefore, for k → 0 we have a solution of the following
form:

ZðsolÞ
k ¼ ZðRÞyðgðRÞÞ

�
k
μ

�
−η

ð21Þ

for some function yðgðRÞÞ.8 The invariance under floating
normalization point transformations tells us that

�
μ∂μ þ βðRÞi

∂
∂ ~gðRÞi

−
n
2
ð−ðZðRÞÞ−1∂ log μZðRÞÞ

�
ΓðnÞ
k→0 ¼ 0;

where the derivatives with respect to the couplings ~gðRÞi act
only on ZðsolÞ

k since all the other couplings are approaching
their fixed point values. Exploiting this we can rewrite the
above equation as

�
μ∂μ þ

n
2
βðRÞi

∂yð~gðRÞÞ
∂ ~gðRÞi

1

yð~gðRÞÞ

−
n
2
ð−ðZðRÞÞ−1∂ log μZðRÞÞ

�
ΓðnÞ
k→0 ¼ 0

or equivalently as

�
μ∂μ þ

n
2

�
βðRÞi

∂yð~gðRÞÞ
∂ ~gðRÞi

1

yð~gðRÞÞ þ fð~gðRÞÞ
��

ΓðnÞ
k→0 ¼ 0:

The above equation tells us that we can express the
anomalous dimension also as follows:

−η ¼ βðRÞi
∂yð~gðRÞÞ
∂ ~gðRÞi

1

yð~gðRÞÞ þ fð~gðRÞi Þ: ð22Þ

Although not obvious, the right-hand side of Eq. (22) must
be independent of ~gðRÞ. We checked relation (22) in a few

examples.9 It is clear now why choosing the boundary
condition with μ arbitrarily small is convenient: if we let
μ → 0 the first term on the right-hand side of (22) vanishes
and we are left with −η ¼ fð~g�Þ ¼ Z−1

k ∂tZkjk¼0. Thus our
arguments suggest to identify the anomalous dimension
with −Z−1

k ∂tZk in the limit k → 0.
With respect to the standard Callan-Symanzik equation

we derived Eq. (16) using dimensionless couplings.
However, nothing prevents us from repeating the same
reasoning for the dimensionful couplings. It is just more
convenient to work with dimensionless quantities since
those are the ones of interest in the fixed point regime of the
EAA. Moreover, if one repeats our reasoning in the case of
dimensionful couplings, one notes that Eq. (20) involves
new terms of the type dggðRÞ∂=∂gðRÞ, where dg is the mass
dimension of the coupling. However, after eliminating μ
one notices that it is just the dimensionless beta func-
tion which enters in the scaling equation. Equations des-
cribing μ invariance in a somewhat different manner are
also known in the Wilson-Polchinski framework; see in
particular [20] for a discussion including a choice of para-
metrization scheme related to the MS scheme in dimen-
sional regularization.
A further motivation for the identification of η ¼

−Z−1
k ∂tZkjk¼0 as the anomalous dimension has been

provided in [21]. Thus let us briefly consider how the
arguments in Appendix A of [21] apply to our framework
since we will employ similar arguments in the next section
to provide a further reason in favor of our definitions.
Dimensional analysis tells us that

Γð2Þ
k ðp; k; μÞ

Γð2Þ
k ðp0; k; μÞ

¼ f̂

�
p0

p
;
p
k
;
p0

μ

�
:

The arguments of f̂ are three possible independent ratios;
all the other ratios can be obtained from them. Now we take
k to be sufficiently small (fixed point regime) and observe
that in the EAA the μ dependence is contained only in the
wave function renormalization factors. Thus, in the above
ratio, these wave function renormalizations cancel against
each other and we have

Γð2Þ
k ðp; k; μÞ

Γð2Þ
k ðp0; k; μÞ

¼ f̂

�
p0

p
;
p
k

�
:

Setting p0 ¼ 0 we obtain

Γð2Þ
k ðp; k; μÞ ¼ Γð2Þ

k ð0; k; μÞf̂
�
0;
p
k

�
:

8More formally this function can be defined via
yðgðRÞÞ≡ limk→0ðZðRÞÞ−1ðkμÞ−fð~g�ÞZðsolÞ

k .

9The fact that the right-hand side of Eq. (22) is just a constant
can be understood applying the μ invariance operator directly on
ZðsolÞ
k→0: the explicit μ dependence comes solely from the factor μη

in (21) and, writing down all the terms, one finds Eq. (22).
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Let us denote fðpkÞ≡ f̂ð0; pkÞ and observe that in the fixed
point regime

Γð2Þ
k ð0; k; μÞ ∼ k2

�
k
μ

�
−η
:

Therefore we finally have

Γð2Þ
k ðp; k; μÞ ∼ k2

�
k
μ

�
−η
f

�
p
k

�
:

In order for this expression to be well defined in the critical
regime, i.e. k ¼ 0, we require that f ∼ ðp=kÞ2−η and thus

Γð2Þ
0 ðp; 0; μÞ ∼ p2

�
p
μ

�
−η
:

This completes the argument to interpret η as the anomalous
dimension. These considerations also provide a justification
for the argument telling us that Γð2Þ

k ðp ¼ kÞ ∼ k2−η, which is
sometime used in the FRG literature.

B. Fixed point and anomalous dimension
of composite operators

In this section we extend our reasoning to the modified
EAA Γk½φ; ε� introduced in Sec. II. We are interested in the
scaling of composite operators at a fixed point. Let us
consider a composite operator parametrized via a sum of
various operators. To gain some insights we shall consider
perturbation theory as a first hint. We parametrize a
renormalized composite operator of mass dimension dO
with the sum of all possible composite operators of mass
dimension smaller or equal to dO. For instance in a six-
dimensional φ3 theory one can consider [5]

½φ2� ¼ Za
φ2

2
þ ðZbm2Þφþ ZcΔφ: ð23Þ

To obtain complete information one should define simul-
taneously all the composite operators which form the basis
fOig:

½Oi� ¼ ZijOj:

For instance in the example of the operator ½φ2� one should
consider [5]10

0
B@

½1
2
φ2�
½φ�
½Δφ�

1
CA ¼

0
B@

Za Zbm2 Zc

0 1 0

0 0 1

1
CA
0
B@

1
2
φ2

φ

Δφ

1
CA:

Let us note that the entries of Zij are in general dimen-
sionful. In dimensional regularization dimensionful factors
of Zij are due to the presence of dimensionful couplings
like the mass. In our scheme, however, it must be gener-
ically expected that some dimensionful factors may depend
on the scale k itself.
Parametrizations of composite operators similar to the

ones in Eqs. (7) and (23) can be straightforwardly adopted
in our flow equation (5). The difference with the standard
framework is due to the fact that, in our scheme, closed
families of operators under renormalization are generically
infinite dimensional and not just a finite set like it happens
when using dimensional regularization. To make progress
let us consider the flow equation for composite operators
where we insert (in)finitely many operators adding εiZijOj
to the EAA. After denoting Gk the regularized inverse
propagator,

Gk ≡ ðΓð2Þ
k þ RkÞ−1;

we rewrite Eq. (5) as

∂tðεiZijOjÞ ¼ −
1

2
Gk · ðεiZijO

ð2Þ
j Þ · Gk · ∂tRk: ð24Þ

Now we want to extend to Γk½φ; ε� Eqs. (14) and (16).
This will allow us to identify which are the scaling
dimensions of the composite operators. The reasoning of
Sec. III A applies straightforwardly to the ε-dependent
EAA. Let fOig be the set of operators which parametrize
the composite operators. In analogy with the example (7) a
renormalized composite operator is defined as

½Oi�ðφÞ ¼ ZijOjðZ1=2
k φÞ:

Since we shall be interested in just one insertion of a
composite operator we will limit ourselves to consider
sources ε such that ε2 ¼ 0. In this case we can write

Γk½φ; ε� ¼ Γk½φ� þ ε · Z ·O:

Let ZðRÞ
ij be the boundary condition associated to the flow of

the mixing matrix Zij. Applying the reasoning of Sec. III A
and treating ZðRÞ

ij as all the other boundary conditions we
obtain

μ
d
dμ

Γk½φ� ¼
�
μ∂μ þ βðRÞi

∂
∂ ~gðRÞi

þ ∂ log μZðRÞ ∂
∂ZðRÞ

þ∂ log μZ
ðRÞ
ij ·

∂
∂ZðRÞ

ij

�
Γk½φ; ε� ¼ 0;

where ∂ log μZ
ðRÞ
ij ¼ ∂tZijðk ¼ μÞ. In Sec. III A we have

been able to trade the partial derivative with respect to ZðRÞ
for a functional derivative with respect to the field. Here we

10The known scale dependence of the one loop matrix
elements can be easily computed via Eq. (5).
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would like to do something similar and trade the derivative
with respect to ZðRÞ

ij for a functional derivative with respect
to the source εi. In Sec. III A this step was straightforward
since the solution of the wave function renormalization
ZðsolÞ
k is proportional to ZðRÞ. The situation for the solution

of the mixing matrix ZðsolÞ
ij is slightly more complicated.

Taking a functional derivative with respect to εi in Eq. (24)
one obtains that the flow of the mixing matrix has the
following form:

Z−1
ij ∂tZjk ¼ fikð~g; kÞ: ð25Þ

The solution of this type of equation is related to a
k-ordered exponential matrix (Dyson’s series). The crucial
point, however, is the following: a generic boundary con-
dition ZðRÞ

ij appears in the solution via ZðsolÞ
ij ¼ ZðRÞ

im Mmj for
some matrixMmj. This fact allows us to trade the derivative∂=∂ZðRÞ

ij with a suitable functional derivative with respect
to the source ε. In particular we can rewrite

μ
d
dμ

Γk½φ; ε� ¼
�
μ∂μ þ βðRÞi

∂
∂ ~gðRÞi

þ 1

2

∂ log μZðRÞ

ZðRÞ φ ·
δ

δφ

þεi · γZ;ij ·
δ

δεj

�
Γk½φ; ε� ¼ 0; ð26Þ

where

γZ;ik ≡ ∂ log μZ
ðRÞ
ij ðZðRÞÞ−1jk :

Let us impose the boundary condition in the fixed point
regime, i.e. at μ small enough that the running of Zij is
given by Eq. (25) with ~g ¼ ~g�. Then, using the result of
Sec. III A for η, in the fixed point regime we can rewrite
(26) as

μ
d
dμ

Γk½φ; ε� ¼
�
μ∂μ −

1

2
ηφ ·

δ

δφ

þεi · γZ;ij ·
δ

δεj

�
Γk→0½φ; ε� ¼ 0: ð27Þ

In order to discuss the scaling associated to composite
operators we need to take into account both Eq. (27) and
dimensional analysis. This is fully analogous to what we
did in Sec. III A for the wave function renormalization.
However, there is now a crucial difference, namely the fact
that the boundary conditions ZðRÞ

ij are now dimensionful
parameters which must be taken into account in the
dimensional analysis. Let di be the mass dimension of
the operator Oi, then the matrix element ZðRÞ

ij has mass
dimension ðdi − djÞ. Focusing our attention only on one
insertion of a composite operator, i.e. taking a single
functional derivative with respect to the source εi and
setting εi to zero, we obtain

�
μ∂μ − x∂x þ ðdi − djÞZðRÞ

ij
∂

∂ZðRÞ
ij

− diδij

�
δΓk→0

δεj
¼ 0;

where the last term takes into account the mass dimension
of the operator Oj. Introducing the matrix

Dij ¼ diδij;

we can rewrite the third term in the brackets via
ðdi − djÞZðRÞ

ij ¼ DiaZ
ðRÞ
aj − ZðRÞ

ia Daj and trade the derivative
of ZðRÞ

ij with ðZðRÞ
ij Þ−1. In this manner we obtain (in matrix

notation)

ðμ∂μ − x∂x þ ðDZðRÞ − ZðRÞDÞðZðRÞÞ−1 −DÞ δΓk→0

δεj
¼ 0;

ðμ∂μ − x∂x − ZðRÞDðZðRÞÞ−1Þ δΓk→0

δεj
¼ 0:

Now we eliminate μ from the above equation using (27)
and we obtain

ðx∂x þ ZðRÞDðZðRÞÞ−1 þ γZÞ
δΓk→0

δεj
¼ 0: ð28Þ

The eigenvalues of the matrix ZðRÞDðZðRÞÞ−1 þ γZ yield the
full, i.e. classical plus anomalous, dimensions of the scaling
operators. To see this let us assume that ZðRÞDðZðRÞÞ−1 þ
γZ is diagonalizable, i.e. ZðRÞDðZðRÞÞ−1 þ γZ ¼ AEA−1,
where Eab ¼ eaδab is the eigenvalue matrix. Then we can
manipulate Eq. (28) as follows:

ðx∂xδij þ AiaEabA−1
bj Þ

δΓk→0

δεj
¼ 0;

ðx∂x þ ebÞA−1
bj

δΓk→0

δεj
¼ 0:

The last equation tells us that A−1
bj ½Oj� is a scaling operator

and we can identify eb with its full dimension, which we
denote Δb. In analogy with the case of the wave function
renormalization, this shows that the full dimensions of the
scaling operators are given by the eigenvalues of the matrix
ZDZ−1 þ γZ in the limit k → 0.
It turns out convenient to consider also the dimensionless

analogue of Zij, which we denote Nij. Introducing the
matrix

Kij ¼ kdiδij; di ≡mass dimension of OiðφÞ; ð29Þ

the mixing matrix Zij can be rewritten via a dimensionless
matrix Nij defined as follows:

Nil ≡ K−1
ij ZjkKkl:
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In particular we want to show that the spectrum of
ZDZ−1 þ γZ is the same as Dþ γN , where γN ¼ ∂tNN−1.
First we observe that

ZDZ−1 þ γZ ¼ ZDZ−1 þ ∂tZZ−1

¼ ZðDþ Z−1∂tZÞZ−1:

Thus the matrix ZDZ−1 þ γZ has the same spectrum as
Dþ Z−1∂tZ. Now we shall check that indeed these
matrices yield the same scaling dimensions, i.e. same
spectrum, as Dþ ∂tNN−1. In matrix notation we have

Z−1∂tZ ¼ ðKN−1K−1Þ∂tðKNK−1Þ
¼ Z−1DZ þ KN−1∂tNK−1 −D

¼ Z−1KðDþ γNÞK−1Z −D;

from which our claim follows. Similarly, the matrix
N−1DN þ N−1∂tN has the same spectrum as Dþ γN .
All these manipulations are quite formal and we would

like to provide a more intuitive argument for our definition.
Let us consider the composite operator ½φ2� and parametrize
it via the following simple Ansatz: ½φ2� ¼ Zφ2Zkφ

2. Now
we shall follow the arguments used at the end of Sec. III A.
Let us consider the dimensionless quantity Γð2;1Þ

k , where in
the superscript we indicated the number of functional
derivatives with respect to φ and ε, respectively. Γð2;1Þ

k
satisfies

Γð2;1Þ
k ¼ Gð2;1Þ

k ðp1; p2Þ
Gkðp1ÞGkðp2Þ

;

where

Gð2;1Þ
k ðp1;p2Þ¼

Z
dx1dx2dyeip1x1þip2x2h½φ2ðyÞ�φðx1Þφðx2Þi:

We consider p ¼ p1 ¼ −p2 and observe that in the fixed
point regime

Γð2;1Þ
k ðp; k; μÞ

Γð2;1Þ
k ðp0; k; μÞ

¼ f̂

�
p0

p
;
p
k

�
;

where the right-hand side does not depend on μ since the
various wave functions renormalizations cancel against
each other in the ratio. Once again we have

Γð2;1Þ
k ðp; k; μÞ ¼ Γð2;1Þ

k ðp0; k; μÞf̂
�
p0

p
;
p
k

�
;

and setting p0 ¼ 0 we obtain

Γð2;1Þ
k ðp; k; μÞ ¼ Γð2;1Þ

k ð0; k; μÞf̂
�
0;
p
k

�
:

Let us denote fðpkÞ≡ f̂ð0; pkÞ and γφ2 ¼ Z−1
φ2 ∂tZφ2 . We

observe that in the fixed point regime

Γð2;1Þ
k ð0; k; μÞ ∼

�
k
μ

�
γφ2−η

:

Repeating the reasoning of Sec. III A we obtain

Γð2;1Þ
0 ðp; 0; μÞ ∼

�
p
μ

�
γ
φ2
−η
:

Thus we identify γφ2 ¼ Z−1
φ2 ∂tZφ2 with the anomalous

dimension of ½φ2� as expected.

C. Scaling dimensions from the flow equation

In the previous section we deduced the quantities which
define the full dimension of scaling operators. Here we
shall show how these quantities are most easily computed
in the FRG framework. Let us recall that at the fixed point it
is convenient to work via dimensionless objects which are
defined using the cutoff and suitable rescalings. In par-
ticular we define

φðxÞ ¼ ~φð~xÞkd−2
2 ;

εiðxÞ ¼ ~εið~xÞkd−di ;
x ¼ ~xk−1:

Being φðxÞ, εðxÞ and x independent of the scale k by
definition, we obtain

∂t ~φð~xÞ ¼ −
�
d − 2

2

�
~φð~xÞ;

∂t ~εið~xÞ ¼ −ðd − diÞ~εið~xÞ;
∂t ~x ¼ ~x:

An operator O ¼ ∂m
x φ

n will satisfy

∂tð∂m
x φ

nÞ ¼ 0;

implying

∂t

�
kmk

d−2
2
n∂m

~x ~φn

�
¼ 0;

∂tð∂m
~x ~φnÞ ¼ −dOð∂m

~x ~φnÞ;

where dO ¼ mþ d−2
2
n. For a LPA truncation of ~Ol we can

rewrite this last term also as11

11In the LPA0 this term gets a further contribution coming from
the anomalous dimension. If derivatives are present, it might be
convenient to express this term via δ ~Ol

δ ~ϕ
ð− d−2þη

2
~ϕÞ − ~pμ ∂ ~Ol∂ ~pμ.
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∂t
~Ol ¼

δ ~Ol

δ ~φ

�
−
d − 2

2
~φ

�
:

In order to express the flow equation (24) in terms of
dimensionless variables it is convenient to perform the
following manipulation:

Z
ddxεiZijOi ¼

Z
dd ~x~εiK−1

ij ZjkKkl
~Ol

¼
Z

dd ~x~εiNil
~Ol:

The left-hand side of the flow equation reads

∂t

Z
ddxεiZijOi¼

Z
dd ~x

�
di ~εiNil

~Olþ ~εið∂tNilN−1
lmÞNmn

~On

−
d−2

2
~εiNil

δ ~Ol

δ ~φ
~φ

�
: ð30Þ

In the above expression the first term comes from the
logarithmic k derivative of dd ~x and ~εi and the third term
from the derivative acting on ~Ol. In the second term of (30)
we inserted an identityN−1 · N in order to make explicit the
presence of γN ¼ ∂tN · N−1, which enters in the definition
of scaling dimension as shown in the previous section. At
this point it proves convenient to introduce the new basis of
operators ~Bi ¼ Nil

~Ol and bring the last term in (30) to the
right-hand side of (24). After these manipulations we are
left with an equation of the form

Z
dd ~x½~εiðdiδij þ ∂tNilN−1

lj Þ ~Bj� ¼
Z

dd ~x~εi
δ ~Bi

δ ~φ

�
d − 2

2
~φ

�

þ Tr½� � ��; ð31Þ

where the last term indicates the right-hand side of Eq. (24).
Clearly the right-hand side of Eq. (24) is proportional to

Nil
δ2 ~Ol

δ ~φ2
¼ δ2 ~Bi

δ ~φ2
:

We observe that the quantity in round brackets on the left-
hand side of (31) is precisely the matrix Dþ ∂tN · N−1,
whose eigenvalues are the full dimensions of the scaling
operators. Let us assume that the matrix diδij þ ∂tNilN−1

lj is
diagonalizable and let us denote λi, Λij and Aij the
eigenvalues, the eigenvalue matrix and the eigenvector
matrix, respectively. After taking a functional derivative
with respect to the source ~εi we can rewrite Eq. (31) as
follows:

AiaΛabA−1
bj

~Bj ¼
δ ~Bi

δ ~φ

�
d − 2

2
~φ

�
−
1

2
Gk ·

δ2 ~Bi

δ ~φ2
· Gk · ∂tRk;

ð32Þ

where the last term in the right-hand side is meant solely to
represent schematically the structure of the “trace term” in
(31). At this point it is convenient to multiply Eq. (32) by
A−1
mi and introduce a new set of operators Dm ≡ A−1

mi
~Bi.

Writing explicitly the right-hand side of (32) in the LPAwe
have

λiDið ~φÞ ¼ D0
ið ~φÞ

�
d − 2

2
~φ

�
− cd

D00
i ð ~φÞ

ð1þ ~U00
kð ~φÞÞ2

; ð33Þ

where c−1d ¼ ð4πÞd=2Γðd=2þ 1Þ (more details are given in
Sec. IV). Remarkably Eq. (33) is expressed directly in
terms of the full dimension λi of the scaling operators and
thus its solutions yield directly the scaling dimensions of
the operator content of the fixed point theory. In Sec. IV we
will see that, considering composite operators of the form
OðφÞ within the LPA0, the eigenvalues λi are directly
connected to the critical exponents θi via λi ¼ d − θi. Note
also that one can also arrive at Eq. (33) by taking a
functional derivative with respect to ~εi of (30) and applying
the matrix N−1 to it; in this case one diagonalizes the
matrix N−1DN þ N−1∂tN.
Let us conclude this section by commenting on some

possible contacts with other works in the literature. In
particular it would be nice to set up our discussion in a
geometric language along the lines considered in [22–24]
(see also [25] for a slightly different approach). In these
works, roughly speaking, composite operators are thought
of as living in the tangent space associated to the theory
space. The quantity γba ≡ ∂gaβ

b naturally appears and one
can derive a Callan-Symanzik type of equation by consid-
ering the RG as a one-parameter group of diffeomorphisms
[22]. The matrix γba can be interpreted as the anomalous
dimension mixing matrix. In our approach this can be
understood via the following argument. Let us limit
ourselves to parametrize composite operators via operators
which are not total derivatives and take the sources εi to be
constants. Moreover let us parametrize the EAA via
Γk ¼

P
igiOi. From Eq. (24) we obtain

Zð−1Þ
ia ð∂tZajÞOj ¼ −

1

2

1

Γð2Þ
k þ Rk

· ðOð2Þ
i Þ · 1

Γð2Þ
k þ Rk

· ∂tRk:

ð34Þ

Now let us write the flow equation (2) for Γk ¼
P

igiOi:

X
j

βjOj ¼
1

2

1P
jgjO

ð2Þ
j þ Rk

· ∂tRk:

Taking a derivative with respect to gi we obtain
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X
j

∂giβ
jOj ¼ −

1

2

1

Γð2Þ
k þ Rk

·Oð2Þ
i ·

1

Γð2Þ
k þ Rk

· ∂tRk:

ð35Þ
Comparing (34) to (35) one concludes that γba ¼ ∂gaβ

b

equals Zð−1Þ
ac ∂tZcb. However, let us note once again that, for

the above argument to go through, we had to neglect some
total derivative operators whose contribution might be
important. Finally more work is needed to spell out the
possible geometrical interpretations of our arguments; we
hope to come back to these issues in the future.

IV. SCALING SOLUTIONS AND COMPOSITE
OPERATORS

In this section we consider approximate solutions of the
fixed point equation and how one can use them to estimate
the anomalous dimensions of various operators at the fixed
point. We parametrize composite operators as functions of
the field but not of its derivatives. As we shall see, this
choice can be put in one-to-one correspondence with results
known within the LPA0 truncation and we shall comment
them in view of the discussion of the previous section.
Scaling solutions are (approximate) solutions of the flow

equation which include infinitely many couplings; in the
LPA0 case they are generic functions of the field. In order to
find such solutions one has typically to solve a differential
equation coming from the flow equation and integrate it
numerically. More details are given in Sec. IVA. In Sec. IV B
we discuss some simple solutions of the composite operator
flow equation. In Appendix B we consider some numerical
results obtained in the literature within the LPA0 truncation
for some statistical systems at criticality and discuss them in
connection to our framework.

A. Scaling solutions

We consider a scalar field theory and limit our discussion
to the so-called LPA0 truncation, where we take into
account up to two derivatives of the field and a generic
potential including the wave function renormalization:

Γk½φ� ¼
Z �

Zk

2
∂μφ∂μφþUkðZ1=2

k φÞ
�
:

Let us denote ~ϕ ¼ Z1=2
k ~φ. The flow equation for the

potential in dimensionless variables is given by (throughout
this work we consider the optimized cutoff [8]) [26,27]

∂t
~Uk ¼ −d ~Uk þ

d − 2þ η

2
~ϕ ~U0

k þ cd
1 − η

dþ2

1þ ~U00
k

;

η ¼ −
∂tZk

Zk
¼ cd

ð ~U000
k Þ2

ð1þ ~U00
kÞ4

; ð36Þ

where c−1d ¼ ð4πÞd=2Γðd=2þ 1Þ and the field has been set
to its minimum in the equation for η. The prime denotes a

derivative with respect to the argument. We employed the
optimized cutoff in order to derive Eq. (36) without
resorting to a numerical integration of the flow equation.
We shall not study the regulator dependence of Eq. (36) nor
shall we consider any optimization procedure. Regarding
these issues, we refer the interested reader to the literature
[7–11].
As far as the results obtained with this truncation are

concerned the situation is the following: some of the critical
exponents are already in (relative) quantitative agreement
with exact or best values available while others are less
precise. The anomalous dimension η has usually a rather
large error. This is a known shortcoming of the LPA0 trun-
cation which can be overcome with more general Ansätze
and/or employing more refined truncation schemes as those
developed in [21,28].
It is worth to observe that the derivation of the flow

equations (5) and (33) is very similar to the linearization of
the flow equation itself and thus to the linearized RG and
the associated critical exponents. Let us spell out the rela-
tion between the equation of eigenperturbation of the RG
and composite operators for the LPA0 truncation. Let
δ ~Uk ¼ ðk=k0Þ−θδv be the eigenperturbation, then the lin-
earized form of the equation reads

−θδ ~Uk ¼ −dδ ~Uk þ
d − 2þ η

2
~ϕδ ~U0

k

− cd
1

1þ ~U00
k

δ ~U00
k

1 − η
dþ2

1þ ~U00
k

: ð37Þ

It is thus clear that under our approximations—i.e.
composite operators are parametrized as functions of the
field—the above flow equation for δ ~Uk and Eq. (33) for Di
are the same provided that we make the identification
d − θi ¼ λi. This relation can be extended to any truncation
with the following caveat. The linearized flow equation for
an eigenperturbation δ ~Uk coincides with the one obtained
for composite operators once we restrict the composite
operator source ε to be constant, hence neglecting total
derivatives terms. Note that this implies by no means that
such operators are not important. As we shall see in the
following, among these total derivative operators we will
find the descendant operators of the field φ as well as other
interesting scaling operators. Moreover in a nonperturba-
tive setting it is difficult to argue whether or not an operator
gives a sizable contribution.

B. Some simple composite operators

In this section we discuss some exact solutions to Eq. (5)
and the associated equivalent relations. Let us recall that we
express a renormalized composite operator ½Oi� via the fol-
lowing generic parametrization: ZijOiðZ1=2

k φÞ ¼ ZijOjðϕÞ;
a simple example was given in Eq. (7).
To begin with we note that there are two very simple

solutions to Eq. (5). The first solution is the identity
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operator which does not require any renormalization and as
such its anomalous dimension is zero. This solution cor-
responds to a constant solution of Eq. (37) with eigenvalue
θ ¼ d so that its anomalous dimension, given by d − θ, is
simply zero. The second solution is proportional to the field
ϕ itself. In this case Zij ¼ 1=Z−1=2

k implying that the ano-
malous dimension of the field operator is −Z−1

k ∂tZk=2 ¼
η=2 as expected. In terms of Eq. (37) the solution is
proportional to ~ϕ; in this case the last term of (37) vanishes
and the eigenvalue problem is solved by θ ¼ ðdþ 2 − ηÞ=2
implying λ ¼ d − θ ¼ ðd − 2þ ηÞ=2, this being the full
scaling dimension of the field operator.
Along the same lines there are some further operators

worth commenting which are solutions of Eq. (5). The
operatorOΔn ≡ ZOΔn

Δnϕ, where Δn is the nth power of the
Laplacian, is a solution of Eq. (5) with ZOΔn

¼ 1=Z1=2
k .

Indeed once again we observe that the right-hand side of (5)
vanishes due to the fact that OΔn is made of a single field
φ. The anomalous dimension of this operator is thus
γOΔn

¼ η=2 and the full scaling dimension is simply
2nþ ðd − 2þ ηÞ=2. This suggests to identify the operators
OΔn with the descendants of the field φ of a hypothetical
conformal field theory (CFT) describing the fixed point (as
we discuss in Appendix B 1, in d ¼ 2 these operators are
secondary operators but are not all of them).
Further consistent solutions for the flow equation for

composite operators can be constructed using derivative
operators. In particular we want to show that if [O] is a
renormalized composite operator, i.e. an exact solution of
Eq. (5), then Δ½O� is also a renormalized composite
operator. To see this we have to check that Δ½O� is also
an exact solution of Eq. (5). This can be noted as follows: it
is convenient to integrate by parts the source-dependent
term of the EAA, namely, ε · Δ½O� ¼ Δε · ½O�. If we call
ε̂≡ Δε, we notice that the flow equation for Δ½O� is
nothing but the flow equation for [O] written via the new
source ε̂. Since the solution [O] is valid for arbitrary
sources and therefore also for ε̂, we have that Δ½O� is a
solution of the flow equation as well.12 In Appendix B we
discuss these operators in connection with the results known
for some critical models in two and three dimensions.
Finally in the LPA0 truncation there is always an eigendir-

ection associated to the derivative of the dimensionless
potential, ~U0, with critical exponent θ ¼ ðd − 2þ ηÞ=2;
see [29,30] for a general discussion including both the
Wilsonian action and the EAA. Then the scaling dimension
of ½U0� isΔ½U0� ¼ ðdþ 2 − ηÞ=2whose anomalous part reads
γ½U0� ¼ −η=2. In our framework we can consider the
“equation of motion” operator

OδΓk
¼ δΓk

δφ
½φ� ¼ Z1=2

k
δΓk

δϕ
½ϕ�:

In order to check thatOδΓk
is an exact solution of Eq. (5) we

note that the right-hand side of (5) can be found directly from
the left-hand side using the known running of the EAA.
Indeed we observe the following:

∂t

�
ε ·

δΓk

δφ
½φ�

�
¼

�
ε · ∂t

δΓk

δφ
½φ�

�

¼ ε ·

�
−
1

2
Gk ·

δ3Γk

δφ3
½φ� ·Gk · ∂tRk

�
:

The last term of this expression is exactly the right-hand side
of Eq. (5) for the operator OδΓk

. This means that no other
operator mixes withOδΓk

, which is thus an exact solution of
the equation. In particular we note thatZ1=2

k can be identified
with the mixing matrix Zij and that the asso-
ciated anomalous dimension is γOδΓk

¼ −η=2. The scaling
dimensionofOδΓk

isΔOδΓk
¼ ðdþ 2 − ηÞ=2. Let us note that

this operator is clearly redundant since the redefinition
φ → φþ ε of the field can eliminate this term from the
effective action:

Γk½φþ ε� ¼ Γk½φ� þ ε ·
δΓk½φ�
δφ

:

Being redundant this operator shouldnotbe considered in the
spectrum of observable scaling operators; see also [30]. In
Appendix B we report some examples where such an
operator is identified within the LPA0 truncation.
However, the identification of this redundant operator
may not be so straightforward in other truncations.

V. CONCLUSIONS AND OUTLOOK

In this work we have considered the dependence of the
EAA on the floating normalization point μ at which the
boundary condition is imposed. Particular attention has
been paid to the renormalization of composite operators. In
Sec. II we have described the general features of the flow
equation for the EAA generalized to include sources for
composite operators. In Sec. III we have shown that the
EAA satisfies a sort of Callan-Symanzik equation which
entails the invariance under changes of the floating nor-
malization point μ. This mechanism unveils how anoma-
lous scaling shows up in the EAA formalism. We have also
shown how the scaling of composite operators is related to
critical exponents. Finally, in Sec. IV we have considered
the local potential approximation in view of our discussion
and we have found some simple solutions to the flow
equation for composite operators. It turns out that one can
systematically identify a redundant operator present in the
spectrum of eigenperturbations (as already observed in
[30]) and it is possible to straightforwardly extend the

12Note that it is nontrivial to build composite operators out of
other composite operators. A simple example is given by φ which
is possibly the simplest “composite” operator. In particular, given
φ, simple products like φn are not solutions of Eq. (5), whose
right-hand side induces new operators via the mixing.
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solutions of the equation to include a class of total deri-
vatives operators which we identify with the descendants of
primary operators of the fixed point theory.
The invariance under changes of the floating normali-

zation point μ makes explicit an intriguing link between
standard quantum field theory and the FRG approach.
Indeed, when the scale k is lowered to zero one is left with
the standard effective action which satisfies the Callan-
Symanzik equation. In the FRG scheme all the couplings
compatible with the symmetries of the system are generated
and so the Callan-Symanzik equation involves, in principle,
infinitely many couplings whereas more common schemes
involve just a finite set of couplings (working with a
renormalizable theory). The latter possibility, perturbation
theory being a particular solution of the flow equation, can
be recovered provided one solves the flow iteratively as
outlined in [31–34]. We observe that in order to solve the
flow equation for the EAA a truncation must be chosen and
thus, in practice, one cannot account for all the couplings
generated by the flow. We feel that this link between a
Wilsonian type of RG and the Gell-Mann and Low
formulation goes in the direction outlined in [4].
We also remark that, in principle, our analysis tells that

one is not allowed to discard total derivative operators in
the spectrum of eigenperturbations. Depending on the cases
these operators may or may not give important corrections
to the scaling dimensions of fixed point scaling operators.
However, in a nonperturbative setting, as the FRG is, we
think that one should be aware of these possibly important
contributions.
Finally it may be interesting to consider some particular

operators like the stress energy tensor (see [35,36] for a
FRG perspective) or nonlocal operators like Wilson loops
or Polyakov loops (see [10]). This goes however beyond
the scope of the present work. Possibly the flow equation (5)
could be applied in gauge theory to test the approximate
restoration of Becchi-Rouet-Stora-Tyutin (BRST) sym-
metry in the limit k → 0. In this case one needs to evaluate
the BRST composite operators by coupling them to a
(Grassmannian odd) source and following the flow down to
k → 0. Finally, given the flexible nature of the EAA
formalism, we feel that the reasonings outlined in this
work may be applied to many areas of interest.
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APPENDIX A: ε2 TERMS

So far we have been studying the flow of the modified
action Sþ ε ·O up to first order. Multiple insertions of the
composite operators can be obtained by several functional
differentiations with respect to the source ε. Thus it is worth

studying also the RG flow of higher-order terms in ε. Let us
recall

Γ½φ; ε� ¼ J · φ −W½J; ε�; φ ¼ δJW;

δεΓ½φ; ε� ¼ −δεW½J; ε�:

If we take a further functional derivative, we obtain

δ2εΓ½φ; ε� ¼ −
δ2W½J; ε�

δε2
−
δ2W½J; ε�
δJδε

·
δJ
δε

¼ −
δ2W½J; ε�

δε2
−
�
δ

δε

δW½J; ε�
δJ

�
·
δJ
δε

¼ −
δ2W½J; ε�

δε2
−
�
δ

δε
φ

�
·
δJ
δε

¼ −
δ2W½J; ε�

δε2
:

In the last line we used the fact that φ ¼ δJW½J; ε� is a given
function and thus it has no dependence on the source ε. We
see that crucial information regarding the insertion of two
composite operators can be obtained straightforwardly
deriving twice with respect to ε. Let us consider the flow
equation:

∂t

�
δ2

δε2
Γk½φ; ε�

�
¼

�
−
1

2
Gk ·

δ2Γð2Þ
k

δε2
· Gk · ∂tRk

þGk ·
δΓð2Þ

k

δε
·Gk ·

δΓð2Þ
k

δε
· Gk · ∂tRk

�
:

ðA1Þ

If we expand the EAA in terms of ε, we obtain an
expression of the following form:

Γk½φ; ε� ¼ Γk½φ� þ
Z
x
εðxÞOkðxÞ

þ
Z
x;y

εðxÞεðyÞBkðx; yÞ þOðε3Þ: ðA2Þ

The flow equation (5) gives us the running ofOk appearing
at the first order in ε. The term Bk in (A2) can be
determined from Eq. (A1). Let us note that if we set

Γk½φ; ε� ¼ Γk½φ� þ
Z
x
εðxÞOkðxÞ

þ
Z
x
εðxÞ2BkðxÞ þOðε3Þ;

the vertex in the first term of (A1) would amount just to
a contact term, i.e. a term proportional to the Dirac delta.
As such we could discard this term at separate points.
However, it is important to stress that most likely it is
crucial to keep Bkðx; yÞ as a semilocal (as opposed to local)
term. A simple example of this is given in [15] where the
author considers the Wilsonian action keeping track of the
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source J conjugate to the field. In order to obtain the correct
two-point correlation function from two J differentiations,
it is crucial to keep a semilocal term at order J2.
Equation (A1) is potentially the starting point to study in

a nonperturbative setting the correlation functions with two
insertions of composite operators. In turn this implies the
possibility of studying the operator product expansion
coefficients along the lines of [37–40]. In this sense the
study of the OðεÞ terms is a first step in this direction.

APPENDIX B: LPA AND COMPOSITE
OPERATORS

In this Appendix we consider the results of the LPA0
truncation and compare them with the exact results coming
from CFT. In particular we shall consider the critical and
tricritical Ising model in two dimensions and the Ising
model in three dimensions. According to the discussion of
Secs. III B, III C and IVA in the LPA0 truncation for
composite operators we are led to identify the full dimen-
sion of the scaling operators λi as d − θi, where θi is a
critical exponent. It is thus straightforward to use the
known results regarding critical exponents to deduce
anomalous dimensions of composite operators under these
approximations. We shall consider the results of Ref. [29]
whose methods allow one to find several eigendirections in
a systematic manner; see also [41].

1. Critical and tricritical Ising models

In two dimensions, by means of CFT techniques [42], it
has been possible to exactly compute the scaling dimension
of the operators in the theory. In particular the critical and
tricritical Ising models correspond to the minimal models
having central charge c ¼ 1 − 6=ðmðmþ 1ÞÞ with m ¼ 3
and m ¼ 4. In the following we compare the exact results
with our approximations and comment on the results. The
correspondence between composite operators of the
Landau-Ginzburg Hamiltonian and the scaling fields of
the CFT is due to Zamolodchikov [43].
Let us consider the Ising model. Table I shows the first

four scaling operators (the identity operator is not shown)
found using Eqs. (33) and (37). As already anticipated the
estimate for the anomalous dimension of the field has a

large error. This is a known feature of the LPA0 truncation
and better results can be obtained by employing a more
general kinetic term of the form KðφÞ∂φ∂φ [44].
Given that the anomalous dimension has such an error

one may expect that also the critical exponents, and thus the
anomalous dimension of composite operators, are not
precise. Actually this depends on which quantity we
consider: certain quantities converge to relatively precise
values already in simple truncations while others need more
refined approximations. In the present case we observe that
the anomalous dimension of ½φ2� is close to its correct
value. The operator that we denoted ½φ3� is simply the
redundant operator OδΓk

and as such it does not appear
among the physical scaling operators.
Note that the arguments outlined in Sec. IV B allow us to

easily identify some of the descendant operators associated
to ½φ� and ½φ2�. More precisely our arguments identify the
secondary operators which are not quasiprimaries (these are
derivative operators of the type L−1Φ, where Ln are the
generators of the Virasoro algebra and wherewe omitted the
antiholomorphic generator). Other operators, like L−2ϕ2;2,
should be present in the spectrum of eigenoperators and in
principle should be seen. Unfortunately, the other operators
present in the spectrum of Eq. (37) have scaling dimensions
which are not easily put in correspondence with CFT
results. As noted in [44] this may be due to the fact that
higher-dimension operators correspond to operators having
also many derivatives, which are not present in our
truncation. Ideally, solving the flow equation for composite
operators one should find the spectrum of scaling dimen-
sions known from CFT together with the associated
degeneracy at each level. Of course this is an incredibly
hard task, but one can aim to obtain approximate results.
We shall now consider a similar analysis for the tricritical

Ising model. The exact values are compared with the results
of the LPA0 truncation in Table II. We observe that the
anomalous dimension of ½φ� is by about a factor of 2 bigger
than the exact result; a more refined computation yields
much better predictions [44]. We observe that besides η also
the anomalous dimension of ½φ2� is rather poor, while those
for ½φ3� and ½φ4� are closer to the exact values. Once again

TABLE I. Scaling dimension in the critical Ising model. The
first column indicates the composite operator whose exact scaling
dimension is reported in the second column. The third column
lists the scaling dimensions obtained within the LPA0 using the
critical exponents computed in Ref. [29].

Operator Exact LPA0

½φ� ∼ ϕ2;2
1
8
¼ 0.125 η

2
¼ 0.22

½φ2� ∼ ϕ1;3 1 1.05
½φ3� 1.78
½φ4� 2.68

TABLE II. Scaling dimension in the tricritical Ising model. The
first column indicates the composite operator whose exact scaling
dimension is reported in the second column. The third column
lists the scaling dimension obtained within the LPA0 using the
critical exponents computed in Ref. [29].

Operator Exact LPA0

½φ� ∼ ϕ2;2
3
40
¼ 0.075 η

2
¼ 0.156

½φ2� ∼ ϕ3;3
1
5
¼ 0.2 0.33

½φ3� ∼ ϕ2;1
7
8
¼ 0.875 0.84

½φ4� ∼ ϕ3;2
6
5
¼ 1.2 1.32

½φ5� 1.84
½φ6� ∼ ϕ3;1 3 2.45
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better values can be found by considering a more refined
truncation which includes mixing with derivatives [44].
The operator ½φ5� can be identified with the redundant
operator OδΓk

. The discussion regarding descendant oper-
ators that we did for the critical Ising model applies also in
this case.

2. Three-dimensional Ising model

The three-dimensional Ising model is a paradigmatic
application of the renormalization group and has been
studied via various truncations in the FRG literature. These
studies allowed a rather precise determination of the
anomalous dimension and the critical exponents [45–49].
In this section we use the results of Ref. [29] to obtain the
anomalous dimension of composite operators following the
discussion of Sec. III B. The results are shown in Table III
where we compare the LPA0 truncation with the rigorous
results found by conformal bootstrap techniques [50–53].13
As in the other models that we have discussed, the

anomalous dimension of the field is poorly determined
under our approximations. We note that ½φ2� is relatively
close to the exact value while for the other operators the
results are not so precise. The operator ½φ3� can be
identified with the redundant operator OδΓk

. Being redun-
dant this operator must be discarded and indeed it finds no
counterpart in the part of Table III dedicated to the
bootstrap approach. Furthermore the result for ½φ6� has a

large error compared to the bootstrap results [51,53].14

Moreover the arguments of Sec. IV B allow us to easily
upgrade our solution to include the descendants of the
fields in Table III. However, given the difficulties encoun-
tered with the two-dimensional Ising model, we feel that
one should take the identifications of Table III with a grain
of salt, especially regarding ½φ6�.
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