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It is generally believed that, when matter collapses to form a black hole, the complete information about
the initial state of the matter cannot be retrieved by future asymptotic observers, through local
measurements. This is contrary to the expectation from a unitary evolution in quantum theory and leads
to (a version of) the black hole information paradox. Classically, nothing else, apart from mass, charge, and
angular momentum is expected to be revealed to such asymptotic observers after the formation of a black
hole. Semiclassically, black holes evaporate after their formation through the Hawking radiation. The
dominant part of the radiation is expected to be thermal and hence one cannot know anything about
the initial data from the resultant radiation. However, there can be sources of distortions which make the
radiation nonthermal. Although the distortions are not strong enough to make the evolution unitary, these
distortions carry some part of information regarding the in-state. In this work, we show how one can
decipher the information about the in-state of the field from these distortions. We show that the distortions
of a particular kind—which we call nonvacuum distortions—can be used to fully reconstruct the initial
data. The asymptotic observer can do this operationally by measuring certain well-defined observables
of the quantum field at late times. We demonstrate that a general class of in-states encode all their
information content in the correlation of late time out-going modes. Further, using a 1þ 1 dimensional
dilatonic black hole model to accommodate backreaction self-consistently, we show that observers can also
infer and track the information content about the initial data, during the course of evaporation,
unambiguously. Implications of such information extraction are discussed.
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I. INTRODUCTION: BLACK HOLE
INFORMATION PARADOX

Evaporation of black holes, for many decades, has caused
conceptual discomfort for the otherwise very successful
quantum theory. The most basic and fundamental feature of
the standard quantum theory, namely unitary evolution, is
seemingly threatened if one tries extrapolating the results
obtained at the semiclassical level [1]. Insights of Bekenstein
[2,3], suggested that the black holes must have an entropy
proportional to the area of their event horizons, for the
second law of thermodynamics to work. Hawking [1] proved
that quantum effects could lead to the evaporation of the
black hole which involves (i) a radiation of positive energy,
(nearly) thermal spectrum of particles which an asymptotic
observer can detect and (ii) a flux of negative energy flowing
into the black hole decreasing its mass. So the mass lost by
the black hole appears in the form of energy of the thermal
radiation. Although this effect completes the thermodynamic
description of black holes, yet such a process, together with
other properties of black holes, appears to violate the
standard unitary quantum mechanics [4].
The particles in the outgoing flux, received by the

asymptotic observer, remain entangled with the particles

in the ingoing flux. The resulting Hawking radiation is
thermal, precisely because we trace over the modes which
entered the horizon. By such a process the black hole
shrinks, losing the mass in the form of Hawking radiation.
However, once the black hole completely evaporates by this
process, there is an apparent paradox. At the end, there is
nothing left for the outgoing particles to remain entangled
with; yet they are in a mixed state since at no stage of the
evaporation their entanglement with the interior modes
was explicitly broken. This process, wherein a pure state
evolves into a mixed state, is contrary to the standard
unitary quantum evolution.
There is also a related issue of the information content of

the matter which had undergone the collapse to form the
black hole or even matter which falls into the black hole
after it is formed. No-hair conjectures [5] suggest that no
other information, apart from the mass, charge and angular
momentum, of the matter that enters the event horizon
can be available to the outside observers, at any stage.
Therefore, all other information about matter crossing the
horizon would end up on the singularity and get destroyed.
Thus, all the information about the initial state of matter
which is falling into the horizon (other than those captured
by mass, charge or angular momentum) is not coded in the
Hawking radiation and is not available to the asymptotic
future observers. This part of information, which ended up
in singularity, is lost forever. Such a situation seems to
require nonunitary evolution [6].
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An initial resolution of the paradox stemmed from the
idea that we might be making an error in trusting the
semiclassical Hawking process all the way to the complete
evaporation of the black hole. In principle, when the black
hole is large enough, semiclassical description should work
fine. But as the black hole becomes smaller and smaller,
the curvature at horizon begins to rise and at very high
curvatures the quantum nature of gravity must become
important, and the semiclassical approximation must break
down. Therefore, quantum gravity—rather than the semi-
classical physics—should govern the final moments of the
black hole evaporation. One then expects an overriding
correction to the semiclassical description Oðl2PÞ which
makes it nonthermal, and only becomes dominant when the
black hole becomes of the Planck size. It must be noted that
there exist many other sources of distortions to the thermal
Hawking radiation [7], apart form the quantum gravity
induced corrections. These nonthermal corrections can, in
principle, store some information. However, it can be
shown [4] that, since all such correction terms are sub-
dominant in nature, none of these can help in making the
theory unitary. Only corrections of Oð1Þ can provide a
possibility for unitary description, and we could identify no
distortions of that kind. Thus, in its new avatar the paradox
seems more robust as far as restoring unitarity to the
quantum evolution is concerned.
In the literature, there are many different proposals to

handle this issue. There are suggestions advocating radical
modification to the unitary quantum theory itself, to
accommodate nonunitary processes [8]. Such modifica-
tions to the unitary quantum theory have also been argued
for, using some other conceptual considerations [9,10].
However, these nonunitary quantum evolution models can
also be applied to many other physical scenarios [11]
where the predictions will be at variance from the standard
unitary theory, constraining the models. There are also
suggestions that the black hole evaporation must halt at
the Planck level and leave behind a Planck size remnant at
the end of the process. However, irrespective of the size,
mass and other classical features of the black hole, formed
initially, the end product always has to be a Planck size
remnant. This remnant should house all the information,
which the outgoing modes lack, in order to completely
specify the state. Thus the complete description of a
remnant and the Hawking radiation should be a pure state.
This looks like a viable option. Still, it is not clear how a
Planck size remnant could accommodate the vast land-
scape of varying initial configurations which could have
formed the initial black hole. Other interesting sugges-
tions include pinching of the spacetime [12] which could,
in principle, restore faith in the essential tenets of both
classical gravity and the quantum theory. However, the
implication of such pinching effects for other types of
horizons (e.g. Rindler, de Sitter) remains to be understood
satisfactorily.

So we can summarize the crux of the information
paradox as follows. When the black hole evaporates
completely without leaving any remnant behind, one is
justified in assuming that the entire information content
of the collapsing body gets either destroyed or must be
encoded in the resulting radiation. However, remnant
radiation in this process is (dominantly) thermal, which
is thermodynamically prohibited to contain much of the
information and also incapable of making the theory
unitary. Therefore, most of the information content of
the matter which made the black hole in the first place
is not available to the future asymptotic observers.
In this work, we argue that this version of the paradox—

concerning the information content of the initial data—
stems from a hybrid quantum/classical analysis of a process
which is fully quantum mechanical in nature. That is, it
arises from an artificial division between a quantum test
field and the classical matter which collapses to form a
black hole. When an event horizon is formed, the quantum
field residing in its vacuum state at the beginning of
collapse, gradually gets populated, erasing the black hole
through a negative energy flux into the horizon with a
corresponding positive energy flux appearing at infinity as
thermal radiation [13,14]. However, the matter which forms
a black hole in the first place, is also fundamentally
quantum mechanical in nature and should follow a quan-
tum evolution. This, we believe, holds the key to the
resolution of the paradox. We expect that the classical
description to be true, at lowest order, leading to formation
of an event horizon. However, the information that the
collapsing material was inherently quantum mechanical in
nature (e.g. a coherent state of the field which is collapsing)
should not be completely ignored in studying this process.
The matter which forms the black hole, if treated quantum
mechanically, will populate its modes at future asymptotia
nonthermally, in a manner which depends on its initial
state. In this paper, we demonstrate the presence of this
effect at the semiclassical level. The result indicates that the
no-hair theorems will be superseded at the full quantum
gravity level.
Previously it has been shown that the particle content

of the ingoing field modes makes the resulting Hawking
radiation to be supplemented by a stimulated emission.
Therefore, the radiation profile becomes nonthermal and
thus capable of storing information. There have been
studies (see e.g.,[15–22]) regarding information content
of corrected spectrum, form the point of view of informa-
tion theory (Von Neumann entropy, channel capacity, etc.).
We, however, do not commit to a particular specification of
the information content but concentrate on the possibility of
explicit reconstruction of the initial state of the field from
the resultant radiation in a collapse process. Neither do we
make an attempt to restore unitarity by such a stimulated
emission process. Our focus will be to reconstruct the initial
data to the extent possible when the Hawking radiation has

LOCHAN, CHAKRABORTY, and PADMANABHAN PHYSICAL REVIEW D 94, 044056 (2016)

044056-2



a nonthermal part. We show that whenever a field which
enters the horizon is in a nonvacuum configuration, it ends
up building correlations in the outmoving modes. We
explicitly construct an operator which measures this build
up of correlation in the frequency space which returns a
nonzero expectation value only when the in-state is not a
vacuum state. This correlation operator measures the
departure of the mode from being in a thermally populated
state, which has zero correlation. The diagonal elements of
this correlation operator give the spectral profile of the
emission of the black hole. We use the modified field
correlation spectrum of the field to extract the initial data.
We will see that the symmetry characteristics of the

initial state will determine whether asymptotic observers
can reconstruct the initial state completely or partially.
Therefore, analysis of the allowed set of symmetries
present in the characterization of the initial state will play
a pivotal role in the recovery of the initial information
content, just from the spectrum function when the black
hole is evaporated completely. Recently, it has been shown
[23] how to reconstruct a qubit state which is thrown into
a black hole by measuring changes in the black hole
characteristics in such a process. Our scheme is somewhat
similar in spirit, but calculates the projection of states in an
infinite dimensional Hilbert space. Further, we do not have
to rely on measurements of the black hole characteristics
prior to and after disturbing it.We just ask every observer to
report the spectral and correlation profiles they measure,
once the black hole has evaporated (practically) com-
pletely. The spectra with a particular kind of distortion,
which we call nonvacuum distortion, will contain the
quantum correlations from which we can extract the
information [24] about the initial state.
In the semiclassical approximation, the formation of the

classical event horizon is unavoidable, since the part
forming the black hole follows classical equations of
motion. With the presence of the horizon, pure to mixed
state transition is also imminent. Thus a part of the field
modes always remain hidden from the asymptotic observer,
giving rise to a mixed state description. We do not attempt
to purify the state through these nonvacuum distortions.
Instead, we try to test if the nonvacuum distortions can tell
more about the initial quantum data over and above the
classical wisdom permitted by no-hair theorems. We show
that, at the semiclassical level itself, there are additional
quantum hairs in the resulting radiation profile. At this
stage we should emphasize that we are not focusing on the
nonthermal distortions originating from the vacuum itself,
but on the part which is originating from nonvacuum
component of the quantum state. As discussed earlier
[7,25], there can be various sources of nonthermal correc-
tions, even when the initial state is a vacuum. We dub
the total Hawking radiation endowed with all these cor-
rections, as the vacuum response. We show that if there
are corrections over and above the vacuum response,

information regarding the initial sector of Hilbert space,
which formed the black hole, can be extracted.
Information in an initial state of a collapsing field

carrying nonzero stress energy can be stored using a
superposed state in the Hilbert space. We will be using
initial nonvacuum state of the form:

jΨiin ¼
Z

∞

0

dωffiffiffiffiffiffiffiffiffi
4πω

p fðωÞâ†ðωÞj0iin: ð1Þ

This is an excited state which is a superposition of one-
particle states. The function fðωÞ completely encodes the
information about the initial state and the idea is to
reconstruct this function from the spectrum of the black
hole radiation received by asymptotic observers.
We will first show how this reconstruction of initial state

works, for a collapse model forming Schwarzschild black
hole in 3þ 1 dimension as a quasistatic process. Thus, we
first consider the case in which a spherically symmetric
scalar field is undergoing a collapse process to form a black
hole. The complete quantum analysis of this process will
require the study of the quantum evolution of the field as
well as that of the “quantum geometry” and the back-
reaction. However, lack of good control over either the
quantum sector of the geometry or the backreaction in
3þ 1 dimension, compels us to adopt a semiclassical
approach, where we take the matter field to be described by:

ϕ̂ðxÞ ¼ ϕ0Iþ δϕ̂; ð2Þ

where ϕ0 is the part which dominantly describes the
evolution of geometry. That is,

hΨjTμν½ϕ�jΨi ∼ hΨjTμν½ϕ0�jΨi

will act as the source for the geometry and will lead to
the gravitational collapse. We can, alternatively, think of a
process in which some of the highly excited modes ϕ0 of
the field, acting as classical matter, collapse to form a black
hole, while some other modes δϕ̂ evolve quantum mechan-
ically as a test field in this background. These quantum
modes are populated, i.e., such modes will be in a non-
vacuum state of the field and carry some small amount of
energy into the black hole. Classically, the test field modes,
once they cross the horizon, will make the black hole larger
and then will become inaccessible to future asymptotic
observers. However, quantum mechanically, we show that
such a process will lead to a nonvacuum distortion in the
late time Hawking radiation which will make the recovery
of information about the initial quantum state possible.
The late time radiation will have a frequency space
correlation which becomes nonzero if the initial state
was not a vacuum.
We will also discuss a 1þ 1 dimensional dilatonic black

hole solution, first studied by Callan-Giddings-Harvey-
Strominger [32] which is famously known as the CGHS
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model. This model includes the effect of the backreaction, in
which the problem of forming a black hole with quantum
matter as source can be solved exactly. Therefore, in this
model, we will be able to not only account for the back-
reaction of the test field modes δϕ̂ but also recover the
information about the field ϕ0 which forms the black hole
itself. Further, being a conformally flat spacetime, the
Bogoliubov coefficients can be calculated exactly and hence
the information content in the outgoing modes can be
obtained at any stage of evolution, not only at late times.
Thus, we can track the loss of information, if any, during the
course of evolution and evaporation.
In this paper, we discuss a pure state undergoing a

collapse, which forms a black hole. (The case in which the
initial data is a mixed state, e.g. a thermal state, will be dealt
with separately elsewhere). We identify a special class of
initial states whose entire information can be retrieved just
from the radiation correlation profile of the black hole,
without requiring us to analyze other higher correlations
of the outgoing modes. In [24] we showed that if we only
focus on the spectrum (and not on the correlations), the
departure from thermality fixes the expectation values of a
large set of operators. There is also some special set of
initial symmetries which encodes the in-state completely in
the distorted spectrum. Expectedly, the correlations carry
much more information than the spectrum, are more
effective and allows recovery of the complete information
about the initial state for a larger class of initial states.
A more complete treatment of the collapse scenario will

involve studying a full quantum gravity analysis. However,
since such a theory is still missing, we can introduce
another level of sophistication by introducing the back-
reaction in to the analysis. For the purpose of demonstra-
tion, we will be using a dilatonic CGHS black hole in 1þ 1
dimension to accommodate the backreaction. The case of
dilatonic black holes can also be promoted gradually
toward a full quantum analysis using corrections at various
loop orders in the spirit of [26], which we will pursue
elsewhere.
In Sec. II and Sec. III, we discuss the characterization of

the initial state wewill be dealing with in this paper. Wewill
also briefly discuss quantum field modes in a spherically
symmetric black hole collapse scenario. These modes will
be used to specify the nonvacuum state of the test field in
the spherically symmetric case. In Sec. IV, we discuss the
resulting correlation spectrum from such nonvacuum,
single particle states. We will see that the correlation profile
stores information about the initial data. We also show
that the specification of the symmetries of the initial
configuration encode more information about the state in
the resultant radiation. For some particular states we have
retrieved complete information as well.
After setting up the general framework and demonstrat-

ing the concepts in a semiclassical evaporation model of a
Schwarzschild black hole, in which the backreaction is

ignored, we turn to the inclusion of backreaction in the later
sections. Since accommodating the backreaction in the
3þ 1 black hole formation is technically very difficult, we
go to lower dimensions to get a handle on the backreaction
analytically. For this purpose we consider the evaporation
of a 1þ 1 dimensional dilatonic black hole solution. We
will briefly describe this model in Sec. V, and also deal with
the semiclassical evaporation in the context of this model,
just to connect up with the 3þ 1 results. In Sec. VI, we will
show how the concept of the nonvacuum distortion can be
utilized to harness information about the matter falling into
the black hole, which normally would have been invisible
to the asymptotic (left-moving) observer. We discuss the
class of symmetry characteristics of the initial state, for
which such an asymptotic observer can reconstruct the
initial data. In Sec. VII, we will discuss the implication of
our scheme of retrieval of information and the scope for
further generalization.

II. INITIAL STATE OF SPHERICAL COLLAPSE

The case we discuss first is that of a real scalar quantum
field living in a collapsing spacetime, which eventually
would harbor a black hole. The initial state of the field is
specified at the past null infinity (J −). The geometry at J −

is Minkowski-like and the corresponding modes describing
the quantum field will be the flat spacetime modes. For the
flat spacetime free-field theory, the infalling field decom-
position is given as

ϕ̂ðxÞ ¼
Z

d3kffiffiffiffiffiffiffiffiffi
2ωk

p ðâkeik·x þ â†ke
−ik·xÞ; ð3Þ

¼
Z

d3kϕ̂kðtÞeik·x; ð4Þ

where

ϕ̂kðtÞ ¼
ðâke−iωkt þ â†−ke

iωktÞffiffiffiffiffiffiffiffiffi
2ωk

p ; ð5Þ

satisfying ϕ̂k ¼ ϕ̂�
−k for a real field. We further define

ˆ̄ϕk ¼ âke−iωkt, s.t.

ffiffiffiffiffiffiffiffiffi
2ωk

p
ϕ̂k ¼ ˆ̄ϕk þ ˆ̄ϕ

†
−k: ð6Þ

Therefore, specifying ˆ̄ϕk is equivalent to specifying ϕ̂k.
This operator describes the field configuration in terms
of the Fourier momentum modes at J −. We define an
observable of the momentum correlation by introducing the
Hermitian operator:

N̂k1k2 ≡ ˆ̄ϕk1
ˆ̄ϕ
†
k2 þ ˆ̄ϕk2

ˆ̄ϕ
†
k1

¼ âk1 â
†
k2
e−iðωk1

−ωk2
Þt þ âk2 â

†
k1
eiðωk1

−ωk2
Þt: ð7Þ
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For a massless field in a spherically symmetric configu-
ration, this operator can also measure the frequency
correlation if we suppress the angular dependence. We
will later concentrate on these cross-correlators in order to
retrieve the information about what went into the black
hole. In this section, we will study a field which undergoes
spherically symmetric (s-wave) collapse, slowly [7,25] to
form a large mass black hole (Fig. 1). The relevant positive
frequency modes describing the initial state will be

uωðt; r; θ;ϕÞ ∼
1

r
ffiffiffiffi
ω

p e−iωðtþrÞSðθ;ϕÞ ð8Þ

where Sðθ;ϕÞ gives a combination of spherical harmonics
Ylmðθ;ϕÞ. For this collapsing case we take the initial state
to be inmoving at J − which is totally spherically sym-
metric, i.e. l ¼ 0. Once an event horizon is formed through
the collapse process, the full state can again be described
using a combined description at the event horizonH and on
the future null infinity (J þ) [27,28], i.e., the field con-
figuration of spacetime can also be described using positive
and negative frequency modes compatible to J þ as well as
on the horizon H. For an asymptotic observer, the end
configuration of the field will be the out-state, described
using modes at J þ, which are again flat spacetime modes
owing to the asymptotic flatness of the model. The field
content of the out-state can be obtained using the
Bogoliubov coefficients between the modes at J − and
J þ [27,28]. The asymptotic form of these Bogoliubov
coefficients are given as [1]

αΩω ¼ 1

2πκ

ffiffiffiffi
Ω
ω

r
exp

�
πΩ
2κ

�
exp ½iðΩ − ωÞd�

× exp

�
iΩ
κ
log

ω

C

�
Γ
�
−
iΩ
κ

�
;

βΩω ¼ −
1

2πκ

ffiffiffiffi
Ω
ω

r
exp

�
−
πΩ
2κ

�
exp ½iðΩþ ωÞd�

× exp

�
iΩ
κ
log

ω

C

�
Γ
�
−
iΩ
κ

�
; ð9Þ

where Ω is the frequency of the out-modes at J þ, the
parameter κ is the surface gravity of the black hole, while C
is a product of affine parametrization of incoming and
outgoing null rays [27,28] and d is an arbitrary constant
marking the last null ray reaching J þ.
We can set d ¼ 0 through coordinate transformations on

J −. These Bogoliubov coefficients are accurate for large
values of ω. At small ω values, the expressions in Eq. (9)
will receive corrections. However, when we are interested
in the late-time radiation at future null infinity (J þ), one
can show that the dominating spectra will come from those
modes which have just narrowly escaped the black hole,
i.e., which were scattered just before the formation of the

event horizon. Such modes are the ones with high frequen-
cies at the past null infinity. So the calculations done
with Eq. (9) will be accurate to the leading order. We will
consider states which are eigenstates of the number
operator defined with the help of the in-modes, but are
not the energy or momentum eigenstates. Let the state of
the field undergoing collapse in a black hole spacetime, be
a (superposition of) single particle excitation state

jΨiin ¼
Z

∞

0

dωffiffiffiffiffiffiffiffiffi
4πω

p fðωÞâ†ðωÞj0i: ð10Þ

(We will generalize the analysis for higher excited states in
the appendixes.) We define a new function gðzÞ, using a
dimensionless variable z, which is related to the frequency
ω of mode functions at J −, as

log
~ω

C
¼ z ⇒ fðCezÞ ¼ gðzÞ; ð11Þ

to rewrite the state as

jΨiin ¼
Z

∞

−∞

dzffiffiffiffiffiffi
4π

p gðzÞâ†ðzÞj0i: ð12Þ

In order to specify the state we need to specify fðωÞ in
Eq. (10) or equivalently gðzÞ in Eq. (12). We will see how
much of information about this function can be retrieved
from the outgoing modes. Before proceeding to the black
hole emission spectra, we introduce the function

FðyÞ ¼
Z

∞

−∞
dzgðzÞeiyz; ð13Þ

which will be used to characterize the initial state in
Eq. (10) or Eq. (12). This is an equally good measure
for encoding the information about the state, as it is just a
Fourier transform of an L2 function. It is useful to construct
yet another function

~F

�
Ω
κ

�
¼ exp

�
πΩ
2κ

�
F

�
Ω
κ

�
; ð14Þ

FIG. 1. Penrose diagram for Schwarzschild collapse.
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from Eq. (13). Then one can obtain the distribution gðtÞ
from Eq. (14) as

gðzÞ ¼ 1

2π

Z
∞

−∞
d

�
Ω
κ

�
~F

�
Ω
κ

�
e−i

Ω
κze−

πΩ
2κ : ð15Þ

We note again that the one particle state is completely
specified once we have complete knowledge of the function
~FðΩ=κÞ. We will discuss the information about ~FðΩ=κÞ
available in the outgoing modes, by analyzing the fre-
quency space correlations. Such correlations turn out to be
definitive tools for the recovery of the information. We will
first discuss these correlations briefly in the next section
and then go on to study a special case of this correlation, the
self-correlation, which gives the emission profile of the
black hole, and we will show that the emission profile
develops a nonvacuum, nonthermal, part capable of storing
information.

III. INFORMATION OF BLACK HOLE
FORMATION: CORRELATION FUNCTION

Wewish to obtain the information regarding the quantum
states falling into the black hole, or more elaborately,
regarding the quantum states which formed the black hole
itself. For this purpose, we consider an observable which
measures the frequency space correlation in the outgoing
modes. The annihilation operator b̂Ω associated with the
outgoing modes is related to the creation and annihilation
operator âω and â†ω of the ingoing mode as,

b̂Ω ¼
Z

dωðα�Ωωâω − β�Ωωâ
†
ωÞ ð16Þ

where, αΩω and βΩω are the Bogoliubov coefficients. Now
following Eq. (7), the frequency space correlation for the
outgoing modes turns out to yield

N̂Ω1Ω2
¼ b̂†Ω1

b̂Ω2
e−iðΩ1−Ω2Þt þ b̂†Ω2

b̂Ω1
eiðΩ1−Ω2Þt: ð17Þ

Recently, an analogous operator was used in [29] for
studying the growth of loop corrections in an interacting
theory. For the initial state (in-state) of the field, being
vacuum j0i or one with a definite momentum jki (and
hence for all the Fock basis states), the expectation value of
this correlation operator vanishes. We now consider this
quantum correlation of the field in the outgoing modes.
The correlation operator N̂Ω1Ω2

defined in Eq. (17) for the
outgoing modes is related to those for in-moving modes
through Bogoliubov transformations, as presented in
Eq. (16). If the test field δϕ̂ starts in the in-vacuum state
j0iin, then the expectation value of the frequency correla-
tion becomes,

inh0jN̂Ω1Ω2
j0iin ¼ δðΩ1 − Ω2Þ × e

−πðΩ1þΩ2Þ
2κ

ffiffiffiffiffiffiffiffiffiffiffi
Ω1Ω2

p
4π2κ2

×

�
Γ
�
−i

Ω1

κ

�
Γ
�
i
Ω2

κ

�
e−iðΩ1−Ω2Þt þ c:c:

�

ð18Þ

which vanishes identically for the off-diagonal elements
and hence the asymptotic future observer will also measure
no frequency correlation in the outgoing modes. The
diagonal elements of this observable gives the number
spectrum. Such an observer measures the outgoing spec-
trum to be a thermal one which can be verified by
taking Ω1 ¼ Ω2.
However, when the test field starts in a nonvacuum state,

the outgoing modes will develop a frequency correlation
and the expectation of Eq. (17) will become nonzero. The
correction to the expectation of the frequency correlator
N̂Ω1Ω2

in a nonvacuum in-state leads to,

inhψ jN̂Ω1Ω2
jψiin

¼
��Z

dωffiffiffiffiffiffiffiffiffi
4πω

p fðωÞα�Ω2ω

��Z
dω̄ffiffiffiffiffiffiffiffiffi
4πω̄

p f�ðω̄ÞαΩ1ω̄

�

þ
�Z

dωffiffiffiffiffiffiffiffiffi
4πω

p f�ðωÞβ�Ω2ω

��Z
dω̄ffiffiffiffiffiffiffiffiffi
4πω̄

p fðω̄ÞβΩ1ω̄

��

× e−iðΩ1−Ω2Þt þ c:c ð19Þ

Using the expressions for αΩω and βΩω from Eq. (9), we
obtain,

inhψ jN̂Ω1Ω2
jψiin ¼

1

4π
½AðΩ1ÞAðΩ2Þ� þ c:c:�

þ 1

4π
½BðΩ1ÞBðΩ2Þ� þ c:c:�: ð20Þ

with

AðΩÞ ¼ e−
πΩ
2κ

ffiffiffiffi
Ω

p

2πκ
Γ
�
−i

Ω
κ

�
F

�
Ω
κ

�
e−iΩt; ð21Þ

and

BðΩÞ ¼ e
πΩ
2κ

ffiffiffiffi
Ω

p

2πκ
Γ
�
−i

Ω
κ

�
F�

�
−
Ω
κ

�
e−iΩt ð22Þ

expressed in terms of the time coordinate of outgoing
observers. The frequency correlation for two distinctly
separated frequencies (i.e., Ω1 ≠ Ω2), as discussed above,
remains zero for all the field configurations which were in
the vacuum (incidentally, also for configurations in indi-
vidual Fock basis elements) in the in-state. However, as for
the out-state, the frequency correlation remains zero only if
the in-state was a vacuum. The outgoing modes develop
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frequency correlation, even if the in-state was a nonvacuum
Fock basis state with zero correlation. Alternatively, those
fields which carried some amount of stress energy into the
black hole definitely develop some nonzero correlation at
late times, while only those fields which were in a vacuum
state develop no late time frequency correlation. Therefore,
by just measuring this operator, a late time observer will be
able to tell if some nonzero stress-energy has entered the
black hole.
Further the observer can decipher the state that entered

into the black hole, by reconstructing FðΩ=κÞ from this
nonzero expectation value of the correlation. We demon-
strate the technique below. We can also consider a special
case of this correlation, i.e., the self correlation for
simplicity. We measure the change in self-correlation,
which is just the spectrum operator [24], once a nonvacuum
state perturbs the black hole configuration and we will
see that this change encodes information of interest
(see the appendixes). Expectedly, other correlations carry

information about the ingoing states much more efficiently.
Exploration of other correlation functions in this regard will
be reported in a subsequent work.

IV. RADIATION FROM BLACK HOLE:
INFORMATION ABOUT THE INITIAL STATE

We show that Eq. (20) can be used by outmoving
observers for retrieving information regarding FðΩÞ and
thus for reconstructing the state presented in Eq. (1).
From the off-diagonal elements of Eq. (20) we construct
a complex quantity

DΩ1Ω2
≡ NΩ1Ω2

þ i
ΔΩ

∂
∂t NΩ1Ω2

; ð23Þ

where ΔΩ ¼ Ω1 −Ω2. In terms of the function FðΩ=κÞ,
the above expression can be rewritten as

DΩ1Ω2
¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffi
Ω1Ω2

p
4π2κ2

Γ
�
−i

Ω1

κ

�
Γ
�
i
Ω2

κ

��
e
πðΩ1þΩ2Þ

2κ F

�
−
Ω2

κ

�
F�

�
−
Ω1

κ

�
þ e−

πðΩ1þΩ2Þ
2κ F

�
Ω1

κ

�
F�

�
Ω2

κ

��
e−iðΩ1−Ω2Þt: ð24Þ

For a real initial state, we have FðΩ=κÞ ¼ F�ð−Ω=κÞ
and therefore, Eq. (24) can be used to extract the function
FðΩ=κÞ as,

SΩ1Ω2
≡ 4π3κ2ffiffiffiffiffiffiffiffiffiffiffi

Ω1Ω2

p DΩ1Ω2
eiðΩ1−Ω2Þt

Γ½−i Ω1

κ �Γ½i Ω2

κ � coshðπðΩ1þΩ2Þ
2κ Þ

¼ F

�
Ω1

κ

�
F�

�
Ω2

κ

�
: ð25Þ

Clearly, the left-hand side of Eq. (25) can be determined by
observing the emission spectrum. Therefore, the left-hand
side is under our control completely. From the above
relation, we see that this quantity has to be separable as
a product in terms of the frequencies Ω1 and Ω2. Using this
property, we can obtain the function FðΩ=κÞ, up to an
irrelevant constant phase, from the symmetric sum

log SΩ1Ω2
¼ logF

�
Ω1

κ

�
þ logF�

�
Ω2

κ

�
; ð26Þ

or, alternatively, by fixing one of the frequencies and
varying the other. Therefore, for the real initial state, the
state can be identically and completely reconstructed from
correlations in the outgoing modes.
In [30], we devised a formalism to deal with the analysis

of field content of a nonvacuum pure state corresponding
to a particular observer with respect to another set of
observers, using the correlation functions. The information
about the state through the function fðωÞ, together with the

Bogoliubov coefficients, completely characterize the devi-
ations form the standard vacuum response. The analysis of
the spectrum operator [19,31] also captures this distortion.
The extraction of information about initial data using the
spectral distortion N̂Ω ¼ hΨjb̂†Ωb̂ΩjΨi − h0jb̂†Ωb̂Ωj0i, as
reported in [24] is presented in detail in Appendix A. In
Appendix B and Appendix C, we show that for a particular
class of symmetric initial states, interesting quantities can
be obtained from the out-states as well as their generali-
zation for multiparticle states. The frequency correlator for
a multiparticle state gives the information about the one-
particle sector through the reduced density matrix as shown
in Appendix E. Higher order correlation functions will give
the information regarding the many particle sectors sub-
sequently. However, in this paper, we only focus on the
single particle case, for simplicity.
We have thus demonstrated the existence of semiclass-

ical hairs in the case of the spherically symmetric collapse
which would have formed a Schwarzschild black hole
classically. We learn that if we are aware of the symmetries
of the system which is going to form a black hole, from
some general principles, we will know how the nonvacuum
response would look like. We can measure particle content
for different test fields. The test field which contributes
infinitesimal energy to the formation will reflect its non-
vacuum character in the late time radiation. That is to say,
its spectra will show deviations from the expected
vacuum response, corresponding to the symmetries of
initial data. Measurements of such nonvacuum distortion
will reveal partial or complete character of the state of the

INFORMATION RETRIEVAL FROM BLACK HOLES PHYSICAL REVIEW D 94, 044056 (2016)

044056-7



field depending on the knowledge of the symmetry of
initial profile.
The cases discussed above were all based on test field

approximations. We can extrapolate this idea to conjecture
that if we have correct account of the back-reaction, or
quantum gravity corrected Bogoliubov coefficients, they will
still provide a handle for initial data as in Eq. (24) [see also
Eq. (A1) in the appendix]. It will be worthwhile to demon-
strate these ideas for a setup including the backreaction. In a
general 3þ 1 collapse scenario the precise handling of
backreaction remains an open problem. Even for the spherical
collapse case, which we discussed above, accounting for the
backreaction is a tedious task.Wewill instead be looking at a
1þ 1 dimensional dilatonic CGHS black hole model. In this
case the issueofbackreaction canbe exactly handled andeven
the full quantum gravity calculation can be implemented
perturbatively.However, in this paper,wewill be contentwith
the semiclassical schemewherein the backreaction of the test
field has been accounted for.Wewill see how the nonvacuum
distortions lead to additional quantum hairs, which would
have been missed classically.

V. CGHS MODEL: INTRODUCTION

The CGHS black hole solution [32,33] is a 1þ 1
dimensional gravity model of a dilatonic field ϕ (along
with possibly other matter fields). The theory will be
described by the action,

A¼ 1

2π

Z
d2x

ffiffiffiffiffiffi
−g

p �
e−2ϕðRþ4ð∇ϕÞ2þ4λ2Þ−1

2

XN
i¼1

ð∇fiÞ2
�
;

ð27Þ

where λ2 is the cosmological constant and fi stands for
ith matter field; N such total fields may be present. Since
all two dimensional space-times are conformally flat the
metric ansatz will involve a single unknown function, the
conformal factor, which is written in double null coordi-
nates as,

ds2 ¼ −e2ρdxþdx−: ð28Þ

For the matter fields, the classical solutions are those in
which, fiðxþ; x−Þ ¼ fiþðxþÞ þ fi−ðx−Þ. Then, given some
particular matter fields, one can obtain corresponding
solutions for ϕ and ρ respectively. The simplest among
all of them corresponds to the vacuum solution in which
e−2ρ ¼ e−2ϕ ¼ ðM=λÞ − λ2xþx−. This represents a black
hole of mass M, with line element,

ds2 ¼ −
dxþdx−

M
λ − λ2xþx−

; ð29Þ

while in the absence of any mass, i.e.,M ¼ 0 we obtain the
linear dilatonic vacuum solutions as

ds2 ¼ −
dxþdx−

−λ2xþx−
: ð30Þ

A more realistic and dynamical situation corresponds to
the case when an incoming matter forms a singularity. If
the matter starts at xþi and extends up to xþf , then the line
element turns out to be,

ds2 ¼ −
dxþdx−

MðxþÞ
λ − λ2xþx− − PþðxþÞxþ

; ð31Þ

where MðxþÞ and PþðxþÞ correspond to the integrals,

MðxþÞ ¼
Z

xþ

xþi

dyþyþTþþðyþÞ; ð32Þ

PþðxþÞ ¼
Z

xþ

xþi

dyþTþþðyþÞ: ð33Þ

The region outside xþf is a black hole of massM ≡Mðxþf Þ.
One can check that there is a curvature singularity where
the conformal factor diverges.
The singularity hides behind an event horizon for future

null observers receiving the outmoving radiation. The
location of the event horizon can be obtained starting from
the location of the apparent horizon. This can, in turn, be
obtained using ∂þA ≤ 0, where A stands for the transverse
area. Using the four dimensional analog we end up getting,
∂þe−2ϕ ≤ 0. Here the equality would lead to the location
of the event horizon beyond xþf , which happens to be at
x−h ¼ −Pþ=λ2.
Thermodynamics, as well as Hawking evaporation of

such a black hole solution (also with different matter
couplings), have been extensively studied [33–37]. Even
higher loop corrections to the thermal character of vacuum
response have been studied [26]. We will demonstrate our
ideas for the simplest coupling as shown in Eq. (27).
We first study the genesis of Hawking radiation in such a

black hole formation. The field equations for this action, at
the classical level are written as

−∂þ∂−e−2ϕ − λ2e2ρ−2ϕ ¼ 0; ð34Þ

2e−2ϕ∂þ∂−ðρ − ϕÞ þ ∂þ∂−e−2ϕ þ λ2e2ρ−2ϕ ¼ 0; ð35Þ

since the stress energy tensor decouples into left-moving
and right-moving parts. Further, the two constraint equa-
tions involve the energy momentum tensor components on
both the initial slices and lead to,

∂2þe−2ϕ þ 4∂þϕ∂þðρ − ϕÞe−2ϕ þ Tþþ ¼ 0; ð36aÞ

∂2
−e−2ϕ þ 4∂−ϕ∂−ðρ − ϕÞe−2ϕ þ T−− ¼ 0: ð36bÞ
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Solving the equations of motion Eq. (34), Eq. (35), we
obtain the conformal gauge ρ ¼ ϕ, where the constraint
equations are expressed as

∂2þe−2ϕ þ Tþþ ¼ 0; ð37aÞ

∂2
−e−2ϕ þ T−− ¼ 0: ð37bÞ

The solution of these equations provide the classical
geometry which is depicted in Fig. 2. The spacetime prior
to xþi is flat while the spacetime beyond xþf is described by
the black hole geometry.
For carrying out the semiclassical analysis on this

spacetime, we introduce coordinate systems suited for
J −

L and J þ
R respectively. We have the coordinate set z�

�λx� ¼ e�λz� ; ð38Þ

which maps the entire J −
L into z− ∈ ð−∞;∞Þ. We obtain

another coordinate system suited for J þ
R as σ�out. Let us first

discuss the transformation between ðzþ; z−Þ and ðσþout; σ−outÞ
defined as

zþ ¼ σþout; z− ¼ −
1

λ
ln

�
e−λσ

−
out þ Pþ

λ

�
: ð39Þ

The horizon, located at x− ¼ −Pþ=λ2, will get mapped to
z− ¼ z−i ¼ − 1

λ log ðPþ=λÞ in these co-ordinates. “In” state
modes are defined on the asymptotically flat region J −

L
moving toward J þ

R and the convenient basis modes can be
taken to be,

uω ¼ 1ffiffiffiffiffiffi
2ω

p e−iωz
−
; ð40Þ

where ω > 0. The “out” region corresponds to J þ
R which

receives the state from J −
L after the black hole has formed.

The basis modes in the out region at J þ
R are

vω ¼ 1ffiffiffiffiffiffi
2ω

p e−iωσ
−
outΘðz−i − z−Þ; ð41Þ

where Θ is the usual step function arising from the fact that
the out modes are supported by states on J −

L only in the
interval (−∞, 0). Again the field can be specified fully on
J −

L or jointly on J þ
R and on the event horizon HR. Since

the mode functions at HR correspond to part of the field
falling into the singularity, which cannot be detected by
observers at J þ

R , they need to be traced over. Thus, the
precise form of mode decomposition onHR does not affect
physical results for J −

L. Therefore, we can expand the
dilaton field in a different mode basis as,

f ¼
Z

∞

0

dω½aωuω þ a†ωu�ω�; ðinÞ ð42Þ

¼
Z

∞

0

dω½bωvωþb†ωv�ωþ b̂ωv̂ωþ b̂†ωv̂�ω�; ðoutÞ ð43Þ

where a†ω corresponds to creation operator appropriate for
the in region. Similarly b†ω and b̂†ω stand for the creation
operators for the out region and the black hole interior
region, respectively. The inner product between vΩ and u�ω
corresponds to,

αΩω ¼ −
i
π

Z
z−i

−∞
dz−vΩ∂−u�ω ¼ 1

2π

ffiffiffiffi
ω

Ω

r Z
z−i

−∞
dz− exp

�
iΩ
λ
ln

��
e−λz

− −
Pþ

λ

��
þ iωz−

�

¼ 1

2πλ

ffiffiffiffi
ω

Ω

r �
Pþ

λ

�
iðΩ−ωÞ=λ

B

�
−
iΩ
λ
þ iω

λ
; 1þ iΩ

λ

�
; ð44Þ

while the inner product between vΩ and uω gives

βΩω ¼ i
π

Z
z−i

−∞
dz−vΩ∂−uω ¼ 1

2π

ffiffiffiffi
ω

Ω

r Z
z−i

−∞
dz− exp

�
iΩ
λ
ln

��
e−λz

− −
Pþ

λ

��
− iωz−

�

¼ 1

2πλ

ffiffiffiffi
ω

Ω

r �
Pþ

λ

�
iðΩþωÞ=λ

B

�
−
iΩ
λ
−
iω
λ
; 1þ iΩ

λ

�
; ð45Þ

FIG. 2. A CGHS black hole.
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where Bðx; yÞ is the Beta function. The vacuum response
can be obtained from Eq. (45), which has a thermal profile
in the limit of large frequencies, which will be the late time
limit for observers at J þ

R . In general the vacuum response
also comes with a nonthermal part. This late-time thermal
response originates from the vacuum state at J −

L. But, due
to asymmetry in the left- and right-moving modes, the
modes which form the black hole, originate only from J −

R,
rather than from J −

L. If one has to retrieve the information
regarding the quantum states that formed the black hole in
the first place, the observers moving left are the relevant
ones. Therefore, we will concentrate on the future, left
moving, observers who are moving in the flat spacetime
throughout. We want to study the black hole evaporation at
the semiclassical level for one such observer, which we will
do in the next section.

VI. INFORMATION REGARDING THE
COLLAPSING MATTER

The left-moving matter is introduced for xþ ≥ xþi and
hence the spacetime is in a vacuum configuration prior to it.

The spacetime, in the region xþ < xþi is flat and the metric
is given as in the Eq. (30), which, on using the coordinate

xþ ¼ −
1

λyþ
; x− ¼ −

1

λy−
; ð46Þ

remains the same

ds2 ¼ −
dyþdy−

−λ2yþy−
: ð47Þ

The location xþi is marked by yþi ¼ −1=λxþi . Using another
set of coordinate transformations the metric on J −

R can be
brought into the flat form. A left-moving observer who
completely stays in the region in the past of J þ

L remains in
flat spacetime.
However, such an observer is able to access only portion

of initial data on J −
R. Therefore, the Bogoliubov coeffi-

cients between a complete set of mode functions uω defined
on J −

R and the complete set of mode functions vω defined
on J þ

L , are given as

αΩω ¼ −
i
π

Z
χþi

−∞
dχþvΩ∂−u�ω ¼ 1

2π

ffiffiffiffi
ω

Ω

r Z
χþi

−∞
dχþ exp

�
iΩ
λ
lnfðe−λχþ − jyþi jÞg þ iωχþ

�

¼ 1

2πλ

ffiffiffiffi
ω

Ω

r
jyþi j

iðΩ−ωÞ
λ B

�
−
iΩ
λ
þ iω

λ
; 1þ iΩ

λ

�
; ð48Þ

and

βΩω ¼ i
π

Z
χþi

−∞
dχþvΩ∂þuω ¼ 1

2π

ffiffiffiffi
ω

Ω

r Z
χþi

−∞
dχþ exp

�
iΩ
λ
lnfðe−λχþ − jyþi jÞg − iωχþ

�

¼ 1

2πλ

ffiffiffiffi
ω

Ω

r
jyþi j

iðΩþωÞ
λ B

�
−
iΩ
λ
−
iω
λ
; 1þ iΩ

λ

�
: ð49Þ

Thus, as before, the observer at J þ
L will observe

Bogoliubov coefficients similar to the ones observed by
their right counterparts but with the parameter exchange
jyþi j ↔ Pþ=λ [38]. However, these nontrivial Bogoliubov
coefficients are totally due to the tracing over of the modes
which lie in the future of J þ

L and not due to any geometry
change. One can check that if the fraction of the tracing
over vanishes, which corresponds to the limit jyþi j → 0, the
Bogoliubov coefficients will assume a trivial form. Along
identical lines, the Bogoliubov coefficients in Eq. (44) and
Eq. (45) assume a trivial form in the limit Pþ → 0. For
these observers the effect of tracing over is indistinguish-
able from that of geometry change. Both these effects
vanish simultaneously in the above limit. However, the
vacuum response for both these observes is indistinguish-
able. Late time radiation for such observers on J þ

L for the
vacuum state (of a test field) on J −

R is also thermal with the

same temperature as measured by their right-moving
counterparts.
Further, any nonvacuum state on J −

R will lead to non-
vacuum distortions in the radiation. We will now use the
Bogoliubov coefficients for extracting information regard-
ing the matter that formed the black hole.

A. Test field approximation

To start with, we can first do a quick demonstration,
under the test field approximation, in order to connect up
with the earlier case of the Schwarzschild black hole, by
assuming that the matter ϕ forming the black hole is
classical. Then we add a little more matter δϕ̂ to the black
hole perturbatively. That is to say, we add another small
matter pulse to the collapse with support in the region
xþ > xþf . This small chunk is to be treated perturbatively as
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quantum matter. Given the form of the Bogoliubov coef-
ficients as in Eq. (48) and Eq. (49), we note that they remain
independent of the matter content in the region xþ > xþi
and solely depend on the coordinate at which the first
matter shell was introduced, which serves as a horizon for
the left-moving observers. Therefore, an asymptotically
left-moving observer will use Eq. (48) and Eq. (49) to
compute the spectral distortion and reconstruct the state of
the test matter which is thrown in, through a procedure
similar to what was done for the Schwarzschild black
hole. Then, for asymptotic observers at late times, the high
frequency approximation of Eq. (48) and Eq. (49) leads to a
form exactly as in Eq. (9). Thus, for such observers, the
results developed in Sec. IV, Appendix B and Appendix C
are exactly applicable.

B. Adding backreaction: Extracting information
about the matter forming the black hole

In the CGHS case, we can do away with the high
frequency approximation to exactly calculate the results for
observers at any finite time (not necessarily at late times)
as well. Moreover, the results derived for the left-moving
asymptotic observers remains oblivious to the matter
introduced beyond their perceived horizon and hence does
not care about the geometry beyond the horizon as well.
Therefore, all the backreaction of the collapsing matter
can now be accounted for, since they do not change the
geometry profile of left-moving observers at all. Being a
conformally flat spacetime, we know the exact mode
functions irrespective of the backreaction in the entire
spacetime as well as in the relevant left portion. Therefore,
the form of Eq. (48) and Eq. (49) are exact, even in the
presence of backreaction of the field, or even when we take
the collapsing matter ϕ itself to be quantum matter, which
we will do next.
For a complete semiclassical treatment, we take the field

ϕ̂ to be quantum mechanical. At the semiclassical level,
the stress energy tensor components are replaced by their
expectation values hT��i and hTþ−i. Being a two dimen-
sional spacetime the expectation values get an additional
contribution from the conformal anomaly. Therefore, the
classical equations (for N ¼ 1) are modified to

−∂þ∂−e−2ϕ − λ2e2ρ−2ϕ ¼ ℏ
12π

∂þ∂−ρ; ð50Þ

2e−2ϕ∂þ∂−ðρ − ϕÞ þ ∂þ∂−e−2ϕ þ λ2e2ρ−2ϕ ¼ 0; ð51Þ

whereas the constraint equations also pick up conformal
anomaly corrections as

∂2þe−2ϕ þ 4∂þϕ∂þðρ − ϕÞe−2ϕ þ hTþþi ¼ 0; ð52aÞ

∂2
−e−2ϕ þ 4∂−ϕ∂−ðρ − ϕÞe−2ϕ þ hT−−i ¼ 0: ð52bÞ

In order to remain true to the classical geometry, the state of
the matter field should be one in which the classical flat
geometry is realized prior to xþi . Thus, we require expðρÞ ¼
expðρflatÞ ¼ 1=λ2xþx− in that region suggesting that the
matter support is only in the region xþ > xþi . Therefore, the
classical values of the T�� are realized by hT��i. We can
also judiciously choose the boundary conditions for the
set of initial states such that the contribution due to
conformal anomaly can be canceled in the region of
interest, giving rise to a flat spacetime semiclassically,
see for instance [39–41]. We define Iþ

L as the line xþ ¼ xþi .
For our consideration, we will need the part of the
spacetime in the causal past of Iþ

L , which remains
unaffected by the conformal anomaly with such a judicious
choice of family of quantum states.
Supported by such quantum states, the geometry of the

spacetime remains as discussed above and we can use the
expressions for the Bogoliubov coefficients as earlier.
The asymptotic expressions for the Bogoliubov coefficients
as in Eq. (48) and Eq. (49) resemble those of the spherical
collapse model Eq. (9). Therefore, the spectral distortion
for the late time observers will be exactly as discussed in
Sec. IV, Appendix B and Appendix C.
We can now obtain the exact expression and the

symmetry profile of the initial data required for the
information retrieval by a generic observer on J þ

L .
Using the Bogoliubov coefficients in Eq. (48) and
Eq. (49) we can obtain the nonvacuum correction to the
correlator and the vacuum spectrum through Eq. (7) [see
also Eq. (A1)]. Again, we will first consider the case of a
single particle state as in Eq. (1), which has the stress
energy support as discussed above (The discussion of the
multiparticle state will follow along the lines as demon-
strated for the Schwarzschild case in Appendix D, also refer
to Appendix G). The symmetry profile required in the
initial state, for the retrieval of information about the initial
state by the late time observers, remains exactly the same as
that for the spherical symmetric Schwarzschild model.
Therefore, such symmetry profiles appear uniquely for
all late time observers and any real initial data can be
uniquely reconstructed by the late time observers.
However, since we have exact expressions for the

Bogoliubov coefficients, we can also obtain symmetry
condition for all observers on J þ

L and not only for the
late time observers. This will demonstrate the ability to
reconstruct the information at any stage of evolution, which
can be used to track the information content throughout the
evolution and quantify whether there is any information
loss for a more general initial data. We define another
function ~gðωÞ, as

fðω̄0Þ ¼ ω̄0 ~gðω̄0Þe−π
2
ω̄0Γ½−iω̄0�jyþi j−iω̄0

: ð53Þ

The transformation presented in Eq. (53) relates the
correlation to the symmetries of ~gðω̄Þ. The scheme of
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information retrieval from the frequency correlator can be
implemented exactly as before, for ~gðω̄Þ. Reconstruction of
~gðω̄Þ is equivalent to reconstruction of fðω̄Þ. (Analysis for
the self-correlator, i.e., the spectrum operator is discussed
in Appendix H.) Different set of observers require different
set of symmetries in order to extract a maximum amount of
information from the nonvacuum correlator. For a given
initial state we can also follow the information content
during the course of evaporation, which culminates in the
late time result.
Thus, using a consistent semiclassical treatment we

could recover the matter quantum state using the distortion
of the thermal radiation as detected by the asymptotic
observers. However any asymptotic observer would have
measured a thermal radiation which is independent of the
black hole’s mass—and decided entirely by the cosmo-
logical constant—in the model. This remains true through-
out, while the black hole evaporates. For the left moving
asymptotic observer, the black hole region does not shrink
as an outcome of this radiation emission, since the location
of horizon is not decided by the mass content inside the
horizon. Still such an observer may be able to reconstruct
all the information about the mass/energy content beyond
her horizon. Therefore, it is reasonable to expect that such
observers associate a notion of entropy to the black hole
which is significantly different from what a right moving
observer will do. Hence it is expected that the notion of
entropy for left-moving observers should also substantially
differ from the standard black hole entropy expression. In
the Schwarzschild black hole formation on the other hand,
due to spherical symmetry, left-moving or right moving
observers not only measure the same temperature, but
witness an identical geometry change during the formation
or evaporation of the black hole. Therefore, unlike the
current case, they should be associating the same entropy
expression for the hole. We will pursue these topics
elsewhere.

VII. CONCLUSIONS

The mystery of loss of information in the black hole
physics has two primary aspects. The first, and possibly
more troubling aspect, has to deal with the character of the
Hawking radiation which, due to presence of the event
horizon, is obliged to have a mixed state description.
Since Hawking radiation extracts energy out of a black
hole, the real problem manifests itself when the black hole
gets completely evaporated by this process. The resulting
radiation profile remains mixed and hence does not respect
the unitary evolution scheme in which a pure state should
not have evolved into the mixed state.
A possibly related version of the information loss

problem is due to the classical no-hair conjecture.
Classically, whatever ends up inside the event horizon is
“visible” to the observers in the exterior region only
through certain classical charges. All other information

defining the initial data gets destroyed once the matter hits
the singularity. That is true as regards the matter forming
the black hole as well.
In this paper, we have focused on the reconstruction of

initial data which formed the black hole by observing a
particular kind of distortion to the Hawking radiation.
For some matter to end up inside the horizon (carrying
some energy, charge etc. with it), the state of the matter
field should be nonvacuum. Moreover, the nonvacuum
nature of the state manifests itself in the correlation
between the modes escaping the capture by the black hole
and the modes entering the horizon and eventually hitting
the singularity. Observing the portion which escaped the
horizon, we can reconstruct the correlation and hence the
state of the field at the initial slice. We construct an
observable, which can capture this correlation. Using this
observable judiciously, one can extract information pertain-
ing to the initial condition, which remains otherwise hidden
from the asymptotic observers. The diagonal elements of
this correlation matrix give the distortion of the emission
spectrum, which becomes nonthermal for nonvacuum in-
states. It is noteworthy that the nonvacuum distortions
will always be present in the most general case including
quantum gravity, backreaction etc. Only the corresponding
Bogoliubov coefficients will be generalized for the par-
ticular case under consideration.
In 3þ 1 dimensional spacetime, the inclusion of semi-

classical backreaction is not under control. For the purpose
of demonstration of our ideas we first discussed a semi-
classical case of a spherical collapse which forms a black
hole through a slow, s-wave process. On top of this
evolving geometry we introduced another test field,
described by a massless scalar field, initially set in a
particular field configuration at asymptotic, past, null
infinity. The complete recovery of the initial data corre-
sponds to the deciphering of the quantum state of the
field unambiguously. For this simplified set up, the vacuum
response is thermal, and the nonvacuum response corre-
sponds to nonthermal distortions of the Hawking radiation.
Such distortions constrain some operators acting on the
conjugate space of the frequency representation of the
quantum field. Typically such operators provide informa-
tion about the single particle sectors of the Hilbert space.
Since the spectral distortion is just a single function of the
frequency, it is expected to capture the finite correlations of
an arbitrary, general, initial state. Higher order correlations
may be required to obtain additional information about the
initial state.
If (i) the state of the field corresponds to a single particle

state and (ii) we have access to the symmetries of the
distribution in the frequency space, we can recover a lot
more information about the initial state through such
nonvacuum distortions. In particular, we show that the
existence of a class of symmetries of nonzero measure will
encode all the information about the initial state in the
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nonvacuum distortion. In particular, for real initial data,
we can recover the state of a single excitation, completely,
using frequency correlation in the outgoing modes.
Although the nonvacuum distortions do not make the
outstate a pure one, there are enough correlations available
even in the mixed state, to reconstruct the initial state. Also
we did not need to study higher order correlations to obtain
further information about the initial state.
The simple case we discussed first was without the

backreaction in a nonvacuum configuration. More gener-
ally, we need to account for the backreaction as well,
howsoever small they might be. The Bogoliubov coeffi-
cients incorporating the backreaction will be obtained
through the mode functions of in- and out- configurations
in such a modified geometry. In general it is a very difficult
job. However, since addressing the issue of backreaction in
some simplified scenarios should throw some light on the
concepts involved, we considered the case of backreaction
in a 1þ 1 dimensional dilatonic black hole solution, viz.,
the CGHS model. A dilatonic vacuum solution is pertur-
batively unstable toward forming a black hole if the
perturbation is around the in-moving modes. Even at the
classical level the exact Hawking radiation of this model is
thermal at the high frequency regime with corrections at
low energies. We call such a radiation profile collectively as
the vacuum response. We showed that the nonvacuum
distortions for the left-moving observers reveal information
about initial left-moving distribution which collapsed to
form the black hole. There is always a part of past null
infinities, which is causally disconnected to the asymptotic
future observers. Classically no information pertaining to
the matter field configuration in this disconnected sector
will ever be available to such observers. However, we see
that the nonvacuum distortions are capable of revealing the
information about such configurations through correla-
tions. The modes appearing as distortions at J þ did have,
in the past, some correlations, with the modes which enter
the horizon, at J −. Measurement of such distortions can, in
principle, also tell us about the white hole region if it were
accompanying the black hole region as suggested in some
papers [42–44]. A simple extrapolation from this idea can
also be used to study the fate of such information regarding
the matter field which formed the black hole. The retrieval
process for the late time observers is exactly the same as the
Schwarzschild late time observers, yielding the same result.
We also discuss how the information about the in-state can
be tracked throughout during evolution, and not only at late
times, for the CGHS case.
There are many interesting future implications of the

ideas we have presented in this paper. Study of such
nonvacuum distortions could be undertaken for more
general setups, which will involve computation of
Bogoliubov coefficients for a more realistic scenario
involving angular momentum, charge etc. Even at the
vacuum level, there are different sources of nonthermal

vacuum response as suggested in [7]. A realistic situation
encompassing all such distortions will involve Bogoliubov
coefficients modified in a precise manner. Therefore, even
at the classical level, there should be a more realistic
assessment of the allowed symmetry of the initial data viz-
á-viz the information encryption in the distorted spectrum.
It is also worthwhile to study the field configurations
corresponding to states which encode maximal information
and their field theoretic interpretations.
Apart from dealing with the more generalized situations

and the Bogoliubov coefficients therein, a rigorous analysis
has to be done for different kinds of initial data. For
instance, in this paper our discussion was limited to pure
states which are eigenstates of the number operator.
Analysis regarding the most general set of initial data—
such as one which is not an eigenstate of the number
operator—will be required to exhaust the full Hilbert space.
A classical initial data, after all, might correspond to a
coherent statelike description. Similarly, the analysis could
be translated to the language of wave packets for a realistic
physical response in the out-configuration. Further, analo-
gous field theoretic analysis has to be done for a mixed state
description, e.g. a thermal initial data. In these cases, the
analysis of higher order correlation will certainly become
more important. In any case, we need to study the resulting
nonthermal spectra from the point of view of various
aspects in unitary evolution of the black hole such as
strength of the correction, first bit release time etc. and its
potential to make the evolution unitary in the spirit of [45].
We will pursue these aspects elsewhere.
Lastly, a truthful implementation of backreaction in

realistic collapse scenarios in higher dimensions remains
due. Recently, ’t Hooft has proposed a model [46], which
potentially captures the information about backreaction
through a shift in a null geodesic due to discontinuity across
a matter field geodesic. Supplementing the effect of non-
vacuum distortion with the shift arising from the back-
reaction is expected to reveal more aspects of issues related
to information accessible by future asymptotic observers.
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APPENDIX A: SPECTRUM OPERATOR

Using the expression for the correction term over the
vacuum thermal spectrum, we can obtain the distortion
from thermal Hawking radiation for one particle initial state
of the field which is undergoing the collapse as,
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It must be noted that the expression in Eq. (A1) is general
enough to include cases when the Bogoliubov coefficients
as in Eq. (9) are modified by backreaction, angular
momentum, quantum gravity etc. In any case, the non-
vacuum part of the radiation spectra provides a constraint
for fðωÞ in form of Eq. (A1). Using Eq. (14), we can
rewrite Eq. (A1) as

NΩ ¼ 1

4π

1

4πκ

1

sinh πΩ
κ

�				 ~F
�
Ω
κ

�				
2

þ
				 ~F
�
−
Ω
κ

�				
2
�
: ðA2Þ

We can decompose j ~FðΩ=κÞj2 into symmetric ~SðΩ=κÞ and
an antisymmetric part ~AðΩ=κÞ
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With this decomposition, we realize from Eq. (A2) that the
symmetric part of j ~FðΩ=κÞj2 is entirely characterized by the
distribution function NΩ of the radiation,
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Further, if the in-state is normalized to unity, we have
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which together with Eq. (A4) regulates the integral (and
hence the asymptotic behavior) of ~AðκÞ. Apart from this
constraint, ~AðκÞ is a completely arbitrary antisymmetric
function. Therefore, the radiation spectra fixes the sym-
metric part of the probability density in the Fourier space
corresponding to z. However, the antisymmetric part of this
probability density remains largely unspecified.
In terms of the function gðzÞ defined in Eq. (15), the

symmetric part ~SðΩκÞ can be written as
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As we see that FðκÞ is “momentum space representation”
conjugate to gðzÞ, the above expression can be written in

terms of the Wigner function corresponding to the phase
space of (z, Ω=κ),
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where the Wigner function is defined as,
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Also, with the relation
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we obtain,
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which is an obvious illustration of Eq. (A4). Therefore,
integrating the relation Eq. (A10) over the frequency range
at J þ we obtain the relation
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Although, the state which would be completely speci-
fied, if we know FðyÞ, remains arbitrary apart form this
constraint, the symmetric part ~SðΩ=κÞ which is completely
specified through the nonvacuum distortion, fixes the
expectation of the exponentiated momenta conjugate to
zð¼ logω=CÞ. In fact one can show (see Appendix D) that
this constraint is present not only for a single excitation, but
a general nth excited state as well.
For a n-particle state

jΨi ¼
Z

∞

0

Yn
i¼1

dωiffiffiffiffiffiffiffiffiffiffi
2πωi

p fðω1;…ωnÞâ†ðωiÞj0iM; ðA12Þ

the radiation profile over the thermal component fixes
the expectation of a single particle exponentiated momen-
tum, i.e.
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Additional information about the initial state can only be
obtained from the spectrum if the initial state has some
symmetries. We will discuss a few interesting cases below.

(i) If FðyÞ is a real and symmetric function, then we see
from Eq. (A10) that it gets completely specified in
terms of ~SðΩ=κÞ. As a result, the initial state also
gets completely specified as gðzÞ can be obtained by
the inverse Fourier transform. However, by virtue of
the properties of Fourier transform, gðzÞ also hap-
pens to be real and symmetric. This symmetry
corresponds to a duality in the frequency space
distribution about the surface gravity parameter κ.
These states are very special class of initial states
whose information get coded entirely in the radiation
from the black hole within the framework of
standard unitary quantum mechanics.

(ii) For a slightly more general case, the reality con-
dition on gðzÞ can be traded for by imposing relation
between FðΩ=κÞ and Fð−Ω=κÞ, which is to specify
the symmetry of FðyÞ in the positive and negative
half planes. Such a specification of symmetry con-
strains the distribution FðyÞ to remain arbitrary in
one of the half planes and amounts to reducing the
degrees of freedom by half. Let us assume FðΩ=κÞ is
real, that means

gðzÞ ¼ g�ð−zÞ: ðA14Þ

Now additionally if we impose,

Fð−yÞ ¼ KðyÞFðyÞ; ðA15Þ

for a specified function KðyÞ, then
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Therefore, using the condition Eq. (A14), we can
obtain from Eq. (A16)
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where ~KðqÞ is the inverse Fourier transform of KðyÞ.
Therefore, for such a symmetry in the probability
amplitude, the state can be recovered from
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Therefore, we see that the symmetry of the prescribed class
for one particle state encodes the entire information of the
in-state in the resulting radiation from the black hole. If the
initial condition of the collapse demands symmetry of such
kinds, the resulting mixed state has enough information in
the spectra to completely specify the state. We will further
consider some other classes of symmetries in the initial
data for spherically symmetric collapse models and their
imprints in the nonvacuum distortions.

APPENDIX B: REAL INITIAL DISTRIBUTION

For real distributions, the Fourier transform will satisfy

jFðyÞj2 ¼ jFð−yÞj2: ðB1Þ

Therefore, jKðyÞj ¼ 1 and we have the relation
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For a symmetric algebraic operator of y

ÔevenðyÞ ¼ Ôevenð−yÞ; ðB3Þ

the expression

8π2κ tanh
πΩ
κ

Oeven

�
Ω
κ

�
NΩ

¼ Oeven

�
Ω
κ

�				F
�
Ω
κ

�				
2

þOeven

�
−
Ω
κ

�				F
�
−
Ω
κ

�				
2

ðB4Þ

which on integration over the whole frequency range gives
the expectation value of the operator

Z
∞

0

d

�
Ω
κ

�
8π2κ tanh

πΩ
κ

Oeven

�
Ω
κ

�
NΩ ¼

Z
∞

0

d

�
Ω
κ

��
Oeven

�
Ω
κ

�				F
�
Ω
κ

�				
2

þOeven

�
−
Ω
κ

�				F
�
−
Ω
κ

�				
2
�

¼
Z

∞

−∞
OevenðyÞjFðyÞj2: ðB5Þ

INFORMATION RETRIEVAL FROM BLACK HOLES PHYSICAL REVIEW D 94, 044056 (2016)

044056-15



The analysis can also be directly done as derivative
operators on frequency representation (see Appendix F).
By similar logic, one can argue that expectation of all odd
algebraic operators vanish in this case, i.e., with a sym-
metric jFðyÞj2, the expectation value for an odd observable

hÔoddðyÞi ¼
Z

∞

−∞
dyOoddðyÞjFðyÞj2 ¼ 0: ðB6Þ

Thus in this scenario, expectation of all algebraic operators
in y will be given in terms of spectral distortion. Any
general operator ÔðyÞ can be decomposed in terms of its
even and odd parts

ÔðyÞ ¼ ÔevenðyÞ þ ÔoddðyÞ: ðB7Þ

Therefore, to obtain hÔðyÞi one only requires hÔevenðyÞi,
which can be easily obtained from Eq. (B5). Similarly for
the generalized symmetry class
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where we have used the expression of jFðyÞj2 in the range
y ∈ ð0;∞Þ from Eq. (A18), in the third equality. Thus even
with the specified symmetry class KðyÞ, all the algebraic
operators on the momentum space become fixed.
For a general multiparticle state, the above identities

provide information regarding the single-particle sector of
the state (refer to Appendix D). Since spectral distortion is
just one function, it presumably provides information about
one sector of the field. Higher correlations of the out-state
are expected to contain more such information about the
in-state. However, we defer the analysis of such higher
correlations to a future work.

APPENDIX C: PARTIAL INFORMATION FOR
MULTIPLY EXCITED STATE

As argued in the previous section, for many particle state
Eq. (A12), the expression Eq. (A13) provides the expect-
ation of exponentiated momenta per particle. In addition,
as before, specification of additional symmetries provide
additional operators’ expectations.
For a multiparticle state with above-mentioned sym-

metries in Appendix B, the spectral distortion completely
characterizes the one particle sector of the field. A special
multiparticle state of type of this class

jΨi ¼
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:::
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dωiψðωiÞâ†ðωiÞ
�
j0iin; ðC1Þ

with the symmetries discussed above, can be entirely
retrieved from the resulting radiation spectra. This state
is analogous to a Bose-Einstein condensate of the particles
of the scalar field.
Similarly analogous to the single particle setting, real

distributions fix operators on single particle sector of the
field. We first obtain an identity for a single excitation state,
but soon the result will be shown to be applicable on a
higher excited state as well, which yields the particle
content of the multiparticle state. For a real fð ~ωÞ and
hence real gðzÞ ¼ fðCezÞ,
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Therefore,
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for the initial state jΨiin of the field as given in Eq. (12).
For a general n−particle state Eq. (A12), with

fðω1;…ωnÞ being a real distribution, we can obtain the
identity
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Therefore, for real distributions the correction over thermal-
ity in the out-state carries the information about number of
excitations in the in-state. In fact, this identity is true if the
function

jF ðyÞj2 ¼
Z

∞

−∞

Z
∞
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dtdt0ρRðt; t0Þeiyðt−t0Þ; ðC5Þ

with ρRðt; t0Þ being the reduced one particle density matrix
constructed from Eq. (A12) (refer to Appendix E), is
symmetric in y.
Within this generalized class of symmetric states the

excitation number in the in-state is obtained from Eq. (C4).
For this identity to hold we only require

FðΩκ Þ
Fð− Ω

κ Þ
¼ eiαΩ or;
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for some arbitrary functions αΩ and βΩ. Real amplitudes
happens to be only a subset of this class of conditions.
The results of stimulated emissions in the excited state
jn0; n1;…i can be derived from this. Within this generalized
class of symmetric states the excitation number in the in-state
is obtained form the cumulative number expectation value
given in Eq. (C4). Further a similar kind of identity can be
obtained from the symmetry class of the kind
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Fð− Ω
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for a specified KðΩ=κÞ. In that case, the number expectation
in the in-state is obtained from the expression
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Therefore, we have shown that the radiation spectra (being a
real profile) fixes one of the parameter related to the initial
state. This parameter can be written as an exponentiated
operator on the Hilbert space of states of the theory at
the onset of collapse. However, in a general case, the state
will not be entirely classified in terms of just one single
parameter. We also show that there exist a large class of

initial one particle states with specified symmetries which
have their entire information content imprinted in the out-
going radiation. Apart from this, for higher excited states, the
expectation value of the exponentiated one particle momen-
tum (conjugate to logarithmic energy) always gets deter-
mined. The full information for such states is not obtained
from the radiation profile. However, yet there exists a class of
symmetries, which fixes the total particle content of the
initial state.

APPENDIX D: MULTIPARTICLE STATES

We show that one particle sector of an n− particle
configuration of field can be fixed by the nonvacuum
spectral distortion, similar to the case of a single particle
state. We will demonstrate the case for a two particle state
explicitly, but a simple generalization to an n− particle state
Eq. (A12) will follow identically.

1. Two particle state

A two particle state is specified using the distribution
fðω1;ω2Þ in the frequency representation as,

jΨi ¼
Z

dω1ffiffiffiffiffiffi
2π

p dω2ffiffiffiffiffiffi
2π

p fðω1;ω2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω12ω2

p â†ω1
â†ω2

j0i: ðD1Þ

The norm of the state is given as

hΨjΨi ¼
Z

dω1ffiffiffiffiffiffi
2π

p dω2ffiffiffiffiffiffi
2π

p dω1
0ffiffiffiffiffiffi

2π
p dω2

0ffiffiffiffiffiffi
2π

p fðω1;ω2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω12ω2

p f�ðω1
0;ω2

0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω1

02ω2
0p × h0jâω1

0 âω2
0 â†ω1

â†ω2
j0i;

¼ 1

4π2

Z
dω1

ω1

dω2

ω2

½fðω1;ω2Þf�ðω1;ω2Þ þ fðω1;ω2Þf�ðω2;ω1Þ�: ðD2Þ

For immediate usage, we also evaluate the expression for

hΨjâ†ωâω0 jΨi ¼ 1ffiffiffiffiffiffiffiffiffi
4πω

p 1ffiffiffiffiffiffiffiffiffiffi
4πω0p

Z
d ~ω
4π ~ω

½fðω0; ~ωÞf�ðω; ~ωÞ þ fð ~ω;ω0Þf�ðω; ~ωÞ þ fðω0; ~ωÞf�ð ~ω;ωÞ þ fð ~ω;ω0Þf�ðω; ~ωÞ�:

ðD3Þ

The expression for the nonvacuum distortion to the Hawking radiation will be obtained from

NΩ ¼
Z

∞

0

d ~ω
Z

∞

0

d ~ω0½αΩ ~ωα
�
Ω ~ω0 hΨjâ†ð ~ωÞâð ~ω0ÞjΨi þ βΩ ~ωβ

�
Ω ~ω0 hΨjâ†ð ~ω0Þâð ~ωÞjΨi

− αΩ ~ωβ
�
Ω ~ω0 hΨjâ†ð ~ωÞâ†ð ~ω0ÞjΨi − βΩ ~ωα

�
Ω ~ω0 hΨjâð ~ωÞâð ~ω0ÞjΨi�: ðD4Þ

For pure number operator eigenstates expressions hΨjâ†ð ~ωÞâ†ð ~ω0ÞjΨi and hΨjâð ~ωÞâð ~ω0ÞjΨiwill vanish. We evaluate the
first term in the expression Eq. (D4) using Eq. (D3). The second term will be obtained from the exchange ~ω ↔ ~ω0. Thus, for
the first term in Eq. (D3) first two terms of Eq. (D4) can be written as

Z
∞

0

dω
Z

∞

0

dω0αΩωα�Ωω0 hΨjâ†ðωÞâðω0ÞjΨi ¼
Z

∞

0

Z
∞

0

dωffiffiffiffiffiffiffiffiffi
4πω

p dω0ffiffiffiffiffiffiffiffiffiffi
4πω0p

Z
∞

0

d ~ω
4π ~ω

αΩωα
�
Ωω0fðω0; ~ωÞf�ðω; ~ωÞ: ðD5Þ
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Z
∞

0

dω
Z

∞

0

dω0βΩωβ�Ωω0 hΨjâ†ðω0ÞâðωÞjΨi ¼
Z

∞

0

Z
∞

0

dωffiffiffiffiffiffiffiffiffi
4πω

p dω0ffiffiffiffiffiffiffiffiffiffi
4πω0p

Z
∞

0

d ~ω
4π ~ω

βΩωβ
�
Ωω0fðω; ~ωÞf�ðω0; ~ωÞ: ðD6Þ

Again using Eq. (9) and Eq. (11) we can write the above expressions as

Z
∞

0

Z
∞

0

dωffiffiffiffiffiffiffiffiffi
4πω

p dω0ffiffiffiffiffiffiffiffiffiffi
4πω0p

Z
∞

0

d ~ω
4π ~ω

αΩωα
�
Ωω0fðω0; ~ωÞf�ðω; ~ωÞ

¼ eπΩ̄

4πκ sinh ðπΩ̄Þ
Z

∞

−∞

d~t
4π

Z
∞

−∞

dtffiffiffiffiffiffi
4π

p
Z

∞

−∞

dt0ffiffiffiffiffiffi
4π

p e−iΩ̄ðt−t0Þg�ðt; ~tÞgðt0; ~tÞ; ðD7Þ

and,

Z
∞

0

Z
∞

0

dωffiffiffiffiffiffiffiffiffi
4πω

p dω0ffiffiffiffiffiffiffiffiffiffi
4πω0p

Z
∞

0

d ~ω
4π ~ω

βΩωβ
�
Ωω0fðω0; ~ωÞf�ðω; ~ωÞ

¼ e−πΩ̄

4πκ sinh ðπΩ̄Þ
Z

∞

−∞

d~t
4π

Z
∞

−∞

dtffiffiffiffiffiffi
4π

p
Z

∞

−∞

dt0ffiffiffiffiffiffi
4π

p eiΩ̄ðt−t0Þg�ðt; ~tÞgðt0; ~tÞ: ðD8Þ

Adding these two terms we obtain the expression of the first term of nonvacuum distortion Eq. (D4), in the Hawking
radiation,

16π2κ sinh ðπΩ̄ÞNΩ̄j1st term ¼ eπΩ̄
Z

∞

−∞

d~t
4π

Z
∞

−∞
dt

Z
∞

−∞
dt0e−iΩ̄ðt−t0Þg�ðt; ~tÞgðt0; ~tÞ

þ e−πΩ̄
Z

∞

−∞

d~t
4π

Z
∞

−∞
dt

Z
∞

−∞
dt0eiΩ̄ðt−t0Þg�ðt; ~tÞgðt0; ~tÞ: ðD9Þ

Similarly, remaining terms in Eq. (D4) can be written as

16π2κ sinh ðπΩ̄ÞNΩ̄j2nd term ¼ eπΩ̄
Z

∞

−∞

d~t
4π

Z
∞

−∞
dt

Z
∞

−∞
dt0e−iΩ̄ðt−t0Þg�ðt; ~tÞgðt0; ~tÞ

þ e−πΩ̄
Z

∞

−∞

d~t
4π

Z
∞

−∞
dt

Z
∞

−∞
dt0eiΩ̄ðt−t0Þg�ðt; ~tÞgð~t; t0Þ; ðD10Þ

16π2κ sinh ðπΩ̄ÞNΩ̄j3rd term ¼ eπΩ̄
Z

∞

−∞

d~t
4π

Z
∞

−∞
dt

Z
∞

−∞
dt0e−iΩ̄ðt−t0Þg�ð~t; tÞgðt0; ~tÞ

þ e−πΩ̄
Z

∞

−∞

d~t
4π

Z
∞

−∞
dt

Z
∞

−∞
dt0eiΩ̄ðt−t0Þg�ð~t; tÞgðt0; ~tÞ; ðD11Þ

and,

16π2κ sinh ðπΩ̄ÞNΩ̄j4th term ¼ eπΩ̄
Z

∞

−∞

d~t
4π

Z
∞

−∞
dt

Z
∞

−∞
dt0e−iΩ̄ðt−t0Þg�ð~t; tÞgð~t; t0Þ

þ e−πΩ̄
Z

∞

−∞

d~t
4π

Z
∞

−∞
dt

Z
∞

−∞
dt0eiΩ̄ðt−t0Þg�ð~t; tÞgð~t; t0Þ: ðD12Þ

Integrating the LHS of each terms above over Ω̄ we can rewrite the terms in a compact form as

16π2κ

Z
∞

0

dΩ̄ sinh ðπΩ̄ÞNΩ̄j1st term ¼
Z

∞

−∞
dyeπy

Z
∞

−∞

d~t
4π

Z
∞

−∞
dt

Z
∞

−∞
dt0e−iyðt−t0Þg�ðt; ~tÞgðt0; ~tÞ; ðD13Þ

16π2κ

Z
∞

0

dΩ̄ sinh ðπΩ̄ÞNΩ̄j2nd term ¼
Z

∞

−∞
dyeπy

Z
∞

−∞

d~t
4π

Z
∞

−∞
dt

Z
∞

−∞
dt0e−iyðt−t0Þg�ðt; ~tÞgðt0; ~tÞ; ðD14Þ
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16π2κ

Z
∞

0

dΩ̄ sinh ðπΩ̄ÞNΩ̄j3rd term ¼
Z

∞

−∞
dyeπy

Z
∞

−∞

d~t
4π

Z
∞

−∞
dt

Z
∞

−∞
dt0e−iyðt−t0Þg�ð~t; tÞgðt0; ~tÞ; ðD15Þ

and

16π2κ

Z
∞

0

dΩ̄ sinh ðπΩ̄ÞNΩ̄j4th term ¼
Z

∞

−∞
dyeπy

Z
∞

−∞

d~t
4π

Z
∞

−∞
dt

Z
∞

−∞
dt0e−iyðt−t0Þg�ð~t; tÞgð~t; t0Þ: ðD16Þ

Adding all these terms we obtain the expression

2

Z
∞

0

dΩ̄ sinh ðπΩ̄ÞNΩ̄ ¼
X
i

1

2
hΨjeπŷi jΨi; ðD17Þ

which is the expectation of
P

ihΨjeπŷi=2, giving average expectation per particle. Similarly, the expression can be
generalized to the n-particle state Eq. (A12) as

2

Z
∞

0

dΩ̄ sinh ðπΩ̄ÞNΩ̄ ¼
X
i

1

n
hΨjeπŷi jΨi: ðD18Þ

APPENDIX E: REDUCED DENSITY MATRIX FOR MULTIPARTICLE STATE

As discussed in Appendix C, the symmetries of reduced density matrix decide the amount of information in the distorted
spectra. The reduced density matrix is reduced up to single particle sector, i.e. for n− particle state, we need
to trace over n − 1 particle states to obtain the reduced density matrix. Here, we will show that using a two-particle
state yet again. First, will briefly show a reduced density matrix for a two particle state and show how it is related to the
spectral distortion. Thus, the reduced density matrix will provide information about the single particle sector of the field. For
higher particle states, the procedure can be repeated exactly analogously without ambiguity. Therefore, given a two particle
state Eq. (D1), the density matrix

ρ̂ ¼ jΨihΨj ¼
Z

dω1ffiffiffiffiffiffi
2π

p dω2ffiffiffiffiffiffi
2π

p
Z

dω0
1ffiffiffiffiffiffi

2π
p dω0

2ffiffiffiffiffiffi
2π

p fðω1;ω2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω12ω2

p f�ðω0
1;ω

0
2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ω0
12ω

0
2

p â†ω1
â†ω2

j0ih0jâω0
1
âω0

2
; ðE1Þ

which in the frequency space is given as

ρðω1;ω2;ω
0
1;ω

0
2Þ ¼

½fðω1;ω2Þf�ðω0
1;ω

0
2Þ þ fðω1;ω2Þf�ðω0

2;ω
0
1Þ þ fðω2;ω1Þf�ðω0

1;ω
0
2Þ þ fðω2;ω1Þf�ðω0

2;ω
0
1Þ�

16π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p :

ðE2Þ

The reduced density matrix is obtained as a traced out version over a frequency

ρRðω1; ;ω0
1Þ ¼

Z
dω2ρðω1;ω2;ω

0
1;ω2Þ

¼
Z

dω2

ω2

½fðω1;ω2Þf�ðω0
1;ω2Þ þ fðω1;ω2Þf�ðω2;ω0

1Þ þ fðω2;ω1Þf�ðω0
1;ω2Þ þ fðω2;ω1Þf�ðω2;ω0

1Þ�
16π2

ffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω1

0p :

ðE3Þ

As can be seen from (D13) to (D16) the spectra is obtained through this reduced density matrix (E3) integrated with the
Bogoliubov coefficients (9). A similar result can be obtained for the correlation operator (7).

APPENDIX F: DERIVATIVE OPERATORS IN FREQUENCY REPRESENTATION

With the specification of initial state, we can also be able to obtain the expectations of some derivative operators,
depending upon the symmetry of initial profile. We demonstrate one exercise in this regard, with a real distribution fðωÞ.
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32π2κNΩ tanh ðπΩ̄Þ ¼
				
Z

∞

−∞
gðtÞeiΩ̄t

				
2

þ
				
Z

∞

−∞
gðtÞe−iΩ̄t

				
2

:

ðF1Þ

The cosine transform of the distortion carries information
about derivative operators as can be seen as follows

32π2κ

Z
∞

0

dΩ̄ cos ðπΩ̄ϵÞNΩ tanh ðπΩ̄Þ

¼
Z

∞

−∞
dt
Z

∞

−∞
dt0gðtÞg�ðt0Þfδðt− t0 þ ϵÞ þ δðt− t0 − ϵÞg;

¼
Z

∞

−∞
dt½gðtÞg�ðtþ ϵÞ þ gðtÞg�ðt− ϵÞ�: ðF2Þ

Therefore, we obtain

lim
ϵ→0

1

2ϵ

d
dϵ

�
32π2κ

Z
∞

0

dΩ̄ cos ðπΩ̄ϵÞNΩ tanh ðπΩ̄Þ
�

¼
Z

∞

−∞
dtgðtÞ d

2

dt2
g�ðtÞ ¼ −hΨjŷ2jΨi: ðF3Þ

Clearly all even ordered derivative operators can also be
obtained through this mechanism

lim
ϵ→0

1

2ϵ

dð2n−1Þ

dϵð2n−1Þ

�
32π2κ

Z
∞

0

dΩ̄ cos ðπΩ̄ϵÞNΩ tanh ðπΩ̄Þ
�

¼
Z

∞

−∞
dtgðtÞ d

ð2nÞ

dtð2nÞ
g�ðtÞ ¼ ðiÞ2nhΨjŷ2njΨi: ðF4Þ

Only odd ordered derivative operators remain to be
specified, however, for with such an even symmetry of
states expectation of odd operators turn out to be vanishing.
Thus, all derivative operators in the frequency representa-
tion get completely specified.

APPENDIX G: STATE FOR STEP
FUNCTION SUPPORT

Let us excite some right-moving modes beyond xþi (for
simplicity we work with single particle states), such that the
normal ordered operator T̂þþðxþÞ has support only in the
region inside the horizon, i.e.,

hT̂þþðxþÞiRegularized ¼ hðxþÞΘðxþ − xþi Þ; ðG1Þ

for some well behaved function hðxþÞ and the step
function ΘðxþÞ.
If the single particle state is taken to be in the frame of

observers which would have described the linear dilaton
vacuum, then

jΨi ¼
Z
ω
fðωÞâ†ωj0i; ðG2Þ

where
R
ω stands for

R
dω=

ffiffiffiffiffiffiffiffiffi
4πω

p
and the right-moving

quantum field is given on J þ
L as

f̂þðyþÞ ¼
Z
ω
ðâωuωðyþÞ þ â†ωu�ωðyþÞÞ; ðG3Þ

with mode functions uωðyþÞ. Then the equation (G1) can
be rewritten as

				
Z
ω
fðωÞu0ωðyþÞ

				
2

¼ h1ðyþÞΘðyþ − yþi Þ; ðG4Þ

where 0 denotes a derivative with respect to yþ and yþi
marking the location corresponding to xþi . The function
h1ðyþÞ absorbs the Jacobian of transformation from x�

basis to y� basis,

TþþðxþÞ ¼
∂yμ
∂xþ

∂yν
∂xþ TμνðyþÞ ¼

∂yþ
∂xþ

∂yþ
∂xþ TþþðyþÞ:

ðG5Þ

The condition (G4) can be realized by

Z
ω
fðωÞu0ωðyþÞ ¼ ~hðyþÞΘðyþ − yþi Þ; ðG6Þ

with some other well behaved function ~hðyþÞ. Owing to the
conformal flatness of the two dimensional spacetime and
the conformal nature of minimally coupled massless scalar
field, the mode functions can be written as

u0ωðyþÞ ¼ −iωuωðyþÞ: ðG7Þ

Therefore, we only require to have

Z
ω
fðωÞωuωðxþÞ ¼ ~hðxþÞΘðxþ − xþi Þ ¼ ζðxþÞ; ðG8Þ

where we have absorbed the factor i in the redefinition of
~hðxþÞ. Taking the inner product of the (G8) with itself
and using the orthonormal properties of the mode func-
tions, we write

Z
ω
ω2jfðωÞj2 ¼ ðζðxþÞ; ζðxþÞÞ: ðG9Þ

For the states satisfying (G9), the expression (G8) can be
inverted for given ζðxþÞ, using the completeness of mode
functions to obtain a consistent state. Therefore, the one
particle states respecting (G9) will have mode excitations
beyond xþi .
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APPENDIX H: INFORMATION RETRIEVAL
FOR THE CGHS BLACK HOLE

Using a particular representation of the Gamma function

Γ½z� ¼ iz
Z

∞

−∞
dqezqe−ie

q
; ðH1Þ

we can write down a product formula

Γ½iðω̄− ω̄0Þ�Γ½−iðω̄− ω̄00Þ�

¼e−πω̄e
π
2
ðω̄0þω̄00Þ

Z
∞

−∞
dq1dq2eiω̄ðq1−q2Þeiðω̄

0q1−ω̄00q2Þe−ieq1þieq2 ;

ðH2Þ

which appears in the spectrum operator expression. The
correction in the vacuum thermal radiation as received by
asymptotic left moving observer can be expressed as

2πλ sinh πω̄Nω̄

¼
Z

∞

0

Z
∞

0

dω̄0

ω̄0
dω̄00

ω̄00 Symω̄

�
Γ½iðω̄ − ω̄0Þ�Γ½−iðω̄ − ω̄00Þ�

Γ½−iω̄0�Γ½iω̄00�
�

× jyþi jiðω̄0−ω̄00Þfðω̄0Þf�ðω̄00Þ; ðH3Þ

where Symx½fðxÞ� ¼ ðfðxÞ þ fð−xÞÞ=2 with ω̄0 ¼ ω0=λ.
Using (53), the spectral distortion can be rewritten as,

2πλ sinh πω̄Nω̄ ¼
Z

∞

0

dω̄0dω̄00
Z

∞

−∞
dq1dq2Symω̄½e−πω̄eiω̄ðq1−q2Þ�eiðω̄0q1−ω̄00q2Þe−ieq1þieq2 gðω0Þg�ðω00Þ: ðH4Þ

Using, gðω̄Þ, introduce yet another function

χðqÞ ¼ e−ie
q

Z
∞

0

dω̄e−iω̄qgðω̄Þ; ðH5Þ

to express the spectral distortion as

2πλ sinh πω̄Nω̄

¼
Z

∞

−∞
dq1dq2Symω̄½e−πω̄eiω̄ðq1−q2Þ�χðq1Þχ�ðq2Þ: ðH6Þ

4πλ sinh πω̄Nω̄ ¼
Z

∞

−∞
dq1dq2½e−πω̄eiω̄ðq1−q2Þ

þ eπω̄e−iω̄ðq1−q2Þ�χðq1Þχ�ðq2Þ; ðH7Þ

which simply gives

4πλ sinh πω̄Nω̄ ¼ eπω̄jF χðω̄Þj2 þ e−πω̄jF χð−ω̄Þj2; ðH8Þ

with F χðω̄Þ being the Fourier transform of χðqÞ with
respect to ω̄

F χðω̄Þ ¼
Z

∞

−∞
dqe−iω̄qχðqÞ; ðH9Þ

which gives (H8) as the analogue of the (A10) for the
spherical symmetric collapse. Therefore, we can follow
the same steps as outlined inSec. III and IV to recover
information regarding F χðω̄Þ. Using the inverse trans-
formations (H9), (H5) and (53) we can recover the
information regarding the field state fðω̄Þ using the mo-
ments of F χðω̄Þ.
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