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The “trousers” spacetime is a pair of flat two-dimensional cylinders (“legs”) merging into a single one
(“trunk”). In spite of its simplicity this spacetime has a few features (including, in particular, a naked
singularity in the “crotch”) each of which is presumably unphysical, but for none of which a mechanism is
known able to prevent its occurrence. Therefore, it is interesting and important to study the behavior of the
quantum fields in such a space. Anderson and DeWitt were the first to consider the free scalar field in the
trousers spacetime. They argued that the crotch singularity produces an infinitely bright flash, which was
interpreted as evidence that the topology of space is dynamically preserved. Similar divergencies were later
discovered by Manogue, Copeland, and Dray who used a more exotic quantization scheme. Later yet the
same result obtained within a somewhat different approach led Sorkin to the conclusion that the topological
transition in question is suppressed in quantum gravity. In this paper I show that the Anderson-DeWitt
divergence is an artifact of their choice of the Fock space. By choosing a different one-particle Hilbert space
one gets a quantum state in which the components of the stress-energy tensor (SET) are bounded in the
frame of a free-falling observer.
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I. INTRODUCTION AND CONCLUSIONS

The two-dimensional spacetime M called trousers is
obtained from the strip

ds2 ¼ dt2 − dx2 t ∈ R; x ∈ ½−P; P�

by, first, deleting the points t ¼ 0, x ¼ �P and the ray
t ≤ 0, x ¼ μP, then attaching a copy of the deleted ray to
either bank of the cut and, finally, smoothly gluing each of
the six rays to its counterpart so that the resulting space
consists of three cylinders; see Fig. 1.
The trousers spacetime merits the most detailed consid-

eration because in spite of its simplicity it possesses two
features, interesting and important, but poorly understood.
(1) The topology of its spacelike sections changes

with time. It is S1 ⊔ S1 at negative t and S1 at
positive. This type of topology change is particularly
significant, because it may have to do with the
appearance of a wormhole or (if the t axis is directed
to the past as in [1]) with the final stage of the
wormholes (including the Schwarzschild black hole)
evaporation [2];

(2) the spacetime is singular, as one might expect, and
the singularity—loosely speaking it is located at the
crotch of the trousers—is naked and quasiregular.
Presumably either of these properties makes it
unphysical, but no mechanism is found that would
protect the Universe from the appearance of such
singularities.

The evolution of a quantum field in trousers was first
considered by Anderson and DeWitt (AD). In their well-
known paper [1] they conjectured that the above-mentioned

singularity emits an infinitely bright flash. Their reasoning
was as follows [3]: “an ‘in’ mode function propagating to
the right splits into components propagating to the right in
each leg. Although continuous in the trunk region, such
mode functions generally have discontinuities […] in the
legs. […] Every ‘out’ mode function is continuous in each
leg (vanishing in one of them) but has discontinuities in the
trunk region. […] When these functions are differentiated
the discontinuities give rise to delta functions. Since the
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FIG. 1. Constructing the trousers spacetime from a flat strip.
The left leg ML ≡ ðt ≤ 0; x ∈ ½−P; μPÞÞ, the right leg
MR ≡ ðt ≤ 0; x ∈ ½μP; PÞÞ, and the trunk MT ≡ ðt ≥ 0; x ∈
ð−P; P�Þ are obtained by gluing together the rays bounding
the corresponding strips. The white circles depict the removed
points. They cannot be returned back after the relevant identi-
fications are performed and thus a naked quasiregular singularity
appears.
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terms of the mode sum for hin; vacjT00
renjin; vaci are

bilinear in differentiated mode functions, the square of
the delta function automatically appears.”
The divergence of hin; vacjTren

00 jin; vaci does not auto-
matically exclude the topology changes: it may happen that
some of them are free from that divergence [4] or that the
relevant quantity is thematrix element hin; vacjTren

00 jout; vaci
as opposed to the expectation value of the stress-energy
tensor [5]. It is also possible that the fields in such an unusual
space must be quantized in some special way [6] (one such
unusual quantization was proposed in [7]; the resulting
hTren

00 i, though, diverges all the same). There is a good
consensus, however, that the AD flashes are an indicator of
some “flaw” in the trousers spacetime [1,8,9]. The goal of
this paper is to show that this is not the case.

A. Conclusions

In regard to the divergence of the energy density the
trousers turn out to be as “nice” as, say, the Schwarzschild
space. The latter is not compromised by the fact that in some
states (such as the Boulware vacuum) the energy density
diverges at the horizon. What matters is the existence of
states free of such divergences. Accordingly, we rehabilitate
the trousers spacetime by explicitly constructing a state in
which hTren

ik i are bounded. Note that the existence of such a
state does not contradict the argument quoted above, owing
to the word generally used in the latter.

II. THE QUANTIZATION

A. The plan

The field ϕ considered in this paper obeys (classically)
the wave equation

□ϕ ¼ 0: ð1Þ

Though the spacetime under discussion is nonglobally
hyperbolic, the piecewise smooth (see below) complex-
valued solutions of (1) are fixed uniquely—this is proven in
Sec. II B—by the data at any surface t ¼ const ≤ 0. In this
sense the singularity is “harmless” [8,10] and we can
proceed exactly as in the globally hyperbolic case. In doing
so we are guided by the textbook [11], in particular, the
units and sign conventions are those used there.
To canonically quantize the field one must first expand it

as a series in vacuum modes, that is, find a set of functions
fϕkg onM that are an orthonormal basis in a Hilbert space
H. It is the choice of H that encodes the physics of the
problem and determines the resulting theory.
The field operator ϕ̂ in quantum field theory (QFT) is

taken to be an (operator-valued) distribution. But the
Hilbert space in discussion is usually built on the basis
of smooth solutions of the classical equation of motion (that
is, H may contain nonsmooth functions, but only those to
which a sequence of smooth ones converges). Such a

choice seems inadequate in studying “thunderbolts" with
their discontinuities. Therefore, Manogue et al. in [7]
expanded the space by allowing the vacuum modes to
have jumps. However, the derivatives of such modes will
have δ-like singularities exactly where the modes are
discontinuous, which makes the Klein-Gordon scalar
product ill defined; see (2). Physically such singularities
seem unwarranted too. Indeed, the crotch singularity can
play the role of a source, so the solutions to the (now
inhomogeneous) wave equation are expected to have
irregularities on the null geodesics emanating from the
“missing point.” However, the energy density proportional
to the square of the delta function is a too strong
irregularity. So, in this paper we propose an intermediate
approach and require classical solutions to be continuous,
though not continuously differentiable. Specifically, let C
be the space of bounded continuous complex-valued
functions on M that are smooth solutions to Eq. (1) on
the whole X except perhaps at the points of past incomplete
inextendible null geodesics (i.e., loosely speaking, null
geodesics emanating from the singularity), where the
derivatives of those functions may have jump discontinu-
ities. Correspondingly, we are looking for a space H
such that
(1) H is a Hilbert space with respect to the Klein-

Gordon scalar product

ðf; gÞKG ≡ i
Z

P

−P
ðg� _f − f _g�Þjt¼0dx ð2Þ

(we indicate the particular value of t because at this
stage we cannot guarantee that the integral does not
depend on the choice of that value, the spacetime
being nonglobally hyperbolic). The positive defi-
niteness of this form is a nontrivial restriction on H.

(2) Up to a constant any function f in C is the sum of a
function from H and a function from H�,

for all f ∈ C f ¼ fþ þ ðf−Þ� þ c;

fþ; f− ∈ H; c ¼ const: ð3Þ

fþ and ðf−Þ� are often called, respectively, “positive
and negative frequency” parts of f. Conversely,
H must not include “superfluous functions;” in
other words, H must not have a proper subspace
satisfying (3).

1. Remark

The word past in the definition of C signifies some time
asymmetry in our approach that is not related to the
asymmetry of the underlying spacetime.

B. Reduction to initial conditions

In this subsection we represent in a convenient form the
space C: we use the periodicity of the functions constituting
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C to express them in terms of their restrictions to the surface
t ¼ 0 (thus trading functions of two variables each for a
pair of functions of one variable).
To begin with we note that any ϕ ∈ C being a solution to

the wave equation

∂α∂βϕ ¼ 0; α≡ tþ x; β≡ t − x

is the sum of a right-moving and a left-moving (i.e.,
depending—within each of the cylinders—on the α- or,
respectively, β-coordinate of its argument) function. Put
more formally, it has the form

ϕjM⋏ðpÞ ¼ a⋏ðαðpÞÞ þ b⋏ðβðpÞÞ þ c;

⋏ ≡ L;R; T: ð4Þ

Here c is an arbitrary constant and a⋏ðαÞ, b⋏ðβÞ for each
value of ⋏ are a pair of functions such that, first,

a⋏ðαðpÞÞ ¼ ajM⋏ðpÞ; b⋏ðβðpÞÞ ¼ bjM⋏ðpÞ;
where a; b ∈ C ð5aÞ

[note that the entire functions aðpÞ, bðpÞ do not have to be
of the form aðαðpÞÞ and bðβðpÞÞ; moreover, they may have
a discontinuity on the ray t ≤ 0, x ¼ μP] and, second, they
satisfy the following normalization conditions:

aLðμPÞ ¼
R μP
−P aLðαÞdα
ð1þ μÞP þ

R
P
μP aRðαÞdα
ð1 − μÞP ;

bLðμPÞ ¼
R μP
−P bLðβÞdβ
ð1þ μÞP þ

R
P
μP bRðβÞdβ
ð1 − μÞP : ð5bÞ

The reason for choosing these particular conditions will
become clear later—see (A5); for now notice only that for
any ϕ Eqs. (4)–(5b) define a unique c. The subset of C

consisting of all functions ϕ for which c ¼ 0 is denoted C
∘
.

Finally, the topology of our spacetime requires ϕ to have
some periodicity properties. In order to satisfy them we
take a⋏ and b⋏ to be periodic functions of α and β,
respectively [12]. The period

of aL and bL is ð1þ μÞP;
of aR and bR is ð1 − μÞP;
and of aT and bT is 2P: ð5cÞ

Now let us introduce the aforementioned functions of
one variable. To this end denote by F the space of all
continuous functions AðxÞ∶ ½−P;P� → C (it is convenient
to imagine A as defined on the surface t ¼ 0; in doing so
one, strictly speaking, must keep in mind that this surface
lacks the points x ¼ �P; μP; we omit this trivial reser-
vation from now on) which

(1) are smooth, except, perhaps, at the points x ¼ μP
where the derivatives are allowed to have jump
discontinuities;

(2) satisfy the condition

AðμPÞ ¼ 1

ð1þ μÞP
Z

μP

−P
AðxÞdx

þ 1

ð1 − μÞP
Z

P

μP
AðxÞdx; ð6Þ

(3) obey the “periodicity condition”

AðnÞð−PÞ ¼ AðnÞðμP − 0Þ;
AðnÞðμPþ 0Þ ¼ AðnÞðPÞ; n ¼ 0; 1… ð7Þ

Each pair A; B ∈ F defines uniquely a function

ΨðA;BÞ ∈ C
∘
in the following way: a⋏ are defined to be

the extensions by periodicity, see (5c), of the functions,
respectively,

aT ≡ A at x ∈ ð−P;P�; aL ≡ A at x ∈ ð−P; μP�;
aR ≡ A at x ∈ ðμP;P�:

The functions b⋏ are dealt with in exactly the same manner
[the only difference is in the sign: b⋏ðβÞjt¼0 ¼ Bð−xÞ].
Now ϕjM⋏ are built by (4) with c ¼ 0 and, finally, ΨðA; BÞ
is defined to be the result of gluing together all three
restrictions ϕjM⋏ .
Conversely, any ϕ ∈ C

∘
defines uniquely a pair A;B ∈ F

such that ΨðA;BÞ ¼ ϕ. This is done by decomposing ϕ
into the right-moving and the left-moving parts aðpÞ and
bðpÞ, see (5a), and defining A, B to be their restrictions,

AðxðpÞÞ≡ aðpÞjt¼0; BðxðpÞÞ≡ bðpÞjt¼0:

We have thus established that Ψ∶ F ⊗ F → C
∘

is an
isomorphism. It can be transformed into an isometry by
an appropriate choice of the inner product in F . Indeed,
substituting the obvious expressions

ϕjt¼0ðxÞ ¼ AðxÞ þ CðxÞ;
_ϕjt¼0ðxÞ ¼ A0ðxÞ − C0ðxÞ; where CðxÞ≡ Bð−xÞ ð8Þ

into (2) one finds

ðϕ1;ϕ2ÞKG ¼ hA1; A2i þ hB1; B2i; ð9Þ

where hF1; F2i≡ i
Z

P

−P
½F�

2ðxÞF0
1ðxÞ − F0�

2 ðxÞF1ðxÞ�dx:

ð10Þ
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1. Remark

The formulas (8) show that the singularity in M is
harmless in the sense of [8]: there exists a unique solution
to the wave equation for any Cauchy data fixed at a surface
t ¼ t0 ≤ 0. It is, of course, this property that enables one to

study QFT on M without adopting a number of ad hoc
assumptions.

C. The choice of the Hilbert space and its basis

Let fuLkg and fuRkg, k ¼ 1; 2;… be the sets of
functions defined as follows:

uLkðxÞ≡
8<
:

ð4πkÞ−1
2e−ikξ at x ∈ ½−P; μP� i:e:; ξ ∈ ½−π; π�;

ð4πkÞ−1
2e−ikπ; at x ∈ ½μP; P�; where ξ≡ π

1þμ

�
2
P xþ 1 − μ

�
;

and likewise

uRkðxÞ≡
8<
:

ð4πkÞ−1
2e−ikζ at x ∈ ½μP; P� i:e: ζ ∈ ½−π; π�;

ð4πkÞ−1
2e−ikπ; at x ∈ ½−P; μP�; where ζ≡ π

1−μ

�
2
P x − 1 − μ

�
:

The set fuRk; uLkg, k ¼ 1; 2;… is orthonormal with respect
to the scalar product h; i defined in (10) and we denote by
HF the (auxiliary) Hilbert space obtained by declaring that
set to be a basis.
The modes ϕk we are after are now defined as

ϕQk ≡
(
ΨðuQk; 0Þ; k > 0

Ψð0; u�QjkjÞ; k < 0
; where Q≡ R;L ð11Þ

(i.e., ϕQk are obtained from uQk by replacing x⤏ − β ¼
x − t for k < 0 and x⤏α ¼ xþ t for k > 0 and extending
the resulting functions by periodicity). So, every mode is at
first a harmonic wave that moves in the corresponding leg
(left or right depending on whether the subscript is L or R)
to the left or to the right depending on the sign of k. In the
trunk, however, the behavior of the mode becomes more
exotic. It is just a constant here except in a spiral strip
bounded by two null geodesics emanating from the crotch.
Within that strip the mode is still a piece of a harmonic
wave whose fronts are just those geodesics. The mode,
though continuous—which enables the SET to remain
bounded, contrary to the AD conjecture—is not smooth.
So, one does not expect the energy to be conserved, but this
is natural for a nonstatic spacetime.

1. Example

Assume Q ¼ L, k ¼ −3. Then we find first that u�Qjkj is
the function (we again perceive its domain as the segment
t ¼ 0 with the values at the missing points x ¼ �P; μP
being defined by continuity) equal to

ffiffiffiffiffiffiffiffi
12π

p
e3iξðxÞ at x ∈

½−P; μP� and −
ffiffiffiffiffiffiffiffi
12π

p
otherwise. Correspondingly, for

every p ∈ M we define ϕL;−3ðpÞ to be equal to

Ψð0; u�L3Þ ¼
( ffiffiffiffiffiffiffiffi

12π
p

e3iξðxpÞ; at xp ∈ ½−P; μP�;
−

ffiffiffiffiffiffiffiffi
12π

p
; otherwise;

where xp is the x-coordinate of the point at which the null
α-directed geodesic through p meets the segment t ¼ 0.
Whence, in particular, ϕL;−3 ¼ −

ffiffiffiffiffiffiffiffi
12π

p
in the entire non-

hatched region in Fig. 2. To write down the explicit
expression for ϕL;−3 in the remaining part of M one
replaces x⤏ − β ¼ x − t in the relevant u and specifies the
periodicity condition

FIG. 2. The slanted rays are the null geodesics at which the
derivatives of functions of C

∘
are allowed to have jumps. In the

dark and in the hatched regions ϕRk with, respectively, positive
and negative k are constant. In the complements to those regions
ϕLk with k of the same sign are constant.
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ϕL;−3 ¼
ffiffiffiffiffiffiffiffi
12π

p
e
3iπðμ−1−2β=PÞ

1þμ ; β ∈
� ½−μPþ Pð1þ μÞn; Pþ Pð1þ μÞn�; in ML;

½−Pþ Pn; Pþ Pn�; in MT; n ∈ Z:

2. Remark

The problem obtained by restricting the consideration to
the right (for definiteness) leg and choosing the vacuum to
be that defined by the set of modes fϕRkg is well studied;
see [11]. The index Q absent in that case may seem to
double “the number” of modes (for μ ¼ 0, say). Note,
however, that the separation between the frequencies of the
modes in the trousers is twice that between the ones in the
cylinder.
Now let the sought-for Hilbert spaceH be defined as the

completion of the linear span of the set

fϕRkg ∪ fϕLkg; k ¼ 1; 2…

by the norm generated by the scalar product (2). That it is
indeed a scalar product (which requires positive definite-
ness) follows from the easily verified equality

ðϕQk;ϕQ̌nÞKG ¼ δknδQ̌Q; for all Q̌;Q k; n ¼ 1; 2…

ð12Þ

According to the plan outlined in the end of Sec. II A it
only remains to prove (3), which is done in the appendix.

D. The vacuum SET

The (nonrenormalized) vacuum expectation value of the
SET is hTμνi ¼

P
nT̂μν½ϕn�, where

T̂μν½f�≡ f;μf�;ν −
1

2
ημνη

κλf;κf�;λ; ð13Þ

and the summation is over all modes [11]. The series
diverges of course and to renormalize the result one
introduces a cutoff factor into the divergent sum by
replacing t⤏t − iδ and lets δ → 0 at the end of the
calculation, that is, after subtracting the limit at P → ∞.
Thus,

hTren
μν i ¼ TL

>μν þ TL
<μν þ TR

>μν þ TR
<μν; ð14Þ

where

TQ
≶μν

≡ lim
δ→0

��
1 − lim

P→∞

�X
n≶0

T̂μν½ϕQn; δ�
�
;

where T̂μν½ϕQn; δ� is the result of the substitution t⤏t − iδ
into T̂μν½ϕQn�. Let us find the four terms in turn. In the
coordinate basis

T̂μν½e−iCðt−xÞ� ¼ C2

�
1 −1
−1 1

�
;

where C is a real constant [note that the second term of (13)
vanishes]. Correspondingly, the term TL

<μν, when nonzero
(i.e., in the hatched region in Fig. 1) is

lim
δ→0

�
ð1 − lim

P→∞
Þ
X
n<0

T̂μν

�expfijnj π
1þμ ðμ − 1 − 2

P ðβ − iδÞÞgffiffiffiffiffiffiffiffiffiffiffi
4πjnjp ��

¼ −
π

12P2ð1þ μÞ2
�

1 −1
−1 1

�
:

The term TL
>μν differs from TL

<μν in two respects: (1) it vanishes in the light gray region and (2) the exponents in the
expression for modes depend on tþ x instead of t − x, which changes the sign of the tx components. Correspondingly,

TL
>μν ¼ −

π

12P2ð1þ μÞ2
�
1 1

1 1

�
in the dark region and ¼ 0 otherwise:

Changing the sign of μ we find

TR
<μν ¼ −

π

12P2ð1 − μÞ2
�

1 −1
−1 1

�
in the nonhatched region and ¼ 0 otherwise:

TR
>μν ¼ −

π

12P2ð1 − μÞ2
�
1 1

1 1

�
in the light region and ¼ 0 otherwise:
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Summing these terms up one finally gets (the description and numbering refer to Fig. 2)

light nonhatched regions I hTren
tt i ¼ hTren

xx i ¼ −
π

6P2ð1 − μÞ2 ; hTren
tx i ¼ hTren

xt i ¼ 0;

dark hatched regions III hTren
tt i ¼ hTren

xx i ¼ −
π

6P2ð1þ μÞ2 ; hTren
tx i ¼ hTren

xt i ¼ 0;

light hatched regions IV hTren
tt i ¼ hTren

xx i ¼ −
π

6P2

1þ μ2

ð1 − μ2Þ2 ; hTren
tx i ¼ hTren

xt i ¼ −
π

3P2

μ

ð1 − μ2Þ2 ;

and dark nonhatched regions II hTren
tt i ¼ hTren

xx i ¼ −
π

6P2

1þ μ2

ð1 − μ2Þ2 ; hTren
tx i ¼ hTren

xt i ¼
π

3P2

μ

ð1 − μ2Þ2 :

Thus, in the reference frame of a free-falling observer the
stress-energy tensor is componentwise bounded even
though in the general case it suffers discontinuities of
the first kind. If the legs are equal (μ ¼ 0) there is no
thunderbolt—the SET is perfectly regular.
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APPENDIX: THE RELATION BETWEEN THE
CLASSICAL AND THE QUANTUM SPACES

By construction C
∘
is dense in H (since all ϕQk ∈ C

∘
). In

this appendix a converse, in a sense, property (3) is
established.
For an arbitrary function A ∈ F let us prove that

A ¼ Aþ þ A−; where Aþ; ðA−Þ� ∈ HF: ðA1Þ

Obviously, this implies (3) for all f of the type f ¼ ΨðA; 0Þ
[it suffices to set f� ¼ ~ΨðA�; 0Þ where ~Ψ is the extension
by continuity of Ψ to the entire HF ⊗ HF]. The case of
f ¼ Ψð0; BÞ is perfectly analogous and f of the general
type is just the sum of those two plus a constant. So, the
validity of (A1) proves (3).
Proof of (A1).—The mode u1 and the function A

are smooth except at x ¼ μP where either of them has
a—nonzero in the case of u1—jump in its first derivative
[see (7)],

w0ðμPþ 0Þ − w0ðμP − 0Þ ¼ w0ðPÞ − w0ð−PÞ;
where w≡ A; u1:

So, we can find a continuously differentiable linear
combination

A1 ∈ C1; A1ðPÞ ¼ A1ð−PÞ; A0
1ðPÞ ¼ A0

1ð−PÞ;
where A1 ≡ A − Cuu1; Cu ¼ const:

Evidently, (A1) is true if and only if it is true with A
replaced by A1. Thus, it involves no loss of generality to
assume that A ∈ C1.
Now, consider the Fourier coefficients

FL;k ≡ 1

2π

Z
π

−π
Ajx∈½−P;μP�ðxðξÞÞeikξdξ;

FR;k ≡ 1

2π

Z
π

−π
Ajx∈½μP;P�ðxðζÞÞeikζdζ

of (the restrictions of) A. By [[13], n°708] it follows from
the continuous differentiability [14] of A that

FQ;k ¼ Oðk−3Þ: ðA2Þ

This rate of convergence implies that for some func-
tions X�

Q

SþQðk0Þ≡
Xk0
k¼1

FQ;kuQk

ffiffiffiffiffiffiffiffiffiffi
4πjkj

p
and

S−Qðk0Þ≡
X1
k¼−k0

F�
Q;kuQ;−k

ffiffiffiffiffiffiffiffiffiffi
4πjkj

p
converge

uniformly to; respectively; Xþ
Q and X−

Q ðA3Þ

and

½S�Qðk0Þ�0 converges uniformly to Y�
Q ≡ ½X�

Q�0: ðA4Þ

The expression SþL þ S−�L þ 1
ð1þμÞP

R μP
−P AðxÞdx on the

interval x ∈ ½−P; μP� is a partial sum of the Fourier series
of Ajx∈½−P;μP�. So, it converges to the said function there
while the first two terms tend, respectively, to Xþ

L and X−
L
�.
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On the other interval (i.e., at x ∈ ½μP; P�) it converges to
AðμPÞ. Similar considerations apply to SþR þ S−�R and
hence

Ajx∈½−P;P� ¼ Xþ
L þ X−

L
� þ 1

ð1þ μÞP
Z

μP

−P
AðxÞdx

þ Xþ
R þ X−

R
� þ 1

ð1 − μÞP
Z

P

μP
AðxÞdx − AðμPÞ

¼ ðXþ
L þ Xþ

R Þ þ ðX−
L þ X−

RÞ� ðA5Þ

[the last equality follows from (6)]. Comparing this with
(A1) we see that the latter is proven once we show that

Xþ
Q; X

−
Q
� ∈ HF: ðA6Þ

So, recall that by construction SþQ; S
−
Q
� ∈ HF; see (A3). At

the same time by (A3) and (A4)

max jX�
Q − S�Qðk0Þj;max jX0�

Q − S0�Qðk0Þj⟶k0→∞
0

and hence SþQ and S−Q
� converge to, respectively, Xþ

Q and
X−
Q
� in the metric of HF; see (10) . Thus, the containment

(A6) follows from the completeness of the Hilbert
space HF.
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