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Spin-3/2 fields in D-dimensional Schwarzschild black hole spacetimes
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In previous works we have studied spin-3/2 fields near four-dimensional Schwarzschild black holes.
The techniques we developed in that case have now been extended here to show that it is possible to
determine the potential of spin-3/2 fields near D-dimensional black holes by exploiting the radial
symmetry of the system. This removes the need to use the Newman-Penrose formalism, which is difficult to
extend to D-dimensional spacetimes. In this paper we will derive a general D-dimensional gauge-invariant
effective potential for spin-3/2 fields near black hole systems. We then use this potential to determine the
quasinormal modes and absorption probabilities of spin-3/2 fields near a D-dimensional Schwarzschild

black hole.
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I. INTRODUCTION

With the introduction of supergravity theories there has
been a lot of interest in understanding the gravitino, the
supersymmetric partner of the graviton. This particle is
predicted to be a spin-3/2 particle and would behave like a
Rarita-Schwinger field. In many supergravity theories,
these fields act as a source of torsion and curvature of
the spacetime [1,2]. It is also predicted that the gravitino is
the lightest or second lightest supersymmetric particle. This
makes the gravitino an ideal candidate for studying super-
symmetric gravitational theories. Much of the research into
gravitinos has been focused on the particle and not its
interaction with curved spacetime, specifically near black
holes. The motivations for this paper are twofold. First, it is
to fill the gap in understanding the role that dimensions and
spin play during gravitational interactions. Work on this has
already been done for the case of spin-0, 1/2, 1 and 2 fields
[3], so work on the spin-3/2 field would help fill this gap.
Furthermore, by studying the higher-dimensional cases we
may highlight the special features of the four-dimensional
spacetime. Second, as N = 2 supergravity can be viewed as
a partial realization of gravitational and electromagnetic
unification, Crispino et al. [4] have shown that the
unpolarized gravitational and electromagnetic scattering
cross sections are equal in the extremal limit. Since in their
consideration the spin-1 electromagnetic and the spin-2
gravitational fields are joined by the spin-3/2 gravitino
field, a direct study of these spin-3/2 fields may shed more
light on the symmetry behind this equality.

In previous works we have investigated this spacetime
interaction for four-dimensional Schwarzschild black holes
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with a spin-3/2 field [5]. We did this by exploiting the
radial symmetry of our system, which allowed us to
separate the metric into a radial-time part and an angular
part. We could then calculate the eigenvalues of our
eigenspinor vectors in the angular part by using the works
of Camporesi et al. [6]. Relating the eigenvalues of our
radial-time part to those for the angular part we could easily
determine the effective potential for our fields near the
black hole. Using the same approach we hope to be able to
investigate spacetimes with dimensions greater than 4.

This paper aims to derive a gauge-invariant
D-dimensional effective potential for spin-3/2 fields near
Schwarzschild black holes. Using this potential we can
study the evolution of our spin-3/2 particles as they
propagate through the curved spacetime. This evolution
through spacetime is characterized by an oscillation of the
spacetime. Near black holes these oscillations have a single
frequency with a damping term, and are called quasinormal
modes (QNMs). The QNMs characterize the parameters of
the black hole [7]. A variety of numerical and semianalytic
techniques can been used to determine the numerical values
for the emitted QNMs [8,9]. We will use the WKB method
and a method developed by some of us called the improved
asymptotic iterative method (improved AIM) to calculate
these values [10].

As we have done previously, we will also look at the
absorption probabilities of our spin-3/2 particles, as this
will give us an insight into the grey body factors and
emission cross section of our black holes. These are
required in order to understand the stability and evolution
of our black holes.

The paper will be structured as follows. In the next
section we determine the eigenvalues for the spinor vectors
on an N sphere. In Sec. III we calculate the potential
functions for spin-3/2 fields in this spacetime. We then use
the potential to determine the QNMs and absorption
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potential associated to our spin-3/2 particles; the results are
given in Secs. IV and V. Final discussions and conclusions
are given in Sec. VL.

II. SPINOR-VECTOR EIGENMODES ON SV
A. The N sphere

The metric that describes the angular part of our space-
times is simply the metric for a sphere. The metric for the N
sphere, SV, is given as

dQ3, = sin® 0ydQ%_, + d6?, (2.1)
where dQN_l is the metric of S¥~!. In the rest of this

section we will denote terms for S¥~! with tildes. Nonzero
Christoffel symbols for the S¥~! are

0 . -
Fe,[-va, = —sinfy cos HNggigj;

0; ~6;. =0,
T, = cotOngygs  Tgly =T4. (2.2)

In order to determine our covariant derivatives on S¥ we
need to determine the appropriate spin connections. We will
use the n-bein formalism in order to relate components on
our curved space to those of an orthonormal basis [11].
Our metric is related as follows:

G = €4€l8,, esel = 8y, edel, =68, (2.3)
where greek letters represent our world indices and latin
letters represent our Lorentz indices. For SV the n bein is

given as

1
P & (2.4)

=1
N ' " sin(9) !

We can relate gamma matrices on the orthogonal basis to
gamma matrices of those on SV as follows:

. 1 )
0, — Oi,i _ 50 Oy — v, N _ N 25
=l =ggearh =yt =1t (25)

where the gamma matrices on the orthogonal basis obey the
Clifford algebra. Spin connections are calculated as [11]

Dyap = eZ(aﬂeab - Fﬁaeph)' (26)

Nonzero spin connections on SV are then determined to be
(2.7)

w@,-jN = COS QNEQU', w@;jk = w6’,-jk-

The covariant derivative for the spinor-vector field is

vyl//y = aﬂWl/ - Fﬁl/w,/) + oy, (28)

PHYSICAL REVIEW D 94, 044052 (2016)

where

I I
Wy =50 =", 0 =2y,

7 (2.9)

We can now determine the eigenvalues for our spinors
and spinor vectors on SV. The eigenvalues for our spinors
have already been determined by Camporesis and Higuchi
[6], a brief overview is given in the Appendix. We use the
eigenvalues of our spinors to determine the eigenvalues for
our spinor vectors.

We denote the spinor vectors as y,, where each of the
components are spinors. To begin our investigation into
spinor vectors we find two orthogonal eigenspinor vectors
on S2, which can be written as linear combinations of the
basis y,y ;) and Vﬂy/w, where ;) is the eigenspinor on
S2. Note that we use (1) to highlight that A is not an index.
These are “non-transverse and traceless eigenmodes”
(non-TT modes), as they do not satisfy the transverse
and traceless conditions. These two eigenspinor vectors can
be generalized to the SV case, and are analogous to the
longitudinal eigenmode for vector fields on spheres. These
“non-TT eigenmodes” form a complete set of eigenmodes
on S2. For higher-dimensional surfaces these modes do not
represent a complete set and we must introduce TT
eigenmodes. We are also required to consider the behavior
of the SV spinor-vector components on S¥~!'. Consider
the surface S3; we expect the following spinor vector
wo, = (Wo,  Wo, - Wo,)> With yy g, and y,, representing
spinors. Furthermore on §* we expect our “TT compo-
nents,” yy and yy,, to behave like spinor vectors on S2.
Since S? only has non-TT eigenmodes we should represent
wo, and yy, as linear combinations of non-TT eigenmodes
on $°. As such yy, acts like a spinor on §?, and we
represent it using a linear combination of spinor eigenm-
odes on S?. This gives us our first type of “TT eigenmode”
which we can call the “TT mode 1.” The complete set of
spinor vectors on S° is therefore given by two non-TT
eigenmodes and one TT eigenmode 1. On $* spinors Vo,
W, and y,, behave like spinor vectors and y, behaves
like a spinor on S°. We therefore have two types of spinor
vectors on S, which we can represent in two ways. First,
we can represent ¥, , Wy,, and yy, as linear combinations
of non-TT eigenmodes on S?, and v, , Tepresented with a
linear combination of spinor eigenmodes on S3, this is the
TT eigenmode I on S*. We could also represent Wo,» Yo,
and yg, as TT eigenmodes on §3. Since they are already the
TT eigenmodes, yy, must go to zero. In this case we call it
the TT eigenmode II. Hence, the complete set of eigenm-
odes on $* is given by two non-TT eigenmodes, one TT
eigenmode I and one TT eigenmode II.

Generally, eigenmodes on SV are represented by two
non-TT eigenmodes, one TT-eigenmode I, and N —3 “TT
eigenmode II” when N > 2. We can now determine the
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eigenvalues for our spinor vectors. In the following section

we will denote values relating to the surface SV~! with tildes.

B. Spinor-vector non-TT eigenmodes on SV

We denote eigenvalues for the non-TT eigenmode spinor
vectors as i&. The eigenvalue equation for our eigenspinor
vectors with the Dirac operator is

yﬂvﬂl//v =iy, (210)

We can construct eigenspinor vectors on SV using the
following linear combination:

v, =V +arnya)s (2.11)

where ;) is an eigenspinor on SN. Plugging Eq. (2.11)
into Eq. (2.10) we have

&y, =" [V, Vilwioy + Vo (r*Vap )
+a{r’ r 3V —an (V). (2.12)

The commutator can be rewritten in terms of the Riemann
curvature tensor R, as,

(N =1Drw.

(2.13)

| =

1
r [v;u vu]l//(/l) = ng/ap [7/0—7 y/)]l//(/l) =

Then Eq. (2.12) becomes

—ida+%(N-1) v/<>>
vV (1) |»

}’”V”l//l/ = (iA+2a) <Vyl//(,1) + it 2a

(2.14)

where iA is the spinor eigenvalue on SV Eq. (A9).
Comparing with Eq. (2.11), we can show that the non-
TT eigenvalues are

|

1
Vﬂl//” =0 = <86N + <N—§> COtHN)Wé’N = —

. N +1
Ve, = ilwy, = 7" (aeN + <—

2

, N i
y"Vﬂwgi = l@[/gi = }/N (agN + (T) cot 9N> Yo, + 2COt9NJ/Nzefl//9j +
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/ N—-1)? 135

We can write the non-TT eigenspinor vectors as

I
i Vowy + 3 (=id+ /(N =1) =)0,
2 _y l_',l— N-—1)-=12 2.16
Y Wy T 2( l ( ) ey (2.16)

C. Spinor-vector TT eigenmode I on SV

Here we denote the eigenvalues as i{, to distinguish them
from the non-TT eigenmodes. So our spinor-vector equa-
tion with Dirac operator is

"V, =iy, (2.17)
The transverse traceless condition is
Viy, = yhy, = 0. (2.18)

With the spinor eigenmodes noted in the Appendix, we will
separate out our lower dimensional part and separately
consider the N even and the N odd cases.

1. N odd

Using Eq. (Al10)and Eq. (2.4) we find that Eq. (2.18)
becomes

1
sin @y

v, =0=yy, = Ny, (2.19)

Using the Christoffel symbols in Eq. (2.2), Eq. (2.17) and
Eq. (2.18) become

Vi, 2.20
sin gy (220
1, .
cotOy |y, + sin@Ny Vowe, = iCwo,. (2.21)
779jve,1//9i = iy, (2.22)

sin Oy

W, behaves like a spinor and we write it as a linear combination of the eigenspinors on SN=1.The Wy, terms behave like
spinor vectors and we write them in terms of non-TT mod eigenspinor vectors on SV,

1 . - 1 : -
Wo, = 75(1 + iy )AWG ) + \/—5(1 — iy ) AP ),

(2.23)
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1 . ~ - -
Vo, = E(l + iyM)(COV i) + DW7g i)
1 : = -
+ 75(1 —iyM)(COV i) + D7y ). (2.24)

The coefficients A2, €12 and D2 are functions of
Oy only, and ;) is the spinor eigenmode on SV~'. Using
these two definitions we can derive the eigenspinor-
vector equations, (2.19)-(2.22), by setting A2 =

(sinfy)~>A(2) The coefficients of the eigenspinor

vector are
17 T T R
All2) = sine—N S cose—N T HzPln%ﬂH%M(cos On),
2 2
(2.25)
in @ N-1 ~
c12) — SN < cosd q:/I)A("Z)
Z-tn-12\ 2 N
_ in2
- N-—-1 _ é’sm QN A(2~‘>, (226)
V2T j(N- 1

(2 ___ isinfy (5 N=1\ 402
D = Zz—l(N—l)z AcosOy F 2 A
4
. e . 2
IC%ZSIHIQN . A<2’l), (227)
(N=2)(4" =3 (N=1)%)
where P‘n%ﬂ"‘%w (cos@y) is the Jacobi polynomial. The

eigenvalues are

{= i<n+ 12| +%> (2.28)

where |/~1|:r~1—|—(N—1)/2, n=20,1,2,..., and
n=20,1,2,.... Equation (2.28) can be rewritten as

N-1 . 1357
g—:t<]+ 2 >9 ]_ 2y2725---~

(2.29)

As such we have determined the eigenvalue for our
eigenspinor vectors for N > 3 and N odd.

2. N even

We use the gamma matrices and spin connections as
given in Eq. (A3) and Eq. (A4) and set y, = (.. yy, ), as

such
(1) (1)
Yo, Yo,
Yoy = ( (2)>, Vo, = ( (2)>- (2.30)
Yo, Yo,

This allows us to rewrite Eq. (2.17) and Eq. (2.18) as
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(12) _

~0. (1,2
Yy, =0 = Oy, (2.31)

sin Oy /

1 2
Viy, =0 = <39N + (N - 5) cot9N> l//éi] )

1 =
. 2 vgl 21,2)’
sin” @y i

(2.32)

: N+1
Y*Vuwe, = ilwe, = <89N * <T> cot 9N> v,

057 1D _ iy 2D 133
—SiHGNy 0¥, lC‘//gN ) (2.33)

. N-1
r"Vwe, = ilyy = <89N + <T> cot9N> w(():,z)

(1,2)

1.2 ~0. %
2 71Ny,

+ 2 cot HNigi O "’(9,

T Sinoy

=gy ). (2.34)

W, = AP
= Cmve,lff(z) + D<1)}~’9}/~/(/1)§

wy) = iCOVy i) + DDy . (2.35)

Substituting these into Eqgs. (2.31) and (2.34), we have the
same results as we did for the N odd case. That is, we find
that the eigenvalues are the same as those for the N odd
case. We note that N > 2, since as discussed earlier, there
are no TT eigenmodes for the surface S2.

D. Spinor-vector TT-modes II on SV

As discussed earlier in this section TT mode II are only
possible for N > 4. We start by letting the eigenspinor
vector yy = 0, and the TT mode eigenspinor vector on

SN=1 will still be an eigenspinor vector on SV with suitable
coefficients.

1. N odd

Setting spinor vector y, as

1 . 1 . -
= (5B i) 4B i) )i, (236

where B() and B(?) are functions of 6 only. Substituting
into Eq. (2.22) by setting B2 = (sin@y)~"T)B(2), we
have
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0\ BEE+3 0N\ BFEH 145 1as
B2 = (sm?N) T <cos 7N> ’ zPlrﬁimﬁgl (cosBy),

(2.37)

L7 Lf ~
where Pl,ﬁié"lﬁa (cos Oy ) is again the Jacobi polynomial. {
is the spinor-vector eigenvalue of the TT mode I on SV~!,
which is given as { = ] + NT_Z Such that the eigenvalues on

TT mode II are

il = :|:L<H+|C|+ ) =:|:i<j+¥>,
3
2’

1 5
=555 2.38
I =555 (2.38)
which are the same as those of TT mode I on SV.
2. N even
Setting
pi) =B, oyl = iB@g,.  (239)

and using Egs. (2.31) to (2.34), we find that the eigenvalue
is still given as Eq. (2.38). Using the eigenvalues for our
spinors and spinor vectors we can determine our potential
for spin-3/2 particles near Schwarzschild black holes.

III. THE RADIAL EQUATION AND THE
POTENTIAL FUNCTION

In this section we are going to obtain the radial equation
and the effective potential for the spin-3/2 field in the
D-dimensional Schwarzschild black hole spacetime. Since
the mode function of the spin-3/2 field will be represented
by the spinor-vector wave functions, we have to do the
construction analogous to the details with the spinor and the
vector fields. In the study of Maxwell fields, it has been
shown that there are two physical modes with different
mode functions [12,13]. One is related to the scalar
spherical harmonics, and another one is related to the
vector spherical harmonics, these are also known as the
“longitudinal” and “transverse” parts of a vector field [14].
In our case there are non-TT eigenmodes and TT eigenm-
odes on SV, where we may obtain two physical modes
related to these eigenmodes for our spin-3/2 field case.

A. Massless Rarita-Schwinger field for D dimensions
To begin we need to define our metric as

1 _
5% = —fdt2+?dr2—|—r2d§22, (3.1)

where f =1 — (34)P=3 and D = N + 2 is the dimensions
of the spacetime. The dQy is the metric for the N sphere,
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and we denote terms from the N sphere with over bars.
We will use the massless form of the Rarita-Schwinger
equation to represent the spin-3/2 field,

ylwavyl//a =0, (32)

where the antisymmetric Dirac gamma product is given as

ye = pliyryd = pryrya g grgre _yagr (3 3)
We choose the following gamma matrices:
P=icd®1=y :L(i(ﬁ ®1).
v
Y =0c'®@7 =y’ :%(61 ®7"),
P l=62®1 :>7’:\/]_”(02®1]), (3.4)

with 1 being the 2(°7) % 2(°7%) unit matrix for the case of D
even and the 2(*7) x 2(*2") unit matrix for the case of D
odd. ¢'(i =1,2,3) are the Pauli matrices and 7% are
the Dirac matrices for the N sphere. The nonzero spin

connections are
w, = —L(a ®1),
a)gi = ﬂ ® 59{, +§(103 ® 791_). (35)

And the nonzero triple gamma products are given as

1 _
},teir — _;('ﬂ ® },Bi)’

1
yoili = rzx/f(i63 ® 7%9),
" = g(rf ® 7%%),

1
Y000 — 3 (o' @ 7i0:%), (3.6)

where 7%% = y97% — %% is the antisymmetric product of
two Dirac matrices.

B. With non-TT eigenfunctions
We represent our radial, temporal, and angular parts as
Wy Wy, and yg, . The radial and temporal parts will behave
as spinors on SV and we write them as

and v, = ¢, QW

where ;) is an eigenspinor on the SN, with eigenvalues i/.
The angular part, however, will behave as a spinor vector
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on SV and can be written as Eq. (2.16). However, it is more
convenient to write it as

W, = ¢é1> ® Vo + ¢éz) ® Yo.¥ () (3.8)
where ¢2,1>, qbéz) are functions of r and 7 which behave like
2-spinors. This is the same form as we have used for
spinors when studying the four-dimensional spacetime [5].
Using Eq. (3.2) we will derive our equations of motion and
then try to rewrite them as Schrodinger-like equations. We
will initially work in the Weyl gauge, where ¢, = 0, to
determine our equations of motion, and will then find a
gauge-invariant form.

1. Equations of motion

First, consider the case where y = ¢ in Eq. (3.2),

ywavvl//a =0. (39)

By using Eq. (3.7) and Eq. (3.8), with the angular part
separated, we have our first equation of motion in terms of

b, 95", and ¢

0= -[mgw—z)(ioﬂ]gb

79, _ 1D =2)(D-3) i2] )
+ [mar ) T (ic) + (D = 3) 2r] by
iA(D-3) .
+ |:(D - 2)8, + T (lGB)
(D=2)(D=3)] ,2
+—2r ]cﬁg . (3.10)
Next consider the case where u = r in Eq. (3.2),
yvV,p, = 0. (3.11)
The second equation of motion is
[ iz irf! (D-3)(D-2)
A A S
+0-3 g
(D - ) ﬁ 2
+[ \/78+(D 2)4\/_ +(D=-3)—0
+ (D -2)(D - 3) \/]7 }4’0 . (3.12)
Finally for y = 6,
7Ny, = 0. (3.13)
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Giving us our final two equations of motion,

_ (L \/_762 F
o_(rf( 00,4376, + o
+(D- 4)ﬂ >¢(1)_<Dr;461>¢((92)
_ (\/TJ_C02>¢F (3.14)
and
o il 1/1\/]7 2 iAf! 2
0= (r\f( 0, 0, 4 g
HD-3)(D=4) o' + -4 25 ) g
D-3 \/J_” 2 f 2
<rf(la )0+(D=3)" 0, +(D=3)
(-9 +<D—3><D—4>2—@02)¢§2’
+ <a,—@al —fZ,ol +i717\/762>¢ (3.15)

We now have our four equations of motion, Egs. (3.10),
(3.12), (3.14), and (3.15), in terms of ¢, ¢}/, and ¢, . The

functions ¢,, qﬁél) , and q,’)éz) are not gauge invariant. In the
next section we investigate the required gauge invariance
and determine the appropriate transformations in order to
create our gauge-invariant radial equation.

2. Gauge-invariant variable

If we consider a system where only gravitational forces
are present then

1
eV, V. = g7 Ruapo?1° 0. (3.16)

where ¢ is a Dirac spinor. This allows our spinors vectors to
transform as

vy =w,+V,p (3.17)
and still have Eq. (3.2) remain true, given that Eq. (3.16) is
equal to zero. This is not the case if our metric is charged,
and we would need to introduce terms containing the
electromagnetic field strength.

We can simplify the expression given in Eq. (3.16) by
exploiting the symmetry of the Riemann tensor,

yﬂyyya(R/,waﬂ + Ryay[}' + Ra;w/i) =0

= V77 Ruvap = =27 Rop. (3.18)
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We also have that de Sitter and anti—de Sitter spacetimes it does not vanish,
so we would need to modify the covariant derivative in those
Yy Yyt R,.5 = —2R. (3.19) cases in order to respect the gauge symmetry. This means we

can perform the above transformation on our spinor vector.
Using these two identities Eq. (3.16) becomes First, consider the transformation of ¢, and ¢,. Take
¢ = ¢ ® y(;, then Eq. (3.17) becomes

1 1

g7 Ruapo?’v” = 7 (2r"Ra = "R)g. (3.20) s
W = Wt+vtl//$¢t_¢t+8r¢__o-¢

This is zero for Ricci flat spacetimes like the , ,

D-dimensional Schwarzschild spacetime. However, for  ¥r =V¥r+ Vi = ¢ = br+ 0:9. (3.21)

Next we consider the transformation of our angular components of y,. They are given as

wo! =wy, + Vo, = d);(l) ® va,W(z) + ¢/9(2) VoW = (474(91) +¢) ® VH,WM) + (4522) + Tf(w})d’) ® VoV (1)
Sd =g a6 =g + Y (1 (3.22)

So clearly ¢,, ¢,, ¢é,1), and gbéz) are not gauge invariant. We need to perform a transformation of these spinors in order to
obtain gauge-invariant functions. We use the combination we have used in the four-dimensional spacetime [5]

d = —g (ic®)p + 4. (3.23)

Note that there is no dimensional dependence for our gauge-invariant variable.

3. Effective potential
Using the gauge-invariant variable ®, Eq. (3.10), Eq. (3.12), and Eq. (3.14) become

<(D—2)8,+(D—3) i (iaﬂ—l—%)@%—(ﬂ%——fm) ,¢§‘>_<J+DT_2\/?(1'03)>¢,, (3.24)

i
D=2, (D-2)D-3VF , (D=2 | 7,
< i al_+ S e+ (D=3) ] >q>
+< <\’//17+D2203>a Kﬂ I—D—zf’ 2)¢ —0, (3.25)
and
Lia3 o —— () _ b-4 fo =
(G0, Vi, + Lo ol - (P22at o - i, —o. (326)

We have used that f' = (D — 3)(1 — f)/r to simplify our equations. We can now use Eq. (3.24), Eq. (3.25), and Eq. (3.26)
to derive a gauge-invariant equation of motion in terms of only &,

oz(¥ﬁ+za3)[_<z>_z>ala,+ 2p 4D -”ﬁ(”z‘zﬁ_zgz)]@
—(Dz_z\/?—w)[(D—z)fa,+D;3ﬁ(Dz_z\/f—Z(ﬁ)]@
— (== -2 ) |=— V| ==+ )| . (3.27)
(1322 )[Dr4 (022 )}
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Component wise @ is given as

o) —iwt
<1>:< e ) (3.28)
Dy(r)e "
Equation (3.27) then becomes
B f B\ D -3./f4
— P, -0, -2 ) —— P
<A)fa’1 4! <A)D—2 ro !
D—4./f .
+m73@1 = lCO(bz, (329)
A f A\ D —-3./fA
— Dy, — =D, +2( = —
(B)fa’ 2=y Pt (B)D—2 ro?
D=4V 0 _,
+ mTA@z = la)@l, (330)
where we have set
D-2 - D-2 _
A:T\/EH and B:T\/f—z. (3.31)

We can further simplify the above equation by defining
D fl /4 )
=rz|————]%;
‘ (%%ﬁ+ﬂ ‘

N » f1/4
q)z rz <%> q)z .

Equation (3.29) and Eq. (3.30) then become

d -
(dr* - W)cbl = la)cbz;

( d + W)éz = i(l)é],

KA

(3.32)

3.33
dr, ( )

where r, is the tortoise coordinate and is defined as
d/dr, = fd/dr. W is known as the superpotential in
supersymmetric quantum mechanics and is determined
to be

w

- V7 <(ﬁ)2|71|2 — 1 — b=t @amyb-3
’ (522’121 = f
This allows us to write our Schrodinger-like equation to

describe our particles, where we have called this equation
our radial equation, given as

). (3.34)

P2 - N N
_W(Dl + VI(I)I = 6()2(1)1;

*

‘iz + Vzéz == a)z(i)z,

(3.35)

2
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with isospectral supersymmetric partner potentials [15]

aw

V1’2 - ifﬁ + Wz, (336)

where f =1-(2M/r)P=3 in D-dimensional space. As
l=n+ (D—-2)/2 and n=0,1,2,..., we rewrite it as
A=j+ (D-3)/2, where j = 1/2,3/2,5/2, ... such that
V(r) is explicitly given as

v XVIG+2P)
027" A(x 1 v)?

(22 (25
. (21)2 —DliDz—i- 19) Y2]

N (j +EP)VFY? (D —4>

PX+Y)? \D-2
(6525 B rere (251))

=G 605

(3.38)

Setting D = 4 we find that our potential is the same as in
Refs. [5,16];

v~ U=+ +)VT
CRG-DU ) EDP

() ()
(ERACIR)

C. With the TT eigenfunctions

X

(3.39)

1. Equations of motion

We set the radial and temporal parts, y, and y,, to be the
same as the non-TT eigenfunctions case given in Eq. (3.7).
The angular part, ., can be written in terms of the TT
mode eigenspinor vector on SV as

wo, = o ® Wy, (3.40)

where 7, is the TT mode eigenspinor vector which
includes the TT mode I and TT mode II, and ¢, behaves

044052-8
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like a 2-spinor. As we have done for the previous case, we
will use the Weyl gauge and consider the cases y = ft,
u = r,and y = 6; for Eq. (3.2). Applying the TT conditions
on a sphere, namely, 7% Yo, = Vi Wy, = 0, we havey, = 0.
We find that the equation of motion in this case is

i

—1
r

fal>¢e —o.
(3.41)

;3 2 ' 2 D-4 2
i6°0;+ fo 0, +—o0"+——foc" +
4 2r

In this case ¢y is gauge invariant, so we directly derive the

radial equation in the next section.

2. Effective potential

Assuming ¢y is given as

\IIG e—iwt
= o’ < b > : 3.42
¢9 \Il92e_lwt ( )
Equation (3.41) can then be rewritten as
" D-4 -
ro,+L 22ty Vg, i,
4 2r r
" D-—4 -
<f8,+Z+Tf+€C>\I/92 = i(l)\I’gl. (343)

These expressions can be simplified using the following
transformations:

g =rafily, U, =r7fil,. (3.44)
We have the radial equations,
& — _ _
—d—rz‘l’el + V¥ = wz‘l’e];
P
—W\sz + \/2\1192 = W \1192, (345)
where
dw
\/lzzif——l—WZ, (346)
' dr
and
w=Y'z (3.47)
r

As {=j+ (D—-3)/2 where j=1/2,3/2,5/2,.... Our
spinor-vector potentials are then explicitly given as

PHYSICAL REVIEW D 94, 044052 (2016)

1-Eh . D=3
r? / 2

)
-7 ()

This is the same potential as obtained in Ref. [17], where
the radial equation of a spin-1/2 field on the general
dimensional Schwarzschild black hole spacetime is con-
sidered. We can say that the radial equation for the spin-3/2
field is equivalent to that of the spinor field case when the
eigenmode on SV is the TT mode, with y, =y, = 0, and
only y, remains.

\/]2 = Zl:

(3.48)

IV. QUASINORMAL MODES

In this section we focus on the QNMs for our non-TT
eigenfunctions spinor vectors, where we will use the new
potential that we have derived for the massless spin-3/2
fields. The potential that we have derived for the TT
eigenfunctions is the same as that seen for the spin-1/2
Dirac field; we therefore refer the reader to Ref. [17] for the
results of the TT eigenfunctions.

A. Methods

We have used two methods in order to determine the
numerical values of our QNMs. We have used the WKB
method to third and sixth order, and the improved AIM to
calculate the numerical values of our QNMs. The third
order WKB method was developed by Iyer and Will [18]
and the sixth order was developed by Konoplya [19].

1. Implementation of the improved AIM

The improved AIM has been developed in the following
papers: [10,20-22]. In order to use this technique we must
first perform a coordinate change so that we are operating
on a compact space; we choose & =1—2M/r. Our
boundary conditions require that our particles are purely
in-going at the horizon and purely out-going at infinity.
Since our particles would exhibit plane wave behavior at
these boundaries, we can write their wave functions as

i)l ~ eiwr*

@1 ~ e—iwr*

for r, — oo;

for r, > —oo. (4.1)

With r, as the tortoise coordinate, where the general
formula for an D-dimensional tortoise coordinate is given
in Ref. [23]

044052-9
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D=3 2migts

= 2MIn( r — 2Me*" o5 . 4.2
r r+n:1D_3 n(r e Dz> (4.2)
Plugging Eq. (4.2) into our wave functions for our particles
gives us our general behavior of the particles for our

D-dimensional space

B~ ET] (1= (1 - 2)0(m)*

n=1

2iM»®(n)
D-3

2iMa®(n)

x ((1=8)0(n))* 7=,

D=3

(4.3)

where ©(n) = ep5. Clearly at the boundaries of our
system, namely, £ = 1, 0, we would encounter asymptotic
behavior. We extract this asymptotic behavior from ¢ and
write

(4.4)

where f(£) contains our asymptotic behavior, and (&)
satisfies the equation

X&) = dox (&) + s0. (4.5)
The functions 4, and s, are determined to be
p' &) )
Ao=—-(2 A, 4.6
‘ < G 40

TABLE L.
with D =4, 5.

PHYSICAL REVIEW D 94, 044052 (2016)

NG
o= <ﬂ(§) THetT B)’ *.7)
with
e
A= 7 + 7 B (fé:')z( V). (4.8)

We then apply the AIM to Eq. (4.5) and after 200 iteration
we obtain the results given in Tables I-III.

B. Results

We present the results of our WKB and AIM calculation
in Tables I-III. For fixed angular quantum number / with
specific dimension D, when the mode number n gets larger,
the real parts of the frequencies decrease and the imaginary
parts, or the damping rates, increase. This indicates that the
n = 0 mode has the largest probability of being observed.
We also show the behavior of first few QNMs with various
dimensions in Fig. 1, which shows that both the frequency
and the damping rate increase with the number of
dimensions.

Comparing the WKB and AIM methods, we see that the
WKB method returns results which are not as accurate as
the AIM, however, the WKB is much easier to implement
compared to the AIM. In order to obtain accurate results for
QNMs using the AIM it is necessary for us to perform a
large number of iterations of the AIM, which has the
drawback of requiring large amounts of computation time.
When D = 4, 5, 6 we see that the AIM and WKB method

Low-lying (n < I, with [ = j — 3/2) spin-3/2 field quasinormal mode frequencies using the WKB and the AIM methods

4 Dimensions

5 Dimensions

Third order WKB

Sixth order WKB

AIM

Third order WKB

Sixth order WKB

AIM

LN Unndhbh BB BAEREWWWWNRDNDND==O| ~

NPHE WD, OPRPWLWLNDN—RLOWNNFRLONN—R,O~,OO|S

0.3087 — 0.09021
0.5295 - 0.0938i
0.5103 — 0.2858i
0.7346 — 0.09491
0.7206 — 0.28701
0.6960 — 0.48441
0.9343 — 0.09541
0.9233 — 0.2876i
0.9031 — 0.4834i
0.8759 — 0.6835i
1.1315 — 0.09561
1.1224 — 0.28791
1.1053 — 0.4828i
1.0817 — 0.68121
1.0530 — 0.8828i
1.3273 — 0.0958i
1.3196 — 0.28811
1.3048 — 0.48241
1.2839 — 0.67951
1.2582 — 0.8794i
1.2284 — 1.0821i

0.3113 — 0.09021
0.5300 — 0.0938i
0.5114 — 0.2854i1
0.7348 — 0.09491
0.7210 — 0.28691
0.6953 — 0.48551
0.9344 — 0.09541
0.9235 — 0.2876i
0.9026 — 0.48401
0.8733 — 0.6870i
1.1315 — 0.09561
1.1225 - 0.28791
1.1050 — 0.48311
1.0798 — 0.68301
1.0485 — 0.88911i
1.3273 — 0.0958i
1.3196 — 0.28811
1.3045 — 0.48261
1.2826 — 0.68051
1.2547 — 0.8832i
1.2221 — 1.0915i

0.3112 - 0.09021
0.5300 — 0.09371
0.5113 — 0.2854i
0.7347 — 0.09481
0.7210 — 0.28691
0.6952 — 0.48551
0.9343 — 0.09531
0.9235 — 0.2875i
0.9025 — 0.48391
0.8732 — 0.6870i
1.1315 — 0.09561
1.1225 - 0.28791
1.1049 — 0.48301
1.0798 — 0.68291
1.0484 — 0.8890i
1.3273 — 0.0957i
1.3196 — 0.28811
1.3045 — 0.48251
1.2826 — 0.68051
1.2547 — 0.8831i
1.2220 — 1.0914i

LN Unndbh BB BAEPREWWWWNRDNDND==O | ~

NPHEA RO, OPRPWLWDNRLOWNNFRL,ON—R,O~,OO|S

0.4409 — 0.15291
0.7530 — 0.1653i
0.6902 — 0.5112i1
1.0322 —0.17001
0.9869 — 0.51821
0.9076 — 0.88351
1.2998 — 0.1723i
1.2639 — 0.5221i
1.1985 — 0.8839i
1.1111 — 1.25861
1.5617 — 0.17361
1.5319 — 0.5244i
1.4761 — 0.88411
1.3998 — 1.25461
1.3070 — 1.6346i
1.8204 — 0.1744i
1.7947 — 0.52591
1.7461 — 0.8842i1
1.6783 — 1.2515i1
1.5950 — 1.6274i
1.4983 —2.0108i

0.4641 — 0.14361
0.7558 — 0.1652i
0.6989 — 0.5075i
1.0332 —0.17001
0.9900 — 0.51721
0.9070 — 0.88681
1.3003 — 0.1723i
1.2654 — 0.5217i
1.1974 — 0.8858i
1.1009 — 1.2748i
1.5620 — 0.17361
1.5327 — 0.5242i
1.4751 — 0.88521
1.3919 — 1.26391
1.2874 — 1.6672i
1.8205 — 0.1744i
1.7952 — 0.5258i
1.7453 — 0.88481
1.6724 — 1.2571i
1.5793 — 1.6478i
1.4696 — 2.0621i

0.4641 —0.14351
0.7558 — 0.16511
0.6988 — 0.5074i
1.0332 —0.17001
0.9899 — 0.51721
0.9070 — 0.88681
1.3003 — 0.1723i
1.2653 — 0.5216i
1.1974 — 0.8857i
1.1008 — 1.2748i
1.5619 — 0.17361
1.5326 — 0.5242i
1.4750 — 0.88511
1.3919 — 1.2638i
1.2873 — 1.6672i
1.8205 — 0.1744i
1.7951 — 0.52571
1.7452 — 0.88481
1.6723 — 1.25701
1.5793 — 1.6478i
1.4695 — 2.0621i
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TABLE II.

with D = 6,7.

PHYSICAL REVIEW D 94, 044052 (2016)

Low-lying (n < I, with [ = j — 3/2) spin-3/2 field quasinormal mode frequencies using the WKB and the AIM methods

6 Dimensions

7 Dimensions

Third order WKB

Sixth order WKB

AIM

Third order WKB

Sixth order WKB

AIM

LN nhndbh BB BAEPRWWWWNDDODND = =O| ~

N AW, ORWNN—R,OWNN—R,ON—~,O~R,OO|S

0.5916 — 0.22601
0.9479 — 0.22741
0.8210 - 0.71011
1.2745 — 0.2336i
1.1832 —0.71551
1.0199 — 1.23101
1.5862 —0.23761
1.5140 - 0.72201
1.3804 — 1.22961
1.1990 — 1.7635i
1.8900 — 0.24001
1.8298 — 0.72661
1.7160 — 1.23021
1.5584 — 1.7552i
1.3647 — 2.30051
2.1890 — 0.24171
2.1371 — 0.7299i
2.0378 — 1.2311i
1.8982 — 1.74991
1.7246 — 2.28671
1.5215 —2.83961

0.5714 - 0.21971
0.9548 — 0.22291
0.8416 — 0.67611
1.2771 — 0.2329i
1.1934 — 0.70851
1.0220 — 1.2203i1
1.5874 — 0.23731
1.5187 = 0.7198i
1.3803 — 1.2284i
1.1734 — 1.78851
1.8906 — 0.2399i
1.8323 — 0.72571
1.7152 — 1.23051
1.5396 — 1.7714i
1.3099 —2.3698i
2.1894 —0.2416i1
2.1387 — 0.7294i
2.0369 — 1.2315i1
1.8841 — 1.76031
1.6825 —2.33091
1.4372 — 2.96041

0.5713 - 0.21971
0.9547 — 0.22291
0.8415 - 0.67611
1.2771 — 0.2328i
1.1933 — 0.7084i
1.0220 — 1.22021
1.5874 — 0.2373i1
1.5187 = 0.71971
1.3802 — 1.2283i
1.1734 — 1.7885i
1.8906 — 0.23991
1.8323 — 0.72561
1.7151 — 1.23041
1.5396 — 1.7714i
1.3099 —2.3698i
2.1894 — 0.24161
2.1386 — 0.7293i
2.0368 — 1.2315i1
1.8841 — 1.76031
1.6825 —2.33081
1.4372 — 2.96041

NN R BRBRRERWWLWWWNRDNODND = —=O |~

NPHE WD, OPRWLWDR,OWNNFRON—,O~,OO| S

0.7725 - 0.29781
1.1441 - 0.2893i
0.9465 — 0.90651
1.4998 — 0.2921i
1.3503 — 0.8967i
1.0742 — 1.55691
1.8419 — 0.29601
1.7229 — 0.90071
1.4961 — 1.54191
1.1835 — 2.2325i1
2.1755 — 0.2991i
2.0760 — 0.9061i
1.8838 — 1.53891
1.6124 — 2.20951
1.2773 = 2.92071
2.5035 - 0.3013i
2.4177 - 0.9105i
2.2504 — 1.5392i
2.0107 —2.1974i
1.7101 —2.88991
1.3583 —3.61591

0.7530 — 0.30371
1.1415 - 0.2831i
0.9267 — 0.87831
1.5026 — 0.2891i
1.3624 — 0.8752i
1.0498 — 1.50661
1.8438 — 0.29491
1.7323 — 0.8923i
1.4953 — 1.5198i
1.1146 — 2.2262i
2.1766 — 0.2986i1
2.0818 — 0.90251
1.8845 — 1.53001
1.5732 —2.2118i
1.1449 — 2.9964i
2.5042 - 0.3011i
2.4213 —0.9087i
2.2507 — 1.5351i
1.9842 —2.2013i
1.6167 — 2.94061
1.1548 — 3.7942i

0.7008 — 0.30361
1.1231 - 0.29761
0.9266 — 0.8782i1
1.5026 — 0.2891i
1.3623 — 0.8752i
1.0498 — 1.50651
1.8438 — 0.29491
1.7322 — 0.8922i
1.4953 — 1.5198i
1.1146 — 2.2261i
2.1765 — 0.2986i1
2.0817 — 0.9024i
1.8845 — 1.53001
1.5731 —2.2118i
1.1449 — 2.9964i
2.5041 - 0.30101
2.4212 —0.9087i
2.2506 — 1.5351i
1.9841 —2.2013i
1.6166 — 2.94051
1.1547 — 3.7941i

TABLE III.

with D =8, 9.

Low-lying (n

<[, with [ = j —3/2) spin-3/2 field quasinormal mode frequencies using the WKB and the AIM methods

8 Dimensions

9 Dimensions

~

Third order WKB

Sixth order WKB

AIM

~

Third order WKB

Sixth order WKB

AIM

LN BhABREDWWWLWWNDDODND = —O

W= OWN—= OWN—ONN—,O~=OO| I

0.9675 - 0.35971
1.3483 — 0.3498i
1.0776 — 1.0933i
1.7213 — 0.3485i1
1.5065 — 1.0692i
1.0973 — 1.8731i1
2.0845 - 0.35071
1.9099 — 1.06651
1.5665 — 1.83491
1.0897 — 2.6898i
2.4398 — 0.3534i
2.2931 — 1.07001
2.0011 —1.82191
1.5816 —2.63801
2.7896 — 0.3558i1
2.6627 — 1.07451
2.4091 — 1.8186i
2.0378 — 2.61051

0.9577 — 0.36471
1.3372 - 0.34771
1.0370 — 1.0848i
1.7199 — 0.3446i1
1.5036 — 1.04371
1.0016 — 1.81701
2.0856 — 0.3484i
1.9192 — 1.04961
1.5456 — 1.77891
0.9046 — 2.62461
2.4410 —0.3522i
2.3017 — 1.06111
2.0000 — 1.7896i1
1.4930 — 2.58371
2.7904 — 0.35521
2.6690 — 1.0698i
2.4114 —1.8008i
1.9886 — 2.5773i1

0.9675 - 0.35971
1.3483 — 0.3498i1
1.0775 — 1.0933i
1.7213 — 0.3484i
1.5064 — 1.0692i
1.0972 — 1.87301
2.0844 — 0.35071
1.9099 — 1.06641
1.5665 — 1.8348i
1.0896 — 2.68971
2.4398 — 0.3534i
2.2931 — 1.06991
2.0010 — 1.8218i
1.5815 —2.63801
2.7895 — 0.35571
2.6627 — 1.07451
2.4090 — 1.8185i1
2.0377 - 2.61051

AR PRARLWLWWWDODNODND = —O

W

N — OWN—, O~ O~,OO| S

W N = O

1.1706 — 0.41491
1.5593 — 0.40621
1.2078 — 1.26361
1.9438 — 0.40261
1.6581 — 1.23191
1.0963 —2.17691
2.3216 — 0.40291
2.0850 — 1.2224i
1.6038 —2.1138i
0.9361 — 3.1458i
2.6931 — 0.4046i1
2.4923 — 1.22261
2.0795 —2.0861i

3.0595 — 0.40661
2.8851 — 1.2260i
2.5261 —2.0759i
1.9901 —3.0021i

1.1654 — 0.4181i
1.5473 — 0.40691
1.1700 — 1.2482i
1.9376 — 0.3998i
1.6427 — 1.2082i
0.9333 — 2.10041
2.3202 — 0.40001
2.0882 — 1.2003i1
1.5438 — 2.0212i
0.5638 — 3.00441
2.6934 —0.40271
2.5009 — 1.20761
2.0671 —2.01801

3.0601 — 0.40551
2.8934 — 1.2168i
2.5286 —2.0323i
1.8953 — 2.8832i

1.1706 — 0.4148i
1.5593 — 0.40621
1.2078 — 1.26351
1.9437 — 0.40261
1.6580 — 1.2318i
1.0962 —2.1768i
2.3215 — 0.4028i
2.0849 — 1.2223i
1.6037 — 2.11371
0.9361 — 3.14571
2.6930 — 0.4046i1
2.4922 — 1.2225i1
2.0795 —2.0861i

3.0594 — 0.4066i1
2.8850 — 1.22591
2.5260 —2.0759i
1.9901 — 3.00201

are in strong agreement with each other, however, for
higher values of D we begin to see discrepancies
between the AIM and WKB results. Because of these
inconsistencies, we have omitted some of the results for the

eight- and nine-dimensional cases. These inconsistencies
may caused by the limitation of the WKB method when

cases.
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FIG. 1.
to O.

Low-lying QNMs of black hole spacetimes for D = 4

V. ABSORPTION PROBABILITIES

In this section we consider the absorption probabilities
associated with the non-TT eigenfunctions. In Ref. [24] a
similar analysis is done for the spin-1/2 field which is
equivalent to our TT eigenfunction case for the spin-3/2
field. The analytic study of field absorption probabilities near
black holes was pioneered by Unruh in 1976 [25]. However,
his method was only able to determine the absorption
probabilities for low energy particles. So in order to deter-
mine the entire spectrum of absorption probabilities we need
to use the WKB method. We will give a brief overview of the
Unruh method to determine the form of our absorption
probabilities, and then provide the absorption probabilities
we calculate when using the WKB method.

A. Unruh method

To implement the Unruh method we must consider three
regions around the black holes: the near region, where
f(r) = 0, the central region, where V(r) > w, and the far
region where f(r) — 1. Approximations are obtained for
each of the regions and then coefficients are determined by
comparing and evaluating the solutions at the boundaries.
We will for convenience denote V; as V in the following
section and write either potential explicitly where ambi-
guity may occur. For the case with non-TT eigenfunctions,
we use Vy, given in Eq. (3.36).

1. Near region

In the near region f(r) — 0, so Eq. (3.35) becomes

d? ~
+@?|®, =0,
<dr% ) !
with the in-going boundary condition near the event
horizon. The solution in this case becomes

(5.1)

é] = Ale_i{"r*. (52)

PHYSICAL REVIEW D 94, 044052 (2016)

2. Central region

In this region we have that V(r) > ®w and hence
Eq. (3.35) becomes

d d -
<dr*+w> (dr*_W)q)" = 0.

Defining H as
d ~
H= - W |®,,
(dr* ) 1
the solution of Egs. (5.3) and (5.4) is

g (LR ()45 - VT
HB”(l_\/f) <(%)(J+DT_2)+\/7>, (5.5)

where substituting Eq. (5.5) into Eq. (5.4), we have a first
order differential equation with solution

(5.3)

s (LT (l£2><j+Dg3)—\/7>
o= g) (G e ) e
(5.6)
T (1+x/f)ﬁ+%((%)(j+’)7‘3)—x/7
1=vFf G2+ +V7
y Ur;(l —ﬁ)- ((ﬁ)(ﬁ%ﬁﬂ)zdﬂ]
F\L+VF (5= +57) = VF
(5.7)
3. Far region
In the far region f(r) — 1, Eq. (3.35) becomes
2 ;| D=4y2 _ 1 3
j—’%q’m - W - ? @ = 0. (5.8)

In this region r, ~ r, the solution can be expressed as a
Bessel function

Oy = Alll\/’_’Jj+DT4(wr) + BIII\/;Nj+DT*4(wr)' (5.9)

We can set the incoming amplitude of our field é,,, at
r — oo to one. This gives us that

A[[] + iB][I = 277,'60. (510)
Taking r — 1 in the near region gives us that
AI = AII’ BII = —ZG)AI (511)
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Matching the solutions for regions II and III by taking
f=1-=(1/r)P7 and r - oo, we find that the absorption
probability is given as

|Aj(a))|2 — 4ﬂC2w2j+D—3(1 + ﬂC2w2j+D—3)—2

R 4nC* ¥ 03, (5.12)

where

1

j+ 2D-5
— 2
25HET(j + B52) < i-3

), (5.13)

with I" denoting the gamma function and w less than 1. This
can be checked by taking f = 1 —2/r and D = 4, then we
obtain the solution for the four-dimensional case we studied
in Ref. [5].

B. WKB method

When using the WKB method it is more convenient to
take Q(x) = w* —V such that Egs. (3.35) and (3.45)
become

IA(w)?

w
(a)
O e e
0.8f ]
[ D#9
o 0.6 D£8 1
S | D7
< 04f D£6 ]
I D=5
02f D&4 ]
00l — C
0 1 2 3 4 5
w
()

FIG. 2. Spin-3/2 field absorption probabilities with various dimensions. (a) j =3, (b) j =3, (©) j=1, () j =3
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d2
<d r
For low energy particles @ < V, we can use the first order

WKB approximation. The result for this absorption prob-
ability is given in Ref. [26]

X _dy
2 fn )

+ Q><i>1 =0. (5.14)

[~ =0,
|A j| =e

(5.15)
where x = wr with x; with x, being the turning points.
That is, Q(x,x;) =0or V,, . = o for a given energy @
and potential V. For particles of energy @* ~ V the formula
of Eq. (5.15) no longer converges and therefore has no
solution. For this energy region we will need to use a higher
order WKB approximation. We use the method developed
by Iyer and Will [18]; the absorption probability is given as

1

Aj(@)|* = T2 5@ (5.16)

where

1.0:'

e
—T T
L

0.8}

=)}
———

0.

IA(w)]?
[ee]

0.

~
—
O
(@)}
.

0.

)
———
o
~
.

0.0k

“““““

1.0:'

e}
—T T

0.8f

0.

=)}
———

) + q
v}
o) =
%) W) =
o)
o
|
-h: o H
t )
[ O
W+ Ne} H

IA(w)?
.

0.

0.

[N}
———

““““““““““““

0.0k

w

(d)

3
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1 15 3
— 2 2
S(w) = nk [ Z0+<64b 16b) }

1155 , 315 35, 39 5 3 7
+ k2| = bt -~ ——b3b b} + = bsbs——b k2| = b, —— b3
[2048 256737 Tt g™ T3 G}ZOJF” [16 64 }
1365 , 525 85 . 95 25
— k72| =—=p? 17
g [204817 356 73bs gl t gy habs - 32420’ (5.17)

[
where z3, b, and k are defined by the components of the ~ where 0 denotes the maximum Q and the primes denote

Taylor series expansion of Q(r) near ro, derivatives.
| (d"0Q In Fig. 2 we can see that an increase in the value of j results
0=0)+= Q” 24 Z_ ( n) in an increase in the minimum required energy for total
ot \dx adsorption; we have observed and discussed this result in

Ref. [5]. From Fig. 2 we can clearly see that an increase in the

=k {Zz -5+ anzn} : (5.18)  number of dimensions results in an increase in the minimum
required energy for total adsorption, similar to that seen for an

That is, increase in j. This occurs since, in both cases, our effective
potential is getting larger and therefore the particles require

_ . 2 — . — . .
T=Tr—"Tp; H=-2-5 k=30 more energy to tunnel through the effective potential.

_ (2 (429 . d _
o= () (ae)y = (1-

0
M d
< ) ) d VI. CONCLUSION AND DISCUSSION

In this paper we have shown that by using the eigen-
values and eigenmodes of spinor vectors on an N sphere we

e e A e m e e L B e e o e S B e s e e s

1.000 1.002 1.004 1.006 1.008 1.010 1.012 1.014

0.6
0.4

> 02

0.0

-0.2} D=15 1

1.000 1.001 1.002 1.003 1.004 1.005
r

(c) (d

FIG.3. Spin-3/2 effective potential V, in higher dimensions. (a) j = 3, (b) j = 3 when near the horizon, (¢) j = 3, (d) j = 3 when near
the horizon.
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can determine the effective potential for spin-3/2 fields in
spherically symmetric space times, with dimensions larger
than 4. We have shown that there is a strong agreement
between the potential that we have calculated and those
calculated in other papers studying four-dimensional space-
times [5,10,27]. We have also investigated the QNMs for
emitted fields from our D-dimensional black holes. Since
the real part of our QNMs is a frequency we can see that
the energy of emitted fields and the dimension of the
spacetime are directly related. This result is again seen
when studying the absorption probabilities of particles near
a Schwarzschild black hole. This suggests interesting
results for the grey body factors of our D-dimensional
black holes, where in order to make conclusions about the
grey body factors we would need to study the cross sections
of our black holes.

Our method requires that the spacetime be spherically
symmetrical which means we could use this method to
study Reissner-Nordstrom, anti—de Sitter, and de Sitter
black holes. In the case of the Reissner-Nordtrom black
holes it has been shown that for the extremal four-
dimensional black holes the QNM frequencies are the
same for spin-0, 1/2, 3/2, and 2 [27]. We would like to see
if this is true for higher-dimensional extremal Reissner-
Nordstrom black holes. In order to do this we must
determine the covariant derivative related to the
Reissner-Nordstrom black hole spacetime, where as stated
earlier we must introduce terms with the Maxwell stress
tensor. This derivative is given in Refs. [28].

We can use our calculated potentials to determine the
stability of the higher-dimensional Schwarzschild black
holes, a similar analysis is done in Refs. [29,30]. The
effective potential V| in Eq. (3.37) has a local minimum
near the horizon when j =3/2 and D = 9. For higher
dimensions we see that this minimum becomes more
negative when the number of dimensions are increased.
We see the same thing occurs when j = 5/2 and D > 14, as
can be seen in Fig. 3. These behaviors are similar to the
integer spin fields in some maximally symmetric space-
times [29]. While the effective potentials studied in this
paper are all barrier-like, the effective potentials of these
higher-dimensional spacetimes do warrant further studies.
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APPENDIX: EIGEN SPINORS ON
N-DIMENSIONAL SPHERES

The covariant derivative for our massless spinors is

Vaw = 0w + o, (A1)

where

1 1

Wy = Ewuahzah’ b = 4 [re, Vh}- (A2)

In order to determine the eigenvalues for our spinors on S
we must consider the case of N even and the case of N odd.
We begin with the case of N even.

1. N even

In this case our gamma matrices are given as

0 1 . 0 iy
N = , = . . (A3
! <ﬂ 0) ! <_in 0) (A3)

where 1 is the 23" x2'% identity matrix. Our spin
connections are then given as

< g, + écos On7Yo, 0
a)gl_ =

~ i ~
0 w‘gi -3 COS QN}’@,,

). (A4)

Using the definition of the Dirac derivative given in
Eq. (A1), we have our spinor equation as

N-1
]/’uv”l//u) = |:<89N +TCOt9N> ]/N

i 0 1 e .
sinfy \ =1 0 y'vﬂ- ‘/’(/1):1/11//(1). (A5)

We can choose to express ;) as

(1) -
oy — (‘I/(z)) B ( A (On)w ) ) (A6)
) — - . ~ s
wﬁﬁf —iB ) (On )W ()

where ;) is the eigenspinor for the surface of SV~
Substituting Eq. (A6) into Eq. (A5) we find that

N-1 2
(%N + cotOy + 7

N —
(0,425

We can solve this by expressing B; as a Jacobi polynomial

— By = —1A(). A7
sin6N> @ @) (A7)
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1 L/ 1 I+1
B(,U(GN) = (COS§9N> <Sln§9N>

((N/2)+l (N/2)+I- U(COS QN)

ﬂ

—( DA (= O). (A8)

We require that (n — [) > 0 by restriction from our Jacobi
polynomial and the eigenvalue can then be written as

iﬁz:l:i(n—i—%), n=20,1,2,....

2. N odd

In the case where N is odd our gamma matrices are

given as
7 0 S
}/N = (0 ]]); 7/[ :}/I’

where 1 is the identity matrix of size 27 x 2'7". The
nonzero spin connection is determined to be

(A9)

(A10)

PHYSICAL REVIEW D 94, 044052 (2016)

- 1 -
w; = @y, — EcosﬁNyNygi. (A11)

Substituting the result for our spin connection into Eq. (A1)
we find that the spinor equation is
-1 1
cotd N) N+ 5

Vo) = [(%N + indy 70‘@91 )

Choosing ;) as

1 ) .
Vi =5 (L 4+ iy™)Ap (O3)0 2
+

% (1= ir™) By (On)i ) (A13)

which is the same relation between A, and B, as we had in
Eq. (A7). Hence, the eigenvalues will be the same as those
for the case of N even, given in Eq. (A9).
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