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We present new soliton and hairy black hole solutions of Einstein–non-Abelian–Proca theory in
asymptotically anti–de Sitter spacetime with gauge group suð2Þ. For static, spherically symmetric
configurations, we show that the gauge field must be purely magnetic, and we solve the resulting field
equations numerically. The equilibrium gauge field is described by a single function ωðrÞ, which must have
at least one zero. The solitons and hairy black holes share many properties with the corresponding solutions
in asymptotically flat spacetime. In particular, all the solutions we study are unstable under linear,
spherically symmetric, perturbations of the metric and gauge field.
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I. INTRODUCTION

The study over the past 25 years of black holes and
solitons in classical non-Abelian gauge theories coupled to
gravity has revealed many surprises. The first surprise was
the discovery [1] of nontrivial regular soliton solutions of
suð2Þ Einstein-Yang-Mills (EYM) theory in asymptoti-
cally flat spacetime. This was a surprise because there are
no regular soliton solutions of Einstein-Maxwell theory in
four spacetime dimensions, other than the trivial solution,
pure Minkowski spacetime. Soon after, corresponding
nontrivial hairy black hole solutions of asymptotically flat
suð2Þ EYM theory were also discovered [2]. Although the
asymptotically flat soliton and black hole solutions are
unstable under linear, spherically symmetric perturbations
of the metric and non-Abelian gauge field [3,4], their
discovery sparked what is now an extensive literature on
classical soliton and black hole solutions of the EYM
equations; see for example [5] for reviews. For the suð2Þ
gauge group and asymptotically flat spacetimes, it can be
proven that the gauge field must be purely magnetic for
nontrivial configurations [6,7] and is described by a single
function ωðrÞ of the radial coordinate r. Furthermore, the
function ωðrÞ must have at least one zero [1,2,8]. The
solutions can be parametrized by rh, the radius of the event
horizon (for the black hole case, setting rh ¼ 0 gives the
soliton case) and n, the number of zeros of the gauge field
function ωðrÞ.

More complicated matter models involving Yang-Mills
gauge fields have also been extensively studied. For
example, in Ref. [9] asymptotically flat soliton and hairy
black hole solutions are found in two models where the
Yang-Mills gauge symmetry is broken. The first model,
Einstein–non-Abelian–Proca (ENAP) theory, is an effective
theory in which the Yang-Mills gauge field is given a
nonzero mass term in the Lagrangian. In the second model,
Einstein-Yang-Mills-Higgs (EYMH) theory, the gauge
field acquires a mass dynamically via its coupling to a
Higgs field in the fundamental representation.1 The black
holes and solitons in the two models presented in [9] are
very similar and share many properties with the pure EYM
solutions; in particular, the suð2Þ gauge field is purely
magnetic and described by a single function ωðrÞ which
must have at least one zero. However, the phase space
of solutions is more complicated, with two branches of
solutions existing, so that there are two solutions for each
value of rh (with rh ¼ 0 for solitons) and n. Solutions on
the first branch, denoted the n ¼ i branch (for i ¼ 1; 2;…),
are very similar to the corresponding n ¼ i EYM solitons
or black holes, as applicable, and do not vary much as either
the Proca field mass (for ENAP) or Higgs coupling (for
EYMH) vary. In particular, as either the Proca field mass or
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1Throughout this paper “EYMH” refers to Einstein-Yang-
Mills-Higgs theory with a doublet-Higgs field in the fundamental
representation. There are also solutions of Einstein-Yang-
Mills-Higgs theory with a triplet-Higgs field in the adjoint
representation in both asymptotically flat and asymptotically
AdS spacetimes, but their properties are rather different [10].
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Higgs coupling tends to zero, the solutions approach the
relevant n ¼ i solution of pure EYM theory in asymptoti-
cally flat spacetime. The second branch is denoted the
quasi-n ¼ i − 1 branch (for i ¼ 1; 2;…). For solutions on
this branch, the value of r at the outermost zero of ωðrÞ
tends to infinity as either the Proca field mass or Higgs
coupling tends to zero and the solutions approach the
corresponding n ¼ i − 1 solution of pure EYM theory. The
stability of the asymptotically flat EYMH solitons and
black holes has been extensively studied [11,12]—all the
solutions presented in [9] are unstable under linear, spheri-
cally symmetric perturbations of the metric and matter
fields.
Further surprises emerged from the study of solitons and

black holes in EYM theory in asymptotically anti–de Sitter
(AdS) spacetime. Considering purely magnetic configura-
tions with an suð2Þ gauge group, solutions exist for which
the gauge field function ωðrÞ has no zeros, at least some
of which are stable under linear, spherically symmetric
perturbations [13,14] (and also under general linear per-
turbations [15]). The phase space of solutions also has a
different structure compared to the asymptotically flat case.
For the suð2Þ gauge group, the phase space can be taken to
be rh (with rh ¼ 0 for solitons) and a single additional
parameter governing the behavior of the gauge field either
near the origin or near the event horizon, as applicable.
In asymptotically flat spacetime, nontrivial EYM solutions
occur at discrete values of the additional parameter for fixed
rh, but in asymptotically adS spacetime, there are solutions
in continuous regions of the phase space.
A natural question is whether these remarkable

differences between soliton and black hole solutions of
EYM in asymptotically flat and asymptotically AdS space-
times persist if an extended model is considered. It is
perhaps, at first sight, surprising that this is not the case for
the EYMH model [16]. The asymptotically AdS soliton
and black hole solutions of this model behave similarly to
those in asymptotically flat spacetime. In particular, the
gauge field function ωðrÞ has at least one zero, there are
two branches of solutions for which ωðrÞ has n zeros, and
the solutions are unstable (proven in [16] for solitons and in
[17] for black holes).
The authors of Ref. [16] anticipated that soliton and

hairy black hole solutions of the ENAP model in AdS
would have very similar properties to those of the EYMH
model, but, to the best of our knowledge, this has not been
explored in detail in the literature. In this paper we close
this gap by studying soliton and black hole solutions of
ENAP theory in AdS, to see whether they behave like the
EYMH solutions or more like the EYM solutions in AdS.
The outline of this paper is as follows. In Sec. II we

introduce ENAP theory in AdS, the field equations and our
ansatze for the static, spherically symmetric metric and
suð2Þ gauge field. We show that there are no nontrivial
dyon solutions, so that the gauge field must be purely

magnetic. In this case there is a single function ωðrÞ
describing the gauge field, and we show that this function
must have at least one zero. We present numerical solutions
of the equilibrium field equations describing solitons and
hairy black holes in Sec. III. The stability of these solutions
under linear, spherically symmetric perturbations of the
metric and gauge field is studied in Sec. IV. Our con-
clusions are in Sec. V.

II. EINSTEIN–NON-ABELIAN–PROCA THEORY

A. Action, ansatz and field equations

The suð2Þ ENAP theory in four-dimensional asymp-
totically AdS spacetime is described by the action

SENAP ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

− 2Λþ LNAP

�
; ð2:1Þ

where the matter field Lagrangian density is

LNAP ¼ −
1

16π
ðTrFabFab þ 2μ2TrAcAcÞ: ð2:2Þ

In (2.1), (2.2), R ¼ gabRab is the Ricci scalar, Λ is the
cosmological constant, μ is the non-Abelian Proca (NAP)
field mass and the Lie algebra trace is denoted by Tr. The
non-Abelian gauge field strength Fab is given terms of the
gauge field potential Aa as follows:

Fab ¼ ∂aAb − ∂bAa þ e½Aa; Ab�; ð2:3Þ

where e is the gauge coupling constant. Throughout this
paper, the metric has signature (−, þ, þ, þ) and we use
units in which c ¼ G ¼ 1.
By varying the action (2.1) with respect to the inverse

metric gab and gauge potential Aa, we obtain two equations
of motion:

Rab −
1

2
gabRþ Λgab ¼ 8πTab; ð2:4aÞ

∇aFb
a þ e½Aa; Fb

a� þ μ2Ab ¼ 0; ð2:4bÞ

where the energy-momentum tensor of the NAP field is
given by

8πTab ¼ 2TrFacFb
c −

1

2
gabTrFcdFcd

þ μ2ð2TrAaAb − gabTrAcAcÞ: ð2:5Þ

Taking the divergence of the Proca equation (2.4b) we find
that the gauge potential must satisfy the constraint

∇aAa ¼ 0; ð2:6Þ

which restricts our choice of gauge for the potential Aa.
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We consider a spherically symmetric spacetime given by
the following metric ansatz:

ds2 ¼ −RS2dt2 þ R−1dr2 þ r2dθ2 þ r2sin2θdϕ2: ð2:7Þ

The metric functions R and S are functions of the radial
coordinate r and time t only. We can express the metric
function Rðt; rÞ as

Rðt; rÞ ¼ 1 −
2mðt; rÞ

r
−
Λr2

3
; ð2:8Þ

wheremðt; rÞ can be interpreted as the total mass within the
given radius r.
The most general spherically symmetric suð2Þ gauge

potential is given by [18]

eA ¼ aτ̂rdtþ bτ̂rdrþ ½dτ̂θ − ð1þ cÞτ̂ϕ�dθ
þ ½ð1þ cÞτ̂θ þ dτ̂ϕ� sin θdϕ; ð2:9Þ

where the functions a, b, c and d depend only on r and t.
The suð2Þ basis matrices τ̂a satisfy the relations ½τ̂a; τ̂b� ¼
ϵabcτ̂c and can be expressed in spherical coordinates as
follows:

τ̂r ¼ −
i
2
½σ1 sin θ cosϕþ σ2 sin θ sinϕþ σ3 cos θ�;

τ̂θ ¼ −
i
2
½σ1 cos θ cosϕþ σ2 cos θ sinϕ − σ3 sin θ�;

τ̂ϕ ¼ −
i
2
½−σ1 sinϕþ σ2 cosϕ�; ð2:10Þ

where the σj’s [with j ∈ ð1; 2; 3Þ] are the usual Pauli
matrices.
The gauge potential ansatz (2.9) has a residual uð1Þ

gauge freedom

A → hAh−1 þ 1

e
hdh−1; ð2:11Þ

with transformation matrix h ¼ exp½βðt; rÞτ̂r�, under which
the gauge potential functions transform as [9]

0
BBB@

a

b

c

d

1
CCCA →

0
BBB@

â

b̂

ĉ

d̂

1
CCCA ¼

0
BBBBB@

a − _β

b − β0

c cos β − d sin β

d cos β þ c sin β

1
CCCCCA
; ð2:12Þ

where ⋅ and 0 denote a partial derivative with respect to
time t and the radial coordinate r, respectively. However,
this residual gauge freedom is restricted by the con-
straint (2.6).

B. Static configurations

Now consider static, spherically symmetric configura-
tions so that the metric (2.7) and gauge potential (2.9)
depend only on the radial coordinate r and not on time t. In
this case the constraint (2.6) takes the form

Rb0 þ
�
2R
r

þ ðRSÞ0
S

�
b −

2

r2
d ¼ 0: ð2:13Þ

One can choose βðrÞ in the gauge transformation (2.12)
such that b̂≡ 0. In this case the constraint (2.13) implies
that d̂ ¼ 0. In keeping with the conventions in the literature
[9], we rewrite cðrÞ ¼ ωðrÞ.
Therefore the gauge potential ansatz (2.9) takes the form

eA ¼ aτ̂rdtþ ð1þ ωÞ½−τ̂ϕdθ þ τ̂θ sin θdϕ�: ð2:14Þ

With this gauge potential ansatz, the static field equa-
tions (2.4) take the form

a00 ¼ −
2a0

r
þ a0S0

S
þ 2aω2

r2R
þ aμ2

R
; ð2:15aÞ

ω00 ¼ −
a2ω
R2S2

−
ω0S0

S
−
ω0R0

R
þ ωðω2 − 1Þ

r2R

þ ð1þ ωÞμ2
R

; ð2:15bÞ

m0 ¼ r2a02

2e2S2
þ a2ω2

e2RS2
þ a2μ2r2

2e2RS2
þ Rω02

e2

þ ðω2 − 1Þ2
2e2r2

þ ð1þ ωÞ2μ2
e2

; ð2:15cÞ

S0

S
¼ 2a2ω2

e2rR2S2
þ ra2μ2

e2R2S2
þ 2ω02

e2r
: ð2:15dÞ

When the Proca mass μ is set equal to zero, Eqs. (2.15)
reduce to the usual EYM equations for a dyonic configu-
ration [14,19].
The field equations (2.15) are singular at the origin, the

event horizon r ¼ rh (if there is one) and as r → ∞. We
therefore need to impose boundary conditions on the field
variables near these singular points. For globally regular
(soliton) solutions, we assume that all quantities are finite at
the origin, and furthermore that all curvature invariants are
also finite there. These requirements mean that the mag-
netic gauge field function ωðrÞ → −1 as r → 0 [9] and that
the electric gauge field function aðrÞ must vanish at the
origin. Furthermore, ω0ðrÞ must vanish at the origin.
Regular Taylor series expansions of the field variables in
a neighborhood of the origin are then given in terms of
three arbitrary constants, a1, ω2 and S0, as
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aðrÞ ¼ a1rþ
a1
5

�
−2ω2 þ

2a21
e2S20

þ 8ω2
2

e2
þ Λ

3
þ μ2

2

�
r3

þOðr4Þ;

mðrÞ ¼
�

a21
2e2S20

þ 2ω2
2

e2

�
r3 þOðr4Þ;

SðrÞ ¼ S0 þ
�

a21
e2S0

þ 4S0ω2
2

e2

�
r2 þOðr3Þ;

ωðrÞ ¼ −1þ ω2r2 þOðr3Þ: ð2:16Þ

Setting the Proca field mass μ to zero, the expansions (2.16)
reduce to those in pure EYM theory in AdS [14,19].
For black hole solutions, we assume that there is a

regular nonextremal event horizon at r ¼ rh, where
RðrhÞ ¼ 0 and R0ðrhÞ > 0. These conditions fix the value
of mðrhÞ, and it must be the case that aðrhÞ ¼ 0 to avoid a
singularity in the field variables. Regular Taylor series
expansions of the field variables in a neighborhood of the
event horizon then take the following form:

aðrÞ ¼ a0hðr − rhÞ þOðr − rhÞ2;

mðrÞ ¼
�
rh
2
−
Λr3h
6

�
þm0

hðr − rhÞ þOðr − rhÞ2;

SðrÞ ¼ Sh þ S0hðr − rhÞ þOðr − rhÞ2;
ωðrÞ ¼ ωh þ ω0

hðr − rhÞ þOðr − rhÞ2; ð2:17Þ

where a0h, Sh and ωh are arbitrary constants. The first
derivatives appearing in (2.17) are given in terms of these
three constants:

m0
h ¼

r2ha
02
h

2e2S2h
þ ðω2

h − 1Þ2
2e2r2h

þ μ2ð1þ ωhÞ2
e2

;

S0h ¼
2ω2

ha
0
h

e2rhShR02
h

þ 2ω02
hSh

e2rh
þ μ2rha02h
e2ShR02

h

;

ω0
h ¼

ωhðω2
h − 1Þ

r2hR
02
h

þ μ2ð1þ ωhÞ
R0
h

; ð2:18Þ

where R0
h ¼ R0ðrhÞ depends on rh and m0

h. Again, the
expansions (2.17) reduce to those for dyon solutions of
EYM theory [14,19] on setting μ ¼ 0.
As r → ∞, we require that the metric (2.7) approach

that of pure AdS spacetime. This means that mðrÞ → M
and SðrÞ → 1 as r → ∞. For both the ENAP and EYMH
equations in asymptotically flat spacetime [9], the field
variables decay exponentially to their asymptotic values as
r → ∞. However, for solutions of EYMH in asymptotically
AdS spacetime [16], the field variables have a complicated
power-law behavior as infinity is approached. For ENAP
theory in asymptotically AdS spacetime, we find a similar
power-law decay, with the field variables having the
following behavior as r → ∞:

aðrÞ ¼ α∞
rΔ

þ � � � ;

mðrÞ ¼ M þ ðΔ2Λ − 3μ2Þð2Λω2
∞ − 3α2∞Þ

6e2ΔΛ
1

r2Δ−1
þ � � � ;

SðrÞ ¼ 1 −
ð9α2∞μ2 þ 2Δ2Λ2ω2

∞Þ
e2ΔΛ2

1

r2Δþ2
þ � � � ;

ωðrÞ ¼ −1þ ω∞

rΔ
þ � � � : ð2:19Þ

The expansions (2.19) depend on arbitrary constantsM, α∞
and ω∞. The exponent Δ is given by

Δ ¼ Δ� ¼ 1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

12μ2

Λ

r
: ð2:20Þ

We choose the upper root Δ ¼ Δþ, since Δ− < 0.

C. No nontrivial dyon solutions

We now use an elegant method from Ershov and Galt’sov
[6] to show that there are no nontrivial dyonic solutions
of ENAP theory in asymptotically AdS spacetime. This
method assumes that the configurations have finite total
energy, so that the boundary conditions (2.19) hold. In
particular, we must have aðrÞ → 0 as r → ∞, otherwise
m0ðrÞ (2.15c) does not vanish as r → ∞. For pure EYM
theory in asymptotically flat spacetime, Ref. [6] assumes
that aðrÞ → 0 at infinity, but this assumption can be relaxed
in proving the absence of dyonic solutions [7].
We start by rewriting the field equation (2.15a) in the

form

�
r2a0a
S

�0
¼ 2a2ω2

RS
þ a2μ2r2

RS
þ r2a02

S
: ð2:21Þ

Then we integrate this equation throughout space,

r2a0a
S

����
r0

∞
¼

Z
∞

r0

r2

S

�
2a2ω2

r2R
þ a2μ2

R
þ a02

�
dr; ð2:22Þ

where the lower limit of the integrals, r0, is zero for regular
solitons and rh for black holes. For soliton solutions, all
field variables are regular at r0 ¼ 0, and therefore the
contribution to the boundary term on the left-hand side
of (2.22) at r0 vanishes. For black hole solutions, all field
variables are regular at r0 ¼ rh and, from (2.17), the
electric gauge field function aðrÞ vanishes at the horizon,
so again the contribution to the boundary term in (2.22)
at r0 vanishes. For the contribution to the boundary
term coming from r → ∞, we have S → 1 as r → ∞
and, using (2.19),

r2a0a ≈ −Δþα2∞r1−2Δþ þ � � � : ð2:23Þ

From (2.20) we have
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1 − 2Δþ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

12μ2

Λ

r
< 0; ð2:24Þ

and therefore the contribution to the boundary term in
(2.22) coming from r → ∞ also vanishes.
The integrand on the right-hand side of (2.22) is the sum

of positive terms, and thus each term must vanish identi-
cally. In particular, a0 ¼ 0 and hence the electric gauge field
function aðrÞ is a constant. As a consequence of this, aðrÞ
must be zero everywhere if ω ≠ 0 and μ ≠ 0. Therefore
there are no nontrivial dyon solutions of ENAP theory in
asymptotically AdS spacetime.
Our proof extends readily to the asymptotically flat case

considered in [9], where the boundary conditions as r → ∞
again ensure the vanishing of the boundary term on the left-
hand side of (2.22). A similar no-dyon theorem has been
proven for the EYMH model [16]. However, our result
breaks down for pure EYM theory in asymptotically AdS
spacetime with μ ¼ 0. In this case the exponent Δ ¼ 1, and
aðrÞ does not have to vanish as r → ∞ for finite energy
configurations. Hence the contribution to the boundary
term on the left-hand side of (2.22) from r → ∞ no longer
vanishes. This leaves open the existence of dyonic soliton
and black hole solutions of EYM theory in AdS, as
expected [14,19].

D. Purely magnetic configurations

Since we have shown that there are no nontrivial dyon
solutions of ENAP in AdS, we now restrict our attention to
purely magnetic configurations by setting the electric part
of the gauge potential to vanish identically, aðrÞ≡ 0. The
gauge potential (2.14) then takes the form

eA ¼ ½1þ ωðrÞ�½−τ̂ϕdθ þ τ̂θ sin θdϕ�: ð2:25Þ

The field equations (2.15) reduce to

m0 ¼ Rω02

e2
þ ð1−ω2Þ2

2e2r2
þ μ2

e2
ð1þωÞ2; ð2:26aÞ

δ0 ¼ −
2ω02

e2r
; ð2:26bÞ

0¼ r2Rω00 þ
�
2m−

2r3Λ
3

−
ð1−ω2Þ2

e2r
−
2μ2r
e2

ð1þωÞ2
�
ω0

þ ð1−ω2Þω−μ2r2ð1þωÞ; ð2:26cÞ
where we have introduced a quantity δ defined by
S≡ exp ð−δÞ. Like pure EYM theory, Eq. (2.26b) for δ0
decouples from the other two equations. For this reason,
in our discussion of numerical solutions of the field
equations (2.26) in the next section, we focus on the
metric function mðrÞ and the gauge field function ωðrÞ. In
pure EYM theory, the field equations possess a discrete

symmetry under ω → −ω; however, this symmetry is
broken in the ENAP equations (2.26) due to the presence
of the Proca field mass μ.
The expansions of the field variables near the origin

(2.16), black hole event horizon (2.17) and infinity (2.19)
also simplify upon setting a≡ 0. Near the origin, the
expansions take the form (where we have included some
higher-order terms which are useful for our numerical
integration of the field equations in Sec. III)

mðrÞ ¼ 2ω2
2

e2
r3 þ 1

5e2

�
−8ω3

2 þ 3μ2ω2
2 þ

8Λω2
2

3

�
r5 þOðr6Þ;

δðrÞ ¼ δ0 −
4ω2

2

e2
r2 −

4

5e2

�
2Λω2

2 þ μ2ω2
2 − 3ω3

2 þ
8ω4

2

e2

�
r4

þOðr5Þ;

ωðrÞ ¼ −1þω2r2 þ
1

10e2

�
2e2Λω2 þ e2μ2ω2

− 3e2ω2
2 þ 8ω3

2

�
r4 þOðr5Þ: ð2:27Þ

In a neighborhood of the horizon, we write the expansions
(2.17) in terms of δ and obtain

mðrÞ ¼
�
rh
2
−
Λr3h
6

�
þm0

hðr − rhÞ þOðr − rhÞ2;

δðrÞ ¼ δh þ δ0hðr − rhÞ þOðr − rhÞ2;
ωðrÞ ¼ ωh þ ω0

hðr − rhÞ þOðr − rhÞ2; ð2:28Þ

with

m0
h ¼

ð1 − ω2
hÞ2

2e2r2h
þ μ2ð1þ ωhÞ2

e2
;

δ0h ¼ −
2ω02

h

e2rh
;

ω0
h ¼

μ2r2hð1þ ωhÞ − ð1 − ω2
hÞωh

ðrh − Λr3hÞ − ð1−ω2
hÞ2

e2rh
− 2μ2rhð1þωhÞ2

e2

: ð2:29Þ

As r → ∞, the expansions (2.19) again simplify and, using
the new variable δ, take the form

mðrÞ ¼ M þ ðΔ2Λ − 3μ2Þ
3e2Δ

ω2
∞

r2Δ−1
þ � � � ;

δðrÞ ¼ 2Δ
e2

ω2
∞

r2Δþ2
þ � � � ;

ωðrÞ ¼ −1þ ω∞

rΔ
þ � � � : ð2:30Þ

If we set ωðrÞ≡ −1, the functions mðrÞ≡M and
δðrÞ≡ 0 are both constants, and the Schwarzschild-AdS
black hole is a trivial solution of the field equations (2.26).
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However, unlike EYM theory, the magnetically charged
Reissner-Nordström black hole is not a solution of the
field equations as we cannot set ωðrÞ≡ 0 in the NAP
equation (2.26c).
As discussed in Sec. I, soliton and black hole solutions of

ENAP and EYMH in asymptotically flat spacetime are
such that the magnetic gauge field functionωðrÞ has at least
one zero. In contrast, there exist pure EYM solutions in
asymptotically AdS spacetime for which the gauge field
function ωðrÞ is nodeless [13,14]. The latter are of
particular interest since some of them are stable under
linear perturbations of the metric and gauge field functions
[13–15]. Before studying numerical solutions of the ENAP-
AdS field equations (2.26) in the next section, we now
show that ωðrÞ must have at least one zero.
First consider the case of soliton solutions. From the

expansions near the origin (2.27), we see thatωðrÞ → −1 as
r → 0 and that the sign of ω0ðrÞ sufficiently close to r ¼ 0
is the same as the sign of the constant ω2. Suppose that
ω2 < 0 so that ωðrÞ < −1 in a neighborhood of the origin.
From the boundary conditions (2.30), the gauge field
function ωðrÞ → −1 as r → ∞, and therefore there must
be an r ¼ r1 at which ωðrÞ has a minimum. Since
ω0ðr1Þ ¼ 0, the NAP equation (2.26c) gives

r21Rðr1Þω00ðr1Þ ¼ ½ωðr1Þ2 − 1�ωðr1Þ þ ½1þ ωðr1Þ�μ2r21:
ð2:31Þ

For ωðrÞ to have a minimum at r ¼ r1, we require
ω00ðr1Þ > 0, but both terms on the right-hand side of
(2.31) are negative for ωðr1Þ < −1. Since the metric
function RðrÞ is positive everywhere, we therefore have
a contradiction and it must be the case that ω2 > 0.
With ω2 > 0, the gauge field function ωðrÞ > −1 in a

neighborhood of the origin and therefore must have a
maximum at some r ¼ r1 (since ω → −1 as r → ∞).
Suppose that at r1 we have −1 < ωðr1Þ < 0. Then, both
terms on the right-hand side of (2.31) are positive, and
therefore ω00ðr1Þ > 0, giving a contradiction with our
assumption that ωðrÞ has a maximum at r ¼ r1.
Therefore it must be the case that ωðr1Þ > 0. Therefore
ωðrÞ has at least one zero. In fact, since ωðrÞ → −1 as both
r → 0 and r → ∞, we can conclude that ωðrÞ has an even
number of zeros when we consider soliton solutions.
The argument for black hole solutions proceeds along

similar lines. We start by assuming that ωh ¼ ωðrhÞ < −1.
The denominator in the expression for ω0

h (2.29) is equal to
r2hR

0ðrhÞ > 0 since we assume that the event horizon is
regular and nonextremal. The numerator in ω0

h (2.29) is
negative when ωh < −1, so we have ω0

h < 0. Therefore
ωðrÞ must have a minimum at some r ¼ r1 where
ωðr1Þ < −1 and ω0ðr1Þ ¼ 0. Then (2.31) gives
ω00ðr1Þ < 0, and hence we have a contradiction.
Therefore it must be the case that ωh > −1.

Next suppose that −1 < ωh < 0. In this case ω0
h > 0

(2.29) and ωðrÞ must have a maximum at some r ¼ r1.
Then, from (2.31), ω00ðr1Þ > 0 if −1 < ωðr1Þ < 0, yielding
a contradiction. So we conclude that ωðr1Þ > 0 and the
gauge field function ωðrÞ has an even number of zeros.
The remaining possibility is ωh > 0. In this case the

gauge field function must have an odd number of zeros
since ωðrÞ → −1 as r → ∞. In summary, we have shown
that for both soliton and black hole solutions, the gauge
field function ωðrÞ must have at least one zero.

III. SOLITONS AND HAIRY BLACK HOLES

We now present numerical solutions of the ENAP-AdS
equations (2.26) representing solitons and hairy black
holes. For the solutions presented here, the magnetic gauge
field function ωðrÞ will have either one or two zeros, but
we anticipate that solutions in which ωðrÞ has more zeros
also exist. In this section we set the gauge coupling
constant e ¼ 1.

A. Solitons

To find numerical soliton solutions, the initial point for
integrating the field equations (2.26) is taken to be close to
the origin (at typically r ∼ 10−3). We use the expansions
(2.27) as initial conditions for the field variables. For fixed
Proca field mass μ and negative cosmological constant Λ,
we use a standard shooting method, scanning for values
of ω2 such that ωðrÞ → −1 as r → ∞. We find solutions
satisfying the boundary conditions at infinity at discrete
values of ω2 for fixed μ and Λ.
As shown in Sec. II D, for soliton solutions the gauge

field function ωðrÞ must have an even (nonzero) number of
zeros. Some typical soliton solutions for which ωðrÞ has
two zeros are shown in Fig. 1. We plot the gauge field
function 1þ ωðrÞ and metric function mðrÞ. We find two
branches of soliton solutions, which, following [9,16], we
term the “n ¼ 2” and “quasi-n ¼ 1” branches (the reasons
for this terminology will be explained in more detail
below). Solutions on the n ¼ 2 branch are shown in the
top row in Fig. 1, while the bottom row shows solutions on
the quasi-n ¼ 1 branch. In the left-hand plots in Fig. 1, the
Proca field mass μ is fixed and the cosmological constant Λ
varies; in the right-hand plots the cosmological constant Λ
is fixed and μ varies.
Consider first the solutions shown in the top row of

plots in Fig. 1, namely, the n ¼ 2 branch of solutions. With
fixed μ (left-hand plot), increasing jΛj increases the
maximum value of ω and the peak moves to slightly
larger r. With fixed Λ (right-hand plot), increasing μ also
increases the peak value of ω, and the location of the
maximum is at larger r. The metric function mðrÞ is
monotonically increasing from the origin to infinity, with
slightly larger values as r → ∞ for larger μ with fixed Λ or

PONGLERTSAKUL and WINSTANLEY PHYSICAL REVIEW D 94, 044048 (2016)

044048-6



larger jΛj with fixed μ. The solutions shown in the top row
of Fig. 1 do not vary much as either μ or Λ vary.
However, we find different behavior on the second

branch of solutions for which ωðrÞ has two nodes, the
quasi-n ¼ 1 branch, shown in the bottom row of plots in
Fig. 1. For solutions on the quasi-n ¼ 1 branch, both mðrÞ
and ωðrÞ vary more as the parameters μ and Λ vary than for
solutions on the n ¼ 2 branch. For fixed μ, increasing jΛj
decreases the maximum value of ω and the peak moves to
smaller values of r. Similarly, for fixed Λ, as μ increases the
maximum value of ω decreases and the peak in ω moves
closer to the origin. We find that solutions on the n ¼ 2
branch have larger values of the shooting parameter ω2

than those on the quasi-n ¼ 1 branch. The solitons on the
n ¼ 2 branch also have larger masses than those on the
quasi-n ¼ 1 branch.
This branch structure also occurs for solutions of ENAP

and EYMH in asymptotically flat spacetime [9] and EYMH
in asymptotically AdS spacetime [16]. For the n ¼ 2
branch of asymptotically flat ENAP and EYMH solutions,
the location of the outermost zero of ωðrÞ does not vary
much as μ → 0, but for the quasi-n ¼ 1 branch of solutions,

the outermost zero of ωðrÞmoves towards infinity as μ → 0
[9]. For both ENAP and EYMH solitons in asymptotically
flat spacetime, the gauge field function ωðrÞ must have an
even number of zeros for the boundary conditions at the
origin and infinity to be satisfied, but as the outermost zero
of ωðrÞ moves far from the origin, the function ωðrÞ looks
very much like that for the first EYM soliton [1] [for which
ωðrÞ has a single zero] for a large interval of values of r
before ωðrÞ has its second zero.
In Fig. 1, we find similar behavior on the quasi-n ¼ 1

branch of ENAP-AdS solutions; as either μ → 0 for fixed Λ
or Λ → 0 for fixed μ, the location of the outermost zero of
ωðrÞ moves to larger values of r. We might have expected
that our quasi-n ¼ 1 solutions of ENAP in AdS behave like
those in asymptotically flat spacetime, with the second zero
of ωðrÞ located far from the origin when μ is sufficiently
small. However, as can be seen in Fig. 1, this is not the case.
Although the second zero of ωðrÞ does move to larger r
with decreasing μ and fixed Λ, it does not move as far out
as in the corresponding asymptotically flat solutions [9].
Nonetheless, we retain the quasi-n ¼ 1 terminology for this
branch of solutions since they have some features in
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FIG. 1. Regular solutions of ENAP-AdS theory for which ωðrÞ has two zeros. Top row: n ¼ 2 solutions with fixed μ ¼ 0.02 and
varying Λ (left panel) and fixed Λ ¼ −0.001 and varying μ (right panel). Bottom row: Quasi-n ¼ 1 solutions with fixed μ ¼ 0.02 and
varying Λ (left panel) and fixed Λ ¼ −0.0005 and varying μ (right panel).
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common with both the asymptotically flat quasi-n ¼ 1
solutions [9] and the asymptotically AdS EYMH quasi-
n ¼ 1 solutions [16].
In [9], the branch structure of the asymptotically flat

ENAP solutions is understood as arising from the existence
of two length scales in the theory, one set by the
gravitational coupling of the NAP field and the other by
the NAP field mass. Here we have a third length scale,
the AdS radius of curvature l ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

−3=Λ
p

. The scale of the
n ¼ 2 branch of ENAP-AdS solutions is set by the
gravitational coupling, and hence these solutions do not
change much as either the Proca field mass μ or cosmo-
logical constant Λ varies. In contrast, the scale of the quasi-
n ¼ 1 branch of ENAP-AdS solitons is set by the other two
length scales, and hence this branch of solutions shows
more variation as either μ or Λ vary.
In Fig. 2 we compare soliton solutions on the n ¼ 2 and

quasi-n ¼ 1 branches with the same values of Λ and μ. We
plot the gauge field function 1þ ωðrÞ and metric functions
mðrÞ and δðrÞ. To find δðrÞ, we have set the parameter δ0 in
(2.27) to vanish. This means that δðrÞ does not tend to zero
as r → ∞, as required by the boundary conditions (2.30).
However, the ENAP equations (2.26) depend only on δ0 and
not on δ. Therefore we can add a constant to δðrÞ so that
δðrÞ → 0 as r → ∞. However, in Fig. 2 we have not done
this, so that the difference in behavior of δðrÞ for the two
solutions is clearer. For all our solutions, we find that δðrÞ
decreases as r increases, as expected from (2.26b).
Figure 2 reveals that the n ¼ 2 solutions have smaller

maximum values of ωðrÞ than the corresponding quasi-
n ¼ 1 solutions; the peak in the value of ωðrÞ is at a
lower value of r for the n ¼ 2 solutions; the functions
mðrÞ are very similar for the two solutions (but the
quasi-n ¼ 1 solutions have smaller mass than the
corresponding n ¼ 2 solutions); and the difference in
the values of δðrÞ as r → ∞ and at the origin is much
larger for the n ¼ 2 solutions.

Comparing the two plots in Fig. 2, we see that the
differences between the solutions on the two branches
become less significant as μ increases for fixed Λ. This
trend continues as μ increases further, until the two
branches of solutions merge at μ ¼ μmax; see Fig. 3. The
behavior depicted in Fig. 3 is very similar to that seen in [9]
for asymptotically flat ENAP solutions, where the n ¼ 2
and quasi-n ¼ 1 branches merge at the maximum value of
the Proca field mass μ. However, the value of μmax for fixed
Λ < 0 is less than that for Λ ¼ 0. In the EYMH model in
either asymptotically flat [9] or asymptotically AdS [16]
spacetime, for fixed Λ there is a maximum value of the
Higgs vacuum expectation value α (which is essentially
the dynamically generated gauge field mass) where the
branches of solutions merge. In general, for fixed μ we also
find a maximum value of jΛj for which nontrivial ENAP-
AdS soliton solutions with ωðrÞ having two zeros exist.
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FIG. 2. Comparison of n ¼ 2 and quasi-n ¼ 1 soliton solutions with Λ ¼ −0.003 and μ ¼ 0.02 (left), μ ¼ 0.03 (right). The functions
for the n ¼ 2 solitons are shown in red (solid curves) and those for the quasi-n ¼ 1 solitons are shown in blue (dashed curves).
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FIG. 3. Gauge field function 1þ ωðrÞ for a selection of n ¼ 2
and quasi-n ¼ 1 solitons with fixed Λ ¼ −0.001 and varying
Proca field mass μ ¼ 0.00005, 0.03 and 0.042. Quasi-n ¼ 1
curves are blue (dashed), while those for n ¼ 2 are red (solid).
The two branches of solutions merge when μ ¼ μmax ¼ 0.042.
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We close our comparison of the n ¼ 2 and quasi-n ¼ 1
ENAP-AdS solitons by plotting, in Fig. 4, the quantity 8πT00

[where the stress-energy tensor is given by (2.5)] for an n ¼
2 and a quasi-n ¼ 1 soliton with μ ¼ 0.02 and Λ ¼ −0.003.
Both solutions have a compact region near the origin where
the energy density is high, outside which the energy density
rapidly decreases to zero as r → ∞. This is in accordance
with our interpretation of these solutions as regular solitons.
The central energy density of the n ¼ 2 solution is much
greater than that of the quasi-n ¼ 1 solution, and the energy
density becomes negligible at smaller r for the n ¼ 2 soliton.
Therefore the n ¼ 2 solution represents a soliton which is
denser and more compact than the corresponding quasi-n ¼
1 solution.
In this subsection, we have considered only soliton

solutions for which the gauge field function ωðrÞ has
two zeros. We expect that there are also solitons for which
ωðrÞ has more than two zeros, but they will be more
challenging to find numerically.

B. Black holes

Our numerical procedure for finding black hole solutions
is very similar to the soliton case. We begin our integration
close to the event horizon (typically r − rh ∼ 10−13), using
the expansions (2.28) as initial conditions. The shooting
parameter in this case is ωh. We fix the event horizon radius
rh ¼ 1, and vary μ and Λ.
We showed in Sec. II D that for black hole solutions the

gauge field function ωðrÞ must have at least one zero.
Unlike soliton solutions, for black holes the number of
zeros of ωðrÞ does not have to be even. Some typical black
hole solutions are shown in Figs. 5 and 6, where ωðrÞ has
one or two zeros, respectively. We anticipate that black hole
solutions for whichωðrÞ has more than two zeros also exist,
but they will be increasingly difficult to find numerically.
As for the soliton solutions shown in the previous sub-
section, in Figs. 5 and 6 we plot the gauge field function

1þ ωðrÞ and the metric function mðrÞ. In both Figs. 5
and 6, the plots on the left-hand side have fixed Proca field
mass μ and varying cosmological constant Λ, while those
plots on the right-hand side have fixed Λ and varying μ.
With the number of zeros of ωðrÞ fixed, we find two

branches of black hole solutions analogous to the branches
of soliton solutions shown in Fig. 1. The shooting param-
eter ωh lies in different intervals on the two branches of
solutions. As discussed in the previous subsection, we
follow the terminology of [9,16], and consider the n ¼ 1,
quasi-n ¼ 0, n ¼ 2 and quasi-n ¼ 1 branches.
When ω has a single zero, the n ¼ 1 black hole solutions

are depicted in the top row of Fig. 5, while the quasi-n ¼ 0
solutions are shown in the bottom row. As observed for the
soliton solutions, the functions ωðrÞ andmðrÞ for the n ¼ 1
branch solutions do not vary much as either μ or Λ varies.
Increasing μ with fixed Λ or increasing jΛj for fixed μ gives
an increased value of mðrÞ as r → ∞. The value of ωðrÞ
on the event horizon r ¼ rh increases as either μ increases
for fixed Λ or jΛj increases for fixed μ. In contrast, there
is much greater variation in ωðrÞ and mðrÞ for the quasi-
n ¼ 0 solutions. As either μ increases for fixed Λ or jΛj
increases for fixed μ, the value ofmðrÞ as r → ∞ increases.
Furthermore, the location of the zero of ωðrÞ moves to
larger values of r as either μ decreases for fixed Λ or jΛj
decreases for fixed μ. Unlike the behavior seen for the
n ¼ 1 solutions, for the quasi-n ¼ 0 solutions the value of
ωh decreases as either μ increases for fixed Λ or jΛj
increases for fixed μ.
When ω has two zeros, in Fig. 6 we show the n ¼ 2

black hole solutions in the top row and the quasi-n ¼ 1
solutions in the bottom row. These two branches of
solutions have properties similar to those in Figs. 1
and 5. As the parameters μ and Λ vary, the gauge field
and metric functions vary more on the quasi-n ¼ 1 branch
than on the n ¼ 2 branch. On the n ¼ 2 branch, as jΛj
increases for fixed μ or μ increases for fixed Λ, the
maximum value of ωðrÞ increases and the location of this
maximummoves to larger r. In contrast, on the quasi-n ¼ 1
branch, as jΛj increases for fixed μ or μ increases for fixed
Λ, the maximum value of ωðrÞ decreases and the location
of the maximum moves to smaller r. On the quasi-n ¼ 1
branch, the outermost zero of ωðrÞ also moves to larger r as
either μ decreases for fixed Λ or jΛj decreases for fixed
Proca field mass μ.
We compare the n ¼ 1 and quasi-n ¼ 0 branches and the

n ¼ 2 and quasi-n ¼ 1 branches of black hole solutions in
Figs. 7 and 8, respectively. As for the soliton solutions in
Fig. 2, we plot the gauge potential function 1þ ωðrÞ and
metric functions mðrÞ and δðrÞ. To plot δðrÞ, we have set
δh ¼ 0 in (2.28), which means that δðrÞ does not tend to 0
as r → ∞. However, this can be rectified by adding an
appropriate constant to δðrÞ.
Comparing first the n ¼ 1 and quasi-n ¼ 0 solutions

with fixed μ and Λ, from the left-hand plot in Fig. 7 we see
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FIG. 4. 8πT00 (2.5) for two regular solitons with μ ¼ 0.02 and
Λ ¼ −0.003.
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that the quasi-n ¼ 0 soliton has a larger value of ωh than
the corresponding n ¼ 1 solution. The difference in values
of the metric function δðrÞ at the horizon and infinity is
smaller for the quasi-n ¼ 0 solution than for the n ¼ 1
black hole. The metric function mðrÞ is very similar for the
two solutions; the quasi-n ¼ 0 solution has a slightly
smaller mass. As we found for the soliton solutions, for
fixed Λ, the n ¼ 1 and quasi-n ¼ 0 branches of solutions
merge at μ ¼ μmax; this can be seen in the right-hand plot in
Fig. 7. We also find that, for fixed μ, there is a maximum
value of jΛj for which there are black hole solutions with
ωðrÞ having a single zero.
The n ¼ 2 and quasi-n ¼ 1 solutions have similar

properties; see Fig. 8. The quasi-n ¼ 1 solutions have
smaller values of ωh and smaller masses than the n ¼ 2
black holes. For the quasi-n ¼ 1 solutions, the maximum
value of ωðrÞ is larger than for the n ¼ 2 black holes, and
the location of this maximum is at larger r for the quasi-
n ¼ 1 black holes than for the n ¼ 2 solutions. For fixed
Λ, we find a maximum value of the Proca field mass
μ ¼ μmax for which black holes with ωðrÞ having two

zeros exist; the n ¼ 2 and quasi-n ¼ 1 branches merge at
this value of μ (see the right-hand plot in Fig. 8). We also
find, for fixed μ, a maximum value of jΛj for black holes
with ωðrÞ having two zeros. The space of values of μ, jΛj,
for which there are black holes with ωðrÞ having two
zeros, is considerably smaller than the corresponding
space of values for which there are black holes with ωðrÞ
having a single zero. This property is shared by the
asymptotically flat ENAP and EYMH solutions [9] and
the asymptotically-AdS EYMH solutions [16]. We antici-
pate that this trend would continue as the number of zeros
of ωðrÞ increases, making the solutions increasingly
difficult to find numerically.

IV. STABILITY ANALYSIS

We now examine the stability of the soliton and black
hole solutions of ENAP theory in asymptotically AdS
spacetime presented in the previous section. We consider
linear, spherically symmetric perturbations of the metric
and gauge field.
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FIG. 5. Black hole solutions of ENAP-AdS theory for which ωðrÞ has one zero. Top row: n ¼ 1 solutions with fixed μ ¼ 0.03 and
varying Λ (left panel) and fixed Λ ¼ −0.01 and varying μ (right panel). Bottom row: Quasi-n ¼ 0 solutions with fixed μ ¼ 0.03 and
varying Λ (left panel) and fixed Λ ¼ −0.01 and varying μ (right panel). The event horizon radius is fixed to be rh ¼ 1.
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FIG. 6. Black hole solutions of ENAP-AdS theory for which ωðrÞ has two zeros. Top row: n ¼ 2 solutions with fixed μ ¼ 0.012 and
varying Λ (left panel) and fixed Λ ¼ −0.0004 and varying μ (right panel). Bottom row: Quasi-n ¼ 1 solutions with fixed μ ¼ 0.01 and
varying Λ (left panel) and fixed Λ ¼ −0.0004 and varying μ (right panel). The event horizon radius is fixed to be rh ¼ 1.
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A. Perturbation equations

The spherically symmetric metric takes the form (2.7),
where the metric functions Rðt; rÞ, Sðt; rÞ and mðt; rÞ (2.8)
now depend on time t as well as the radial coordinate r. The
gauge potential now has the general form (2.9), with all
quantities aðt; rÞ, bðt; rÞ, cðt; rÞ ¼ ωðt; rÞ and dðt; rÞ again
depending on both t and r. We introduce the notation

ωðt; rÞ ¼ ω0ðrÞ þ ϵω1ðt; rÞ; ð4:1Þ

and similarly for the other quantities in the theory, m, R, S,
a, b and d. In (4.1), ϵ is a small parameter. The zeroth order
term, for example, ω0ðrÞ, denotes the equilibrium solution.
The zeroth order quantities a0, b0 and d0 vanish identically.
Variables with the subscript “1” denote the perturbations.
By substituting (4.1) and similar expressions for the

other field variables into the field equations (2.4), the zeroth
order gives the static field equations (2.26), and the
linearized NAP field equations (2.4b) up to order ϵ are
given by

0 ¼ −r2R0S0a001 þ rR0ðrS00 − 2S0Þa01 þ S0ðr2μ2 þ 2ω2
0Þa1

þ r2R0S0 _b
0
1 − rR0ðrS00 − 2S0Þ _b1 þ 2S0ω0

_d1; ð4:2aÞ

0 ¼ 1

R0S20
_a01 −

1

R0S20
b̈1 −

�
μ2 þ 2ω2

0

r2

�
b1

−
2ω0

r2
d01 þ

2ω0
0

r2
d1; ð4:2bÞ

0 ¼ 1

R0S20
d̈1 − R0d001 −

ðR0S0Þ0
S0

d01

þ
�
μ2 þ ω2

0 − 1

r2

�
d1 þ

ω0

R0S20
_a1 − R0ω0b01

−
�
ω0

ðR0S0Þ0
S0

þ 2R0ω
0
0

�
b1; ð4:2cÞ

0 ¼ −r3ω̈1 þ r3R2
0S

2
0ω

00
1 þ r3R0S0ðR0S0Þ0ω0

1 − rR0S20ð3ω2
0 þ r2μ2 − 1Þω1 − 2r2R0S20ω

0
0m

0
1

− 2rR0S0½ω0
0ðrS00 − S0Þ þ ω00

0S0r�m1 þ r3R2
0S0ω

0
0S

0
1 − r3R2

0S
0
0ω

0
0S1: ð4:2dÞ

The linearized constraint equation (2.6) reads

0¼ 1

R0S20
_a1−R0b01−

�
2R0

r
þðR0S0Þ0

S0

�
b1þ

2

r2
d1: ð4:3Þ

The derivatives of the metric perturbations m0
1 and S01 can

be found explicitly from the ðttÞ and ðrrÞ components of
the Einstein field equations (2.4a),

m0
1 ¼

2R0ω
0
0

e2
ω0
1 þ

2ð1þ ω0Þðr2μ2 þ ðω0 − 1Þω0Þ
e2r2

ω1

−
2ω02

0

e2r
m1; ð4:4aÞ

S01 ¼
4S0ω0

0

e2
ω0
1 þ

2ω02
0

e2r
S1: ð4:4bÞ
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FIG. 8. Left: Comparison of n ¼ 2 and quasi-n ¼ 1 black hole solutions with Λ ¼ −0.0005 and μ ¼ 0.014. The functions for the
n ¼ 2 black holes are shown in red (solid curves), and those for the quasi-n ¼ 1 black holes are shown in blue (dashed curves). Right:
Gauge field function 1þ ωðrÞ for a selection of n ¼ 2 and quasi-n ¼ 1 black holes with fixed Λ ¼ −0.0005 and varying Proca field
mass μ ¼ 0.00001, 0.009 and 0.01442. Quasi-n ¼ 1 curves are blue (dashed), while those for n ¼ 2 are red (solid). The two branches of
solutions merge when μ ¼ μmax ¼ 0.01442.
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The final perturbation equation comes from the tr compo-
nent of the Einstein field equations (2.4a) and gives the time
derivative of the metric perturbation _m1. Performing an
integration with respect to time then yields

m1 ¼
2R0ω

0
0

e2
ω1 þ F ðrÞ; ð4:5Þ

where F ðrÞ is an arbitrary function of r only. Substituting
(4.5) into (4.4a) gives the following first order equation
for F :

F 0

F
¼ −

2ω0
02

e2r
; ð4:6Þ

which has the solution

F ¼ K exp

�
−
Z

r

r0

2ω0
02ð~rÞ

e2 ~r
d~r

�
; ð4:7Þ

where K is a constant of integration and r0 ¼ 0 for solitons
and r0 ¼ rh for black holes. At either the origin or a black
hole event horizon we require that m1 ¼ 0, so the origin
remains regular or the event horizon is not changed by the
perturbation. At the origin,ω0

0 ¼ 0 from (2.27), so we must
have F ð0Þ ¼ 0. At the horizon, R0ðrhÞ ¼ 0, and again this
means that F ðrhÞ ¼ 0. To have F ðr0Þ≡ 0 in (4.7), we
must set K ¼ 0. This means that F ðrÞ≡ 0 for all r and

m1 ¼
2R0ω

0
0

e2
ω1: ð4:8Þ

The above expression for the metric perturbation, m1,
together with Eqs. (4.4), can be used to eliminate the metric
perturbations from the final perturbed NAP equation (4.2d).
This leaves four perturbation equations (4.2), together with
the constraint (4.3) which is a consequence of them. These
four equations decouple into two sectors: The gravitational
sector comprises the single equation (4.2d) for the gauge
field perturbation ω1, while the sphaleronic sector consists
of the remaining three perturbation equations (4.2a), (4.2b),
(4.2c) for the perturbations a1, b1 and d1.

B. Gravitational sector

We begin our stability analysis by considering the
gravitational sector perturbation ω1. Eliminating the metric
perturbations and using the static field equation (2.26c), the
perturbation equation (4.2d) simplifies to

0 ¼ −ω̈1 þ R2
0S

2
0ω

00
1 þ R0S0ðR0S0Þ0ω0

1 þ VðrÞω1; ð4:9Þ

where the perturbation potential VðrÞ is given by

VðrÞ ¼ R0S20

�
1

r2
− μ2 −

3ω2
0

r2
−
8μ2ω0

0

e2r
þ 8ω0ω

0
0

e2r3

−
8μ2ω0ω

0
0

e2r
−
8ω3

0ω
0
0

e2r3
þ 4R0ω

02
0

e2r2
þ 4R0

0ω
02
0

e2r

þ 8R0ω
04
0

e4r2

�
: ð4:10Þ

Setting the Proca field mass μ ¼ 0, the perturbation
potential (4.10) reduces to that for the gravitational sector
of pure suð2Þ EYM theory [3,13,14].
We consider time periodic perturbations

ω1ðt; rÞ ¼ e−iσtω1ðrÞ; ð4:11Þ

and introduce the usual tortoise coordinate r� such that

dr�
dr

¼ 1

R0S0
: ð4:12Þ

By choosing an appropriate constant of integration,
the tortoise coordinate r� ranges from 0 < r� < rc (where
rc > 0 is a positive constant) for solitons and −∞ < r� < 0
for black holes. Then the gravitational perturbation equa-
tion (4.9) takes the standard Schrödinger form

σ2ω1 ¼ −
d2ω1

dr2�
− VðrÞω1: ð4:13Þ

Since (4.13) is in self-adjoint form, the eigenvalue σ2 is
real, and standard Sturm-Liouville theory applies; thus, for
each eigenvalue σ2i , where σ21 < σ22 < σ23 < …, the corre-
sponding eigenfunction has i − 1 zeros. In particular, the
lowest eigenvalue σ21 will correspond to an eigenfunction
which is nodeless. To prevent confusion with n [the number
of zeros of the equilibrium gauge field function ω0ðrÞ], we
denote the number of zeros of the perturbation ω1 by N.
Before integrating (4.13) numerically, we need to impose

suitable boundary conditions on the perturbation ω1. We
require that ω1 vanishes at the origin (for soliton solutions),
the event horizon (for black hole solutions) and as r → ∞,
so that

ω1 ∼

8<
:

rα for r → 0

ðr − rhÞβ for r → rh
rρ for r → ∞;

ð4:14aÞ

where we require that α and β have positive real part and ρ
has negative real part. By substituting (4.14a) into the
perturbation equation (4.13), we find
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α ¼ 2;

β ¼ � ie2r3hσ
ð1 − ω2

0hÞ2 − e2r2h þ e2r4hΛþ 2ð1þ ω0hÞ2r2hμ2
;

ρ ¼ −
1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

12μ2

Λ

r �
; ð4:14bÞ

where ω0h ¼ ω0ðrhÞ. It is clear that α > 0 and ρ < 0, as
required. For β, the sign is chosen so that ReðβÞ > 0.
To integrate (4.13) numerically, we use a standard

shooting method. For a given equilibrium solution, we
search for values of σ2 such that the boundary conditions
(4.14) are satisfied by the perturbation ω1. If σ2 > 0, then σ
is real and the perturbation (4.11) is periodic in time, but if
σ2 < 0, then σ is purely imaginary and there is a perturba-
tion (4.11) which grows exponentially in time. In the latter
situation we deduce that the corresponding equilibrium
configuration is unstable. We now study the perturbations
ω1 for a selection of equilibrium ENAP solitons and black
holes. For the rest of this section we set the gauge coupling
constant e ¼ 1.

1. Solitons

We begin with the perturbations of the n ¼ 2 branch of
soliton solutions. For each of the n ¼ 2 solitons we
investigated, we found two unstable modes with σ2 < 0,
one with no zeros (N ¼ 0) and one with a single zero
(N ¼ 1). Some examples of these unstable perturbations
are shown in Fig. 9. The nodeless perturbations with
N ¼ 0 are shown in the top row of plots, and the N ¼ 1
perturbations with a single zero are shown in the bottom
row of plots. In the left-hand plots we have fixed the Proca
field mass μ and varied the cosmological constant Λ, while
in the right-hand plots we have fixed Λ and varied μ. In
accordance with standard Sturm-Liouville theory, we find
that the nodeless perturbations correspond to values of the
eigenvalue σ2 which are more negative than those for the
N ¼ 1 perturbations. Considering the nodeless N ¼ 0
perturbations, we find that with the Proca field mass μ
fixed, the eigenvalue σ2 decreases (becomes more negative)
as jΛj decreases. With Λ fixed, we find that σ2 increases as
μ increases. Similar trends are observed for the N ¼ 1
perturbations.
Since the perturbation equation (4.13) is linear, the

overall scale of the perturbations shown in Fig. 9 is not
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FIG. 9. Unstable perturbations ω1 for n ¼ 2 equilibrium solitons. Top row: nodeless perturbations with N ¼ 0. Bottom row:
perturbations having a single node, N ¼ 1. Left-hand plots: Fixed Proca field mass μ ¼ 0.02 and varying cosmological constant Λ.
Right-hand plots: Fixed Λ ¼ −0.001 and varying μ.
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important. All the N ¼ 0 perturbations have a very similar
shape, with a peak which rises sharply at roughly the same
location for all μ and Λ, and which decays away more
slowly for larger r. For the N ¼ 1 perturbations, in Fig. 9
we see that the location of the zero of ω1 does not vary
much as either μ or Λ varies. The overall shape of the
N ¼ 1 perturbations, like the N ¼ 0 perturbations, is
roughly the same for all μ and Λ. There is a peak at
smaller values of r followed by a deeper trough at larger
values of r.
Next we consider the perturbations of the quasi-n ¼ 1

branch of solitons. For this branch, we find just one
unstable perturbation for each equilibrium soliton, and
that perturbation has no zeros; see Fig. 10. In the left-
hand plot in Fig. 10 we have fixed μ and varied the
cosmological constant Λ, while in the right-hand plot we
have fixed Λ and varied the Proca field mass μ. The values
of σ2 that we find for these N ¼ 0 unstable modes are less
negative than those for the N ¼ 0 perturbations of the
n ¼ 2 branch of solitons, and are of a similar magnitude
to those that we find for the N ¼ 1 unstable modes of the
n ¼ 2 equilibrium solitons. With μ fixed, we find that the
eigenvalue σ2 decreases as jΛj increases, and for fixed Λ
we find that σ2 decreases as μ increases. Both these trends
are the opposite of that observed for perturbations of the
n ¼ 2 branch of solitons. Again, the overall scale of the
perturbations is not important. The shape of the pertur-
bations is very similar for all μ and Λ. The slopes on the
left- and right-hand sides of the peaks of the perturbations
are more even than for the N ¼ 0 perturbations of the
n ¼ 2 branch of equilibrium solutions (see the top row
of Fig. 9).

2. Black holes

We now turn to the stability of the equilibrium black hole
solutions, beginning with the n ¼ 2 branch of solutions.
We fix the event horizon radius rh ¼ 1 throughout this
section. All the black holes studied on the n ¼ 2 branch are

unstable, and we find two unstable modes for each
equilibrium black hole, one with no zeros and one with
a single zero. In Fig. 11 we show some unstable perturba-
tions ω1 for n ¼ 2 black holes. The top row shows
perturbations for which the number of zeros of ω1 is zero,
N ¼ 0, while the bottom row shows perturbations with
N ¼ 1. In the left-hand plots we have fixed the Proca field
mass μ and varied Λ; in the right-hand plots the cosmo-
logical constant Λ is fixed and μ varies. As expected, the
values of the eigenvalue σ2 are lower for the N ¼ 0
perturbations than they are for the N ¼ 1 perturbations.
We find a general trend for both the N ¼ 0 and N ¼ 1

perturbations—that the absolute value of σ2 decreases as
either jΛj increases for fixed μ or μ increases for fixed Λ.
For both the N ¼ 1 and N ¼ 0 perturbations, the overall
shape of the perturbations does not change much as either μ
or Λ varies. The N ¼ 0 perturbations have a peak close to
the event horizon, while the N ¼ 1 perturbations have a
peak close to the horizon and then a deeper trough at larger
values of r. As observed for the n ¼ 2 branch of soliton
solutions, the location of the zero of the N ¼ 1 perturba-
tions does not change much as either μ or Λ varies.
Next we consider the quasi-n ¼ 1 branch of black hole

solutions. As with the quasi-n ¼ 1 solitons, for all the
quasi-n ¼ 1 black holes studied, we found a single unstable
perturbation mode with N ¼ 0. Some example perturba-
tions are shown in Fig. 12, where in the left-hand plot we
have fixed the Proca field mass μ and varied the cosmo-
logical constant Λ, while in the right-hand plot Λ is fixed
and μ varies. The values of σ2 that we find are slightly
smaller in magnitude than those of the N ¼ 0 perturbations
of the black holes on the n ¼ 2 branch of solutions. The
general shape of the perturbations is also similar to those of
the N ¼ 0 perturbations of the n ¼ 2 branch of black holes.
We find that the absolute value of the eigenvalue σ2

decreases as either jΛj decreases for fixed μ or μ decreases
for fixed Λ. We found similar behavior for the quasi-n ¼ 1
branch of soliton solutions.
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FIG. 10. Unstable perturbations ω1 for quasi-n ¼ 1 equilibrium solitons. All perturbations shown are nodeless, with N ¼ 0. Left-hand
plot: Fixed μ ¼ 0.02 and varying Λ. Right-hand plot: Fixed Λ ¼ −0.001 and varying μ.
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As discussed in Sec. III B, there are black hole solutions
for which the equilibrium gauge potential function ω0ðrÞ
has an odd number of zeros as well as black hole analogues
of the soliton solutions with ω0ðrÞ having an even number
of zeros. We therefore consider next the stability of the

n ¼ 1 branch of black holes. On this branch we find that
each equilibrium black hole has a single unstable gravita-
tional sector perturbation; see Fig. 13 for some examples.
On this branch of solutions, the eigenvalues σ2 that we
find have magnitudes which are smaller than those for the
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FIG. 12. Unstable perturbations ω1 for quasi-n ¼ 1 equilibrium black holes. All perturbations have N ¼ 0. Left-hand plot: Fixed
Proca field mass μ ¼ 0.01 and varying cosmological constant Λ. Right-hand plot: Fixed Λ ¼ −0.0004 and varying μ. The event horizon
radius is fixed to be rh ¼ 1.
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FIG. 11. Unstable perturbations ω1 for n ¼ 2 equilibrium black holes. Top row: nodeless perturbations with N ¼ 0. Bottom row:
Perturbations having a single node, N ¼ 1. Left-hand plots: Fixed Proca field mass μ ¼ 0.01 and varying cosmological constant Λ.
Right-hand plots: Fixed Λ ¼ −0.0004 and varying μ. The event horizon radius is fixed to be rh ¼ 1.
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N ¼ 0 perturbations of both the n ¼ 2 and quasi-n ¼ 1
branches of black hole solutions. In a similar way to the
other branches of black hole solutions, jσ2j increases as jΛj
decreases for fixed μ, and it decreases as μ increases for
fixed Λ. Once again, the shape of the perturbations does not
change much as either μ or Λ varies, and it is very similar to
the other N ¼ 0 perturbations of black holes, shown in
Figs. 11 and 12.
It remains to consider the stability of the quasi-n ¼ 0

branch of black hole solutions. However, for all equilibrium
solutions considered on this branch, we were unable to find
any perturbations satisfying the boundary conditions (4.14)
with σ2 < 0. Thus it appears that black hole solutions on
the quasi-n ¼ 0 branch have no unstable modes in the
gravitational sector. We will examine the stability of this
branch of solutions under sphaleronic sector perturbations
in Sec. IV C.

3. General properties of the gravitational
sector perturbations

Before discussing the sphaleronic sector perturbations
in the next section, we now summarize our results on the
gravitational sector perturbations. All the equilibrium
solitons studied possess unstable gravitational sector per-
turbations. For equilibrium black holes, we found unstable
gravitational sector perturbations for all solutions on the
n ¼ 2, quasi-n ¼ 1 and n ¼ 1 branches, but were unable to
find any unstable modes for solutions on the quasi-n ¼ 0
branch.
Asymptotically flat solutions of pure suð2Þ EYM theory

for which the gauge potential function ωðrÞ has n zeros
possess n unstable modes in the gravitational sector [4]. In
contrast, for asymptotically flat solutions of suð2Þ EYMH
the number of unstable modes in the gravitational sector
depends on the branch of solutions under consideration as
well as the number of zeros of ωðrÞ [12]. Solitons and black
holes on the n ¼ i branch of solutions (with i ¼ 1; 2;…)

have i unstable modes in the gravitational sector; while
those on the quasi-n ¼ i − 1 branch have i − 1 unstable
gravitational sector modes. We have found that the various
branches of ENAP-AdS solitons and black holes have the
same number of unstable modes in the gravitational sector
as the asymptotically flat EYMH solutions. This includes
the quasi-n ¼ 0 branch of black hole solutions, where we
have not found any unstable modes in the gravitational
sector.
We find that the quasi-n ¼ i − 1 branches of solutions,

as well as having fewer unstable gravitational sector modes
than the corresponding n ¼ i branches of solutions, also
have lowest eigenvalues σ2 which have a smaller magnitude
than the lowest σ2 for the n ¼ i branch of solutions.
Therefore the timescales for the instability of the quasi-
n ¼ i − 1 branches of solutions are longer than for the
corresponding n ¼ i branches of solutions. For black hole
solutions, we also find that the n ¼ 1 branch has lowest
eigenvalues σ2 with smaller absolute values than either the
n ¼ 2 or quasi-n ¼ 1 branches.
Interestingly, the lowest eigenvalues σ2 that we find for

all the unstable black holes considered (the n ¼ 2, quasi-
n ¼ 1 and n ¼ 1 branches) have a much smaller absolute
value than those for the corresponding solitons. Thus it
appears that the black hole solutions decay on rather longer
timescales than the solitons.

C. Sphaleronic sector

We now turn to the sphaleronic sector of perturbations
ða1; b1; d1Þ, governed by Eqs. (4.2a), (4.2b), (4.2c).
In pure EYM theory [3,13,14] and in EYMH theory

[11,12,16,17], it is possible to make a gauge transformation
of the form (2.12) to set a1 ≡ 0, which simplifies the
perturbation equations in the sphaleronic sector. In ENAP
theory the additional constraint (4.3) restricts our choice of
gauge for the perturbations. We therefore take an alternative
approach, following [20].
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FIG. 13. Unstable perturbations ω1 for n ¼ 1 equilibrium black holes. All perturbations haveN ¼ 0. Left-hand plot: Fixed Proca field
mass μ ¼ 0.03 and varying cosmological constant Λ. Right-hand plot: FixedΛ ¼ −0.01 and varying μ. The event horizon radius is fixed
to be rh ¼ 1.
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First we introduce new variables ðψ ; ξ; η; γÞ, defined by

ψ ¼ a01 − _b1;

ξ ¼ a1 þ _γ;

η ¼ b1 þ γ0;

ω0γ ¼ d1: ð4:15Þ

Under an infinitesimal gauge transformation of the form
(2.12), we have

γ → γ þ β; ð4:16Þ

while ψ , ξ and η are unchanged.
The sphaleronic sector perturbation equations (4.2a),

(4.2b), (4.2c) can be rewritten compactly in terms of these
new variables as

0 ¼ −r2R0S0ψ 0 þ rR0ðrS00 − 2S0Þψ − S0r2μ2 _γ

þ S0ðr2μ2 þ 2ω2
0Þξ; ð4:17aÞ

0 ¼ 1

R0S20
_ψ −

�
μ2 þ 2ω2

0

r2

�
ηþ μ2γ0; ð4:17bÞ

0 ¼ − μ2γ − R0ω0η
0 −

�
2R0ω

0
0 þ

ω0ðR0S0Þ0
S0

�
ηþ ω0

R0S20
_ξ:

ð4:17cÞ

Setting the Proca field mass μ ¼ 0, Eqs. (4.17) reduce to
those for sphaleronic sector perturbations in pure EYM
theory, written in terms of ψ , ξ and η. The key difference
here is the presence of the non-gauge-invariant quantity γ.
Our strategy is therefore to eliminate the gauge-dependent
variable γ from the sphaleronic sector perturbations, leav-
ing a set of perturbation equations for gauge-independent
quantities only. Using the new variables (4.15), the con-
straint (4.3) takes the form

0 ¼ 1

R0S20
ð_ξ − ̈γÞ − R0ðη0 − γ00Þ

−
�
2R0

r
þ ðR0S0Þ0

S0

�
ðη − γ0Þ þ 2ω0

r2
γ: ð4:18Þ

However, we do not need to consider this equation further
since it is a consequence of Eqs. (4.17).
Next we further define new variables χ and Θ by

ψ ¼ _χ; ξ ¼ _Θ; ð4:19Þ

where we are free to add an arbitrary function of the radial
coordinate r only to χ and Θ. Substituting for ψ and ξ from
(4.19) into (4.17a), and performing an integration with
respect to time gives

μ2γ ¼
�
μ2 þ 2ω2

0

r2

�
Θþ R0

�
S00
S0

−
2

r

�
χ − R0χ

0; ð4:20Þ

where we have used the freedom in the definition of χ and
Θ to set an arbitrary function of r to zero.
Next we note that (4.15), (4.19) imply that

_η ¼ −_χ þ _Θ0; ð4:21Þ

and hence

η ¼ −χ þ Θ0; ð4:22Þ

where we have used the remaining freedom in the definition
of χ and Θ to set an arbitrary function of r to zero.
We now use (4.20) and (4.22) to eliminate γ and η from

the perturbation equations (4.17b) and (4.17c), obtaining
the following pair of coupled perturbation equations:

0 ¼ −
χ̈

R0S20
þ R0χ

00 þ
�
R0
0 þ

2R0

r
−
R0S00
S0

�
χ0

−
�
μ2 þ 2ω2

0

r2
þ 2R0

r2
−
2R0

0

r
þ
�
R0S00
S0

�0�
χ

−
�
2ω2

0

r2

�0
Θ; ð4:23aÞ

0 ¼ Θ̈
R0S20

− R0Θ00 −
�ðR0S0Þ0

S0
þ 2R0ω

0
0

ω0

�
Θ0

−
�
μ2 þ 2ω2

0

r2

�
Θ
ω0

þ R0ð1þ ω0Þ
ω0

χ0

þ
�ðR0S0Þ0

S0
þ 2R0ω

0
0

ω0

þ 2R0

rω0

−
R0S00
ω0S0

�
χ: ð4:23bÞ

Equations (4.23) have a singularity when ω0ðrÞ has a zero.
To eliminate this, we define a further new variable ~Θ by

~Θðt; rÞ ¼ ω0ðrÞΘðt; rÞ: ð4:24Þ

Finally, we assume that the perturbations are periodic in
time:

χðt; rÞ ¼ e−iσtχ1ðrÞ; ~Θðt; rÞ ¼ e−iσt ~Θ1ðrÞ: ð4:25Þ

The sphaleronic sector perturbation equations (4.23) then
become
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σ2χ1 ¼ −R2
0S

2
0χ

00
1 − R0S20

�
2R0

r
þ R0

0 −
R0S00
S0

�
χ01

þ R0S20

�
μ2 þ 2ω2

0

r2
þ 2R0

r2
−
2R0

0

r
þ
�
R0S00
S0

�0�
χ1

þ ω0R0S20

�
2ω2

0

r2

�0
~Θ1; ð4:26aÞ

σ2 ~Θ1 ¼ −R2
0S

2
0
~Θ00
1 −R0S0ðR0S0Þ0 ~Θ0

1

þR0S20

�
μ2 −

1

r2
−
2ω0

r2
þω2

0

r2

�
~Θ1 þR2

0S
2
0ð1þω0Þχ01

þR0S20

�ðR0S0Þ0ω0

S0
þ 2R0ω

0
0 þ

2R0

r
−
R0S00
S0

�
χ1:

ð4:26bÞ
To integrate Eqs. (4.26) numerically, boundary conditions
must be imposed on the quantities χ1 and ~Θ1. We set

χ1; ~Θ1 ∼

8<
:

r3 for r → 0

ðr − rhÞβ for r → rh
rρ for r → ∞:

ð4:27Þ

The constants β and ρ are defined in the same way as
(4.14b). The behavior of the quantities χ1 and ~Θ1 as r → rh
and r → ∞ is the same as that of the gravitational sector
perturbation ω1 (4.14a). However, the behavior of the
sphaleronic sector quantities is different from that of ω1

as r → 0.
By studying gravitational sector perturbations, in

Sec. IV B we showed that solitons on both the n ¼ 2
and quasi-n ¼ 1 branches were unstable. We also showed
that black hole solutions on the n ¼ 2, quasi-n ¼ 1 and

n ¼ 1 branches are also unstable. However, we did not
find any unstable modes in the gravitational sector of
perturbations for black holes on the quasi-n ¼ 0 branch of
solutions. Therefore, in this section we consider just the
quasi-n ¼ 0 branch of black hole solutions since we
already know that the other equilibrium solutions are
unstable. We set the event horizon radius rh ¼ 1 for the
rest of this section. We follow the standard shooting
method, seeking eigenvalues σ2 such that the perturbations
χ1, ~Θ1 satisfy the boundary conditions (4.27). The pair of
coupled perturbation equations (4.26) are not in self-adjoint
form, and we have been unable to find a transformation
yielding a set of self-adjoint equations. Therefore, it is not
a priori necessarily the case that the eigenvalue σ2 is real.
However, for all solutions investigated, we find that σ2 is
real. Since the perturbation equations are not self-adjoint,
it is also not necessarily the case that the eigenfunctions
corresponding to the lowest eigenvalue σ2 have no zeros.
All the black holes studied on the quasi-n ¼ 0 branch

are unstable; in each case we find an eigenvalue σ2 < 0,
corresponding to a perturbation mode which grows expo-
nentially in time. In Fig. 14 we consider one particular
quasi-n ¼ 0 equilibrium black hole solution with fixed μ ¼
0.03 and Λ ¼ −0.075. For this particular solution, we find
two negative eigenvalues σ2. The perturbations χ1 and ~Θ1

corresponding to the lowest value of σ2 each have one zero
and are shown in the left-hand plot in Fig. 14; those
corresponding to the higher value of σ2 each have two zeros
and are shown in the right-hand plot. In the left-hand plot,
the zero of χ1 is very close to the horizon and can be seen in
the subplot. As with the gravitational sector perturbations,
we denote the number of zeros of either χ1 or ~Θ1 by N. The
N ¼ 1 perturbations shown in Fig. 14 have a peak close to
the event horizon and then a minimum at larger values of r.
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FIG. 14. N ¼ 1 (left) and N ¼ 2 (right) unstable perturbations of a quasi-n ¼ 0 black hole solution with μ ¼ 0.03 and Λ ¼ −0.075. A
subplot in the left-hand panel shows the behavior of the perturbations near the event horizon. The quantities χ1 and ~Θ1 are denoted by red
and blue colors, respectively. The quantity ~Θ1 has a deeper trough than χ1. The event horizon radius is fixed to be rh ¼ 1.
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TheN ¼ 2 perturbations also have a peak close to the event
horizon, then a trough and finally another maximum further
away from the horizon. In both cases the perturbation ~Θ has
a deeper trough than χ1.
In Figs. 15 and 16 we investigate how the perturbations

and σ2 change as either Λ or μ varies. Figure 15 shows the
perturbations χ1 and ~Θ1 for a selection of quasi-n ¼ 0 black
holes with fixed Proca field mass μ ¼ 0.03 and varying
cosmological constant Λ. For the black holes shown in
Fig. 15, we find two negative values of σ2 for each
equilibrium solution, corresponding to perturbations with
N ¼ 1 (left-hand plot) and N ¼ 2 (right-hand plot). The
perturbations have the same general shape as those shown
in Fig. 14, but show more variation as Λ varies than the

gravitational sector perturbations discussed in Sec. IV B.
The N ¼ 1 perturbations correspond to eigenvalues σ2 with
larger magnitudes than those for the N ¼ 2 perturbations.
We also find that as jΛj increases, the absolute value of σ2
decreases.
Finally in this section, Fig. 16 shows the perturbations

for a selection of quasi-n ¼ 0 black holes with fixed
Λ ¼ −0.01 and varying μ. For this selection of black holes,
we were only able to find a single negative value of σ2, with
corresponding perturbations having two zeros. It is not
clear whether this is a numerical issue or whether theN ¼ 1
perturbations shown in Figs. 14 and 15 do not exist for
these black holes. Our main conclusion that all the quasi-
n ¼ 0 black holes are unstable is, however, unchanged. In
Fig. 16 the N ¼ 2 perturbations have the same general
shape as those in Figs. 14 and 15. We find that the
magnitude of the eigenvalue σ2 decreases as the Proca
field mass μ increases. For all the quasi-n ¼ 0 black holes
studied in this section, the values of σ2 that we find have
similar magnitudes to those found in the gravitational
sector in Sec. IV B 2.
In this section, all the quasi-n ¼ 0 equilibrium black

holes we have studied are unstable. Combining this with
the results of Sec. IV B, we deduce that the solitons on the
n ¼ 2 and quasi-n ¼ 1 branches are unstable, as are black
holes on the n ¼ 2, quasi-n ¼ 1, n ¼ 1 and quasi-n ¼ 0
branches. We expect that these results would extend to
branches of solutions in which the equilibrium gauge
potential function ω0 has more than two zeros, so that
all spherically symmetric soliton and black hole solutions
of ENAP theory in asymptotically AdS spacetime are
unstable.

V. CONCLUSIONS

In this paper we have presented new soliton and black
hole solutions of ENAP theory in asymptotically AdS
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FIG. 16. N ¼ 2 unstable perturbations of quasi-n ¼ 0 black
hole solutions with fixed Λ ¼ −0.01 and varying μ. The
quantities χ1 and ~Θ1 are denoted by red and blue colors,
respectively. The quantity ~Θ1 has a deeper trough than χ1. For
these solutions we do not find any N ¼ 1 perturbation modes.
The event horizon radius is fixed to be rh ¼ 1.
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A subplot in the left-hand panel shows the behavior of the perturbations near the event horizon. The quantities χ1 and ~Θ1 are denoted by
red and blue colors, respectively. The quantity ~Θ1 has a deeper trough than χ1. The event horizon radius is fixed to be rh ¼ 1.
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spacetime. With gauge group suð2Þ, we have shown that
nontrivial static, spherically symmetric, gauge field
configurations must be purely magnetic and can be
described by a single function ωðrÞ. Furthermore, we
have shown that ωðrÞ must have at least one zero. For
soliton solutions, the number of zeros of ωðrÞ is even, but
there is no such restriction for black hole solutions. For
the configurations to have finite total energy, the asymp-
totically AdS boundary conditions imply that the gauge
field must be in its vacuum state at infinity, so that
ωðrÞ → −1 as r → ∞.
Numerical solutions of the field equations representing

regular solitons and black holes are found using a standard
shooting method. Solutions are found at discrete points
in the parameter space for fixed Proca field mass μ and
cosmological constant Λ < 0. For fixed Λ there is a
maximum value of μ for which we find nontrivial solutions;
similarly, for fixed μ there is a maximum value of jΛj for
which nontrivial solutions exist.
Fixing n, the number of zeros of the gauge field function

ωðrÞ, we find two branches of solutions, which, by analogy
with the asymptotically flat ENAP and EYMH solutions [9]
and the asymptotically AdS EYMH solutions [16], we dub
the n ¼ i and quasi-n ¼ i − 1 branches. For fixed Λ the
two branches merge at the maximum value of μ. We have
explored in detail the soliton solutions for which ωðrÞ has
two zeros, and the black hole solutions where ωðrÞ has
either one or two zeros. We anticipate that solutions for
which ωðrÞ has more than two zeros also exist.
As with the pure EYM and EYMH systems, the

linearized ENAP perturbation equations decouple into
two sectors, the gravitational and sphaleronic sectors. All
the soliton solutions studied, and the black holes on the
n ¼ 2, quasi-n ¼ 1, and n ¼ 1 branches have instabilities
in the gravitational sector of perturbations. However, we
were unable to find any unstable gravitational sector
perturbations for black hole solutions lying on the quasi-
n ¼ 0 branch. We therefore studied the sphaleronic sector
of perturbations for quasi-n ¼ 0 black holes, and all
solutions studied had unstable modes in this sector. The
perturbation equations are sufficiently complicated that
numerical analysis is necessary, and therefore our stability
analysis only applies to equilibrium solutions for which the
gauge potential function ωðrÞ has either one or two zeros.
We expect that equilibrium solutions with ωðrÞ having
more than two zeros will also be unstable.
Since the gauge field is in the vacuum configuration at

infinity, far from the event horizon the black hole solutions
we find are indistinguishable from Schwarzschild-AdS
black holes. These black holes are therefore counterex-
amples to the “no-hair” conjecture, in a similar way to the
asymptotically flat pure EYM colored black holes [2].
However, the pure EYM colored black holes are unsta-
ble [3,4] and, as a result, Bizon formulated a generalized
no-hair conjecture, which states that [21]

Within a given matter model, a stable stationary black
hole is uniquely determined by global charges.

The pure EYM colored black holes satisfy this gener-
alized no-hair conjecture since they are unstable. The
asymptotically flat ENAP and EYMH solitons and black
holes are also unstable [9,11,12], as are the asymptotically
AdS EYMH solitons [16] and black holes [17]. As
conjectured in [16,17], it is therefore not surprising that
all the asymptotically AdS ENAP solitons and black holes
studied in this paper are also unstable.
In contrast to the ENAP and EYMH systems, there exist

stable soliton and black hole solutions of pure EYM theory
in asymptotically AdS spacetime [13,14]. A natural ques-
tion is what is special about EYM theory which permits
the existence of stable solutions, while its generalizations
ENAP and EYMH do not? We argue that the boundary
conditions satisfied by the gauge field at infinity are crucial.
In the EYM case, for asymptotically AdS spacetimes the
boundary conditions on the gauge field as r → ∞ are not
very restrictive: The gauge function ωðrÞ must tend to a
constant, but that constant is arbitrary. This means that the
gauge field near the AdS boundary is not necessarily in its
vacuum configuration. On the other hand, for EYM in
asymptotically flat spacetime, it must be the case that
ωðrÞ → �1 as r → ∞, which is much more restrictive and,
in particular, means that the gauge field is in its vacuum
configuration at infinity. In the ENAP and EYMH models,
in both asymptotically flat and asymptotically AdS space-
times, as r → ∞ it must be the case that ωðrÞ approaches its
vacuum value −1 (there is also a boundary condition on the
Higgs field in the EYMH model, but that is less important
for our discussion here).
From the point of view of Bizon’s generalized no-hair

conjecture, if the non-Abelian gauge field is in the vacuum
configuration at infinity, there can be no nonzero non-
Abelian charges to distinguish the black holes from the
embedded Schwarzschild or Schwarzschild-AdS solutions.
On the other hand, if the gauge field has a nonvacuum
configuration at infinity, then one would expect the
existence of nonzero charges defined far from the black
hole. Indeed, in the pure EYM case, it has been argued [22]
that such non-Abelian charges uniquely characterize at
least a subset of stable asymptotically AdS hairy black
holes. Thus we have a consistent picture of black holes in
the EYM/ENAP/EYMH models, in accordance with the
generalized no-hair conjecture: Black holes which are
indistinguishable from Schwarzschild(-AdS) at infinity
are unstable, and there appears to be a set of global charges
uniquely characterizing stable hairy black holes.
From a physical point of view, the massless nature of the

non-Abelian gauge field in the EYM model seems to be
crucial in asymptotically AdS spacetimes. Although the
AdS boundary is at an infinite proper distance from the
origin, it can be reached in a finite affine parameter by a
null geodesic. Therefore, massless fields can extend all the
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way to the AdS boundary, as is the case in the EYMmodel.
This can be seen in the boundary condition on the gauge
field as r → ∞ [13,14], which in the pure EYM case means
that the gauge potential function ωðrÞ approaches its
asymptotic value slowly, so that ωðrÞ − ωð∞Þ ∼ r−1 as
r → ∞. Massive fields are, however, confined to the
interior of AdS. In both the ENAP and EYMH models,
the gauge field has a mass (an effective term in the
Lagrangian in the ENAP case, and dynamically generated
in the EYMH case), localizing the field either near the
origin or in the vicinity of the event horizon. Again this is
reflected in the boundary conditions on the gauge field,
which now decays more quickly to its asymptotic value,
ωðrÞ − ωð∞Þ ∼ r−Δ where Δ > 1 (2.20) [16].
In asymptotically flat spacetime, the instability of the

pure EYM solitons and black holes can be understood as
resulting from an unstable balance between the attractive
gravitational force and a repulsive force due to the non-
Abelian gauge field. In this picture the gauge field will
tend to either collapse under gravity or radiate away to
infinity if it is perturbed (as borne out by nonlinear
simulations of the evolution of the unstable asymptoti-
cally flat EYM solitons and black holes [23]). In
asymptotically AdS spacetime, the gauge field is unable
to radiate away to infinity, either because it will be
reflected at the timelike AdS boundary (in the massless
case) or because the diverging effective gravitational

potential on the boundary means that the field is unable
to escape to infinity (in the massive case). For massive
gauge fields in the ENAP and EYMH models, since the
gauge field is localized either near the origin or the event
horizon, the balance between the gravitational attraction
and gauge field repulsion is unstable, and we conjecture
that the gauge field will collapse under gravity, and the
end point of the instability of both solitons and black
holes will be a Schwarzschild-AdS black hole. However,
in the massless pure EYM case, it is possible to have a
stable balance between the gauge field repulsion and
gravitational attraction, as the gauge field can extend
all the way out to infinity. In this case the gauge field
configuration could be thought of as being analogous to a
fundamental standing wave for a bounded system. A fully
nonlinear study of the evolution of both the stable EYM
solutions and the unstable ENAP/EYMH solutions would
be required to investigate this picture further, and we
leave this to future work.
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