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The typical motions of a spinning test particle in Schwarzschild’s background which show the strong
repulsive action of the highly relativistic spin-gravity coupling are considered using the exact Mathisson-
Papapetrou equations. An approximated approach to choice solutions of these equations which describe
motions of the particle’s proper center of mass is developed.
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I. INTRODUCTION

For over 50 years the effects of general relativity in
strong gravitational fields of massive compact objects
(Schwarzschild’s and Kerr’s black holes, neutron stars,
quasars) are the focus of many studies. Relevant results are
presented in the classical books on general relativity [1,2].
Also note that the recent historical registration of the
gravitational waves is directly related to the interaction
and merger of the two massive black holes [3].
The existence of some strong gravitational fields is not

only caused by the large masses. It is pointed out in [4–12]
that when an ordinary (not so great) Schwarzschild mass is
moving with the velocity close to the speed of light its
gravitational field becomes much grater than the field of
this mass at rest. It means that in terms of the gravitoelectric

field EðiÞ
ðkÞ and the gravitomagnetic field BðiÞ

ðkÞ which are

determined in [13] some components of EðiÞ
ðkÞ and BðiÞ

ðkÞ are
proportional to γ or γ2 (γ is the relativistic Lorentz factor).

The values EðiÞ
ðkÞ determine the tidal forces [11,12] whereas

the components BðiÞ
ðkÞ act on a spinning test particle

(similarly as the usual magnetic field acts on a rotating
charge) according to the known Mathisson-Papapetrou
(MP) equations [14,15]. It is shown in [16–25] that just
the highly relativistic regime of spinning particle motions in
Schwarzschild’s and Kerr’s background reveals new fea-
tures of the gravitational interaction. (When the velocity of
a spinning particle is not very high the gravitational spin-
orbit and spin-spin interactions were considered in [26].) It
is important that depending on the correlation of signs of
the spin and the particle’s orbital velocity the spin-gravity
coupling acts as a significant repulsive or attractive force.
The purpose of this paper is to present new results

concerning different physical situations in Schwarzschild’s
background when a spinning test particle feels the strong
repulsive action caused by the highly relativistic spin-
gravity coupling. Note that the consideration of these
antigravity effects may be useful in the context of the
repulsive phenomenon in cosmology. For example, some

corresponding results can be generalized for the
Schwarzschild–de Sitter metric.
The paper is organized as follows. In Sec. II we develop

the results of paper [22] concerning the properties of
the highly relativistic circular orbits of a spinning particle
in Schwarzschild’s background in the case of the strong
repulsive action of the spin-gravity coupling: the energy
and angular momentum on these orbits are considered.
Sections III and IV are devoted to the specific repulsive
features of the noncircular highly relativistic trajectories of
a spinning particle which begins to move with rg < r ≤
1.5rg. In Sec. IV an approximated method of selection
solutions of the exact MP equations which describe
the motions of the particle’s proper center of mass is
elaborated and used in computer calculations. We conclude
in Sec. V.

II. ENERGY AND ANGULAR MOMENTUM
OF A SPINNING PARTICLE ON HIGHLY
RELATIVISTIC CIRCULAR ORBITS IN
SCHWARZSCHILD’S BACKGROUND

It is known that the geodesic circular orbits of a spinless
test particle in a Schwarzschild background are allowable
only for r > 1.5rg (r is the radial coordinate and rg is the
horizon radius) and the highly relativistic circular orbits
exist only for r ¼ 1.5rgð1þ δÞ, where 0 < δ ≪ 1 [1,2].
The situation with possible circular orbits of a spinning test
particle in Schwarzschild’s background is another: the
space region of existence of the relevant highly relativistic
circular orbits is much wider [19,22]. In particular, it is
shown that due to the significant repulsive action of the
spin-gravity coupling the highly relativistic circular orbits
of a spinning test particle are possible for r ≤ 1.5rg. It
means that the corresponding solutions of the MP equations
differ essentially from the solutions of the geodesic
equations and the worldlines and trajectories of the spin-
ning and spinless particles which start with the same initial
values of the coordinates and velocity are not close. In
addition, in this section we compare the values of the
energy and angular momentum of the corresponding
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spinning and spinless particles. Like the geodesic equa-
tions, the MP equations in Schwarzschild’s metric have
the constants of motion: the energy E and the angular
momentum J.
We take into account the MP equations in the form

[14,15]

D
ds

�
muλ þ uμ

DSλμ

ds

�
¼ −

1

2
uπSρσRλ

πρσ; ð1Þ

DSμν

ds
þ uμuσ

DSνσ

ds
− uνuσ

DSμσ

ds
¼ 0; ð2Þ

where uλ ≡ dxλ=ds is the particle’s 4-velocity, Sμν is the
tensor of spin, m and D=ds are, respectively, the mass and
the covariant derivative along uλ and Rλ

πρσ is the Riemann
curvature tensor (units c ¼ G ¼ 1 are used). Here, and in
the following, Latin indices run 1, 2, 3 and Greek indices 1,
2, 3, 4; the signature of the metric ð−;−;−;þÞ is chosen.
As usual, these equations are considered with some

supplementary condition and most often the Mathisson-
Pirani condition [14,27]

Sλνuν ¼ 0 ð3Þ

or Tulczyjew-Dixon one [28,29]

SλνPν ¼ 0 ð4Þ

are used, where

Pν ¼ muν þ uλ
DSνλ

ds
ð5Þ

is the particle 4-momentum. Both at (3) and (4), the
constant of motion of the MP equations is

S20 ¼
1

2
SμνSμν; ð6Þ

where jS0j is the absolute value of spin.
In different contexts the MP equations are taken into

account in many recent papers [30–44].
In [19,22] Eqs. (1) and (2) are considered in

Schwarzschild’s metric, using the standard coordinates
x1 ¼ r, x2 ¼ θ, x3 ¼ φ, x4 ¼ t, to describe the highly
relativistic circular orbits of a spinning particle in the plane
θ ¼ π=2. In these coordinates the constants of the particle’s
energy and angular momentum are

E ¼ mu4 þ g44uμ
DS4μ

ds
þ 1

2
Sμ4g44;μ; ð7Þ

J ¼ −mu3 − g33uμ
DS3μ

ds
−
1

2
Sμ3g33;μ: ð8Þ

In the following we shall use the dimensionless quantities
yi connected with the particle’s coordinates and velocity

y1 ¼
r
M

; y2 ¼ θ; y3 ¼ φ; y4 ¼
t
M

; ð9Þ

y5 ¼ u1; y6 ¼ Mu2; y7 ¼ Mu3; y8 ¼ u4; ð10Þ

where M is the Schwarzschild mass. Then the equations
which determine the region of existence of the circular
orbits of a spinning particle in Schwarzschild’s background
and the dependence of the particle’s angular velocity on the
radial coordinate can be written as [22]

y37ðy1 − 3Þ2y8y−11 ε0 − y27ðy1 − 3Þ
þy7ð2y1 − 3Þε0y8y−31 þ y−21 ¼ 0; ð11Þ

y8 ¼
�
1 −

2

y1

�
−1=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y21y
2
7

q
; ð12Þ

where

ε0 ≡ jS0j
mM

≪ 1: ð13Þ

[Equation (11) follows directly from the MP equations (1)
and (2) at condition (3) for the Schwarzschild metric when
the spinning particle is moving in the plane θ ¼ π=2 with
the spin orthogonal to this plane, and Eq. (12) is a simple
consequence of the condition uμuμ ¼ 1.] Figures 3–5 in
[22] illustrate the dependence of the Lorentz γ-factor on r
for the orbital velocity which is necessary for the particle
motions on the circular orbits with r ¼ const in the region
2M < r < 3Mð1þ δÞ. It is noted in [22] that all orbits in
Figs. 3–5 are possible due to the significant repulsive action
of the spin-gravity coupling.
Let us compare the values of the energy and angular

momentum for the spinning and spinless particles which
begin to move with r from the region 2M<r< 3Mð1þδÞ.
We consider the case when a spinning particle is moving on
the circular orbits, as in the pointed out above situations
from [22], and a spinless particle begins to move with the
same initial velocity. There are expressions for E and J
according to (7) and (8) in notations (9) and (10):

E ¼ m

�
1 −

2

y1

�
y8 −mε0y1ðy1 − 3Þy37; ð14Þ

J ¼ mMy21y7 −mMε0

�
1 −

2

y1

��
1 −

3

y1

�
y38: ð15Þ

Naturally, at ε0 ¼ 0 from (14) and (15) the corresponding
expressions follow for the spinless particle.
Using the corresponding solutions of Eqs. (11) and (12)

in (14) and (15) we obtain the graphs which present the
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dependence of the particle’s energy and angular momentum
on r in different subregions of the region 2M < r <
3Mð1þ δÞ. Figures 1 and 2 show the subregions where
the energy and angular momentum of a spinning particle
significantly differ from the energy and angular momentum
of a corresponding spinless particle and where these values

are close. (As in [22], here we put S2 ≡ Sθ > 0, then
dφ=ds < 0; ε0 ¼ 10−2). Note that according to [22] the
orbits with r larger than ≈3.01 are not highly relativistic
and here γ-factor is close to 1.
Among all highly relativistic circular orbits of a spinning

particle in Schwarzschild’s background the orbit with
r ¼ 3M ¼ 1.5rg has a specific feature: the solution which
describes this orbit is the same for the exact MP equations
and for their linear spin approximation, and is common
for conditions (3) and (4). Other highly relativistic
circular orbits do not have this property. It is pointed
out in [22,25,45] that, in general, for the correct description
of the highly relativistic orbits of a spinning particle
in Schwarzschild’s background condition (3) is more
appropriate.
According to [22] the dependence of the γ-factor on ε0

for the highly relativistic circular orbits is determined by
the value 1=

ffiffiffiffiffi
ε0

p
. The same dependence on ε0 takes place

for E and J on these orbits.

III. BEYOND THE CIRCULAR ORBITS

In addition to the results on the properties of the highly
relativistic circular orbits, important information concern-
ing the possibilities of the strong repulsive action on a
spinning particle follows from the shape of the highly
relativistic noncircular orbits. We begin from the orbits
which start with r ¼ 3M and correspond to different values
of the particle’s orbital velocity.
To describe most general motions of a spinning particle

(without restrictions on its velocity and spin orientation) in
Schwarzschild’s and Kerr’s backgrounds by the exact MP
equations at condition (3), the representation of these
equations was developed using the integrals of energy
and angular momentum [21,25]. In the more simple
particular case of the equatorial noncircular motions of a
spinning particle in Schwarzschild’s background the cor-
responding equations can be written as [46]

_y5 ¼
y25
y1

þ y1

�
1 −

3

y1

��
2y27 þ

1

y21

�
−
Ê
ε0

y7y1

þ Ĵ
ε0y1

�
y25 þ

�
1 −

2

y1

�
ð1þ y27y

2
1Þ
�
1=2

; ð16Þ

_y7 ¼ −
y5y7
y1

þ y1
y27 þ 1=y21

y5

�
y7 −

3y7
y1

−
Ê
ε0

�

þ 1

y1y5ε0
ð1þ Ĵy7Þ

�
y25 þ

�
1 −

2

y1

�
ð1þ y27y

2
1Þ
�
1=2

;

ð17Þ

_y1 ¼ y5; _y3 ¼ y7; ð18Þ

where

FIG. 1. Energy vs radial coordinate for the circular orbits of a
spinning particle (solid line) and for the geodesic motions (dotted
line) with the same initial velocity. The three pictures correspond
to the different intervals and scaling by r.

FIG. 2. Angular momentum vs radial coordinate for the circular
orbits of a spinning particle (solid line) and for the geodesic
motions (dotted line) with the same initial velocity. The three
pictures correspond to the different intervals and scaling by r.
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Ê≡ E
m
; Ĵ ≡ J

mM
; ð19Þ

and a dot denotes the usual derivative with respect
to x≡ s=m.
By choosing different values of Ê and Ĵ for the fixed

initial values of yi one can describe the motions of different
centers of mass of a spinning particle [21]. Among the set
of the pairs Ê and Ĵ there is the single pair corresponding to
the proper center of mass. [It is known that in Minkowski’s
spacetime the exact MP equations at condition (3) have, in
addition to usual solutions describing the straight world-
lines, a set of solutions describing oscillatory (helical)
worldlines [47,48]. This situation was interpreted in [49]
where it was pointed out that in relativity the position of the
center of mass of a rotating body depends on the frame of
reference, and condition (3) is common for the so-called
proper and nonproper centers of mass [50]; more detailed
analysis can be found in [42,51].]
Concerning the highly relativistic circular orbits of a

spinning particle with r ¼ 3M [in notations (9) it means
y1 ¼ 3] we note that according to (11) and (12) the value of
y7 on this orbit is

y7 ¼ −
3−3=4ffiffiffiffiffi

ε0
p ð1þOðε0ÞÞ: ð20Þ

Then by expressions (14) and (15) in the main approxi-
mation we have

Ê ¼ 3−1=4ffiffiffiffiffi
ε0

p ; Ĵ ¼ −
35=4ffiffiffiffiffi
ε0

p : ð21Þ

Let us consider the highly relativistic noncircular
motions of a spinning particle which starts from y1 ¼ 3
with the initial values of y5 ≠ 0 and with y7 which differs
from (20). For this purpose we integrate Eqs. (16)–(18).
The values of Ê and Ĵ which correspond to the motions of
the proper center of mass can be found using a search
computer. As typical, in Fig. 3 we show the results
concerning the shape of the spinning particle trajectories
at ε0 ¼ 10−2 with the fixed initial values y1ð0Þ ¼ 3,
y5ð0Þ ¼ −2.5 × 10−2 and different values of y7. The solid
line corresponds to y7ð0Þ ≈ −4.39: this value is determined
by (20) with ε0 ¼ 10−2. The dashed line, long dashed line,
and dash-dotted lines describe the cases when y7ð0Þ is
equal approximately to −4.39 multiplied by 2, 4 and 6
correspondingly. In all cases the particle starts clockwise
from the position r ¼ 3M and φ ¼ 0, in the polar coor-
dinates. According to the solid line the spinning particle
with the corresponding initial values of y7 falls on
Schwarzschild’s horizon surface as well as the spinless
particle which begins to move with the same initial
conditions (for comparison the dotted line in Fig. 3
illustrates the trajectory of this spinless particle). The three

other curves (dashed, long dashed, and dash-dotted lines)
show that the spinning particle with the corresponding
initial values of y7 goes away from the Schwarzschild
source, whereas it is known that by the properties of
the geodesic lines in Schwarzschild’s metric the spinless
particle in all these cases falls on the horizon surface
similarly as the dotted line in Fig. 3. So, Fig. 3 illustrates
how the spin-gravity action on the trajectory of the spinning
particle increases with its orbital velocity y7.
Note that the highly relativistic circular orbits of a

spinning particle in Schwarzschild’s background exist
beyond the small neighborhood of the value y1 ¼ 3 as
well, for 2 < y1 < 3. Then the necessary value of y7 is
determined by

y7 ¼ −
1ffiffiffiffiffiffiffiffiffi
ε0y1

p
�
1 −

2

y1

�
1=4

×

�
3

y1
− 1

�
−1=2

ð1þOðε0ÞÞ: ð22Þ

Similarly to (20) expression (22) is proportional to 1=
ffiffiffiffiffi
ε0

p
.

The expressions for Ê and Ĵ which correspond to (22) are

Ê ¼
ffiffiffiffiffi
ε0

p
ffiffiffiffiffi
y1

p
�
1 −

2

y1

�
1=4

�
3

y1
− 1

�
−3=2

×

�
1 −

3

y1
þ 3

y21

�
; ð23Þ

Ĵ ¼ ffiffiffiffiffiffiffiffiffi
ε0y1

p �
1 −

2

y1

�
−1=4

�
3

y1
− 1

�
−3=2

×
�
1 −

9

y1
þ 15

y21

�
: ð24Þ

That is, in contrast to (21), here both Ê and Ĵ are
proportional to

ffiffiffiffiffi
ε0

p
.

To describe noncircular highly relativistic orbits of a
spinning particle which starts with 2 < y1ð0Þ < 3 one can

FIG. 3. Noncircular trajectories of the spinning particle at
different initial values of y7. The circle y1 ¼ 2 corresponds to
the horizon line.
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use a search computer of such values Ê and Ĵ which pick
out the corresponding motions of the particle’s proper
center of mass, similarly as it was pointed out above for the
motion with y1ð0Þ ¼ 3. Naturally, if some noncircular
orbits are closer, in a certain sense, to the circular orbits
with (22), the corresponding values Ê and Ĵ are close to
(23) and (24). In general, it is useful to have some analytical
estimations for the necessary Ê and Ĵ in any concrete case
of the spinning particle motion.

IV. ON THE VALUES OF Ê AND Ĵ FOR THE
PROPER CENTER OF MASS

The procedure of finding the Ê and Ĵ for the proper
center of mass of a spinning particle moving in
Schwarzschild’s background which is based on the con-
sideration of the MP equations in the linear approximation
by the small displacement of the values y1, y5, y7 from their
initial values y1ð0Þ, y5ð0Þ, y7ð0Þ is presented in [46]. It is
important in this approach that Ê and Ĵ are the constant of
motion, that is their values are the same for the all time of
the particle’s motion. In notations

ξ1 ≡ y5 − y5ð0Þ
y5ð0Þ

; ξ2 ≡ y7 − y7ð0Þ
y7ð0Þ

; ξ3 ≡ y1 − y1ð0Þ
y1ð0Þ

;

ð25Þ

it follows from (16) and (17) in the linear in ξi
approximation

_ξ1 ¼ ða10 þ a11Ĵε−10 þ a12Êε−10 Þξ1 þ ða20 þ a21Ĵε−10

þ a22Êε−10 Þξ2 þ ða30 þ a31Ĵε−10 þ a32Êε−10 Þξ3
þ a00 þ a01Ĵε−10 þ a02Êε−10 ; ð26Þ

_ξ2 ¼ ðb10 þ b11Ĵε−10 þ b12Êε−10 þ b13ε−10 Þξ1
þ ðb20 þ b21Ĵε−10 þ b22Êε−10 þ b23ε−10 Þξ2
þ ðb30 þ b31Ĵε−10 þ b32Êε−10 þ b33ε−10 Þξ1
þ b00 þ b01Ĵε−10 þ b02Êε−10 þ b03ε−10 ; ð27Þ

_ξ3 ¼ c10ξ1 þ c00; ð28Þ

where the coefficients a, b, c with the corresponding
indexes are expressed through y1ð0Þ, y5ð0Þ, y7ð0Þ as
follows:

a10 ¼ 2y−11 y5; a11 ¼ y−11 y5N;

a12 ¼ 0; a20 ¼ 4y−15 y27ðy1 − 3Þ;
a21 ¼ ðy1 − 2Þy−15 y27N; a22 ¼ −y1y−15 y7;

a30 ¼ y−21 y−15 ½y1ð2y21y27 − y25 − 1Þ þ 6�;
a31 ¼ y−11 y−15 Nð−1 − y25 þ y1y27 þ 3y−11 Þ;
a32 ¼ −y1y−15 y7;

a00 ¼ y−11 y5 þ ðy1 − 3Þy−15 ðy−21 þ 2y27Þ;
a01 ¼ y−11 y−15 N−1; a02 ¼ −y1y−15 y7;

b10 ¼ −y−11 y5 − y−21 y−15 ðy1 − 3Þð1þ y21y
2
7Þ;

b11 ¼ −y−11 y−15 Nð1þ y21y
2
7Þð1 − 2y−11 Þ;

b12 ¼ y1y−15 y7 − 1ðy−21 þ y27Þ;
b13 ¼ −y−11 y−15 y−17 Nð1þ y21y

2
7Þð1 − 2y−11 Þ;

b20 ¼ −y−11 y5 þ y−21 y−15 ðy1 − 3Þð1þ 3y21y
2
7Þ;

b21 ¼ y−11 y−15 N½y25 þ ð1 − 2y−11 Þð1þ 2y21y
2
7Þ;

b22 ¼ −2y1y−15 y7; b23 ¼ y−15 y7Nðy1 − 2Þ;
b30 ¼ y−21 y−15 ½6þ y1ðy25 þ y21y

2
7 − 1Þ�;

b31 ¼ y−11 y−15 Nð−1 − y25 þ 3y−11 þ y1y27Þ;
b32 ¼ y−11 y−15 y−17 ð1 − y21y

2
7Þ; b33 ¼ y−17 b31;

b00 ¼ −y−11 y5 þ y−21 y−15 ðy1 − 3Þð1þ y21y
2
7Þ;

b01 ¼ y−11 y−15 N−1; b02 ¼ −y−11 y−15 y−17 ð1þ y21y
2
7Þ;

b03 ¼ y−11 y−15 y−17 N−1;

c00 ¼ c10 ¼ y−11 y5; ð29Þ

where

N ¼ ½y25 þ ð1 − 2y−11 Þð1þ y21y
2
7Þ�−1=2

[for brevity we omit “(0)” near the initial values of yi in
(29) and in the following].
According to the known result of the differential equa-

tions theory, the general solution of linear equations (26)–
(28) is determined by the combination of eλix (i ¼ 1, 2, 3),
where λi are the solutions of the third-order algebraic
equation

λ3 þ C2λ
2 þ C1λþ C0 ¼ 0: ð30Þ

Here the coefficients Cj (j ¼ 0, 1, 2) can be expressed
through a, b, c and depend both on y1ð0Þ, y5ð0Þ, y7ð0Þ, ε0
and on the parameters Ê and Ĵ. For example, the corre-
sponding expressions for C2 and C1 are

C2 ¼ −a10 − b20 − Ĵε−10 ða11 þ b21Þ
− Êε−10 ða12 þ b22Þ − b23ε−10 ; ð31Þ
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C1 ¼ ða10 þ a11Ĵε−10 þ a12Êε−10 Þðb20 þ b21Ĵε−10

þ b22Êε−10 þ b23ε−10 Þ − c10ða30 þ a31Ĵε−10 þ a2Êε−10 Þ
− ða20 þ a21Ĵε−10 þ a22Êε−10 Þ
× ðb10 þ b11Ĵε−10 Þ þ b12Êε−10 Þ: ð32Þ

Let us consider (31) and (32) for the concrete cases
of the particle’s highly relativistic noncircular motions
when its 4-velocity is determined by the relationships

y5 ¼
pffiffiffiffiffi
ε0

p ; y7 ¼
kffiffiffiffiffi
ε0

p ; ð33Þ

where the parameters p and k satisfy the conditions
p2=ε0 ≫ 1 and k2=ε0 ≫ 1. That is, similarly to the case
of the circular orbits with (22), according to (33) the
particles 4-velocity is proportional to 1=

ffiffiffiffiffi
ε0

p
. Our task is to

find such values Ê and Ĵ which at the fixed initial values y1,
y5 and y7 determine just the motion of the proper center
of mass. Using some analogy with the highly relativistic
circular orbits when the necessary values Ê and Ĵ are
determined by (23) and (24), here we search for the
corresponding values in the form

Ê ¼ k1
ffiffiffiffiffi
ε0

p
; Ĵ ¼ k2

ffiffiffiffiffi
ε0

p
; ð34Þ

where k1 and k2 are some parameters which we have to
find. For this purpose we take into account the known
expressions for the roots of the third order algebraic
equation (30) through the values C2, C1 and C0. It follows
from these expressions that the values of the three roots λ1,
λ2 and λ3 significantly depend on ε0. In general, the
expressions for these roots contain the large terms which
are proportional to 1=ε0. Just these terms determine the
high frequency oscillatory solutions as well as the solutions
which are proportional to the exponent with the large
absolute values of the real index of this exponent. Such all
solutions do not describe the motions of the particle’s
proper center of mass in which we are interested. Therefore,
to choice the necessary solutions we take into account the
partial solutions of Eqs. (26)–(28) for which the corre-
sponding expressions of λ1, λ2 and λ3 do not contain the
large terms of the order 1=ε0. It is not difficult to check that
the possible approximated approach consists in putting zero
the coefficients near the terms with 1=ε0 in the expressions
for C2 and C1. Then we obtain the two linear algebraic
equations for k1 and k2 which determine the necessary
values of these parameters:

k1 ¼
k2n
y21k

þ p2

2y21k
þ 3k
2y1

ðy1 − 3Þ þ y1 − 2

2y1n
; ð35Þ

k2 ¼
A
B
; ð36Þ

where

A ¼ 2.75p2n − k2y1nðy1 − 9Þ þ 1.25k4y21np
−2ðy1 − 3Þ2

− 1.5k3y21ðy1 − 2Þðy1 − 3Þp−2

þ 0.25k2y21ðy1 − 2Þ2p−2n−1;

B ¼ k2y1ðy1 − 3Þ;
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ k2y1ðy1 − 2Þ

q
; y1 ≠ 3:

Let us apply relationships (34)–(36) in Eqs. (16)–(18)
for the concrete motions of a highly relativistic spinning
particle with the initial value y1ð0Þ ¼ 2.5. Figure 4 shows
a case when y5ð0Þ ¼ 3.6, y7ð0Þ ¼ −9.2 and ε0 ¼ 10−2 [the
dotted lines in Fig. 4 correspond to the motion of a spinless
particle with the same initial values y1ð0Þ, y5ð0Þ and y7ð0Þ].
Because expressions (35) and (36) can be used only for
some approximated description of motions of the particle’s
proper center of mass, the graphs in Fig. 4 have the
oscillatory features. It means that the proper center of
mass is moving according to the corresponding middle
lines of the graphs in Fig. 4.
Note that both graphs in Figs. 3 and 4 correspond to the

spinning particle motions under the strong repulsive action
of the highly relativistic spin-gravity coupling.

V. CONCLUSIONS

There are significant differences in the spin-gravity
coupling for a spinning test particle in Schwarzschild’s
background when its velocity (1) is not very high and (2) is
very close to the speed of light, i.e. when the corresponding
relativistic Lorentz factor γ is of the order 1 or much greater
than 1. Just in the second case it follows from the MP
equations that general relativity is both the theory of gravity
as a generalization of the Newtonian description of gravity
and, in the certain sense, predicts the effects of strong
antigravity in some extremal situations which is impossible
in the Newtonian theory. In this paper we have considered
the examples of the highly relativistic motions of a spinning
particle which are caused by the strong repulsive action of
the spin-gravity coupling in Schwarzschild’s background.

FIG. 4. An example of the oscillatory motions in the polar
coordinates and in the dependence r vs t.
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This action is shown in the form of the spinning particle
trajectories as compared to the corresponding geodesic
trajectories of a spinless particle (Secs. III and IV). The
effects of the significant influence of the highly relativistic
spin-gravity coupling on the spinning particle energy and
angular momentum are presented in Sec. II. For further
investigations of the concrete types of the highly relativistic
motions of a spinning particle in Schwarzschild’s back-
ground according to the exact MP equations one can use the
approach which is described in Sec. IV.
The question arises concerning possibilities of the

experimental registration of the strong spin-gravity effects.
Naturally, the situation with a macroscopic spinning
particle (body) moving relative to Schwarzschild’s mass
with γ ≫ 1 is not realistic. Quite the reverse, the elementary
particles which are the active participants of the high

energy astrophysical processes have the very large γ-factor.
Which values of γ are necessary for the manifestations of
the effects of the highly relativistic spin-gravity coupling
that are considered in this paper? Note that the main large
term which determines these values is equal to 1=

ffiffiffiffiffi
ε0

p
. In

the case when M is equal to 106 of the Sun’s mass, for an
electron and a neutrino (with the mass ≈0.3 eV) we have
that 1=

ffiffiffiffiffi
ε0

p
is equal to 9 × 1010 and 7 × 107 respectively.

These values are very high and the parts of electrons and
neutrinos with the corresponding values of the γ-factor near
the black holes are low. Nevertheless, one cannot exclude
that, for example, the data concerning very high energy
neutrinos from the Ice Cube experiment will be useful
in the context of the possible registrations of the strong
spin-gravity coupling effects.

[1] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(Freeman, San Francisco, 1973).

[2] S. Chandrasekhar, The Mathematical Theory of Black Holes
(Oxford University Press, Oxford, 1983).

[3] B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016).
[4] F. A. E. Pirani, Proc. R. Soc. A 252, 96 (1959).
[5] P. C. Aichelburg and R. U. Sexl, Lett. Nuovo Cimento 4,

1316 (1970).
[6] P. C. Aichelburg and R. U. Sexl, Gen. Relativ. Gravit. 2, 303

(1971).
[7] G. E. Curtis, Gen. Relativ. Gravit. 9, 999 (1978).
[8] P. D. D’Eath, Phys. Rev. D 18, 990 (1978).
[9] P. D. D’Eath and P. N. Payne, Phys. Rev. D 46, 658 (1992).

[10] P. D. D’Eath, Black Holes: Gravitational Interactions
(Clarendon, Oxford, 1996).

[11] B. Mashhoon, Phys. Lett. A 163, 7 (1992).
[12] B. Mashhoon and C. McClune, Mon. Not. R. Astron. Soc.

262, 881 (1993).
[13] K. Thorne and J. Hartle, Phys. Rev. D 31, 1815 (1985).
[14] M. Mathisson, Acta Phys. Pol. 6, 163 (1937); Gen. Relativ.

Gravit. 42, 1011 (2010).
[15] A. Papapetrou, Proc. R. Soc. A 209, 248 (1951).
[16] R. M. Plyatsko and A. L. Vynar, Sov. Phys. Dokl. 27, 328

(1982).
[17] R. Plyatsko, Phys. Rev. D 58, 084031 (1998).
[18] R. Plyatsko and O. Bilaniuk, Classical Quantum Gravity 18,

5187 (2001).
[19] R. Plyatsko, Classical Quantum Gravity 22, 1545 (2005).
[20] R. Plyatsko, O. Stefanyshyn, and M. Fenyk, Phys. Rev. D

82, 044015 (2010).
[21] R. M. Plyatsko, O. B. Stefanyshyn, and M. T. Fenyk,

Classical Quantum Gravity 28, 195025 (2011).
[22] R. Plyatsko and M. Fenyk, Phys. Rev. D 85, 104023 (2012).
[23] R. Plyatsko and M. Fenyk, Phys. Rev. D 87, 044019 (2013).
[24] R. Plyatsko and M. Fenyk, Phys. Rev. D 91, 064033

(2015).

[25] R. Plyatsko, M. Fenyk, and O. Stefanyshyn, in Equations of
Motion in Relativistic Gravity (Springer, New York, 2015),
pp. 165–190.

[26] R. Wald, Phys. Rev. D 6, 406 (1972).
[27] F. A. E. Pirani, Acta Phys. Pol. 15, 389 (1956).
[28] W. Tulczyjew, Acta Phys. Pol. 18, 393 (1959).
[29] W. G. Dixon, Proc. R. Soc. A 314, 499 (1970); Gen. Relativ.

Gravit. 4, 199 (1973); Phil. Trans. R. Soc. A 277, 59 (1974);
Acta Phys. Pol. B 1, 27 (2008).

[30] D. Bini and A. Geralico, Phys. Rev. D 87, 024028 (2013).
[31] Yu. Obukhov, A. Silenko, and O. Teryaev, Phys. Rev. D 88,

084014 (2013).
[32] A. Silenko and O. Teryaev, Phys. Rev. D 89, 041501

(2014).
[33] E. Hackmann, C. Lammerzahl, Yu. Obukhov, D. Puetzfeld,

and I. Schaffer, Phys. Rev. D 90, 064035 (2014).
[34] W. G. Ramirez, A. A. Deriglazov, and A. M. Pupasov-

Maksimov, J. High Energy Phys. 03 (2014) 109.
[35] D. Singh, K. Wu, and G. Sarty, Mon. Not. R. Astron. Soc.

441, 800 (2014).
[36] D. Kunst, V. Perlick, and C. Lammerzahl, Phys. Rev. D 92,

024029 (2015).
[37] P. Jefremov, O. Tsupko, and G. Bisnovatyj-Kogan, Phys.

Rev. D 91, 124030 (2015).
[38] M. Mohseni, Gen. Relativ. Gravit. 47, 24 (2015).
[39] G. dAmbrosi, S. Satish Kumar, and J. W. van Holten, Phys.

Lett. B 743, 478 (2015).
[40] G. dAmbrosi, S. Satish Kumar, J. van de Vis, and J. W. van

Holten, Phys. Rev. D 93, 044051 (2016).
[41] D. Kunst, T. Ledvinka, G. Lukes-Gerakopoulos, and J.

Seyrich, Phys. Rev. D 93, 044004 (2016).
[42] L. F. Costa, C. Herdeiro, J. Natário, and M. Zilhão, Phys.

Rev. D 93, 104006 (2016).
[43] M. Lanzagorta and M. Salgado, Classical Quantum Gravity

33, 105013 (2016).
[44] A. Silenko, Phys. Rev. D 93, 124050 (2016).

ANTIGRAVITY: SPIN-GRAVITY COUPLING IN ACTION PHYSICAL REVIEW D 94, 044047 (2016)

044047-7

http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1098/rspa.1959.0139
http://dx.doi.org/10.1007/BF02753774
http://dx.doi.org/10.1007/BF02753774
http://dx.doi.org/10.1007/BF00758149
http://dx.doi.org/10.1007/BF00758149
http://dx.doi.org/10.1007/BF00784660
http://dx.doi.org/10.1103/PhysRevD.18.990
http://dx.doi.org/10.1103/PhysRevD.46.658
http://dx.doi.org/10.1016/0375-9601(92)90151-B
http://dx.doi.org/10.1093/mnras/262.4.881
http://dx.doi.org/10.1093/mnras/262.4.881
http://dx.doi.org/10.1103/PhysRevD.31.1815
http://dx.doi.org/10.1007/s10714-010-0939-y
http://dx.doi.org/10.1007/s10714-010-0939-y
http://dx.doi.org/10.1098/rspa.1951.0200
http://dx.doi.org/10.1103/PhysRevD.58.084031
http://dx.doi.org/10.1088/0264-9381/18/23/312
http://dx.doi.org/10.1088/0264-9381/18/23/312
http://dx.doi.org/10.1088/0264-9381/22/9/004
http://dx.doi.org/10.1103/PhysRevD.82.044015
http://dx.doi.org/10.1103/PhysRevD.82.044015
http://dx.doi.org/10.1088/0264-9381/28/19/195025
http://dx.doi.org/10.1103/PhysRevD.85.104023
http://dx.doi.org/10.1103/PhysRevD.87.044019
http://dx.doi.org/10.1103/PhysRevD.91.064033
http://dx.doi.org/10.1103/PhysRevD.91.064033
http://dx.doi.org/10.1103/PhysRevD.6.406
http://dx.doi.org/10.1098/rspa.1970.0020
http://dx.doi.org/10.1007/BF02412488
http://dx.doi.org/10.1007/BF02412488
http://dx.doi.org/10.1098/rsta.1974.0046
http://dx.doi.org/10.1103/PhysRevD.87.024028
http://dx.doi.org/10.1103/PhysRevD.88.084014
http://dx.doi.org/10.1103/PhysRevD.88.084014
http://dx.doi.org/10.1103/PhysRevD.89.041501
http://dx.doi.org/10.1103/PhysRevD.89.041501
http://dx.doi.org/10.1103/PhysRevD.90.064035
http://dx.doi.org/10.1007/JHEP03(2014)109
http://dx.doi.org/10.1093/mnras/stu614
http://dx.doi.org/10.1093/mnras/stu614
http://dx.doi.org/10.1103/PhysRevD.92.024029
http://dx.doi.org/10.1103/PhysRevD.92.024029
http://dx.doi.org/10.1103/PhysRevD.91.124030
http://dx.doi.org/10.1103/PhysRevD.91.124030
http://dx.doi.org/10.1007/s10714-015-1868-6
http://dx.doi.org/10.1016/j.physletb.2015.03.007
http://dx.doi.org/10.1016/j.physletb.2015.03.007
http://dx.doi.org/10.1103/PhysRevD.93.044051
http://dx.doi.org/10.1103/PhysRevD.93.044004
http://dx.doi.org/10.1103/PhysRevD.93.104006
http://dx.doi.org/10.1103/PhysRevD.93.104006
http://dx.doi.org/10.1088/0264-9381/33/10/105013
http://dx.doi.org/10.1088/0264-9381/33/10/105013
http://dx.doi.org/10.1103/PhysRevD.93.124050


[45] R. Plyatsko and M. Fenyk, Phys. Rev. D 93, 028502
(2016).

[46] R. Plyatsko and O. Stefanyshyn, Acta Phys. Pol. B 39, 23
(2008).

[47] M. Mathisson, Acta Phys. Pol. 6, 218 (1937).
[48] J. Weyssenhoff and A. Raabe, Acta Phys. Pol. 9, 7 (1947).

[49] C. Møller, Commun. Dublin Inst. Advan. Studies A 5, 3
(1949).

[50] C. Møller, The Theory of Relativity (Oxford University
Press, Oxford, 1972).

[51] L. F. Costa, C. Herdeiro, J. Natário, and M. Zilhão, Phys.
Rev. D 85, 024001 (2012).

ROMAN PLYATSKO and MYKOLA FENYK PHYSICAL REVIEW D 94, 044047 (2016)

044047-8

http://dx.doi.org/10.1103/PhysRevD.93.028502
http://dx.doi.org/10.1103/PhysRevD.93.028502
http://dx.doi.org/10.1103/PhysRevD.85.024001
http://dx.doi.org/10.1103/PhysRevD.85.024001

