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We perform an analysis of the Einstein-Skyrme cosmological model in the Bianchi-IX background. We
analytically describe asymptotic regimes and semianalytically describe generic regimes. It appears that
depending on the product of the Newtonian constant κ with Skyrme coupling K, in the absence of the
cosmological term, there are three possible regimes: recollapse with κK < 2 and two power-law regimes,
∝ t1=2 for κK ¼ 2 and ∝ t for κK > 2. In the presence of the positive cosmological term, power-law
regimes turn to the exponential (de Sitter) ones, while the recollapse regime turns to the exponential if the
value for the Λ-term is sufficiently large, otherwise the regime remains recollapse. The negative
cosmological term leads to the recollapse regardless of κK. All nonsingular regimes have the squashing
coefficient aðtÞ → 1 at late times, which is associated with restoring symmetry dynamics. Also all
nonsingular regimes appear to be linearly stable exponential solutions always, while power-law regimes for
an open region of the initial conditions.
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I. INTRODUCTION

One of the most important nonlinear field theories is the
sigma model, with its applications covering many aspects
of quantum physics (see, e.g., [1] for review), but within
this model, it is impossible to build static soliton solutions
in 3þ 1 dimensions. To overcome this, Skyrme introduced
[2] a term, which allows static soliton solutions with finite
energy, called Skyrmions (see also [1,3] for review) to
exist. It appears that excitations around Skyrme solutions
may represent fermionic degrees of freedom, suitable to
describe baryons (see [4] for detailed calculations and [5–8]
for examples). The winding number of Skyrmions is
identified with the baryon number in particle physics
[9]. Apart from particle and nuclear physics, Skyrme theory
is relevant to astrophysics [10], Bose-Einstein condensates
[11], nematic liquids [12], magnetic structures [13], and
condensed matter physics [14]. Also, Skyrme theory
naturally appears in AdS/CFT context [15].
Due to the highly nonlinear character of sigma and

Skyrme models, it is very difficult to build exact solutions
in both of them. So, to make field equations more tractable,
one usually adopts certain ansatz. For the Skyrme model,
one of the best known and mostly used is the hedgehog
ansatz for spherically symmetric systems, which reduces
field equations to a single scalar equation. It is worth
mentioning that recently this ansatz was generalized [16]
for nonspherically-symmetric cases.
Use of the hedgehog ansatz allows study of self-

gravitating Skyrme models. In particular, the potential
presence of Skyrme hair for spherically symmetric black
hole configurations [17] was demonstrated. This is the first
genuine counterexample to “no hair” conjecture, which
appears to be stable [18]; its particle-like [19] counterparts

and dynamical configurations [20] have been studied
numerically. After that, more realistic spherically and
axially symmetric black hole and regular configurations
were studied [21].
Apart from spherically symmetric configurations, of

particular interest are cosmological-type solutions. The
generalized hedgehog ansatz makes it possible to write
down simplified field equations for nonspherically
symmetric configurations, which we used to perform
analysis of Bianchi-I and Kantowski-Sachs models for
Einstein-Skyrme cosmology with the Λ-term [22] (a
particular subcase was studied in [23]). The paper [24]
was a logical continuation of them, as the particular
solution of the Bianchi-IX cosmological model was
described. The analysis suggests that, based on the
static counterpart of this model, the construction of
exact multi-Skyrmion configurations composed by
elementary spherically symmetric Skyrmions with a
nontrivial winding number in four dimensions is pos-
sible [25] (see also [26] for possible generalization to
higher SUðNÞ models).
In this paper, we consider the full Bianchi-IX cos-

mological model in the Einstein-Skyrme system. Our
study is motivated from both the field theory and
cosmological point of view. Indeed, this is one of the
few (if not the only) system where one can study
analytically dynamical and cosmological consequences
of the conserved topological charge, which in this
particular case is associated with the baryon number.
From the cosmological point of view, the Bianchi-IX
model is well known and well studied in cosmology, for
instance, for the proof of inevitability of the physical
singularity through the oscillatory approach to it [27].
So, if we consider the Bianchi-IX model, the results
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could be translated and compared with the counterparts
from our physical Universe.
The structure of the manuscript is as follows: First,

we review the Einstein-Skyrme system and derive basic
equations, and then, we study the asymptotic case both
with and without the Λ-term. After that, we study the
general case, address linear stability of the obtained
solutions, and finally, discuss and summarize the
results.

II. EQUATIONS OF MOTION

The Skyrme action can be constructed in the following
way: Let U be an SUð2Þ valued scalar field. We can then
define the quantities

Ai
μti ≡ Aμ ¼ U−1∇μU;

Fμν ¼ ½Aμ; Aν�:

Here, the Latin indices correspond to the group indices,
and the generators ti of SUð2Þ are related to the Pauli
matrices by ti ¼ −iσi. The Skyrme action is then
defined as

SSkyrme ¼
K
2

Z
d4x

ffiffiffiffiffiffi
−g

p
Tr

�
1

2
AμAμ þ λ

16
FμνFμν

�
: ð1Þ

The case when λ ¼ 0 is called the nonlinear sigma
model, and the term which multiplies λ is called the
Skyrme term. The total action for a self-gravitating
Skyrme field reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p R − 2Λ
2κ

þ SSkyrme; ð2Þ

where κ is the gravitational constant, R is the Ricci scalar,
and Λ is the cosmological constant. The Skyrme field
equation reads

∇μAμ þ
λ

4
∇μ½Aν; Fμν� ¼ 0: ð3Þ

The topological charge of the Skyrme model is

w ¼ −
1

24π2

Z
t¼const

Tr½ϵijkAiAjAk�; ð4Þ

and physically, it represents the baryonic charge.
The SUð2Þ valued scalar field can be parametrized in a

standard way,

U ¼ IY0 þ Yiti; U−1 ¼ IY0 − Yiti;

where Y0 ¼ Y0ðxμÞ and Yi ¼ YiðxμÞ must satisfy ðY0Þ2 þ
YiYi ¼ 1. The most famous and most studied ansatz for
searchingsolutions to the (nonself-gravitating)Skyrme theory
is the so called “hedgehog,” which is obtained by choosing

Y0 ¼ cosðαÞ; Yi ¼ ni sinðαÞ;

where α is a radial profile function and ni is a normal radial
vector

n1 ¼ sinΘ cosΦ; n2 ¼ sinΘ sinΦ; n3 ¼ cosΘ:

As mentioned, we work with the Bianchi-IX metric,

ds2 ¼ −dt2 þ ρ2ðtÞ
4

× ½a2ðtÞðdγ þ cos θdφÞ2 þ dθ2 þ sin2 θdφ2�; ð5Þ

where ρðtÞ is a global scale factor and aðtÞ is a squashing
coefficient. One can check that (see also [24]) with unit
baryonic charge w ¼ þ1 (4), the configuration

Φ ¼ γ þ φ

2
; tanΘ ¼ cotðθ

2
Þ

cosðγ−φ
2
Þ ; tan α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2Θ

p

tanðγ−φ
2
Þ
ð6Þ

identically satisfies the Skyrme field equations (3) on any
background metric of the form (5). Now substituting metric
(5) and configuration (6) into action (1) and (2), as well as
into the hedgehog ansatz, one can derive equations of
motion in the following form (see also [24]):

2aρ2ð2ρ _aþ 3a_ρÞ_ρ − 2a2ρ2ðΛρ2 þ a2 − 4Þ − κK½ð2ρ2 þ λÞa2 þ ρ2 þ 2λ� ¼ 0;

2a2ρ2ð2ρρ̈þ _ρ2Þ − 2a2ρ2ðΛρ2 þ 3a2 − 4Þ − κK½ð2ρ2 þ λÞa2 − ρ2 − 2λ� ¼ 0;

aρ3ðρäþ 3_ρ _aÞ þ ða2 − 1Þ½κKðλþ ρ2Þ þ 4a2ρ2� ¼ 0:

ð7Þ

III. ASYMPTOTIC aðtÞ≡ 1 CASE

We start from the equations for the special case aðtÞ≡ 1 after substituting it into (7):

_ρ2 ¼ Λ
3
ρ2 þ λκK

2ρ2
þ κK − 2

2
; ρ̈ ¼ Λ

3
ρ −

λκK
2ρ3

: ð8Þ
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Let us first analyze the Λ ¼ 0 case. In that case system,
(8) has the exact solution with the integration constant
which we fix from the condition ρ → 0 as t → 0; the
resulting solution is

ρ ¼ 1ffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tððκK − 2Þtþ 2

ffiffiffiffiffiffiffiffiffiffiffi
2λκK

p Þ
q

: ð9Þ

One can see that for κK > 2, the late-time asymptote is
ρ ∝ t, while the κK ¼ 2 solution (9) reduces to

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

p
λt

p
; ð10Þ

and one can see that its late-time asymptote is ρ ∝ t1=2.
Finally, for κK < 2, the radicand in (9) eventually becomes
negative at some t, which corresponds to the recollapse; all
three situations are presented in Fig. 1. In black, we
presented the κK < 2 case. In dashed gray, we presented
the κK ¼ 2 case, and in solid gray, we presented the
κK > 2 case.
Now let us turn to the Λ ≠ 0 case. In that case, we can

reduce the first of (8) to the biquadratic equation with
respect to ρ and find the condition when its discriminant is
negative; in that case, _ρ2 > 0 always. This happens if

Λ ≥ Λ0 ¼ 3
8

ðκK−2Þ2
λκK : ð11Þ

Now, let us plot the _ρðρÞ phase portrait; we did it for
κK < 2 in Fig. 2 for three cases: with the discriminant of
(8) being positive (black curve), zeroth (solid gray), and
negative (dashed gray). One can see that the only smooth
and nonsingular regime occurs when the discriminant is
negative so (11) is fulfilled. In the two other cases, one
faces a finite-time future singularity at some finite t. So, to

have a smooth and nonsingular regime for the κK < 2 case,
we need Λ > Λ0 from (11). For the κK ¼ 2 case, as we can
see from (11) that any Λ > 0 is sufficient; the κK > 2 case
is unaffected by (11).
The late-time regime in this case is described by the

ρðtÞ → ∞ branch from Fig. 2. It could be derived from the
first of (8) taking the mentioned limit. The dynamical
equation reduces to _ρðtÞ2 ≃ ΛρðtÞ2=3 with expanding
solution ρðtÞ ∝ expð ffiffiffiffiffiffiffiffiffi

Λ=3
p

tÞ, which is the usual exponen-
tial solution.
Our claim that the κK > 2 case is unaffected by (11)

could be proved as follows: From the first of (8), one can
see that for κK ≥ 2 we always have _ρ2 > 0, given λ, Λ,
κK > 0. Of these, λ > 0 and K > 0 come from the Skyrme
theory and κ > 0 since we have gravitational attraction. On
the contrary, sometimes in different aspects of field theory
Λ < 0 is considered, which gives anti-de Sitter in the
cosmological background. One can immediately see from
the first of (8) that in the Λ < 0 case at small ρ we have
_ρ2 > 0, while at large ρ it is negative. So the dynamics is
limited, and we have a finite-time future singularity at some
finite t, similar to the κK < 2, Λ < Λcr case. In the case of
negative Λ, it is true regardless of κK, so in the remaining
part of the paper, we consider Λ > 0 only.
To summarize our findings of the aðtÞ≡ 1 case, if

Λ ¼ 0, there are three regimes, depending on the κK: If
κK < 2, there is a recollapse. If κK ¼ 2, the late-time
regime is power-law ρðtÞ ∝ ffiffi

t
p

, and if κK > 2, it is another
power-law ρðtÞ ∝ t. If Λ is nonzero and negative, then we
always have recollapse; if Λ > 0 and κK ≥ 2, we always
reach the exponential regime ρðtÞ ∝ expð ffiffiffiffiffiffiffiffiffi

Λ=3
p

t. Finally, if
Λ > 0 and κK < 2, then if (11) is fulfilled, we have the
exponential solution, and if not, we have recollapse. Let us
note that all these regimes we derived analytically, and so

FIG. 1. Solutions of the aðtÞ≡ 1 and Λ ¼ 0 case: κK < 2 in
black, κK ¼ 2 in dashed gray, and κK > 2 in solid gray (see the
text for more details).

FIG. 2. Phase portrait of the aðtÞ≡ 1 model with κK < 2 and
Λ > 0: cases with positive discriminant of (8) (black curve),
zeroth (solid gray), and negative (dashed gray) (see the text for
more details).
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they should take place for all initial conditions. Our
additional numerical analysis supports this claim.

IV. GENERAL CASE WITH DYNAMICAL aðtÞ
In this section, we analyze the behavior of the general

system (7) with dynamical aðtÞ. First, we numerically
analyze system (7) with Λ ¼ 0 and present the typical
behavior for each case in Figs. 3(a)–3(c). In panel (a), we
present the typical behavior for the κK < 2 case; one can
see that it asymptotically tends to the aðtÞ≡ 1 scenario
with oscillations around it, and similar to the aðtÞ≡ 1

counterpart, our dynamical aðtÞ case has finite-time
future singularity. In panel (b), we demonstrate typical
κK ¼ 2 dynamics; one can see that, similar to the
previous case, we have oscillations around the aðtÞ≡
1 regime with ρðtÞ ∝ t1=2 asymptotic behavior. Finally, in
panel (c), we present the κK > 2 case with oscillations
around aðtÞ ¼ 1 and ρðtÞ ∝ t asymptotic behavior. So we
can see that in all Λ ¼ 0 cases we have an oscillatory
approach to the corresponding aðtÞ≡ 1 cases, described
in the previous section. Actual evolution curves depend
on the initial conditions a bit (say, period and amplitude
of oscillations depend on the initial conditions), but

(a)

(d)

(b)

(c)

FIG. 3. Dynamics of aðtÞ ≠ 1 and the Λ ¼ 0 case on panels (a)–(c): κK < 2 on panel (a), κK ¼ 2 on panel (b), and κK > 2 on panel
(c). On panel (d) is the dynamics of aðtÞ ≠ 1 and the Λ ≠ 0 case: exponential (upper curve) and recollapse (lower) behaviors (see the text
for more details).
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general behavior and late-time asymptotes are the same
within the same case.
The final case to consider is general dynamical aðtÞ with

Λ ≠ 0. As we just saw, with Λ ¼ 0, dynamical aðtÞ cases
tend to their aðtÞ≡ 1 counterparts through oscillation; the
same behavior has dynamical aðtÞ cases with nonzero Λ. So,
similar to the aðtÞ≡ 1 case, negative Λ always leads to
recollapse regardless of κK. As we found in the previous
section, aðtÞ≡ 1 with Λ > 0 cases have either exponential
regime or recollapse as a late-time attractor, and so dynami-
cal aðtÞ cases have the same attractor as well. For κK ≥ 2,
we always have exponential solutions with damping oscil-
lations, while for κK < 2 we have either recollapse or
exponential solution depending on Λ, which is the same
behavior we described in the previous section for aðtÞ≡ 1
case. In Fig. 3(d), we presented the typical behavior in the
vicinity of separation of these two regimes. The lower
regime experience recollapses, while the upper reaches
exponential regime; both regimes experience oscillations.
In the general κK < 2 case (with dynamical aðtÞ with

Λ > 0), the value for Λcr, which separates recollapse
from exponential expansion [see this separation, e.g., in
Fig. 3(d)], is actually lower then Λ0, given by (11). Of

course, generally Λcr ≤ Λ0, and actual values we present in
Figs. 4(a)–4(c). We provided contours of equal Λcr on the
initial conditions space fρ0; _ρ0g for a0 ¼ 0.8 on panel (a),
a0 ¼ 1.0 on panel (b), and a0 ¼ 1.2 on panel (c). Levels
correspond to 0.37, 0.36, 0.35, 0.34, 0.33, 0.3, 0.2, and 0.1
with decreasing blackness (so black is Λcr ≥ 0.37, and
white is Λcr ≤ 0.1). As these contours are plot for λ ¼ 1
and κK ¼ 1, which gives Λ0 ¼ 0.375 derived from (11),
we can see that for a0 ¼ 1, presented in Fig. 4(b), Λ0 is
reached for all ρ0 and _ρ0 (so that for each ρ0 exists _ρ0 where
Λ0 is reached and vice versa). The utmost black corre-
sponds to Λcr ≥ 0.37. On the contrary, for a0 different from
1, Λ0 is reached for the lesser measure of the initial
conditions, see Fig. 4(a) for a0 ¼ 0.8 and Fig. 4(c) for
a0 ¼ 1.2. We can see from these two panels that Λ0 is
shifted towards higher _ρ0, and with growth of the ja0 − 1j
difference, the gap between the highest Λcr and Λ0 also
increase. In Fig. 4(d), we present a one-dimensional scan
on a0, and one can see that Λcr could be orders of
magnitude below Λ0.
Here is a short summary of this sections findings: We

found that the Λ ¼ 0 case with generic aðtÞ has three
distinct late-time regimes, which coincide with those

FIG. 4. Contours of equal Λcr on the initial conditions space fρ0; _ρ0g for a0 ¼ 0.8 on panel (a), a0 ¼ 1.0 on panel (b), and a0 ¼ 1.2 on
panel (c). Example of Λcr behavior with varying a0 on panel (d) (see the text for more details).
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described in the previous aðtÞ≡ 1 section. For κK < 2, we
have a recollapse. For κK ¼ 2, the late-time regime is
power-law ρðtÞ ∝ ffiffi

t
p

, and for κK > 2, it is another power-
law ρðtÞ ∝ t. In the general Λ > 0 dynamical aðtÞ case,
again, similar to the aðtÞ≡ 1 case, we have either an
exponential solution or recollapse. The former of them
takes place for κK ≥ 2, while the latter for κK < 2 and
Λ < Λcr. This Λcr ≤ Λ0 is defined from (11), and the actual
value for Λcr heavily depends on the initial conditions, as
presented in Fig. 4. One cannot miss the strong dependence
of Λcr on a0; with more initial anisotropy, a lesser value for
the Λ-term is needed to reach exponential expansion.

V. LINEAR STABILITY

Now, let us turn our attention to the stability of the
solutions. In the course of this paper, we saw there are
three nonsingular regimes: two power-laws, ρðtÞ ∝ ffiffi

t
p

and ρðtÞ ∝ t, and exponential ρðtÞ ∝ expðHtÞ; all three
regimes have aðtÞ → 1. So, we perturb full system (7)
around solution aðtÞ ¼ 1 and with these three different
ρðtÞ. Linear perturbations around aðtÞ ¼ 1 read
a → 1þ δa, _a → _δa, ä → δ̈a, ρ → ρþ δρ, _ρ → _ρþ _δρ,
and ρ̈ → ρ̈þ δ̈ρ, and the equations on perturbations take
the form

4ρ3 _ρ _δaþ12ρ2 _ρ _δρþð−4Λρ4 þ 12ρ2 _ρ − 4ρ2κK þ 8ρ2 − 2λκKÞδaþ ð−8Λρ3 þ 12ρ_ρ − 6ρκK þ 12ρÞδρ ¼ 0;

4ρ3δ̈ρþ 4ρ2 _ρ _δρþð−4Λρ4 þ 8ρ3ρ̈þ 4ρ2 _ρ2 − 4ρ2κK − 8ρ2 − 2λκKÞδaþ ð−8Λρ3 þ 12ρ2ρ̈þ 4ρ_ρ2 − 2ρκK þ 4ρÞδρ ¼ 0;

ρ4δ̈aþ 3ρ3 _ρ _δaþð2ρ2κK þ 8ρ2 þ 2λκKÞδa ¼ 0: ð12Þ

The last of (12) could be solved for stability in the a-direction. Substitution of exponential solution ρðtÞ ¼ ρ0 expðHtÞ
leads us to

ρ40 expð4HtÞðδ̈aðtÞ þ 3H _δaðtÞÞ þ 2ρ20 expð2HtÞδaðtÞðκK þ 4Þ þ 2κKλδaðtÞ ¼ 0: ð13Þ

Using new variable y ¼ _δaðtÞ=δaðtÞ, we can
rewrite (13) as

_yþ y2 þ 3Hyþ FðtÞ ¼ 0;

FðtÞ ¼ 2κK
ρ20e

2Ht þ
8

ρ20e
2Ht þ

2λκK
ρ40e

4Ht ; ð14Þ

where FðtÞ could be treated as a perturbative force acting
on a system described by a homogeneous equation. The
solution of the homogeneous equation from (14) is

yðtÞ ¼ 3H
3HC1e3Ht−1 ; ð15Þ

and then, we can solve it for δaðtÞ

δaðtÞ ¼ C2ð3HC1 − e−3HtÞ: ð16Þ

The solution of the general equation (13) leads to an
expression through M and W Whittaker functions [28] and
generally cannot be expressed through elementary func-
tions. But with an analysis performed in (14)–(16), we
describe the general behavior as follows: FðtÞ acts as a
perturbative force and generates oscillations around (15),
the solution of the homogeneous equation from (14). One
can see that at t → ∞, we have FðtÞ → 0, so that at late
times, we can use (15) as an exact solution, which leads to
(16) as a solution for the original perturbation equation (13).
One can note that the amplitude of perturbations does not
damp to zero; as t → ∞, we have δa → 3HC1C2. The

reason behind it is not clear, but as the perturbations do not
grow, we treat this case as stable. Our numerical analysis
totally supports this description. At the beginning, the
solution is represented by damping oscillations, but after
they decay, the asymptote value is not zero but some small
constant. This is the same for a wide variety of the initial
conditions, and the constant is also the same, though it
varies for different parameters.
Now, let us turn our attention to the power-law regimes.

In that case, the solution of the last of (12) could be written
in terms of J and Y Bessel functions and is represented by
oscillations with a damping amplitude, which directly
points to stability, as long as solution itself exists. The
solution for ρðtÞ ¼ ρ0

ffiffiffiffiffiffiffiffi
t=t0

p
exists iff ρ40 ≥ 64λt20, and the

solution for ρðtÞ ¼ ρ0ðt=t0Þ exists iff ρ20 ≥ 2ðκK þ 4Þ.
To summarize, we found that the exponential solution

behave a bit unusually, but we claim that we could call it
stable. The perturbations experience damping oscillations
and reach constant value afterwards. As they do not grow,
we claim them to be stable. The power-law solutions are
stable everywhere within their range of existence.

VI. DISCUSSION

In the current paper, we considered the Bianchi-IX
cosmological model in the Einstein-Skyrme system (7).
The original system was simplified and considered with
growth of complexity, which allows us to build a semi-
analytical solution. Purely analytical solutions are obtained
for the simplest case with aðtÞ≡ 1 and Λ ¼ 0 In that case,
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there are three possible solutions: one with recollapse for
κK < 2 and two power-laws, ∝ t1=2 for κK ¼ 2 and ∝ t for
κK > 2. All three are presented in Fig. 1, and one cannot
miss their similarity with three different Friedmann sol-
utions from classical cosmology, with spatial curvature k ¼
�1 and 0. The scales with time are different, but the
qualitative behavior is the same. In some sense, ð2 − κKÞ
plays a role similar to the spatial curvature.
Further complications of the system act as modifications

of the obtained exact solution. Turning aðtÞ dynamical (but
still withΛ ¼ 0) leads to oscillatory behavior like presented
in Figs. 3(a)–3(c). Let us remind that oscillatory behavior is
a part of the early Bianchi-IX universe, as discovered by
Belinskij, Khalatnikov, and Lifshits [27]. If one keeps
aðtÞ≡ 1 but makesΛ > 0, then the power-law regimes turn
exponential, while the recollapse regime turns to exponen-
tial if (11) is satisfied; if not, they remain recollapse.
Finally, if one combines both dynamical aðtÞ with Λ > 0,
the resulting trajectories have oscillations and an exponen-
tial (de Sitter) late-time asymptote for κK ≥ 2. For κK < 2,
one has oscillations and de Sitter if Λ > Λcr and recollapse
if Λ < Λcr. The separation between these two cases is
presented in Fig. 3(d). Recollapse behavior is also encoun-
tered in the anti-de Sitter case, when Λ < 0, and in this
case, the result is independent on κK. The value for Λcr
cannot exceed Λ0 from (11) but could be much less (orders
of magnitude), as our numerical investigation suggests. In
Fig. 4, we provided the distribution of Λcr over initial
conditions space for three different a0 on panels (a)–(c) and
a linear cut over a0 on panel (d).
One can see that all nonsingular regimes have aðtÞ → 1

at late times. From the metric (5) point of view, the aðtÞ ¼ 1
solution is the most symmetric one (so that it has more
Killing fields then aðtÞ ≠ 1 one). We can see that all
nonsingular regimes have symmetry restoring dynamics,
and all these solutions are stable. Singular regimes, which
do not possess this feature, are either κK < 2 cases with
Λ < Λcr or Λ < 0AdS cases; for the latter, the value for κK
is irrelevant.
For more physical analysis, we use real values for the

Skyrme coupling constants [29]. Then, one can immediately
see that κK⋘1, and so κK < 2 is the case. For κK < 2

from (9), one can derive the “lifetime,” with real values for
couplings substituted, this time appears to be of the order of
Planck time, which means that without the Λ-term or some
other matter sources with sufficient density the Bianchi-IX
universe with Skyrme would collapse immediately. On the
other hand, on this time scale, space-time cannot be
described by classical means, and additional investigation
with involvement of quantum physics is required. Finally, if
we substitute coupling constants into (11), the resulting
value for the cosmological constant appears to be in agree-
ment with other estimates from quantum field theory,
treating it as vacuum energy, and is around 120 orders of
magnitude higher than the observed value (so-called “cos-
mological constant problem”, see, e.g., [30]).
In a sense, the results of the current paper complement

the results of [22], where we studied Bianchi-I and
Kantowski-Sachs universes in the Einstein-Skyrme system.
In both papers, the cosmological constant (or probably
some other matter field) is necessary for viable cosmo-
logical behavior. But unlike [22], where we demonstrated a
need for the upper bound on the value of theΛ-term, in the
current paper, we found the lower bound. It is interesting
that different topologies in the presence of the Skyrme
source require either not too large or not too low values for
the cosmological constant.
This finalizes our study of the Bianchi-IX Skyrme-

Einstein system. We described its dynamics and derived
conditions for different regimes to take place. Generally,
Einstein-Skyrme systems are very interesting and are not
much considered, probably due to their complexity, so each
new result improves our understanding of cosmological
hadron dynamics. In particular, these systems offer the
interesting possibility to study the cosmological conse-
quences to have conserved topological charge. Thus, the
present analysis is quite relevant as the energy-momentum
tensor is a Skyrmions of unit topological charge.
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