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The Ernst formulation of the Einstein equations is generalized to accommodate fðRÞ theories of gravity.
It is shown that, as in general relativity, the axisymmetric fðRÞ field equations for a vacuum spacetime that
is either stationary or cylindrically symmetric reduce to a single, nonlinear differential equation for a
complex-valued scalar function. As a worked example, we apply the generalized Ernst equations to derive a
fðRÞ generalization of the Zipoy-Voorhees metric, which may be used to describe the gravitational
field outside of an ellipsoidal neutron star. We also apply the theory to investigate the phase speed of
large-amplitude gravitational waves in fðRÞ gravity in the context of solitonlike solutions that display
shock-wave behavior across the causal boundary.

DOI: 10.1103/PhysRevD.94.044045

I. INTRODUCTION

Since their initial presentation, the Einstein equations
have been rewritten in many different ways [1,2]. For
stationary and axisymmetric spacetimes, the Ernst formu-
lation has proved to be an especially useful representation
[3]. Ernst showed that it is possible to reduce the Einstein
equations in vacuum to a nonlinear partial differential
equation for a single, complex-valued, scalar function of
the spacetime coordinates. The real and imaginary compo-
nents of a solution to the Ernst equation encode the metric
coefficients, which satisfy the Einstein equations by con-
struction. The Ernst formulation offers several advantages
[4]. For example the multipole moments of the spacetime
can be read directly off the Ernst variable [5–7], and new
solutions can be generated from old solutions using
Kinnersley and other transformations [8–10]. As well as
offering analytic advantages, many numerical techniques
are better suited to solving the scalar Ernst equation rather
than the tensorial Einstein system [11].
Ernst went on to show that this formulation extends to

the Einstein-Maxwell theory [12], where the field equations
can be reduced to two equations for two complex-valued
scalar functions, one for the metric and one for the
electromagnetic 4-potential. Recent work has also shown
that general relativity (GR) in higher dimensions can be
molded into a similar “Ernst” form [13], as can some
Brans-Dicke theories [14,15]. Similarly, GR metrics which
are cylindrically symmetric but time dependent can be cast
into an Ernst form by performing a Wick rotation [16–18].
It is therefore logical to ask whether or not this formulation
extends to other general theories of gravitation. In this
paper we show that the formulation extends to fðRÞ gravity
in a natural way; see Ref. [19] for a review of fðRÞ theories.

It turns out that additional nonlinearities appear in the Ernst
equation related to the function f and its derivatives, as well
as the Ricci scalar R and its derivatives.
There are two flavors of Ernst equation that we generalize

here to the fðRÞ theory of gravity: stationary, and cylin-
drically symmetric. Stationary spacetimes arise in numerous
physically important contexts; for example, they represent
the geometry surrounding a rotating compact object. In
particular, the Kerr metric falls into this class, as does the
fðRÞ-Kerr-Newman metric [20], and other deformed-Kerr
solutions [21,22]. It is important to understand how compact
bodies behave in non-GR theories for a variety of reasons,
such as testing if GR breaks down in the strong field regime
[23]. Cylindrically symmetric solutions are also valuable;
for example, they include cosmological and gravitational
wave solutions. In particular, it has been known for a long
time that gravitational waves propagate at the speed of light
in GR. It has also been shown in linearized fðRÞ theory that
gravitational waves satisfy the Klein-Gordon equation and
thus propagate with frequency dependent phase velocities
[24,25]. However, few results are known regarding the fully
nonlinear case. In this paper we use the cylindrical fðRÞ
Ernst equation to analyze this problem further.We show that
exact, nonlinear cylindrical gravitational waves in vacuum
fðRÞ gravity obey nonlinearwave equationswith dissipative
and forcing terms related to the function f. From these
equations a phase speed can be derived.
As in GR, the fðRÞ Ernst equations are derived using

“pointlike”1 Lagrangian techniques [26–30], which we
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1To the authors’ knowledge, this terminology was introduced
by de Ritis et al. [26,27] and refers to a procedure whereby one
associates a Lagrangian with the configuration space spanned by
the independent components of gμν instead of the physical
spacetime parametrized by coordinates. In this way one obtains
a system depending on only a finite number of degrees of
freedom [28].
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revisit for the Papapetrou metric and its Wick-rotated
counterpart in Sec. II. In Sec. III, the Ernst-like equations
of motion for the metrics in Sec. II are derived and are
shown to reduce to their GR counterparts when fðRÞ ¼ R.
Equipped with the generalized Ernst equations, we work
through a simple, formal example in Sec. IV to demonstrate
how one may use the Ernst formulation to derive new
exact metrics. This idealized example is potentially
useful for studying ellipsoidal compact objects like
neutron stars, although its utility is mainly formal at the
time of writing. In Sec. V we use the time-dependent
Ernst equation to investigate some properties of large-
amplitude gravitational waves in fðRÞ theories, in particu-
lar their speed of propagation. The results are discussed
in Sec. VI.

II. EQUATIONS OF MOTION IN f ðRÞ GRAVITY

We derive the pointlike Lagrangian associated with a
stationary spacetime in Sec. II A. The formalism for the
cylindrically symmetric case, which is completely analo-
gous, is covered in Sec. II B.

A. Stationary spacetime

Following Ernst [3,12], we consider a stationary, axi-
symmetric spacetime endowed with the Weyl-Lewis-
Papapetrou line element in Weyl coordinates ft; ρ;ϕ; zg
[31–33],

ds2 ¼ U−1½e2γðdz2 þ dρ2Þ þ B2dϕ2� − Uðdt − ωdϕÞ2;
ð1Þ

whereU, ω, B, and γ are functions of ρ and z only. In GR, it
was shown by Papapetrou that the vacuum Einstein
equations imply B;ρρ þ B;zz ¼ 0 (see also below) [31].
Hence one can always adopt a set of harmonic coordinates
ft; ρ̄;ϕ; z̄g with the properties dz2 ↦ dz̄2, dρ2 ↦ dρ̄2, and
B ¼ ρ̄ [34]. Therefore, in GR, the function B is redundant
and the number of free functions reduces to three without
loss of generality. In fðRÞ gravity this transformation is not
always possible because the equations governing the
variable B are more complicated, so we must use the more
general line element (1) [13,35,36]. It should be noted that
the particular form of the metric (1) holds in vacuum, and a
more general form may be required when considering
arbitrary matter sources.
The fðRÞ theory of gravity is a natural generalization of

GR, where the Ricci scalar, R, appearing in the Einstein-
Hilbert action, is replaced by an arbitrary function of this
quantity, fðRÞ. The fðRÞ action reads

A ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
fðRÞ: ð2Þ

Variation with respect to the contravariant metric compo-
nents gμν leads to the vacuum fðRÞ field equations2

(e.g. [37])

0 ¼ f0ðRÞRμν −
fðRÞ
2

gμν þ ½gμν□ −∇μ∇ν�f0ðRÞ; ð3Þ

where Rμν ¼ Rα
μαν is the Ricci tensor, and □ ¼ ∇μ∇μ

symbolizes the d’Alembert operator.
Instead of working with the physical spacetime, one can

express the action (2) directly in terms of the configuration
variables U, ω, B, and γ, and their first derivatives with
respect to the spacetime coordinates. For static, spherically
symmetric metrics in fðRÞ gravity, a set of field equations
equivalent to (3) has been derived by configuration space
techniques [29,30,38]. In our case, we are considering the
metric (1), and so our configuration variables areU, ω, B, γ,
and their first derivatives with respect to ρ and z.
The Ricci scalar is uniquely determined by the metric

coefficients. This information can be self-consistently
absorbed into the action (2) by imposing a constraint
equation. To this end, we introduce a Lagrange multiplier
λ [29,30,39],

A ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fðRÞ − λðR − R̄Þ�; ð4Þ

where R̄ is the Ricci scalar expressed explicitly in terms of
the configuration variables (as opposed to R which is to be
thought of as a function of the spacetime coordinates).
Variation of the action (4) with respect to the configuration
variables then leads to the equations of motion subject to
the constraint R ¼ R̄. For our case, with respect to (1), we
find

ffiffiffiffiffiffi
−g

p
R̄ ¼ 1

U
∇B · ∇U þ U2

2B
∇ω · ∇ω −

3B
2U2

∇U · ∇U

− 2∇2B − 2B∇2γ þ B
U
∇2U; ð5Þ

where the operator ∇ forms a 2-gradient with respect to the
embedded two-dimensional metric dσ2 ¼ dz2 þ dρ2, i.e.
we have ∇α ¼ ðα;z; α;ρÞ and ∇2α ¼ α;zz þ α;ρρ for any
scalar function αðz; ρÞ. In Eq. (5), R̄ is a function of the
configuration variablesU, ω, B, γ, and their derivatives. We
obtain λ ¼ f0ðRÞ by varying the action (4) with respect to
R. Any second order terms (e.g. U;ρρ) can be removed from
the action (4) through integration by parts, and total
divergence terms may be removed by invoking Gauss’s
theorem (see [37] and Appendix A for details). The
Lagrangian, being the integrand of the action (4), reads

2Throughout, Greek symbols range over spacetime indices
0,1,2,3, while Latin indices are reserved for spatial indices 1,2,3.
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L ¼ e2γB
U

½fðRÞ − Rf0ðRÞ� þ f0ðRÞ
2BU2

½4BU2∇B · ∇γ þ U4∇ω · ∇ω − B2∇U · ∇U�

þ f00ðRÞ
U

f2U½∇R · ∇Bþ B∇R · ∇γ� − B∇U · ∇Bg; ð6Þ

where we have made use of relations (A2)–(A4) derived in
Appendix A. Equation (6) reduces to the Lagrangian used
by Ernst up to ignorable divergence terms [see above
Eq. (4) in Ref. [3]] in the special case fðRÞ ¼ R;B ¼ ρ.
The pointlike field equations may now be written down

in their entirety by varying the Lagrangian (6) with respect
toU, γ, ω, and B, as well as their derivatives. The equations
of motion for U and ω [28],

0 ¼ ∂L
∂U −

∂
∂xi

∂L
∂U;i

; ð7Þ

and

0 ¼ ∂L
∂ω −

∂
∂xi

∂L
∂ω;i

; ð8Þ

are not written down explicitly here, because they are
presented in a simpler form in Sec. III. Variation of L with
respect to γ,

0 ¼ ∂L
∂γ −

∂
∂xi

∂L
∂γ;i ; ð9Þ

yields an integrability condition for the fðRÞ theory and not
a differential equation for γ, because the Lagrangian (6)
depends only linearly on derivatives of γ. If we have
Rf0ðRÞ ¼ fðRÞ, as in GR, γ becomes a cyclic coordinate3

for the Lagrangian L. Evaluating (9) explicitly we find

0 ¼ e2γB
U

½Rf0ðRÞ − fðRÞ� þ f0ðRÞ∇2B

þ f00ðRÞ½2∇B · ∇Rþ B∇2R�
þ Bf000ðRÞ∇R · ∇R: ð10Þ

Equation (10) demonstrates a significant difference
between theories with fðRÞ ≠ R and GR. When one has
Rf0ðRÞ ≠ fðRÞ, γ can be deduced from the variables U and
B by inverting Eq. (10). As a result, in some ways, the fðRÞ
field equations admit a simpler structure than GR for the
metric (1). In GR, Eq. (10) reads ∇2B ¼ 0 and does not
constrain γ. However, since the Ricci scalar must be fixed
as zero in GR, Eq. (5) fills the role of a differential equation

for γ given U, ω, and B [solved for through Eqs. (7), (8),
and (10), respectively] subject to appropriate boundary
conditions. In either case, we have four equations in four
variables; see also [40] and Eqs. (13.8) in Ref. [1].
After some manipulations, the equation of motion for B,

0 ¼ ∂L
∂B −

∂
∂xi

∂L
∂B;i

; ð11Þ

reads

0 ¼ e−2γB½f0ðRÞ∇2B − f00ðRÞ∇B · ∇R

− 2f00ðRÞB∇2R − 2Bf000ðRÞ∇R · ∇R� þ B2fðRÞ
U

:

ð12Þ
In the GR limit, Eq. (12) also reduces to ∇2B ¼ 0. For GR
with nonzero cosmological constant, where we have
fðRÞ ¼ R − 2Λ, Eq. (12) reads

e−2γU∇2Bþ 2ΛB ¼ 0; ð13Þ
which is a Helmholtz equation for B [41,42]. In this case,
Eq. (10) is again identical to (13), and the degrees of
freedom in the system are reduced self-consistently; R is
still fixed (with value R ¼ 4Λ), so again (5) is an equation
for γ rather than for R, and Eq. (13) becomes redundant.
Equation (12) demonstrates the importance of keeping

the function B in the line element (1) in general for fðRÞ
gravity. If we were to take B ¼ ρ, Eqs. (10) and (12)
immediately tell us that there are no fðRÞ solutions para-
metrizable by the Papapetrou metric (1) that admit R ¼
R0 ¼ constant ≠ 0 unless fðR0Þ ¼ R0f0ðR0Þ ¼ 0. It is
well-known that fðRÞ gravity with R ¼ R0 ¼ constant
is equivalent to the Einstein equations with effective
cosmological constant Λeff ¼ fðR0Þ

2f0ðR0Þ [19], provided that

f0ðR0Þ ≠ 0. Therefore, there are no GR solutions with
Λeff ≠ 0 for B ¼ ρ.
In an fðRÞ theory where R is not constant, Eq. (10) can

be used to eliminate γ from Eq. (12) resulting in an equation
relating B and f that reads

0 ¼ Rf0ðRÞ
�
2fðRÞ∇2B

R
− f0ðRÞ∇2Bþ f00ðRÞ∇B · ∇Rþ 2Bf00ðRÞ∇2Rþ 2Bf000ðRÞ∇R · ∇R

�

− BfðRÞ
�
f00ðRÞ∇2R − f00ðRÞ∇B · ∇R

B
þ Bf000ðRÞ∇R · ∇R

�
: ð14Þ

3Something similar happens in spherical symmetry; see Sec. 3 of [29].
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Expressions (7), (8), (10), and (14) are not much simpler
than Eq. (3). In Sec. III we show how one can reduce the
expressions obtained above down to a simpler Ernst form.

B. Cylindrically symmetric spacetime

Consider the Jordan-Ehlers-Kompaneets line element [43],

ds2 ¼ U−1½e2γð−dt2 þ dρ2Þ þ B2dϕ2� þ Uðdz − ωdϕÞ2;
ð15Þ

where now f, γ,B, andω are functions of t and ρ. Thoughwe
keep the same set of configuration variables, the line element
(15) is of a fundamentally different structure to thePapapetrou
metric (1), and describes different physical scenarios (see
Secs. IV and V). Following the procedure in the previous
section, we find that the integrand of the action (4) for the
metric (15) reads

L ¼ e2γB
U

½fðRÞ − Rf0ðRÞ�

þ f0ðRÞ
2BU2

½4BU2∇B ·∇γ −U4∇ω ·∇ω − B2∇U · ∇U�

þ f00ðRÞ
U

½2Uð∇R · ∇Bþ B∇R ·∇γÞ − B∇U ·∇B�;
ð16Þ

where the complex 2-operator ∇ acts on scalar functions
αðt; ρÞ as ∇α ¼ ðiα;t; α;ρÞ and∇2α ¼ α;ρρ − α;tt. In particu-
lar, the operator ∇ is formally related to ∇ through the Wick
rotation z ↦ it (see Ref. [44] for a discussion of Wick
rotations in curved spacetime). Though the line elements (15)
and (1) are different, and are introduced in unconnected
contexts, we see that the Lagrangians (16) and (6) are
equivalent under the Wick rotations z ↦ it and t ↦ −iz
and the identification ω → iω. As a result, the equations of
motion, namely Eqs. (7), (8), (10), and (14), are also identical
to the equations of motion for the metric (15), provided one
replaces ∇with∇ in each of the expressions and writes iω in
place ofω [16,17,28]. Furthermore, since the operator∇ only
appears quadratically in the Lagrangian (16), we have that L
is strictly real. Although the operators ∇ and ∇ are formally
related by a complexWick rotation, the functionsU,ω, γ, and
B appearing in (15) are real functions of real coordinates.
SimilarWick rotation techniques have been applied in theGR
case to transform stationary and axisymmetric solutions into
cylindrically symmetric and time dependent ones [45–47].

III. ERNST EQUATION

A. Stationary spacetime

The Ernst equation [Eq. (2) in Ref. [3]] is remarkably
simple, because the GR Lagrangian (5) does not depend on
the generalized position ω explicitly, meaning that ω is a
cyclic coordinate, which implies that the associated

momentum is conserved [28]. This is also true for the
fðRÞ case, as can be seen from expression (6). In particular,
the field equation (8) reads

0 ¼ ∇ ·

�
U2

B
f0ðRÞ∇ω

�
: ð17Þ

In GR, when B is fixed as B ¼ ρ, Eq. (17) contains the
coordinate factor ρ−1. Ernst showed that one may introduce
a potential function φ related to ω which removes this
coordinate dependency [3,12]. Such a construction is
possible in fðRÞ theories when B ¼ ρ and is discussed
in Appendix B. However, in general, for B ≠ ρ, Eq. (17) is
already coordinate independent, because ∇ is defined as the
covariant derivative with respect to the 2-metric dσ2 ¼
dz2 þ dρ2 (and not with respect to the cylindrical 3-metric
dΣ2 ¼ dz2 þ dρ2 þ B2dϕ2, which is not flat when B ≠ ρ,
as it is in Ernst’s work [3,12]). Any coordinate trans-
formations involving z or ρ self-consistently modify the ∇
operator through the Christoffel symbols. As a result, in
fðRÞ gravity, we do not need to, in general, introduce the
variable φ. The reader who is more familiar with the usual
GR construction of the Ernst equation involving φ can
make use of the equations presented in Appendix B to
express Eq. (17) and others in terms of φ rather than ω [see
Eqs. (B4) and (B5)].We elect instead to express our results
in terms of ω to avoid coordinate terms appearing in the
general case B ≠ ρ.
The Ernst equation in GR is obtained by constructing a

complex equation, where the vanishing of the real compo-
nent implies (7) and the vanishing of the imaginary
component implies (17) [3].
We can obtain an Ernst-type equation for fðRÞ gravity by

introducing a complex-valued function4 ~E ¼ U þ iω, mak-
ing use of Eq. (10), and recasting both Eqs. (17) and (7) into
a single equation for ~E,

0¼f00ðRÞReð ~EÞ½BReð∇ ~EÞ−Reð ~EÞ∇B�·∇R

þi

�
∇
�
Reð ~EÞ2

B
f0ðRÞ

�
·Imð∇ ~EÞþReð ~EÞ2

B
f0ðRÞImð∇2 ~EÞ

�

þf0ðRÞ
�
Reð ~EÞ4

B
Imð∇ ~EÞ·Imð∇ ~EÞþReð ~EÞ∇·½BReð∇ ~EÞ�

−Reð ~EÞ2∇2B−BReð∇ ~EÞ·Reð∇ ~EÞ
�
; ð18Þ

4Note that the function ~E will not be complex differentiable in
general since it does not satisfy the Cauchy-Riemann equations
(e.g. for static solutions one finds ω ¼ 0 but U ≠ constant except
for the Minkowski spacetime). Both U and ω are real and smooth
outside of a source in any physically reasonable spacetime, but
one must be cautious when seeking to apply complex analysis
techniques (e.g. residue theorem) to ~E.
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which is to be solved for ~E given B and f. Equation (18)
generalizes the Ernst equation to fðRÞ gravity.
As a consistency check, if we set fðRÞ ¼ R, B ¼ ρ, and

introduce the potential φ through Eq. (B4) (see
Appendix B), hen Eq. (18) reduces correctly to the GR
Ernst equation (in our notation)

0 ¼ ReðEÞ
�
∇2 þ ∂ρ

ρ

�
E − ∇E · ∇E; ð19Þ

with E ¼ U þ iφ.
To solve the fðRÞ field equations in practice we may

proceed as follows. First, choose an ansatz for the function
f and scalar curvature R to investigate the properties of a
particular theory of gravity. In principle, Eq. (5) can be
applied to eliminate R in the Ernst equation (18) and all
other equations appearing in Sec. II. However, if one
wishes to look for solutions that are asymptotically flat,
specifying a suitably decaying R a priori results in a
simpler, decoupled system. The linear equation (14) can be
integrated (in principle) to uniquely determine B given any
choices of R and f. In turn, if B is known, the Ernst
equation (18) can be solved for U and ω. Finally, the
remaining metric coefficient γ can be immediately deter-
mined using Eq. (10). The metric is now completely
constructed, and one need only check that the constraint
Eq. (5) holds. If Eq. (5) does not hold, the implication is
that no fðRÞ spacetime, parametrizable by the Papapetrou
metric (1), exists for the initial ansatz.
It is worth emphasizing that there is a well-studied

equivalence between certain fðRÞ and scalar-tensor theo-
ries of gravity [19,48] (see [49] for a dissenting view
however). The Ernst equation (18) reduces to known scalar-
tensor forms under an appropriate conformal transforma-
tion [14,15]. In particular, we recover Eqs. (3.3a)–(3.3c) of
Ref. [14] and Eqs. (16a) of Ref. [15] (with the exception of
the Maxwell fields; see the discussion in Sec. VI) as a
subcase of Eq. (18), where the fðRÞ theory is identified
with a scalar-tensor theory with a massless scalar field in
the Jordan frame (see also Sec. 10. 1 of [19]). We recover
the scalar-tensor quadrature relations for γ, Eqs. (3.3d)–
(3.3e) of [14], from Eq. (5) together with (18).

B. Cylindrically symmetric spacetime

The Ernst formulation derived in the previous section
can also be applied to cylindrically symmetric, time-
dependent spacetimes. The field equation for ω under
the line element (15), which is equivalent to (8) under
the maps z ↦ it and t ↦ −iz, reads

0 ¼ ∇ ·

�
U2

B
f0ðRÞ∇ω

�
: ð20Þ

Furthermore, the field equation for U reads the same as the
real part of (18) but with∇ in place of ∇ and a sign flip in ω

terms. The Ernst equation for a cylindrically symmetric
spacetime in fðRÞ gravity is then

0¼f00ðRÞReð ~EÞ½BReð∇ ~EÞ−Reð ~EÞ∇B�·∇R
þi

�
∇
�
Reð ~EÞ2

B
f0ðRÞ

�
·Imð∇ ~EÞþReð ~EÞ2

B
f0ðRÞImð∇2 ~EÞ

�

þf0ðRÞ
�
−Reð ~EÞ4

B
Imð∇ ~EÞ·Imð∇ ~EÞþReð ~EÞ∇·½BReð∇ ~EÞ�

−Reð ~EÞ2∇2B−BReð∇ ~EÞ·Reð∇ ~EÞ
�
; ð21Þ

with ~E ¼ U þ iω. If we let fðRÞ ¼ R, B ¼ ρ, and intro-
duce the Wick-rotated potential φ̂ through (B7), we obtain
the equation,

0 ¼ ReðEÞ
�
∇2 þ ∂ρ

ρ

�
E −∇E · ∇E; ð22Þ

which is a known cylindrical variant of the Ernst equation
[see Eq. (22.5) in Ref. [1]].
There is an important distinction between Eqs. (18) and

(21). Since t is a timelike coordinate, the latter equation is
hyperbolic, while the former is elliptic. This may have
some implications regarding the stability of numerical
codes designed to solve such equations (e.g. [50]).
Nevertheless as in Sec. III A, the real functions U and ω
defining the metric (15) may be determined from the real
and imaginary components of ~E, respectively.

IV. WORKED EXAMPLE: ELLIPSOIDAL
NEUTRON STARS

We consider here a simple example of an fðRÞ theory to
demonstrate the method presented. Specifically, we search
for a solution which generalizes the Zipoy-Voorhees metric
of GR [51]. The latter metric represents the spacetime
exterior to a static compact object which is not spherically
symmetric. It tends to the Schwarzschild solution, when the
“oblateness” parameter tends to zero. For example, the
metric could describe the gravitational field outside a
neutron star that, through magnetic or other internal
stresses, has become deformed [52–54].
We begin by assuming that the Ricci scalar takes the

simple form

R ¼ R0ðρ2 þ z2ÞΓ; ð23Þ

where R0 is a constant, and we demand either Γ ≤ −1 or
R0 ¼ 0 to obtain an asymptotically flat spacetime.5 The

5See the discussion surrounding Eq. (19) in [38] for a general
discussion on sufficient decay conditions required on R for
asymptotic flatness.
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static Zipoy-Voorhees line element takes the form of (1)
with the definitions

UZV ¼
�
Rþ þ R− − 2ð1þ ϵÞ=M
Rþ þ R− þ 2ð1þ ϵÞ=M

�
1þϵ

; ð24Þ

γZV ¼ ð1þ ϵÞ2
2

log

�ðRþ þ R−Þ2 − 4ð1þ ϵÞ2=M2

4RþR−

�
; ð25Þ

ω ¼ 0; ð26Þ

B ¼ ρ; ð27Þ

with

R� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ½z� ð1þ ϵÞ=M�2

q
; ð28Þ

where M is the mass of the object, and ϵ is the (formally
arbitrary) ellipticity parameter. In particular, ϵ > 0 corre-
sponds to an object more oblate than a Schwarzschild black
hole, ϵ < 0 corresponds to a more prolate object, ϵ ¼ 0
reduces the metric functions to the Schwarzschild ones, and
ϵ ¼ −1 reduces the metric functions to the Minkowski ones
[51,53]. For the Zipoy-Voorhees metric we have Rμν ¼ 0.
One possible way to search for a suitable generalization

of any GR metric is to fix one of the metric functions to be
the same as their GR counterpart and see if the structure of
the fðRÞ theory allows for variation in the other metric
components. As a simple example, we make the simplify-
ing assumption that γ is unchanged from its GR counterpart
in (25), i.e. γ ¼ γZV. Searching for solutions where the
function f has power-law form [55]

fðRÞ ¼ f0Rα; ð29Þ

for some constant α, we find that the only possible solutions
compatible with Eqs. (10) and (12) are ones with R0 ¼
0;∇2B ¼ 0 and α ≥ 1. This result is one of nonexistence;
for R0 ≠ 0, there does not exist a Γ which allows a power-
law fðRÞ solution with γ ¼ γZV (though there are nontrivial
solutions with R0 ¼ 0 which we derive below). Since
∇2B ¼ 0 we may take B ¼ ρ, as in GR, without loss of
generality.
Suppose we introduce the ansatz

U ¼ e2QUZV; ð30Þ

for some function Q which tends to zero at infinity (so that
gtt tends to unity). The Ernst equation (18) may be written
down in full, though the expressions are lengthy, so we
avoid them here. However, if we further assume α > 1, so
that we work within the realm of strictly non-GR theories,
then the Ernst equation (18) is satisfied for any choices of ω
and Q. As such, we have that the Ernst equation (18),

Eq. (14) for B, and Eq. (10) for γ are all satisfied for the
above choices. The remaining equation is the consistency
relation for the Ricci scalar, Eq. (5), which forms an eikonal
equation for ω,

∇ω · ∇ω ¼ 4e−4Qρ2

U3
ZV

�
∇UZV · ∇Q

þ UZV

�
∇Q · ∇Q − ∇2Q −

Q;ρ

ρ

��
: ð31Þ

Equation (31) is subject to Dirichlet boundary conditions,
i.e. ω must vanish at infinity. Clearly ω ¼ Q ¼ 0 is a
solution to (31), which simply reproduces the Zipoy-
Voorhees solution. Equation (31) suggests that there is a
great deal of freedom in obtaining rotating (or static)
generalizations of the Zipoy-Voorhees metric in fðRÞ
gravity. It is well-known that the Dirichlet eikonal equa-
tion (31) admits unique solutions for ω for any well-
behaved choice of Q (e.g. [56]). As such, there are
infinitely many generalizations of the Zipoy-Voorhees
metric, each uniquely corresponding to a particular choice
of the function Q [in contrast to GR, where the Ernst
equation (19) further restricts the choices of Q]. As an
example, if we take

Q ¼ − ln ð1 − σUZVÞ; ð32Þ

where σ is an arbitrary constant, we obtain another static
solution with ω ¼ 0 since the right-hand side of (31)
vanishes. As can be verified directly by substitution, the
metric given by (24)–(32) does solve the fðRÞ field
equations (3) with R ¼ 0 for any constant σ, but has
nonvanishing Ricci tensor unless σ ¼ 0. In the zero
ellipticity limit, ϵ → 0, we obtain the Reissner-
Nordström metric [57]. A physical interpretation of σ is
not readily available without performing some additional
analysis, i.e. by constructing the multipole moments and
matching them with a suitable Newtonian solution [7,20].
Such an analysis will be performed elsewhere. It is easy to
see that the function UZV from (24) is bounded for any
ϵ ≥ −1, and so we may take σ small if necessary to ensure
that UZV < σ−1 everywhere, so that the presence of Q does
not introduce singularities into the spacetime.
It is likely that more general metrics that include the

Zipoy-Voorhees metric as limiting cases exist, where
the form of the Ricci scalar differs from (23). In particular,
the choice made in (23) resulted in the somewhat trivial
property R0 ¼ 0. Several other choices, such as taking the
simple exponential R ∝ e−ðρ2þz2Þ, appear to lead to the
same nonexistence result. In any event, the metric given by
(24)–(32) can be used to describe the metric exterior to
deformed neutron stars in fðRÞ gravity. The presence of σ
(andQ) indicates that neutron stars are arbitrarily “hairy” in
fðRÞ gravity; parameters other than their mass and angular
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velocity influence their properties as seen by observers at
infinity [20,58]. Neutron stars are also known to be hairy
in scalar-tensor theories of gravity, so the equivalence
between certain Brans-Dicke and fðRÞ theories supports
the conclusions outlined above [59].

V. PHASE SPEED OF NONLINEAR
GRAVITATIONAL WAVES

In this section we demonstrate a physical application of
the Ernst equation (21) to gravitational waves. In particular,
we examine the behavior of freely propagating, nonlinear
gravitational waves (solitons) in a vacuum fðRÞ theory.
Gravitational waves are often studied within the framework
of perturbation theory, whereby the linearized theory, valid
far away from the source, provides both an equation for the
wave amplitude and a dispersion relationship which allows
for the definition of a phase speed (e.g. [60]). However,
such an analysis does not necessarily extend to the non-
linear theory, as nonlinearities can introduce modified
dispersion relations or dissipation mechanisms (compare
the Korteweg-de Vries equation [61], for example). The
analyses of Einstein, Rosen, and others demonstrated that
the nonlinearities of the field equations of GR do not allow
for phase speeds different from the speed of light [62,63].
Perturbation theory in fðRÞ gravity, however, demonstrates
that gravitational waves have frequency-dependent phase
speeds in general [64] (this is true even in GR with nonzero
cosmological constant [65–67]). A nonlinear analysis is
lacking for the general fðRÞ theory mainly because of the
absence of exact solutions describing gravitational waves
[68]. By using the Ernst formalism presented in Sec. III for
cylindrically symmetric, time-dependent metrics, we can
construct gravitational wave solutions to the nonlinear
theory. Specifically, we construct a solution which has
an arbitrary phase speed for a particular choice of f. While
this does not represent a full treatment of the large-
amplitude problem, it does suggest that phase speeds other
than the speed of light are possible in fðRÞ gravity, as the
linear perturbation theory in fðRÞ gravity implies.
Some immediate observations can be made by swapping

the variable U for ψ defined through the relation ψ ¼
− 1

2
lnU and letting B ¼ ρb for some function bðt; ρÞ. The

real and imaginary parts of Eq. (21) read, respectively
[f0ðRÞ ≠ 0],

0 ¼
�
∇2 þ ∂ρ

ρ

�
ψ −

e4ψ

2ρ2b2
∇ω · ∇ω −

∇2b
2b

þ∇b ·∇ψ

b

−
b;ρ
ρb

þ f00ðRÞ
f0ðRÞ

�
∇R ·∇ψ −

∇b · ∇R
2b

−
R;ρ

2ρ

�
; ð33Þ

and

0 ¼
�
∇2 þ ∂ρ

ρ

�
ω −

2ω;ρ

ρ
þ 4∇ω · ∇ψ

−
∇b · ∇ω

b
þ f00ðRÞ

f0ðRÞ ∇R ·∇ω; ð34Þ

which form a coupled set of nonlinear hyperbolic wave
equations. The second-order piece, ∇2 þ ρ−1∂ρ ¼ −∂ttþ
∂ρρ þ ρ−1∂ρ, corresponds to the flat-space wave operator in
cylindrical coordinates. The fact that the metric functions
obey wave equations demonstrates explicitly that fðRÞ
theories predict the existence of gravitational waves
[25,69]. In particular, for the GR case fðRÞ ¼ R, restoring
dimensional factors of c shows that the waves propagate at
the speed of light [62].
Let us now introduce the retarded time u ¼ t − κρ for

some κ > 0, and assume that all metric functions ψ , γ, b,
and ω are functions of u only, as for a traditional “soliton”
solution. The constant κ is effectively the phase speed
of the gravitational wave; it describes the rate at which
disturbances propagate in the spacetime. We confine the
metric to the interior of the causal cone C given by
C ¼ fðt; ρ;ϕ; zÞ∶t ≤ κρg, as is typical of gravitational
wave solutions in GR [70–73]. Outside of the causal cone,
i.e. for t > κρ, we set6 γ ¼ ω ¼ ψ ¼ 0 and b ¼ 1
(Minkowski space). In this way we construct a spacetime
that has a discontinuous wave front representing a propa-
gating gravitational wave in an otherwise empty universe.
The metric functions may suffer discontinuities in their
derivatives on the boundary of the causal cone like
gravitational shock waves (see below). Setting κ to unity
results in the causal cone coinciding with the light cone. It
has been proved that one must have κ ¼ 1 in GR (e.g. [76]).
However non-GR theories may permit κ to be either greater
than unity (superluminal) or less than unity (subluminal).
Simple solutions of the above form can be constructed by

taking

fðRÞ ¼ f0Rα: ð35Þ
For α > 1, we find that the Ernst equation (21), the Wick-
rotated Eqs. (10) and (12) for γ and B, and the constraint
Eq. (5) are satisfied for

ωðuÞ ¼ 0; ð36Þ
and

bðuÞ ¼ exp ½ψðuÞ=2�; ð37Þ
provided ψ satisfies the Riccati equation

6In general, matching conditions at the boundary of the causal
cone impose boundary conditions on the metric functions [74].
We do not consider the details of the matching procedure here, as
they are not germane to the question of the phase speed (however
see [75]).
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0 ¼ 2ψ̈ðuÞ − 3 _ψðuÞ2 − 4̈γðuÞ; ð38Þ

where an overhead dot refers to differentiation with respect
to the retarded time u. For example, the solution ψ ¼ γ ¼ 0
yields the Minkowski metric everywhere. It can be easily
verified by direct substitution that metrics (15) satisfying
the Eqs. (36)–(38) solve the fðRÞ field equations (3) for
any α > 1.
If we set

e2γ−2ψ ¼ ð−uÞ−2β; ð39Þ

for some β ≥ 0, Eqs. (36)–(38) yield the solution

ds2 ¼ ð−uÞ−2β½−dt2 þ dρ2� þ A0ð−uÞ−1=3−2
ffiffiffiffiffiffiffiffiffiffi
1−12β

p
=3

× ½ð−uÞdz2 þ ð−uÞ
ffiffiffiffiffiffiffiffiffiffi
1−12β

p
ρ2dϕ2�; ð40Þ

where A0 > 0 is an arbitrary amplitude, which could be
fixed by specifying a wave amplitude at some point in
space at t ¼ 0. We have u < 0 inside the causal cone, and
so the metric (40) is real with Lorentzian signature for t <
κρ provided 0 ≤ β ≤ 1=12. The metric (40) is singular
across the causal boundary ∂C (i.e. u ¼ 0), as can be seen
from the divergence of the tt-component of the metric, but
it is smooth for all t < κρ. The solution (40) is similar to the
simplest Belinski-Zakharov one-soliton solution of GR
[70,71], which represents the late time behavior of a
particular Einstein-Rosen pulse profile [62,73].
While only a toy model which is unlikely to describe a

real gravitational wave, the metric (40) demonstrates that
the phase speed, κ, of gravitational waves, may take
arbitrary values in particular fðRÞ theories. More compli-
cated solutions can be built by considering different func-
tional forms for f using the machinery developed in Secs. II
and III.

VI. DISCUSSION

In this paper we derive two generalized Ernst equations
for the fðRÞ theory of gravity in the special cases of
stationary and cylindrically symmetric spacetimes. We
explicitly derive a class of simple solutions for each case
individually and verify that the associated metrics do
indeed solve the fðRÞ field equations. As a physical
application, we show that is possible to generalize the
Zipoy-Voorhees metric of GR to fðRÞ theories [51]. The
Zipoy-Voorhees metric describes the gravitational field
around an ellipsoidal compact body. The generalization
describes a similar object but with some added “hair”, i.e.
some additional parameters other than mass and angular
momentum which appear in the metric coefficients.
Additionally, we construct a simple time-dependent metric
which seeks to approximate a large-amplitude gravitational
wave with arbitrary propagation speed. In GR, it is well-
known that gravitational waves must travel at the speed of

light. However, in an fðRÞ theory, small-amplitude wave
solutions exist which have either sub- or superluminal
propagating wave fronts [64,65,77]. The small-amplitude
result is generalized to arbitrary amplitude here for a
particular, time-dependent, cylindrically symmetric metric.
Although the result is restricted to this particular metric, it
may open a path to more general results in future work.
The fðRÞ Ernst equations (18) and (21) offer a few

advantages over the usual tensor system (3). The Ernst
equations, while still nonlinear, are more decoupled than
(3). The decoupling arises naturally because of the con-
figuration variable approach, which isolates the equations
of motion for each metric coefficient. Furthermore, because
of the decoupling, there is a sequential recipe for solving
these equations, namely for the variable B, followed by U
and ω, and finally for γ. Aside from the practical value in
obtaining exact solutions, the Ernst formulation reveals
something about the underlying structure of the fðRÞ
field equations. For example, there exists a complex
Wick rotation that transforms neatly between solutions
for compact bodies and gravitational waves. The
Lagrangians associated with the Papapetrou (1) and the
Jordan-Ehlers-Kompaneets line elements (15) are also
related by a Wick rotation [45], despite having been
introduced in different contexts.
We speculate without proof that the formulation pre-

sented here extends to the fðRÞ-Maxwell theory, along the
lines of Ernst’s work on the Einstein-Maxwell theory [12].
If such an extension can be found, it will be interesting to
see how the additional nonlinearities in the fðRÞ field
equations interact with the electromagnetic field. Following
the outline presented in Sec. V, it may also be interesting to
investigate the properties of gravitational waves in the
presence of electromagnetic fields, e.g. in the vicinity of
highly magnetized compact objects [78–81].
Finally, it is worth noting that the Ernst formulation

outlined here is not unique to the fðRÞ theory of gravity.
Indeed, it applies to any metric theory of gravity that
generalizes GR and admits a pointlike description, for
which the procedures outlined in Secs. II and III can be
replicated. In particular, it can be verified by direct
calculation that theories of gravity whose Lagrangian is
a function of the curvature invariants RμνRμν or RμναβRμναβ,
have pointlike counterparts independent of ω, i.e.
∂L=∂ω ¼ 0 for either of the parametrizations (1) or
(15). Such theories include generalized Gauss-Bonnet
gravity or the one-loop quantum corrected version of
GR [82,83].
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APPENDIX A: CALCULATION OF THE LAGRANGIAN L

The derivation of the Lagrangian (6), for the Papapetrou metric (1), comes through several applications of integrations by
parts, after which total divergence terms are discarded. Noting that

ffiffiffiffiffiffi−gp ¼ U−1e2γB and λ ¼ f0ðRÞ, the definitions (4) and
(5) give us

A¼
Z

d4x

�
e2γB
U

fðRÞ− e2γB
U

Rf0ðRÞ−f0ðRÞ
�
1

U
∇B ·∇UþU2

2B
∇ω ·∇ω−

3B
2U2

∇U ·∇Uþ B
U
∇2U− 2B∇2γ− 2∇2B

��
:

ðA1Þ

The action (A1) contains second order derivative terms, which must be removed to avoid the Ostrogradsky instability
[19]. In general, we have the elementary formula for well behaved X and Y,

Z
dzdρY∇2X ¼

Z
dzdρYX;zz þ

Z
dzdρYX;ρρ ðA2Þ

¼
Z

dρYX;z −
Z

dzdρY;zX;z þ
Z

dzYX;ρ −
Z

dzdρY;ρX;ρ ðA3Þ

¼
Z

dzdρ½ðYX;zÞ;z þ ðYX;ρÞ;ρ − Y;zX;z − Y;ρX;ρ�: ðA4Þ

The first two terms in the integrand in Eq. (A4) are total divergence terms. Hence, for any X and Y, these terms can be
removed from the action (A1) without modifying the equations of motion [29], i.e. the equations of motion for the
Lagrangian

L ¼ Y∇2X; ðA5Þ

are equivalent to those for the Lagrangian

~L ¼ −∇Y · ∇X: ðA6Þ

Making use of relation (A4) and expanding the integrand in (A1) we have

L ¼ e2γB
U

fðRÞ − e2γB
U

Rf0ðRÞ − f0ðRÞ
�
∇B · ∇U

U
þ U2

2B
∇ω · ∇ω −

3B
2U2

∇U · ∇U
�

ðA7Þ

þ∂z

�
f0ðRÞB

U

�
U;z þ ∂ρ

�
f0ðRÞB

U

�
U;ρ − 2∂z½f0ðRÞB�γ;z − 2∂ρ½f0ðRÞB�γ;ρ − 2∂ρ½f0ðRÞ�B;ρ − 2∂z½f0ðRÞ�B;z ðA8Þ

¼ e2γB
U

½fðRÞ − Rf0ðRÞ� þ f0ðRÞ
2BU2

½4BU2∇B · ∇γ þU4∇ω · ∇ω − B2∇U · ∇U� ðA9Þ

þ f00ðRÞ
U

f2U½∇R · ∇Bþ B∇R · ∇γ� − B∇U · ∇Bg: ðA10Þ

Equation (A10) is precisely the form of the Lagrangian (6). Following the procedure presented here, a similar Lagrangian
could be derived for the case when the metric variables depend on an arbitrary number of coordinates.

APPENDIX B: COORDINATE INDEPENDENCE OF THE ERNST EQUATIONS

Our notation in this article for the operator ∇ differs from Ernst’s original presentation [3] because we allow for a slightly
more general line element in (1) (i.e. we do not demand B ¼ ρ). When B ¼ ρ, the GR Ernst equation (19) appears to have a
coordinate dependency due to the ρ−1∂ρ term. As Ernst showed, such terms may be removed by introducing the cylindrical
3-gradient ∇3 (as opposed to the 2-gradient ∇) and a new variable φ in place of ω such that terms may be removed to write
an equation which respects covariance. For completeness, we show that the same is true for fðRÞ gravity.
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One can rewrite Eq. (17) in terms of cylindrical coor-
dinates fρ;ϕ; zg as

0 ¼ ∇3 ·

�
U2

ρB
f0ðRÞ∇3ω

�
; ðB1Þ

where ∇3 is the usual cylindrical 3-gradient (e.g. [1,32]).
The well-known identity for any differentiable function φ
independent of ϕ (e.g. [3])

0 ¼ ∇3 · ðρ−1ϕ̂ × ∇3φÞ; ðB2Þ

implies that there exists a “potential” φ such that

U2

B
f0ðRÞ∇3ω ¼ ϕ̂ × ∇3φ; ðB3Þ

where ϕ̂ is the unit vector in the azimuthal direction. In
particular, the relation (B3) is equivalent to

B
f0ðRÞU2

∇3φ ¼ −ϕ̂ × ∇3ω; ðB4Þ

which implies that Eq. (17) may be written as

0 ¼ ∂
∂ρ

�
B

ρf0ðRÞU2
φ;ρ

�
þ ∂
∂z

�
B

ρf0ðRÞU2
φ;z

�
: ðB5Þ

The variable φ generalizes the quantity introduced by Ernst
[see Eq. (6) of [3]] to fðRÞ gravity. If B ¼ ρ, as it must be in
GR, Eq. (B5) reads

0 ¼ ∇ ·

�
∇φ

f0ðRÞU2

�
; ðB6Þ

which does not contain any coordinate dependent terms.
However, in general, B is a function of ρ and z which is
unknown a priori, so introducing φ is unnecessary.
In cylindrical symmetry, the above analysis carries over.

We define a potential φ̂ obeying

B
f0ðRÞU2

∇3φ̂ ¼ −ϕ̂ ×∇3ω: ðB7Þ

Hence Eq. (20), viz.

0 ¼ ∇3 ·

�
U2

ρB
f0ðRÞ∇3ω

�
; ðB8Þ

is equivalent to

0 ¼ ∂
∂ρ

�
B

ρf0ðRÞU2
φ̂;ρ

�
−

∂
∂t

�
B

ρf0ðRÞU2
φ̂;t

�
ðB9Þ

¼ ∇ ·

� ∇φ̂
f0ðRÞU2

�
: ðB10Þ

If one is interested in fðRÞ solutions such that B ¼ ρ is
fixed, substituting the variable φ through (B4) or its Wick-
rotated counterpart φ̂ through (B7) ensures that the result-
ing equations are coordinate insensitive.
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