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We investigate the existence and phenomenology of stable photon orbits (SPOs) in stationary
axisymmetric electrovacuum spacetimes in four dimensions. First, we review the classification of
equatorial circular photon orbits on Kerr-Newman spacetimes in the charge-spin plane. Second, using
a Hamiltonian formulation, we show that Reissner-Nordström diholes (a family encompassing the
Majumdar-Papapetrou and Weyl-Bach special cases) admit SPOs, in a certain parameter regime that we
investigate. Third, we explore the transition from order to chaos for typical SPOs bounded within a toroidal
region around a dihole, via a selection of Poincaré sections. Finally, for general axisymmetric stationary
spacetimes, we show that the Einstein-Maxwell field equations allow for the existence of SPOs in electro
vacuum, but not in pure vacuum.
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I. INTRODUCTION

On September 14, 2015, gravitational waves from a
compact-binary coalescence were observed for the first time,
in both detectors of the aLIGO experiment [1]; and another
signal was confirmed later in the first observing run [2,3].
The “chirp” profiles of events GW150914 and GW151226
have the characteristic inspiral, merger, and ringdown phases
anticipated in a binary black hole merger [4,5].
The ringdown phase is strong evidence that the merged

body possesses a “light-ring” [6], that is, a family of unstable
photon orbits [7,8]. Heuristically, the orbital frequencies and
Lyapunov exponents of the photon orbits are linked to the
frequency and decay rate of the ringdown phase [9–13]. A
light ring will generate as-yet-unobserved phenomena, such
as multiple lensing images around black hole shadows [14],
diffraction effects such as glories and orbiting [15], and a
characteristic spectrum of quasinormal modes [16]. The
links between light rings, strong-field lensing and quasinor-
mal modes are elucidated in Refs. [17–19].
Taken in isolation, the first detections do not rule out the

possibility that the merger end-product possesses a light ring
but not an event horizon [6]. However, in horizonless
scenarios (e.g. ultracompact boson stars [20], gravastars
[21] or wormholes [22]), the outer unstable photon orbits are
generically accompanied by inner stable photon orbits [23].
Stable photon orbits (SPOs) are associated with distinct
phenomenological features, such as (i) trapping and storage
of electromagnetic energy in bound regions, allowing
various instabilities to flourish (e.g. fragmentation and
collapse [23], and/or an ergoregion instability [24,25]);
(ii) slow logarithmic decay of perturbations with time
[26], dominating over power-law (Price) decay [27];

(iii) distinctive chaotic features in black hole shadows
[28,29]; (iv) internal reflection, and thus a modified late-
time ringdown [6]. The latter possibility will surely be tested
and constrained by future gravitational-wave detections.
Are SPOs relevant only in exotic horizonless scenarios?

No. Several strands of evidence hint at a wider role. It has
been known for decades that SPOs exist, in principle, inside
the inner horizons of Kerr-Newman (KN) black holes,
around naked singularities [30–37], and around black holes
or solitons with a cosmological constant [38,39]. Recently,
SPOs have been revealed in the exterior regions of, first,
higher-dimensional black rings [40] and black holes [41]
and, second, Majumdar-Papapetrou (MP) diholes in four
dimensions [28] (see also [42]). As these diholes may be
viewed as static, axisymmetric toy models for binary black
hole systems, the possibility of SPOs arising in nature
cannot be hastily dismissed.
Here we explore SPOs in stationary axisymmetric

spacetimes in the four-dimensional electrovacuum context.
The article comes in four parts: Sec. II A, a review of the
classification of equatorial circular photon orbits (ECPOs)
in Kerr-Newman spacetimes; Sec. II B, highlighting the
existence of SPOs in static dihole systems; Sec. II C,
exploring the structure of SPOs through their Poincaré
sections; and Sec. II D, a key result on the existence of
SPOs under the rather general assumptions of stationarity,
axisymmetry and electrovacuum. We conclude in Sec. III
with a discussion of physical implications.

II. STABLE PHOTON ORBITS

A. Equatorial circular photon orbits
in Kerr-Newman spacetimes

Black hole uniqueness theorems [43,44] support the
conjecture that the final product of gravitational collapse in
asymptotically flat electrovacuum is a KN black hole,
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described by just three parameters, mass M, charge ratio
q ¼ Q=M, and spin ratio a ¼ J=M2. The KN family may
be extended beyond the black hole case to include naked
singularities with a2 þ q2 > 1. The geodesic equations in
KN spacetimes are separable, thanks to the existence of the
Carter constant [45]. The problem of classifying the ECPOs
of nonzero energy reduces to classifying the repeated roots
of a certain quartic, RðuÞ ¼ 1 − ðb2 − a2Þu2 þ ða − bÞ2 ×
ð2u3 − q2u4Þ, where u ¼ M=r and b ¼ pϕ=ð−ptMÞ is the
impact parameter. A circular orbit satisfies R ¼ 0 ¼ R0;
the orbit is stable ifR00 < 0. Values of b leading to repeated
roots of R may be found by solving ΔuðRÞ ¼ 0 for b,
whereΔu denotes the discriminant. Phase boundaries in the
ðq2; a2Þ-plane are found by setting “the discriminant of the
discriminant” to 0; remarkably, this expression factorizes as
follows:

Δb½ΔuðRÞ=ðb − aÞ6� ¼ 232ð1 − a2 − q2Þ
× ð27a2 − q2ð9 − 8q2Þ2Þ3: ð1Þ

Figure 1 shows the Balek-Bičák-Stuchlík [33] phase
diagram for ECPOs in the charge-versus-spin plane. Stable

ECPOs exist within the inner horizon rh− in the black hole
regime (a2 þ q2 < 1, rh� ¼ Mð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − a2 − q2
p

Þ) in
region II, on (or inside) extremal horizons for a < 1=2
(a > 1=2), and around naked singularities in regions III,
IV and VI.

B. Stable photon orbits of diholes: existence

1. Geodesic equations and Hamiltonian formalism

The exterior of a stationary axisymmetric spacetime in
electrovacuum is described in Weyl-Lewis-Papapetrou
coordinates [46] ft; ρ; z;ϕg by the line element

ds2 ¼ −fðdt − wdϕÞ2 þ f−1½e2γðdρ2 þ dz2Þ þ ρ2dϕ2�;
ð2Þ

where f, γ and w are functions of ρ and z only. Its geodesics
xμðλÞ are the integral curves of Hamilton’s equations, with
Hðxμ; pμÞ ¼ 1

2
gμνðxÞpμpν, where pμ ≡ gμν dxν

dλ , λ is an
affine parameter, andH, pϕ and pt are constants of motion.
In the null case, H ¼ 0, one may set pt ¼ −1 without loss
of generality, by availing of the affine-rescaling freedom
(λ → αλ). Null geodesics are invariant under a conformal
transformation of the metric, gμν → Ω2ðxÞgμν, and so one
may recast the Hamiltonian in the following canonical two-
dimensional form:

H ¼ 1

2
ðp2

ρ þ p2
zÞ þ U;

Uðρ; zÞ ¼ −
1

2
e2γ

�

f−2 −
ðpϕ − wÞ2

ρ2

�

: ð3Þ

Null orbits of constant ρ, z arise where U ¼ 0 ¼ ∇U, with
∇≡ ð ∂∂ρ ; ∂

∂zÞ. Such orbits are stable if the stationary point is
a local minimum of U, that is, if detHðUÞ > 0 and
TrHðUÞ > 0, where HðUÞ denotes the Hessian matrix
for Uðρ; zÞ. More generally, photon orbits are kinematically
trapped wherever there exists a closed contour U ¼ 0
enclosing a region in which U is negative on some open set.

The potential can be factorized into U ¼ − e2γ

2ρ2ðhþ − pϕÞðh− þ pϕÞ, where

h�ðρ; zÞ≡ ρf−1 � w: ð4Þ

Thus, it is sufficient to seek closed contours hþ ¼ pϕ or
h− ¼ −pϕ. As pϕ may take any positive or negative value,
closed contours U ¼ 0, and thus stable photon orbits, exist
in the vicinity of any local maximum of h�. (In the static
case, w ¼ 0 and we write h≡ h�.)

2. Majumdar-Papapetrou diholes

A MP [47,48] dihole comprises a pair of extremally
charged Reissner-Nordström black holes in static

FIG. 1. Phase diagram for equatorial circular photon orbits of
positive radius (r > 0) in Kerr-Newman spacetimes (cf. Fig. 2.1
in [33], Fig. 6 in [32] and Fig. 4 in [34]). All orbits are unstable
except where noted to the contrary. Region I: two exterior
(r > rhþ) orbits. II: two interior (0 < r < rh−) and two exterior
orbits; the innermost orbit is stable. III and IV: two orbits; the
inner orbit is stable. V: no orbits. VI and VII: four orbits; the
inner pair is stable. Cases III and VI admit a counter-rotating
orbit; IV and VII do not. For a2 ¼ 0, 0 ≤ q < 1 (Reissner-
Nordström and Schwarzschild), one exterior orbit. For a2 ¼ 0,
1 < q2 < 9=8, two orbits; the inner one is stable. For q2 ¼ 0,
0 < a2 < 1 (Kerr) there are two exterior and one interior orbit for
0 < a2 < 1. In the extremal case a2 þ q2 ¼ 1 there are three
orbits: for 0 < a < 1=2 one stable horizon orbit (r ¼ M) and two
exterior orbits; and for 1=2 < a < 1 one stable interior orbit
(r < M), one horizon orbit, and one exterior orbit [36,37]. At
a ¼ 1=2, q ¼ ffiffiffi

3
p

=2, where regions I–III and VI meet, there is a
marginally stable (R00 ¼ 0) horizon orbit and one exterior orbit at
r ¼ 3M.
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equilibrium [49]. The spacetime geometry is described
by (2) with γ ¼ w ¼ 0 and f−1=2 ¼ 1þMþ=rþ þM−=r−,
where M� ¼ ð1� ηÞM0=2, r� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ðz − z�Þ2
p

, z� ¼
�M∓d=ðMþ þM−Þ, where d is the coordinate separation
of the event horizons [50], η parametrizes the mass ratio,
and M0 is the total mass.
The equal-mass MP dihole system (η ¼ 0, M≡M�)

possesses SPOs for black hole separations in the range
ffiffiffiffiffiffiffiffiffiffiffiffiffi

16=27
p

≤ d=M ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffi

32=27
p

[28]. In this regime, h pos-
sesses four stationary points: a local maximum at ρ ¼ ρð1Þ,

z ¼ 0, h ¼ pð1Þ
ϕ ; a saddle at ρ ¼ ρð2Þ > ρð1Þ, z ¼ 0,

h ¼ pð2Þ
ϕ < pð1Þ

ϕ , and a pair of saddles above and below

the plane at ρ ¼ ρð3Þ < ρð1Þ, z ¼ �zð3Þ, h ¼ pð3Þ
ϕ < pð1Þ

ϕ .

For d > M, we have pð2Þ
ϕ > pð3Þ

ϕ and thus rays with pϕ

between pð2Þ
ϕ and pð3Þ

ϕ may connect to infinity but not to the

black holes; for d < M, the order swaps, pð3Þ
ϕ > pð2Þ

ϕ , and
so the converse holds.
In the special case d ¼ M we have pð2Þ

ϕ ¼ pð3Þ
ϕ and thus

the local maximum at ρð1Þ ¼
ffiffiffi

3
p

M=2, z ¼ 0 with pð1Þ
ϕ ¼

9
ffiffiffi

3
p

M=2 being enclosed by a single contour, h ¼ pð2Þ
ϕ ¼

pð3Þ
ϕ ≡ 1

2
55=4φ3=2M, which connects three saddle points, at

ρð2Þ ¼ 1
2
51=4φ3=2M, z ¼ 0 and ρð3Þ ¼ 1

2
51=4φ−1=2M,

zð3Þ ¼ �M=ð2φÞ, where φ ¼ 1
2
ð1þ ffiffiffi

5
p Þ is the golden ratio

(see Appendix B in Ref. [28]).
Figure 2 illustrates the kinematically bound regions for

SPOs in the d < M, d ¼ M and d > M cases. It also shows
an unequal-mass case, with four contours, in which the
SPO region is dragged towards the more massive partner.

FIG. 2. Contour plots of the height function h ¼ ρf−1 for Majumdar-Papapetrou diholes separated by coordinate distance d. Circles
indicate stationary points: saddles and one local maximum. Filled circles represent the black hole horizons. The first three plots show
equal-mass cases; the lower right plot shows an unequal mass case, η ¼ Mþ−M−

MþþM−
¼ 0.05.
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Increasing the mass ratio has the effect of diminishing the
SPO existence regions, as shown in Fig. 3. Beyond
η≳ 0.13, SPOs do not exist.

3. Reissner-Nordström diholes

The N ¼ 2 Bretón-Manko-Aguilar class of electrostatic
solutions [52–56] is spanned by five parameters: two
masses M�, two charges Q� and the separation of
centers d. We focus on the Reissner-Nordström dihole
subclass, in which both bodies are black holes
(Q� ≤ M�); this subclass includes the MP diholes
(M� ¼ Q�) and Weyl-Bach [57] diholes (Q� ¼ 0) as
special cases. With the exception of the MP cases, the
charged black holes are held in equilibrium by a “Weyl
strut” [57], and their horizons appear as “rods” of
coordinate length 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
� −Q2

�
p

on the symmetry axis,
in coordinate system (2).
We examined a two-parameter subfamily: the equal-

mass, equal-charge black holes with q ¼ Q�=M�
and M� ¼ M, held in equilibrium by a Weyl strut
imparting a force F ¼ G½d2=ð2MσÞ2 − 1�−1 [55,56] where
σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − q2
p

. The coordinate distance between the hori-
zons is d − 2σM. Using a numerical root finder, we find
that SPOs can exist all the way up to, but not including, the
uncharged (Weyl-Bach [57]) limit. The existence region for
SPOs is shown in Fig. 3, together with analytic values for
the MP and Weyl-Bach cases.

C. Stable photon orbits of diholes: geodesic structure

The two-dimensional Hamiltonian system (3) is non-
integrable, in general, and thus SPOs may possess rich
structure.

We introduce a dimensionless parameter μ via

pϕðμÞ ¼ μpð1Þ
ϕ þ ð1 − μÞp�

ϕ; ð5Þ

where p�
ϕ ¼ maxðpð2Þ

ϕ ; pð3Þ
ϕ Þ, noting that kinematically

bounded SPOs exist in the range 0 < μ < 1. In the limiting
regime μ → 1−, the bound region is a small ellipse in the
ðρ; zÞ-plane, with U of Eq. (3) resembling the potential of
an anisotropic harmonic oscillator. We note that U ;zz > U ;ρρ

for d > M, and the converse for d < M. Generically, SPOs
for μ → 1− describe precessing ellipses in a small elliptical
region of the ðρ; zÞ-plane. However, even in this regime,
secular effects from higher-order corrections to U cannot be
neglected if the frequencies are commensurate
(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U ;ρρ=U ;zz

p

≈ n1=n2, where n1 and n2 are small positive
integers). In particular, the “isotropic” case d ¼ M (with
U ;ρρ ¼ U ;zz in the limit μ → 1−) exhibits a 1∶1 resonance,
and deserves some special consideration.
Figure 4 shows a selection of Poincaré sections for SPOs

kinematically bounded in a toroidal region around the
d ¼ M MP dihole. For μ ¼ 0.75, a separatrix (a) connects
three saddle points and divides between “libration” (b) and
“rotation” (c); in either region there exist high-order reso-
nances (box orbits), such as (d). Chaos is confined to very
narrow bands in this section. For μ ¼ 0.4, the separatrix has
degenerated into a chaotic band, and stable (e) and unstable
(f) Kolmogorov-Arnold-Moser (KAM) tori are manifest
around resonances [58]. As μ is decreased, further lower-
order resonances branch off from 1∶1 resonances [(b) and
(c)], and the chaotic regions grow. For μ ¼ 0, chaos is
dominant. Interestingly, SPOs can persist even into the
kinematically unbound regime, μ < 0; Fig. 4 shows exam-
ples of libration- and rotation-type SPOs for μ ¼ −0.1.
Remarkably, the qualitative features seen in Fig. 4 are

shared by the well-studied Hénon-Heiles (HH) system
[58–60]: a two-dimensional nonintegrable dynamical sys-
tem with a cubic potential UHH ¼ 1

2
ðx2 þ y2Þ þ xy2 − 1

3
x3

and energy E. Naively, for μ → 1−, one may expand our U
in a power series around its minimum U0 ¼ −E, and
attempt to map onto a generalized HH system. However,
in our naive approach, we found that it was necessary to
expand to quartic order if we wish to observe the key
features in the Poincaré section, such as the separatrix (a).
This suggests that the link between SPOs of the d ¼ 1 MP
dihole and orbits of the HH system is rather subtle, and it
may repay further investigation.
Figure 5 shows Poincaré sections for SPOs around MP

diholes with separations less than (left) and greater than
(right) d ¼ M. These sections exhibit a variety of structure.
In addition to libration and vibrational motions, various
low-order resonances, and KAM islands embedded
within chaotic bands, we see novel features, such as the
“crenulations” in the d ¼ 0.95M case. As μ is increased
towards 1, various resonances disappear and the richness of

FIG. 3. Existence regions for stable photon orbits around
Reissner-Nordström diholes. Left: Majumdar-Papapetrou dihole
(Q� ¼ M�) with mass ratio η and (dimensionless) coordinate
separation ~d ¼ 2d=ðMþ þM−Þ. Right: Equal-mass Reissner-
Nordström black holes with equal charge-to-mass ratios q ¼
Q�=M� held in static equilibrium by a Weyl strut (see the text).
The vertices shown are at ð0; ffiffiffiffiffiffiffiffiffiffiffiffi

16=27
p Þ, ð0; ffiffiffiffiffiffiffiffiffiffiffiffi

32=27
p Þ [28,42],

and ð1; 2=φÞ [51].
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FIG. 4. Poincaré sections (taken in the z ¼ 0 plane) and SPOs [viewed in the ðρ; zÞ-plane with ϕ suppressed] for the equal-mass
Majumdar-Papapetrou dihole in the special case d ¼ M.
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structure declines; as μ is decreased towards 0, the chaotic
bands become more dominant.

D. Stable photon orbits in stationary axisymmetric
electrovacuum

Now consider a general stationary axisymmetric geom-
etry described by (2). The bounded regions for null geo-
desics may be determined from h�ðρ; zÞ, defined in Eq. (4).
As shown in the Appendix, one may employ the electro-
vacuum field equations to classify the stationary points of
h�. Our key result is the following: at a stationary point
where either ∇hþ ¼ 0 or ∇h− ¼ 0, the second derivatives
of the corresponding function h� satisfy

h�;ρρ þ h�;zz ¼ −
2

ρ
W2

�; W� ≡ h�∇At ∓ ∇Aϕ; ð6Þ

where At and Aϕ are components of the electromagnetic
four-potential, and W2

� ¼ W� ·W�. In the vacuum case
(∇At ¼ 0 ¼ ∇Aϕ), the right-hand side of Eq. (6) is 0. It
follows that, since detHðh�Þ ¼ h�;ρρh�;zz − ðh�;ρzÞ2 ≤ 0, h�

cannot possess a (first-order) local maximum, and thus
generic SPOs are ruled out. By contrast, for ∇Aμ ≠ 0, the
right-hand side is negative, and thus SPOs are possible if
h�;ρρ is negative and ðh�;ρzÞ2 < jh�;ρρjð2W2

�=ρ − jh�;ρρjÞ.
Where there exists an equatorial symmetry (h�;ρz ¼ 0) the
condition for stability reduces to 0 < −h�;ρρ < 2W2

�=ρ. In
the equal-mass MP case, the stability condition implies that
SPOs exist in the range

ffiffiffiffiffiffiffiffiffiffiffiffiffi

32=27
p

> d=M >
ffiffiffiffiffiffiffiffiffiffiffiffiffi

16=27
p

.

III. DISCUSSION

We have shown that, in stationary axisymmetric
geometries, (generic) SPOs are forbidden in pure-vacuum

environments, but that SPOs may arise in electrovacuum,
thanks to the right-hand side of Eq. (6). Furthermore, our
examples (Figs. 1–3) imply that SPOs can exist even in the
near-vacuum case (q → 0), provided that other parameters
are appropriately tuned. Figures 4 and 5 reveal that SPOs
may possess rich geodesic structure even in simple models.
The absence of SPOs for (static, axisymmetric) vacuum

geometries was noted by Liang in 1974 [30], who remarked
of equatorial photon orbits that “stability within the plane
implies instability off the plane” [61]. Equation (6) shows
how Liang’s implication breaks down when an electro-
magnetic field is introduced. Further generalization of this
argument—to include other fields, matter sources, or a
cosmological constant, to spacetimes with less symmetry,
or even to modified theories—would surely deepen our
understanding of one of the key properties of Einstein’s
theory. Here we should caution that, in more general
scenarios, electromagnetic fields are not a necessary
ingredient for the existence of SPOs. For instance,
(hypothetical) ultracompact stars generically admit
SPOs [23], even in spherically symmetric, uncharged,
constant-density models.
Various heuristic arguments suggest that, generically,

spacetimes possessing SPOs are dynamically unstable [23–
26,37]. If not, they should be associated with rich phe-
nomenology (see Sec. I). For example, highly relativistic
timelike orbits, expected in the vicinity of SPOs, would
provide a stable mechanism for gravitational synchrotron
radiation [63–65]: strongly beamed, high-multipole, high-
frequency gravitational waves. By historical curiosity, the
gravitational synchrotron possibility was investigated in
1972 [66–68], the year in which J. Weber’s “lunar surface
gravimeter” experiment was included aboard the Apollo 17
mission. Following aLIGO’s epoch-making results, the

FIG. 5. Poincaré sections in the z ¼ 0 plane for SPOs on MP dihole spacetimes with coordinate separations d ¼ 0.95M (left) and
d ¼ 1.05M (right). See also Fig. 2.
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community now has renewed hopes for space-based detec-
tors and serendipitous discoveries in the years ahead.
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APPENDIX: ELECTROVACUUM FIELD
EQUATIONS AND THE STATIONARY

POINT CLASSIFICATION

Below we derive Eq. (6), the key result of Sec. II D.
In Ref. [69], Ernst presents a formulation of the field

equations in the case of a stationary axisymmetric electro-
vacuum spacetime with line element Eq. (2). For our
purpose, the relevant Einstein-Maxwell equations are
[see Eqs. (7), (6) and (4) in [69]]

ð∇fÞ2 − ρ−2f4ð∇wÞ2 þ 2fð∇AtÞ2
þ 2ρ−2f3ð∇Aϕ − w∇AtÞ2 ¼ f∇2f; ðA1aÞ

∇ · ½ρ−2f2∇w − 4ρ−2fAtð∇Aϕ − w∇AtÞ� ¼ 0; ðA1bÞ

∇ · ½ρ−2fð∇Aϕ − w∇AtÞ� ¼ 0: ðA1cÞ

Here the divergence operator is defined to be ∇ · F≡
1
ρ ∂ρðρFρÞ þ ∂zFz, where F ¼ ðFρ; FzÞ is any arbitrary
vector field.
We consider the height functions h� for the effective

potential, defined in Eq. (4). Taking second derivatives, it is
quick to establish that

h�;ρρ þ h�;zz ¼ −ρf−3ðf∇2fÞ − f−2f;ρ þ 2ρf−3ð∇fÞ2
� ðw;ρρ þ w;zzÞ: ðA2Þ

Expanding and rearranging Eq. (A1b) we obtain

w;ρρ þ w;zz ¼ ρ−1w;ρ − 2f−1∇f · ∇wþ 4ρ2f−2

× ∇ · ½ρ−2fAtð∇Aϕ − w∇AtÞ�: ðA3Þ

Substituting Eqs. (A1a) and (A3) into the right-hand side of
Eq. (A2) gives

h�;ρρ þ h�;zz ¼ ρf−3ð∇fÞ2 ∓ 2f−1∇f · ∇wþ ρ−1fð∇wÞ2
− f−2f;ρ � ρ−1w;ρ − 2ρf−2ð∇AtÞ2
− 2ρ−1ð∇Aϕ − w∇AtÞ2 � 4ρ2f−2

× ∇ · ½ρ−2fAtð∇Aϕ − w∇AtÞ�: ðA4Þ

Now, let us assume that we have found a stationary
point of either hþ or h−. The stationary point conditions
h�;ρ ¼ 0 ¼ h�;z imply that

w;ρ ¼ �ðρf−2f;ρ − f−1Þ; w;z ¼ �ρf−2f;z: ðA5Þ

In either case (�), it is possible to eliminate terms involving
derivatives of w from Eq. (A4). In particular, for stationary
points of h� we have

2f−1∇f · ∇w ¼ �ð2ρf−3ð∇fÞ2 − 2f−2f;ρÞ; ðA6Þ

ρ−1fð∇wÞ2 ¼ ρf−3ð∇fÞ2 − 2f−2f;ρ þ ρ−1f−1: ðA7Þ

Using Eq. (A6), Eq. (A7) and the expression for w;ρ given
in Eq. (A5), we see that the first five terms on the right-hand
side of Eq. (A4) vanish. Thus, we are left with

h�;ρρ þ h�;zz ¼ −2ρf−2ð∇AtÞ2 − 2ρ−1ð∇Aϕ − w∇AtÞ2
� 4ρ2f−2∇ · ½ρ−2fAtð∇Aϕ − w∇AtÞ�: ðA8Þ

Now consider the final term on the right-hand side of
Eq. (A8). Expanding this term, using the product rule for
the divergence operator, yields

4ρ2f−2∇ · ½ρ−2fAtð∇Aϕ − w∇AtÞ�
¼ 4f−1∇At · ð∇Aϕ − w∇AtÞ

þ 4ρ2f−2At∇ · ½ρ−2fð∇Aϕ − w∇AtÞ�: ðA9Þ

Now employing the remaining field equation, Eq. (A1c),
we see that the final term on the right-hand side of Eq. (A9)
vanishes. Thus,

4ρ2∇ · ½ρ−2fAtð∇Aϕ−w∇AtÞ� ¼ 4f−1∇At · ð∇Aϕ−w∇AtÞ:
ðA10Þ

Inserting Eq. (A10) into (A8) leads to a right-hand
side that can be factorized, yielding the key result
of Eq. (6).
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