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Supersymmetric black lenses in five dimensions
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We present an asymptotically flat supersymmetric black lens solution with the horizon topology
L(n,1) = $3/Z, in the five-dimensional minimal ungauged supergravity. We show that the black lens
carries a mass, two independent angular momenta, electric charge, and (n — 1) magnetic fluxes, among

which only the n + 1 quantities are independent.
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I. INTRODUCTION

Black hole solutions to Einstein’s equations have pro-
vided an excellent arena to test a number of classical and
quantum aspects of gravity. In particular, higher dimen-
sional black holes have attracted much attention in the last
two decades, for instance by the microscopic derivation of
Bekenstein-Hawking entropy [1] and the realistic produc-
tion of black holes at accelerators in the scenario of large
extra dimensions [2]. In spite of startling developments
for higher dimensional black holes, our understanding of
higher dimensional gravity is still poor since it is much
richer and captures more degrees of freedom. According to
the topology theorem of a stationary black hole in five
dimensions [3,4], the allowed topology of the cross section
of the event horizon is restricted to a sphere S3, a ring
S' x 2, or lens spaces L(p, q), provided the spacetime is
asymptotically flat and allows two commuting axial Killing
vector fields (more generally, the cross section of the
stationary horizon must be of positive Yamabe type under
the dominant energy condition [5,6]). In the first two cases,
we have the corresponding exact solutions to vacuum
Einstein’s equations [7—10]. In contrast, a vacuum black
hole solution with the lens space topology turns out to be
difficult to come by and is still missing." Exploiting the
inverse scattering method, several authors tried to find an
asymptotically flat solution to the five-dimensional vacuum
Einstein equations, but unfortunately all of these attempts
failed [12,13]. A major obstacle in the construction of a
black lens is that the resultant solutions are always plagued
by naked singularities.

Recently, an asymptotically flat supersymmetric black
lens solution with the topology L(2,1) =S%/Z, was
constructed by Kunduri and Lucietti [14] in the framework
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of the five-dimensional minimal ungauged supergravity
[see [15] for the extension to U(1)? supergravity]. The
construction relies heavily on the machinery developed
by Gauntlett et al. [16]. In that paper, they generalized the
earlier program in [17] into higher dimensions and
demonstrated that the supersymmetric solutions can be
systematically classified by using bilinears built out of
the Killing spinor. These bilinears define privileged
G-structures, which tightly constrain the possible forms
of the metric and the gauge fields [18,19]. It turns out that
the metric of supersymmetric solutions admitting a time-
like bilinear Killing field is described in an adapted
coordinate system by an R-bundle over the four-
dimensional hyper-Kéhler base space and the governing
equations are linear, allowing us to find a number of exact
solutions of physical interest. The program undertaken in
[16] has replaced the standard ansatz-based approaches
and provoked drastic progress in classifications of sol-
utions saturating the Bogomol nyi-Prasad-Sommerfield
(BPS) bound with various fractions of supersymmetry in
diverse supergravities [20-32]. An alternative approach
referred to as a spinorial geometry also gives us an
elegant and powerful method for classifying supergravity
solutions (see [33—40] for an incomplete list of refer-
ences). These domains of research have been motivated
by the desire to figure out the string duality and the gauge/
gravity correspondence.

For the supersymmetric black objects in asymptotically
flat spacetimes in the five-dimensional minimal super-
gravity, a number of properties have been clarified by
many authors. The most salient feature of a supersymmetric
black hole is that the horizon must be degenerate and
nonrotating. This is because the bilinear Killing vector
never becomes spacelike, and hence the ergoregion does
not exist [41]. Reall gave a proof that the possible
topologies of the supersymmetric black holes are either
§3, S' x 82, T3, or a quotient thereof [42]. For the first
case, Breckenridge et al. constructed a black hole with a
spherical topology admitting angular momenta [43],
referred to as a Breckenridge-Myers-Peet-Vafa (BMPV)
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black hole. The BMPV black hole is characterized by the
mass and two equal angular momenta, due to which the
spatial symmetry is enhanced to U(2) = SU(2) x U(1)
[44]. As in the Kerr case, the magnitude of angular
momentum is bounded by the mass; otherwise a naked
time machine shows up. The second possibility correspond-
ing to a black hole with a ring topology S' x S? has been
found in [45]. The black ring enjoys only the U(1) x U(1)
spatial symmetry and precludes a configuration with equal
angular momenta, which distinguish it from the BMPV
black hole. The angular momentum along the S direction
does not have an upper bound, in sharp contrast to the
spherical counterpart. A more intriguing feature arises in
the U(1)? supergravity, where the three-charge black ring is
specified by seven parameters, while only five of them are
conserved quantities [46,47]. This exhibits a classical
infinite nonuniqueness of black objects.

Reference [42] also proved that the only asymptotically
flat black hole solution to five-dimensional minimal super-
gravity whose near-horizon geometry is locally isometric to
that of the BMPV black hole is the BMPV black hole,
provided that the bilinear Killing field is everywhere timelike
outside the Killing horizon. The black lens space found in
[14] does not run counter to the above uniqueness theorem,
since the bilinear Killing field happens to be null at some
points outside the horizon. These “critical surfaces” or
“evanescent ergosurfaces” [48] are regular timelike surfaces
and provide us with much richer varieties of black holes. For
instance, Ref. [49] pointed out that the black hole with a
spherical topology other than the BMPV solution indeed
exists. Another interesting facet of a black lens in [14] and
the solution in [49] is that they have nontrivial 2-cycles
outside the horizon. This kind of “bubbling” solution is of
crucial importance in the context of fuzzball conjectures
[50], and a number of solitons and black holes/rings with
bubbles have been found [51-54]. A key ingredient to bring
about these bubbles is that the spatial hypersurface has
nontrivial second homology class, which is not realizable in
four dimensions.

In this paper, we generalize the work of Kunduri and
Lucietti [14] to the more general lens space, and construct
an asymptotically flat supersymmetric black lens solution
with the horizon topology of L(p,1) = §%/Z , for p > 3 in
the five-dimensional minimal ungauged supergravity. The
regular metric on the lens space L(p, 1) = $°/Z,, with unit
radius can be written as

2 _L{(ay ? 2 1 cin20d 02
ds* = 1 [(7 + 0059d¢> +dO* +sin*0dp= |, (1)
where 0 <y <4z, 0<¢ <2z, and 0<6 <z The
parameter p is an integer parametrizing the Chern class
of the principal bundle over S2. In particular, this reduces to
a metric on a three-dimensional sphere for p = 1 written in
terms of the Euler angle coordinates. Our strategy is to
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consider the Gibbons-Hawking space as a hyper-Kihler
base space and allow the harmonic functions to have n
point sources with appropriate coefficients. By imposing
suitable boundary conditions, we find the configuration
in which the cross section of the horizon becomes
p = n(n > 3) and the cross section of null infinity becomes
p = 1. Our black lens solution possesses nontrivial
2-cycles supported by magnetic fluxes outside the horizon.
One of them touches the horizon and forms the disk
topology, while others are away from the horizon.

We organize the present paper as follows. In Sec. 11, we
present the supersymmetric solutions describing black
lenses in the five-dimensional minimal ungauged super-
gravity. The solution is stationary and biaxially symmetric,
admitting U(1) x U(1) isometry. In Sec. III, we study in
depth the boundary conditions under which the spacetime
is asymptotically flat, no closed timelike curves (CTCs)
appear around the horizon, no (conical and curvature)
singularities develop in the domain of outer communica-
tions, and no orbifold singularities or Dirac-Misner strings
exist on the axis. These boundary conditions place restric-
tions upon the parameters and it turns out that the physical
solution is specified by n+ 1 parameters. Section IV
analyzes some physical properties of black lenses. This
includes the discussion about conserved quantities and
CTCs. In Sec. V, we devote ourselves to the summary and
discussion on our results.

II. BLACK LENS SOLUTION

Let us begin with a basic setup for supersymmetric
solutions in the five-dimensional minimal ungauged super-
gravity, whose bosonic Lagrangian consists of the Einstein-
Maxwell theory with a Chern-Simons term and takes the
form [55]

8
L=Rx1-2FA*xF———AANFAF, 2
3V3 @)

where F = dA is the Maxwell field. The gravitational
solution is said to be supersymmetric if it admits a spinor
obeying the first-order differential equations,

I
43

The supersymmetric solutions to five-dimensional minimal
ungauged supergravity have been systematically classified
according to the causal nature of the Killing vector
V# = iey*e constructed out of the Killing spinor [16]. In
the domain where V is timelike, the local metric and
the gauge field strength have a simple description in the
t-independent form

ﬁﬂe = (V” + Y up — 4gﬂy}//,)F"/’> e=0. (3)

ds* = —f%(dt + w)* + f~'ds3,, (4)
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V3 1
F:Td[f(dt—i—a))} —7§G+, (5)

where V = 9/0t and ds3, is the metric of a hyper-Kihler
base space. The norm f and the twist @ of a Killing vector
V are a scalar and a 1-form on the base space and obey a
linear system,

Ahf—l — (G+)mn<G+)mn’

Gt =

= Ol N

fldo + *,dw), dGt =0, (6)

where we have employed a convention that the hyper-
complex structures are antiself-dual. If this system is
solved, the solution to the Killing spinor equation (3) is
given by e = f1/2y, where 7 is a covariantly constant chiral
Killing spinor of the hyper-Kéhler base space, i.e., the
solution preserves at least half of the supersymmetries.

Among a variety of hyper-Kéhler spaces, the Gibbons-
Hawking space [56] plays a distinguished role. The metric
of the Gibbons-Hawking space reads
dsi, = H ' (dy + y)* + Hdx'dx', dy = xdH, (7)
where {x'} = (x,y,z) (i =1, 2 ,3) are Cartesian coordi-
nates on E* and 9/0y is a triholomorphic Killing vector.
When 9/0y continues a symmetry generator for the five-
dimensional metric g,, and the gauge field A,, it commutes
with V and the supersymmetry-preserving dimensional
reduction is possible.2 Furthermore, every bosonic element
can be obtained in a closed form and reads [16,58]

f'=H'K*+1L, (8)

o = w,(dy +y) + @, 9)
213 3 -1

0, = H?K> +ZH'KL + M. (10)

vdi> = HdM — MdH +%(KdL _LdK), (1)

3 [K
dé = — % dK, (12)

which leads to

*When the Kaluza-Klein Killing vector fails to commute with
the supersymmetric Killing vector, the dimensional reduction
breaks supersymmetry. See [57] for a notable example.
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A:é fldt+ w)

; Syt =g (13)

" H

Here H, K, L, M are harmonic functions on E3, which are
only the necessary input to specify the supersymmetric
solutions. It should be observed that there exists a gauge
freedom of redefining harmonic functions [59],

K - K+ aH, L > L—-2aK — a*H,

3 3, [N
MM 2aL—|—2aK—|—2aH, (14)
where a is a constant. Under (14), one can easily verify that
(f, w,,, y) remain invariant, whereas the 1-form £ undergoes
a change as £ — & — ay. Since this transformation merely
amounts to the gauge transformation A — A + ady, the
transformation (14) makes the bosonic sector invariant. We
come back to this freedom (14) in the following analysis.
When the general choice of these harmonics is made, the
solution fails to be asymptotically flat or suffers from CTCs,
and the existence of the horizon is not guaranteed. Following
the paper by Kunduri and Lucietti [14] (see also [60]), we
consider the following class of harmonic functions:

n h n 1
N AN (15)
— i =T
n ml
=1 i
k=34 (17)
i=1 Fi
L:zo+z7. (18)

Here, ri:=[r—ri=/(x=x)?+ (y—y)" + (2 - 2)%
where (x;,y;,z;) are constants. This choice of harmonics
reduces to that of the BMPV black hole [43] for n = 1, and
that of the black lens with §3/Z, for n = 2 [14].

The 1-forms (v, &, @) are obtained by

X = ihi&)iv (19)
i=1

5 = i ki(:)i? (20)
i=1

n

3 & 3
= Z (hlmj+§kllj>&)lj_ (mohi+§loki>d)i7
) i

i,j=1(i#j =1
(21)
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where 1-forms @; and @;; (i # j) on E® are defined by
(cf., [61])

&)U:_<(r—r) (r—r)+Cu>

r['r/'

=) x (=50 vt

e
|(ri = 7)) x (r ==57)]

(22)

- _2—gi(x—x)dy — (y—yi)dx
l reo (x=x)? (O =y)?

. (23)

where ¢;; = —cj; are constants.” These 1-forms satisfy
«dw; = d(1/r;) and *d@;; = (1/r)d (l/r]) (1/r])
d(1/r;). Throughout this paper, we set x; =y; =0 for
all i (in this case x0/0y —yd/0x is another Killing
field) and assume z; < z; for i < j. In this case, ® and
@; are simplified in spherical coordinates (x = r siné cos ¢,

y =sinfsin¢, z = rcos0) to

) 4 3 r? = (z; + z;)rcos 0 + z;z;
“- [ Z )<himj+§kilj> Zjilil'j

ij=1(i%j
0—
—Z<moh 43 lo )rcos

@ =g, (25)

ri

Py c] dp,  (24)

with the constant

ci= Z (hm+;k1>zﬂ (26)

i,j=1(i#))

where zj; := z; — z;. Obviously, we have a freedom to
choose z — z + const., which can be used to set z; =0
without losing any generality.

Under the transformation (14), the coefficient of the 1/r,
term in M varies as m; — m; + 3 (a® + 3k;a* = 3l;a). It
therefore turns out that an appropriate choice of a allows us
to set

m; = 0. (27)

Hence, the solution contains 4n + 1 parameters (c, 1, my,
ki, l;, misy, 2;7). We see below that the regular boundary
conditions constrain some of them and the physical
solution is specified only by n + 1 parameters.

3One can also add pure-gradient terms to @;. However, the
regularity of the solution requires that these additional constants
must vanish in the present context.
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III. BOUNDARY CONDITIONS

In order to obtain a supersymmetric black lens solution
of physical interest, we impose suitable boundary con-
ditions at (i) infinity, (ii) horizon r = r, (iii) bubbles r = r;
(i=2,...,n), and (iv) axis x =y = 0. The boundary
condition at infinity (i) must be such that the spacetime
is asymptotically flat. At the horizon (ii), the surface
r =r; should correspond to a smooth degenerate null
surface whose spatial cross section has a topology of the
lens space L(n,1) = S%/Z,. At the (n—1) points r =
ri(i=2,...,n) (iii) where each harmonic function
diverges, we put constraints upon parameters in such a
way that these points correspond merely to the coordinate
singularities like the origin of the Minkowski spacetime.
On the axis, we demand that there appear no Dirac-
Misner strings, and orbifold singularities at isolated
points must be eliminated. At these boundaries, the
spacetime is required to allow neither CTCs nor (conical
and curvature) singularities.

A. Infinity

Let us begin by addressing the asymptotic flatness of
the solution. For r — oo, the metric functions (f, )
behave as

=1+ KZ") +Zl,~] -
w, =my + Elozi:k,». (28)

Since the 1-forms @; and @;; are approximated by

_

Zji

@; = cos 0d¢, @& (29)

ij
one gets

X =Y hid;=> hijcosOdg = cosOdgp. (30)

3
W= <m0 + 2 ZOZkl) (dy + cos0dgp)
3
— Z <m0hi + 3 lok,-> cos Odd¢

Vi)

c) dp. (31)

The asymptotic flatness demands that the parameters
satisfy

l() - 1, (32)
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him; +3k;l

[P R
= - —t s 33
¢ Z Zji ( )
i,j(i#)) Y
3Zk (34)
my = —— .
0 2 i

In terms of the radial coordinate p = 2+/r, the metric
asymptotically (p — o) approaches to

42 [(dy + cos Odep)?

+ d6® + sin? 0dg?). (35)

ds® = —dr* + dp®> +

This is nothing but the metric of Minkowski spacetime for
which the $? corresponding to the cross section of spatial
infinity is written in terms of Euler angles (y, ¢, 8). The
avoidance of conical singularities requires the range of
anglestobe 0 <0 <7, 0<¢ <2rand 0 <y < 4rx with
the identification ¢p ~ ¢ + 27 and y ~ y + 4x.

B. Horizon

We next show that the point source r = r; corresponds to
a degenerate Killing horizon and the topology of the spatial
cross section is a lens space L(n,1) = $%/Z,. Since we
have imposed z; = 0, we now look at the behavior of the
solution around the origin r = 0. Since four harmonic
functions H, K, L, and M are expanded as

H~_'
l;é] z#l
i#1 | 11’ i1 | tl|
the functions f~! and w,, reduce to
ki/n+1
ft= 71/nr Lie,
k3/l’l2 + 3k111/2n
w, = . + . (37)
Here we have defined the constants ¢} and ¢ by
=1+ Zh2|z | [2h ki k; — K2h; + 314, (38)
i#1 il
C—m+ kl—l— (4k3 + 3h ki),
2 0 0 22h3|zll| )
+3h, (2k% + hy L)k 4 3h3ky 1 + 2h3m;). (39)

The 1-forms @; and @,; are
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Zi1

@, =cosOdp, @ = T |d¢( 1), (40)
cost9

@ do

1] | ]1| ( )

by~ — (i j# 1.0 # ), (41)
|lezjl|zjl

yielding

. 3 3 —cosf@

1 1

Zi1<i
n <_m, 2k ) ERILI
i, jE1(i%)) 2z l2ji

3
- (mon + Elok1> cosd

-y <—m0 + Z lok; > Gy c] dp,  (42)

|ll|

and

y=hao, + Zhi&)i = <n cos 0 + Z il > (43)

i#1 i#1 | ll|

In terms of new coordinates (v,y’) given by
Ay A
dv = dr - <°+ 1>dr,
rP?oor

<i1

B
dy' =dy +> "dp - 7°dr, (44)

i#1 |Zi1|

we wish to require that the metric is regular around r = 0.
A potential divergence appears from g,, and g,,,/, which can
be eliminated by

1/
AO :E 3k12112—|—4nll3, (45)

2]{13 + 3kllli’l

AgBy = 46
0L0 D) s ( )
4A0A| = —4m0k3 + 31k} — 6nk,lymy + 6nl?
+Z| |[3k Bk + 3(K31 + 231
i#1 Zil

With this choice, it turns out that the metric is then
analytic in r and therefore can be extended into the
r <0 region. It follows that the null surface r =0
corresponds to the Killing horizon for the supersymmetric
Killing field V = 9/0w.
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Taking the higher-order terms in r into account, one
obtains the near-horizon limit by (v,r) — (v/e,er) and
€ — 0 [42]. After some algebra, one arrives at

dsI%IH = dy' + ncosOdgp — T dv
42 4
R%(d6? in20d¢?) — dv* — — dvdpr,
+ Ri( + sin“6d¢*) R%R%v szr
(48)
and
V3 nr 2k3 + 3nky
A== d ! dy' 0de) |,
AT v+ IR (dy’ + ncos0dep)
(49)
where we have defined
R% = k% + nl,, (50)
2(3k? + 4nl
R::= M (51)

R

This is locally isometric to the near-horizon geometry of
the BMPV black hole [41,62].4 In order to remove CTCs
around the horizon, one requires R? > 0 and R} > 0, which
simply amounts to the inequality

3k

l _-M
1= 4n

(52)
The cross section of the event horizon can be extracted
by v = const.. and r = 0 in (48), giving rise to

R3
ds? = _42 (dy’ + ncosOdg)* + R}(d6* + sin® 6d¢?),
(53)

which precisely recovers the squashed metric of the lens
space S°/Z, given in (1).

C. Bubbles r=r; (n=2,...,n)

There exists apparent divergence in the metric of the
Gibbons-Hawking space at the pointsr =r; (n = 2, ..., n).
We impose the boundary conditions at each point r = r;

‘In spite of this, one can verify that the metric (48) with (49)
preserves the maximal amount of supersymmetry, as in the
near-horizon geometry of the BMPV black hole. This is quite
nontrivial because the discrete identification in general breaks
supersymmetry. The primary reason for this is that 9/dy’ is a
symmetry of two independent Killing spinors. This can be
demonstrated by a direct integration of the Killing spinor
equations (3).

PHYSICAL REVIEW D 94, 044037 (2016)

(n=2,...,n) that this corresponds to a smooth point
analogous to the origin of Minkowski spacetime, rather
than horizons. To demonstrate this, let us choose the
coordinates x’ on E* of the Gibbons-Hawking space so
that the ith point r = r; (i # 1) is an origin of E>. Near the
origin r = 0, the four harmonic functions H, K, L, and M
behave as

1 h;
H=--4% —, Z (54)
i@ i jleil
L=ty > g
g i il
m; mj
M=="tmy+ Y — (55)
r ar e
J(#D)
yielding
k-1
f_l = + C1,
k} =3kl +m;
W, :#4_ s, (56)

r

where the constants c¢; and ¢, are defined by

1
cr=14 Y —(l; = 2kik; — k2h)), (57)
i Vel
3 2 3
¢ ==m0——ki+z‘ | 3k2k; + 2k3h;
Zji
3

The 1-forms @; and @;; are approximated by

b= cosodp. By == Lap(i#i), (39
ji
cos 6

by = — dg(i # j),

/ |2;il
N Zlekl . . .

27d k 7k7 ’ 60
Pk |ZjiZki|ij ¢( 7 J;él) ( )

giving rise to

1

X =(=cosO+ y)de,
@ ( (1)c059+w(0))d¢, (61)

where

044037-6



SUPERSYMMETRIC BLACK LENSES IN FIVE DIMENSIONS

hiz
X(0) =~ L (62)
b= > (hkm + Skl ) _Liki
kj(FTRE]) 2zl
3 i
+ Z<m0h +2 k) Sy, (63)
i) i
A 3 1
J(#0) Jt
- <m0hi +%ki>- (64)

One therefore obtains the asymptotic behavior of the metric
around the ith point as

12—l -2 I3 —3k1,+m,
d52:—< +Cl> |:dt+ <12_H/n+02>
r r

x{dy +(—cosO+y(0))dp} + (& COSQ—l—Cf)(O))dq{r

s
r

) r [{dlp—i— (—cosO+y (o)) dg}*

dr? 2 20702

+-—5+db° +sin“0d¢” | . (65)
r
As a minimal requirement, we impose the following
conditions on the parameters (k;, [;, m;) (i =2,...,n):

l; = k2, (66)
=le 67
l 2 1 ( )

which implies

3
k? —Ekili +m,- = 0,

Cyr = &)(1) (68)
Hence, (66) and (67) are sufficient to get rid of 1/r
divergence in g,, and ensure that no curvature singularities
appear in the domain of outer communications. Converting
to the new coordinates (p,y’, ¢') by

p=2\/—cyr,

v =y +x0)9

one verifies that the metric near r = r; reduces to

PHYSICAL REVIEW D 94, 044037 (2016)
ds?* = —c7?d[t+ ey’ + by ']

+ | dp? +%{(dl// —cos0dd)’ + d” + sin0dg }|.
(70)

To ensure the metric has the Lorentzian signature, one
needs

c < 0. (71)

Although (70) is locally isometric to the flat space metric,
0/0y' = 0/Ow necessarily becomes timelike and CTCs
appear, because we are now focusing on the region p = 0.
To remove this causal violation around each r;, it suffices to
impose ¢, = 0atr =r; (i =2, ...,n), which in the present
case rehashes to

2 3
k +Z| - [3kl.kj+2kihj

These conditions are obtained by requiring w, =0 at
r=r; (i=2,...,n) and referred to as “bubble equations”
in Refs. [50,54]. These bubbles r = r; describe the timelike
and regular surfaces. The bubble equations account for the
delicate balance between the gravitational attraction and the
repulsion by flux through the cycles.

There still remains a possibility of CTCs associated with
a vector field with closed orbits 9/9¢’ =0/ —y 00/ Oy
remaining spacelike [note that (g is an integer]. Quite
amazingly, @) =0 is automatically satisfied for all
i=2,...,n, if we impose (72). We relegate the proof of
this to Appendix A. It follows that no causal violation
occurs around each bubble if one demands (72).

As a consistency check, the conditions (71) and (72)
reduce respectively to Egs. (21) and (11) in [14] in the
n =2 case. One can also verify that the metric and the
Maxwell field are smooth at each bubble.

D. Axis
The z axis of E* (ie., x =y =0) in the Gibbons-
Hawking space splits up into the (n+ 1) intervals:

I ={(xy.2g)lx=y=0z<z} L={xylx=y=
0.z <z<zpt(i=1..n-1), and I, ={(x.y.2)|

x=y=0,z>2z,}. On the z axis, the 1-forms d@;; and
@; are, respectively, simplified to
72— 27;)(2—zj - -z
(bij = ( 7l)< j) dg, w; = . dg. (73)
zjilz = zillz = z; |z =z

In particular, on 1., @;; and @; become, respectively,
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1 ~ e —hone 3 (k. — k..
——dp. = xdp, (4) oy —ingy = S = P 43 (il = k)
7 i) i
i~ i~ 3 i~
E_££L2+(mm+%oz z
|z; — zllz; — 2 27" ) |zi—1
Hence, on I, @ vanishes since I I ! (k L= kL))
_nymy —hym; 1~
- 21i

l] - kjl]) (Zj —Z>

3 . 3 .
= Z (hkmj + 2kk11> Wgj — Z <m0h, + 2kj>60 2<j(#i) Zji |Zj - Z|
k. j(k#) J
3
+ cdg - (mohi + gki)
3 3
kj(k)) 22y
d (ki —k;)* (z; — 3
- > (hkm += kkl> 4 - Z 'z Z’)+<m0 k,~>
KiGkE)) 2y 2w 1z 2
- =0, (77)

3
—r <m0 +52j:kj>d¢

where we have used Eq. (Al). Since @) =0 (see
Appendix A), one concludes @y =0 (i.e., ® =0) on I;

=0, (75)  fori=1,...,n— L It therefore turns out that @ = 0 holds
at each interval. This proves that no Dirac-Misner string
pathologies happen throughout the spacetime. As argued in
[48,50], the absence of the Dirac-Misner string among each
where we have used Eq. (34) in the last equality. bubble is a direct consequence of the bubble equations (72).
On the interval /;, one computes However, ® = 0 at I; seems quite nontrivial.
Let us next move on to the discussion of the issue of
orbifold singularities. On 7/, we get
3
&)4)_&)(0) :_Zhlm] ]’l]m] :—]2(](][] k]ll)(|§j_§|) ){—:tdd), (78)
> ! ! whereas on I; we have
- (mOh] + § k])
2 =7 z-z; 2-2;
xzcz - - >w
_ —Z nk? + 3k k2 = 3k;1, _ (nm . ék > li—al Stli-gl Sz li—gl
o 2|z;1] 0T — 2n—2i + 1)d¢. (79)

3
nmo +§k

(i)
()

2
0,

)

where we have used Eg.
I;(i=2,...,n—1) we get

(A2). Finally for z

(76)

Accordingly, the two-dimensional (¢, y)-part of the metric
on the intervals /. and I; can be written in the form

2
ds;

= (=20, + [TTH)(dw + x4dd)*. (80)
In the analysis of orbifold singularities, it is more advanta-
geous to work in the coordinate basis vectors (0, , 0,) of 27
periodicity, instead of (0, 0,,), where these coordinates are
defined by ¢, == (w + ¢)/2 and ¢, :== (w — ¢)/2. From
(80), one sees that the Killing vector v := d,, — y,0,, vanishes

on each interval. More precisely, one sees that

€
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(i) on the interval I,, the Killing vector v, :=
dy — 0, = (1,0) vanishes,

(i) on each interval I; (i =1,...,n— 1), the Killing
vector v; =0y — (2n=2i+1)0,, = (1,i—n)
vanishes,

(iii) and on the interval 7_, the Killing vector v_ :=
dy + 0, = (1, 1) vanishes.

From these, we can observe that the Killing vectors v, v; on
the intervals satisfy

det(vl, 0! ) = -1,
det(v!, 07 ) = -1, (81)
with
det(vT, 7)) = n. (82)

Equation (81) assures us that the metric smoothly joins
at the end points z = z;(1 <i < n) of the intervals [3],
which means that there exist no orbifold singularities at
adjacent intervals. Furthermore, Eq. (82) illustrates that
the horizon cross section is topologically the lens space
L(n,1)=S%7,.

E. Summary of boundary conditions

The regularity of the metric at each boundary has
required us to impose the conditions (32)—(34), (66),
(67), and (72). Combined with m; = z; =0, this
reduces the independent parameters of the solution from
4n + 1 to n + 1. Moreover, these parameters are subject to
the constraints (52) and (71). The latter condition boils
down to

nk? + 2k;k; — 1, (k; — k;)?
i i > 1 + J
e D D P

i=2...n (83)

IV. PHYSICAL PROPERTIES

As appropriate boundary conditions are prescribed in the
last section, let us now investigate several physical proper-
ties of the solution.

A. Conserved quantities

Let us discuss conserved quantities of the black lens
solution. As shown in Sec. III A, the spacetime is asymp-
totically flat, which enables us to compute Arnowitt-Deser-
Misner (ADM) mass and two ADM angular momenta as

M —?Q = 37:{(2{:@)2 +Zl,], (84)

PHYSICAL REVIEW D 94, 044037 (2016)

Jy,:4zr[(zi:ki>3 %ik? +% <Zk> (zl +izn;k?)]’

(85)
Jy= 6;{(2:1@) (; zj> + <; kiziﬂ, (86)

where Q is the electric charge normalized by (note that the
Chern-Simons term fails to contribute)

0= /S «F. (87)

It follows that the Bogomol'ny bound is saturated [63].
In appearance, the positivity of the ADM mass is not
obvious from the above expressions. Nevertheless, one
can establish the positivity of the mass by using the
relations (50) and (66) as

% - (Zki)z n Zli
>3+ (Zk,')2 + 2(21@) Ky —i2 4 S,
i1 i1 n i1
= (o k) - (k)
+) K

i#1
n—1 ( n 2
— k] + kz)
n n—1 ;
1
2
+— {(n—Z)Zk[ -2 Z ‘kikj]
i#1 i,j(2<i<j)
n—1 n
= ()
i#1
1 2
—l—m Z (ki = k;)* > 0, (88)

where we have used the inequality (50).

The surface gravity and the angular velocities of the
horizon vanish, as expected for supersymmetric black
objects in the asymptotically flat spacetime [41]. The area
of the horizon is nonvanishing and reads from (48) as

Area = 87°RIR,. (89)
The interval /; has a disc topology and each interval /;

(i =2,...,n—1)1is atwo-dimensional sphere, respectively.
The magnetic fluxes through I; are defined as

gl = i [ F (90)
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Since the Maxwell gauge field A, is smooth at the
horizon, bubbles, and critical surfaces, one can evaluate
these fluxes as g[/;] = [-A,]:=%"', which are computed

to give

V3 kil
=5 | o)

V3

2

(ki—kiy) (i=2...n—1). (91)

An alternative definition of magnetic flux proposed in
[50] is

This definition does not apply in the present setting,
because G* diverges at the critical surfaces at which
H = 0. The interval /; corresponds to the disk topology
surface ending on the horizon, whereas the intervals I;
(i =2,...,n) represent 2-cycles (or bubbles) outside the
horizon [64].

When k, =k 1,/[2(k} +nl})], ki=ki 1 (i=2,...,n—1),
all magnetic fluxes ¢[l;](i =1,...,n —1) vanish. Under
this parameter setting, the cond1t10n (83) can be simply
written as

nl3(3k} + 4nly) _
4(k%+nll)2 > 71 i=2,...n. (93)
However, it turns out that these inequalities cannot be
satisfied, since the left-hand side is nonpositive by (52)
while the right-hand side is positive by our assumption. As
for the supersymmetric solutions that we have obtained,
one may therefore interpret that the horizon of the lens
space topology L(n, 1) = $*/Z, must be supported by the
magnetic fluxes.
When

n n k7.
ky :_Zki_Ll:z i (94)

n
i=2 i=2 Zi

the angular momentum J, vanishes, which implies that
the black lens has equal angular momenta J;,, = J,;, as the
BMPYV black hole does. For n = 2, the inequality (83) is
never satisfied in the choice of the parameters (94), which
means that the black lens with equal angular momenta
cannot be realized [14]. For n > 3, it seems impracticable to
show this claim analytically. As far as we check numeri-
cally for n = 3, we find no parameter regions under which
the configuration of equal angular momenta is realized.

5Perhaps Ref. [14] misses the contribution coming from the
horizon.

PHYSICAL REVIEW D 94, 044037 (2016)

We expect that this situation does not change for n > 4, and
our family of black lenses does not admit equal angular
momenta.

B. No CTCs

We wish to impose that the domain of outer communi-
cation in the five-dimensional spacetime remains Lorenzian
without CTCs. This amounts to

Joo > 0, Gyy > 0, Gy Ipp — 95/45 >0. (93)

These conditions ensure that ¢ is a global timelike coor-
dinate and the spacetime is stably causal. Explicitly, these
conditions boil down to

D, =K>+HL > 0, (96)
3
D, = ZL1<2L2 —2K3M —3HKLM + HL? — H*M? > 0,
(97)
D3 = Dzrzsinze - é\)é > 0 (98)

It is considerably elaborate to check their positivity. For
instance, one finds

k2 l 1 [nk? + 2kk; — 1
K2+ HL = 1+"l+£+z_{w_l
l"l ry izzr r
_Zuq—kj)z]
= 2
kK +nl, 1 2l 1 1
> ‘+—+ZHM——+—}
rl r1 > rlrj rj r1
|21, 1
+ k~—k)2{ UL (99
Z_(j g ”1|ij| 2ry )

where we have used (83). Because of the triangle inequality
r;+ |zy;| > ry, we find that the first term in the summation
of the right-hand side is non-negative, while the second
term is rewritten into

)39 <kj—kk>2{'z—”'.—2%k}

22 k(#))>2 1zl

' > K ]+ o)
== A~ 1_ il k 1j 1k
24 K& 2r1r ezl !
—V1|ij|(r‘+rk)]

S

JZ2 k(#))22

{2r Tr— (rj +r)},  (100)

4r1r Ty
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FIG. 1. Plots of D;’s against (p = /x> +y>,2)forn=4,2, =0, k; =1, =2, = 1, 2, = 1, 74 = 3 with k, = —2.36, ky = —2.88,

k4 = —3.27. No naked time machines appear.

where we used |z;| 4 |z1x| > |z;|. This term vanishes for
n = 2, whereas its positivity is unclear for n > 2.

Nevertheless, we made substantial numerical scans
for the positivity of D;’s and found that there appear
no causal violations in the domain of outer communica-
tions (see Fig. 1). We expect that (52) and (83) are
sufficient to remove causal pathologies on and outside the
horizon.

C. Critical surfaces

A key issue for the construction of the black lens is the
contrived choice of harmonic functions (15)-(18). One
immediate notable feature is that H is negative around
r=r; (i=2,...,n), giving rise to the (-, —, —, —) signa-
ture of the Gibbons-Hawking base space. This is not
problematic as long as f~' H remains positive. There appear
critical surfaces [50] at which f = 0 corresponding to H = 0.
From the five-dimensional point of view, this is called an
evanescent ergosurface [48,65]. This is not problematic since
these surfaces exist also in AdS; x S? [48].

The existence of critical surfaces provokes a striking
impact on the uniqueness theorems of the supersymmetric
black hole. In the original proof [42], it was assumed that
the supersymmetric Killing field is strictly timelike outside
the horizon. Recently it has been pointed out [49] that these
critical surfaces can get around the uniqueness theorems.
Since the topologically nontrivial cycles run between two
point sources for the Gibbons-Hawking harmonic function,
this way of avoiding uniqueness theorems does not happen
in four dimensions.

At these regularity surfaces, one must impose the
regularity condition K # 0 when H = 0. Namely, if there
exist points z = z, on the axis such that

k.
K = E —t =0, 101
i |Zc_zi| ( )

these critical surfaces are singular. In the n = 2 case, this
does not occur by the restriction (83), whereas the n > 3
case seems nontrivial, although we have not found the
singular behavior numerically. If these surfaces are singu-
lar, (101) gives rise to

ki +k
itk (102)
i>2 |Zc - Zi|
Hence, a sufficient condition to avoid the singularity at
critical surfaces is
k 1 + nki 79 0,

(2<i<n). (103)

V. SUMMARY

In this work, we have constructed an asymptotically flat
supersymmetric black lens solution in the bosonic sector of
the five-dimensional minimal supergravity, whose horizon
topology is a lens space of L(n,1) = $3/Z, (n = 1,2, ...).
This represents a generalization of the solution found in
[14]. We also computed the conserved charges including
the (positive and BPS-saturating) mass, two angular
momenta, and (rn — 1) magnetic fluxes, among which
n + 1 quantities are independent.

Concerning the black lens solution that we have obtained
in this work, there exists no limit such that all the magnetic
fluxes vanish. Therefore, as for the supersymmetric solu-
tions, the existence of the magnetic fluxes seem to play
an essential role in supporting the horizon of the black lens.
In general, however, it is not clear whether one necessarily
needs such magnetic fluxes in order to construct a black lens.

It appears straightforward to generalize the present work
to U(1)® supergravity and uplift the solution into 11
dimensions [46]. Performing the Kaluza-Klein reduction
and the subsequent T-dualities, the solution can be con-
verted into the D1-D5-P system. We expect that a decou-
pling limit can be taken as in the n = 2 case, which would
enable us to exploit the Cardy formula to reproduce the
Bekenstein-Hawking entropy.
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In this line of research, one of the most exciting
generalizations might be to look for a nonsupersymmetric
black lens. Such a black lens, if it exists, in particular,
a vacuum solution, must differ considerably from the
solutions presented here, since we have made use of the
flux threading the 2-cycles to prevent the collapse, while in
the vacuum case this does not occur [48]. Moreover,
constructing a supersymmetric black hole with a more
general L(p,q) (p, g: coprime integers) lens space top-
ology is also an interesting and challenging problem.
Recently, Matsuno et al. [66] constructed Kaluza-Klein
black holes with more general lens topologies L(p, q).
Despite the different asymptotic structure, their work might
be useful to get the desired solution. This issue deserves
further study.
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APPENDIX: PROOF OF &g, =0

At each bubble, no causal violation requires that
() = 0 holds for i =2,...,n. The proof of this is the
main result of the present appendix. Let us note that

J

A Zjilki

boy=
k.j(k.jik#]
5 nk? + 3k k2

2<j(#i) 2Zjl

— 3k;l, Zji

|Zji|

3 e 3 Z:
hm-+—kl->‘—+ (mh += k> L
)< T |ZjiZki|Z]k Z 0 |Z/1|

2<k. j(k,j#i k#])
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from (66) and (67), the bubble equations (72) can be
written as

my _%kil() + Z

0 pu—
j(#i) | jl|

[3k2k + 2k} h;

3

3 k3 + 3k k? = 31,k; ki —k;)3
:mO_Eki_nl+2ll 11+Z(j2 )
21 25(%i) |2l
(A1)
The summation of (Al) for i =2,...,n gives
0— Z[ nk;+3k1k12-—311kj
2<j 2ZU
i (ki _kj)3:|
2<k(#i) |21
= my ——k<> - / ] , (A2)

where the last term in the first line vanishes by the
antisymmetry for k and j. From Egs. (66) and (67), @)
is written as

hkmj +%kkl]

) Lk

—k3 + 3k k2 7.7,
J k" Z]lez _ <nm0+%kl>

J(#)

D

2<j

Zji
- ( o+ k>|Z’|
Ji

2<j(#i)

2ij |ZjiZki|
Z —ki + 3k%kj .
2ij

2<k,j(k#])

S (A3)

The third, fifth, and sixth terms of the right-hand side of (A3) are combined into

nk? + 3k k3

=3Lk; —kj + 3kzk;

3
- (nmo + Ekl)

-2

2<j

3 3
_<nm0 +§k]> +;(m0 —Ekj> +

_ Z (kk_kj)3’

2<) k(k)) A2k

2Zj1

>

2<k,j(k#)) 22y

k)

k — k;
y, Bobl

2<k.j (k) 42k

(A4)

where we have used Eq. (Al). Next, the summation of the first, second, and fourth terms on the right-hand side of (A3)

reduces to
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nk? + 3kik3 = 3k;l, z;
2Zj1 |Zji|

-2

2<(#i)

_k; + 3kkk]2' Zjilki

PHYSICAL REVIEW D 94, 044037 (2016)

2<k,j(k,j#ik#])

30\

2ij |ZjiZki| 255(#)

. 3 nk3 + 3k k3 — 3k;l ke —k;)? 2
_ Z Zj |:<_m0+§kj+ J 21le. J 1) I Z (ki — k) &]
J

i 1%l
Zji (kk - kj>3 + (kk
2|ij|

2550 i Lsk(#) 2<Kk(Fi.j)

- kj>3 Zki

4ij

2<k(#i.j) 4ij |Zki|

J (A3)

|Zki|

where we have used Eq. (Al). After some lengthy, but straightforward computations, one can verify that (AS5) is further
simplified to (A4) up to the minus sign. This proves @ = 0, as we desired to show.
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