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Charged rotating Kerr-Newman black holes are known to be superradiantly unstable to perturbations of
charged massive bosonic fields whose proper frequencies lie in the bounded regime 0 < w <
min{w, = mQy + qPy, u}, where {Qy, Py} are, respectively, the angular velocity and electric potential
of the Kerr-Newman black hole, and {m, ¢, u} are, respectively, the azimuthal harmonic index, the charge-
coupling constant, and the proper mass of the field. In this paper we study analytically the complex
resonance spectrum which characterizes the dynamics of linearized charged massive scalar fields in a near-
extremal Kerr-Newman black hole spacetime. Interestingly, it is shown that near the critical frequency w,
for superradiant amplification and in the eikonal large-mass regime, the superradiant instability growth
rates of the explosive scalar fields are characterized by a nontrivial (nonmonotonic) dependence on the
dimensionless charge-to-mass ratio ¢/u. In particular, for given parameters {M, Q, J} of the central Kerr-
Newman black hole, we determine analytically the optimal charge-to-mass ratio ¢/u of the explosive scalar
field which maximizes the growth rate of the superradiant instabilities in the composed Kerr-Newman-

black-hole-charged-massive-scalar-field system.
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I. INTRODUCTION

Recent analytical [1] and numerical [2] studies of the
coupled Einstein-Maxwell-Klein-Gordon field equations
have revealed that, thanks to the intriguing mechanism of
superradiance in curved black-hole spacetimes [3-5],
charged rotating black holes can support stationary
bound-state configurations of charged massive bosonic
(integer-spin) fields which are everywhere regular outside
the black-hole horizon [6-8].

These stationary bosonic field configurations [1,2] are
characterized by proper frequencies which coincide with
the critical (threshold) frequency w, for the superradiant
scattering phenomenon in the black hole spacetime [3-5].
In particular, stationary charged field configurations lin-
early coupled to a charged rotating Kerr-Newman black
hole of mass M, electric charge Q, and angular momentum
J = Ma, are characterized by the simple relation [1,2,9]

Whield = Oc = My + qPy, (1)
where {wgeq, m, g} are, respectively, the proper frequency,
the azimuthal harmonic index, and the charge-coupling

constant of the stationary charged scalar field mode [10],
and [11]

a Or,
Qy=——-, by =—"- 2
H ri—ﬁ—az H ri—l—a2 ()

are, respectively, the angular velocity and electric potential
of the Kerr-Newman black hole.
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The proper frequencies of these stationary bosonic field
configurations are also characterized by the inequality
[1,2’6_8]

wlgield <u? (3)

(here u is the proper mass of the bosonic field [12]), a
property which guarantees that these external bound-state
configurations cannot radiate their energies to spatial
infinity [1,2,6-8].

Interestingly, the stationary bosonic field configurations
(1) studied in [1,2,6-8] mark the physical boundary
between stable and unstable composed black hole field
configurations. In particular, the amplitude of an external
bound-state bosonic field configuration whose proper
frequency is characterized by the inequality wgegq > @,
is known to decay in time [4,13], whereas the amplitude of
an external bound-state bosonic field configuration whose
proper frequency is characterized by the property [see
Egs. (1) and (3)]

0 < @feq < min{awe, u} (4)

is known to grow exponentially over time [13—-15].

The superradiant instability properties of the composed
Kerr-Newman black hole charged massive scalar field
system were studied in the interesting work of Furuhashi
and Nambu [16]. In particular, it was found that, in the
small frequency Mw <1 and small charge-coupling
qQ < 1 regime, the growth rate [17] of the superradiant
instabilities is given by the simple expression [16,18]

© 2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.94.044036
http://dx.doi.org/10.1103/PhysRevD.94.044036
http://dx.doi.org/10.1103/PhysRevD.94.044036
http://dx.doi.org/10.1103/PhysRevD.94.044036

SHAHAR HOD

4

S = %Q(Mz ~0*)(Mu —qQ)> for

{Mo<1,Mp<1,q0 < 1}. (5)

Inspecting the relation (5) for the imaginary part of the
resonant frequency which characterizes the composed
black-hole charged field system, one realizes that, in the
small frequency Mm < 1 regime, the characteristic growth
rate of the superradiant instabilities is a monotonically
decreasing function of the dimensionless quantity ¢ Q. That
is, for given values {M, Q,a} of the black hole physical
parameters, S is found to be a monotonically decreasing
function of the charge-coupling parameter ¢ which char-
acterizes the explosive scalar fields.

The main goal of the present paper is to analyze the
instability properties of the composed Kerr-Newman black
hole charged massive scalar field system in the regime
of large-field frequencies. To this end, we shall study
the complex resonance spectrum which characterizes the
dynamics of the charged massive scalar fields in the near-
extremal charged spinning Kerr-Newman black hole space-
time. In particular, below we shall determine analytically
the characteristic growth rates of the superradiant insta-
bilities near the threshold (critical) frequency w. [see
Eq. (1)] [19]. Interestingly, as we shall explicitly show
in the present analysis, the superradiant instability growth
rates of the explosive charged massive scalar fields near the
critical frequency (1) are characterized by a nontrivial
(nonmonotonic) dependence on the dimensionless black
hole field charge-coupling parameter ¢Q. In particular, for
given parameters {M, Q, a} of the central Kerr-Newman
black hole, we shall determine analytically the optimal
charge-to-mass ratio ¢/u of the explosive scalar field which
maximizes the growth rate of the superradiant instabilities
in this composed Kerr-Newman black hole charged mas-
sive scalar field system.

II. DESCRIPTION OF THE SYSTEM

We shall study analytically the superradiant instability
properties of a physical system which is composed of a
charged massive scalar field ¥ which is linearly coupled to
a charged spinning near-extremal Kerr-Newman black
hole. In terms of the familiar Boyer-Lindquist coordinates
(t,r,0,¢), the line element which describes the external
spacetime of a Kerr-Newman black hole of mass M, electric
charge Q, and angular momentum per unit mass a = J/M
is given by [11]

A 2 in26
ds? = == (dt — asin?0dp)? + 2 dr* + p2de? +
p A p

X [adt — (r? + a?)d¢]?, (6)

where A = 7> —2Mr+ a> + Q% and p? = r? + a*cos’6.
The zeroes of the metric function A,
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ro =M=+ (M?-a*- Q%2 (7)

determine the radii of the black hole (event and inner)
horizons.

The dynamics of a linearized scalar field of mass y and
charge-coupling constant ¢ in the Kerr-Newman black hole
spacetime is governed by the familiar Klein-Gordon wave
equation [20,21],

(V" = igA*)(V, —igA,) — w?]¥ =0, (8)

where A, is the electromagnetic potential of the charged
black hole. It is convenient to decompose the scalar field
eigenfunction U(z, r, 0, ¢) in the form [20-22]

U= Zeim¢51m (9; av/u? — a)2>

ILm

X Ry (riM, Q,a,p,q, w)e™ ", 9)

where R, is the radial part of the scalar eigenfunction and
S;» 1s the angular part of the scalar eigenfunction.
Substituting the scalar field decomposition (9) back into
the Klein-Gordon wave equation (8) and using the line
element (6) of the curved Kerr-Newman black hole
spacetime, one obtains [20,21] two coupled ordinary
differential equations [see Egs. (10) and (12) below] of
the confluent Heun type [20,21,23-26] for the angular
and radial parts of the charged massive scalar
eigenfunction.

The angular (spheroidal harmonic) functions S, (6)
satisfy the ordinary differential equation [20,21,23-26]

ds
sin 6 l)

K 202 — 0?) — (12 — 0?)cos2l —

x S, = 0. (10)

2

This differential equation determines the discrete family of
angular eigenvalues {K,,} which characterize the regular
[27] angular eigenfunctions {S;,,(0)} [20,21,23-26]. For
later purposes we note that, in the asymptotic m > 1
regime, the angular eigenvalues of the spheroidal differ-
ential equation (10) are characterized by the simple
asymptotic behavior [28,29]

Ky =m*[1+0(m )] —a*(u* —?).  (11)

The radial part of the Klein-Gordon wave equation (8) in
the Kerr-Newman black hole spacetime is given by
[20,21,30]
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d [ dR, H?
CAAZ) T 2maw — 127 + a®) — K,y | R
dr( dr>+[A+ maw — pu*(r* + a*) i | Rim

(12)

H = w(r* +da*) —ma — qQr. (13)
The differential equation (12), which determines the radial
behavior of the charged massive scalar fields in the charged
spinning Kerr-Newman black hole spacetime, is supple-
mented by the physically motivated boundary condition of
purely ingoing scalar waves (as measured by a comoving
observer) at the outer horizon of the Kerr-Newman black
hole [1,2,13,31]:

R(r—ry) ~e @@y, (14)
where the “tortoise” radial coordinate y is defined by the
relation dy/dr = (r* + a*)/A [32]. In addition, bound-
state configurations of the charged massive scalar fields in
the Kerr-Newman black hole spacetime are characterized
by radial eigenfunctions which, in the small frequency
* < p* regime [see Eq. (3)], decay exponentially fast at
spatial infinity [1,2,13]:

R(r - ) ~%e‘V”2_‘”2’. (15)

The radial differential equation (12), supplemented
by the boundary conditions (14) and (15), single out a
discrete spectrum of complex resonant frequencies
{w(u,q,l,m,M,Q,a;n)} [33] which characterize the
dynamics of the charged massive scalar fields in the
charged rotating Kerr-Newman black hole spacetime. In
particular, resonant frequencies whose imaginary parts are
positive are associated with the exponentially growing
superradiant instabilities [13—15] which characterize the
composed black hole scalar field system [see Eq. (9)]. As
we shall show below, for near-extremal Kerr-Newman
black holes in the regime (r, — r_)/r, < 1, the character-
istic complex resonance spectrum of the composed Kerr-
Newman charged massive scalar field system can be
studied analytically in the vicinity of the critical resonant
frequency w, [see Eq. (1)] [19].

III. THE RESONANCE EQUATION
AND ITS REGIME OF VALIDITY

In the present section we shall study the differential
equation (12) which determines the spatial behavior of the
radial scalar eigenfunctions. In particular, we shall derive a
resonance condition [see Eq. (42) below] for the complex
eigenfrequencies which characterize the dynamics of the
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charged massive scalar fields in the spacetime of a near-
extremal charged rotating Kerr-Newman black hole.

The resonance equation for the complex resonant
frequencies which characterize the dynamics of neutral
scalar fields in the spacetime of a neutral near-extremal
Kerr black hole was derived in [34]. It is important to
emphasize that the analysis presented in [34] is restricted to
the regime My = O(1) of moderate field masses. In the
present study we shall generalize the analysis of [34] to
the regime of charged massive scalar fields propagating in
the spacetime of a charged near-extremal Kerr-Newman
black hole. In addition, below we shall extend the analysis
of [34] to the regime Mu > 1 of large-field masses [35].

It is convenient to express the physical quantities which
characterize the composed Kerr-Newman black hole lin-
earized charged massive scalar field system in terms of the
dimensionless variables [20,21]

xzr—r+; TEr+—r_; k=2wr, —q0;
ry ry
 — @,
= , 16
e 277,'TBH ( )

where Tgy = (r, —r_)/4x(r% + a*) is the Bekenstein-
Hawking temperature of the charged spinning Kerr-
Newman black hole. Substituting (16) into (12), one finds
the differential equation

d’R dR
x(x+r)ﬁ+(2x+1)E+UR:O (17)

for the radial eigenfunctions of the charged massive scalar
fields in the Kerr-Newman black hole spacetime, where

[wr x* + kx + wr/2)?
x(x+ 1)

U=U(x;pu,q,0,l,m,M,Q,a) =

(18)

The radial equation (17) can be solved analytically in the
two asymptotic regions x < 1 and x > max{r, M(w. —
@)} [34]. Note, in particular, that in the double asymptotic
regime [36]

— K +2maw — @[3 (1 + x)? + d?].

<1l and M(w,-w) <1, (19)
one can use a standard matching procedure in the
overlapping region max{r,M(w.—w)} <Kx <1 in
order to determine the complex resonant frequencies
{w(p,q,1,m,M,Q,a;n)} which characterize the dynam-
ics of the charged massive scalar fields in the charged
spinning Kerr-Newman black hole spacetime.

We shall first solve the radial differential equation (17) in
the region

x<1, (20)
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in which case one can use the near-horizon approximation U — U, = (kx + wz/2)*/[x(x + 7)] — K + 2maw —
yz(ri + az) for the effective radial potential in (17). The near-horizon radial solution of (17) which respects the
physically motivated boundary condition (14) at the outer horizon of the Kerr-Newman black hole can be expressed in terms

of the hypergeometric function [25,34,37]

. ik 1 1
R(x) =x7% <)_;+ 1) ’ ,F, <§+ i6— ik’i —i6—ik;1 —iw; —x/r), (21)

where

1
52E—K—Z+2maw+k2—ﬂ2(72++“2>‘ (22)

It proves useful to write the near-horizon radial solution (21) in the form (see Eq. 15.3.7 of [25])

(1 - iw)0(2is)

] - 1 ot ¥\ —1/2+is+ik
(x) =77 (? - ) [F(1/2 +i6—ik(1/2 +i6 + ik — iw) (;>

1 1
X, F, <— i5— ik,i —i0 — ik + iw; 1 — 2i6; —T/x) + (56— —5)} , (23)

2

where the notation (§ — —8) means “replace 6 by —¢ in the
preceding term”. Using the simple asymptotic behavior
(see Eq. 15.1.1 of [25])

b
,F (a,b;c;z) - 1 for a?.z_)o (24)

of the hypergeometric function, one finds from (23) the
expression

R(x) = I(1 — iw)T(2is)7!/2-i0-im/2
(x) = [(1/24i6 —ik)T'(1/2 + i5 + ik — iw)
+ (5 — —5> (25)

x~3Hio

for the radial eigenfunction of the charged massive scalar
fields in the intermediate region

X max(m,w) K x < 1. (26)

We shall next solve the radial differential equation (17) in
the region

x> max(z, wr/m), (27)
in which case one can replace (17) by

d°R dR
XZW—Fz)Ca—F UfarR:()a (28)
where the effective potential in (28) is given by U —
Uge = (0r,x + k)2 = K + 2maw — p2[r (1 + x)? + d?].
The radial solution of (28) can be expressed in terms of the
confluent hypergeometric function [25,34,37]:

[
R(x) = N, x (2¢)rtidx—rtidg=ex F,
1
X <§+ i6—x,1 —|—2i6,2€x> + N, x (6 > =95),
(29)

where we have used here the dimensionless variables

k _ 2
1/;,2_61)2,,+; KEM_ (30)
€

As we shall show below, the normalization constants
{N|,N,} of the radial solution (29) can be determined
analytically by a standard matching procedure. Using the
simple asymptotic behavior (see Eq. 13.1.2 of [25])

€

Fila,b,z) > 1 for%-z—»O (31)

of the confluent hypergeometric function, one finds from
(29) the expression

R(x) = Ny x (2€)70x73H0 L Ny x (6 — =8)  (32)

for the radial eigenfunction of the charged massive scalar
fields in the intermediate region

rxmax(1,w/m) < x <m™". (33)

From Egs. (26) and (33) one learns that, for near-
extremal charged spinning Kerr-Newman black holes in
the regime 7 < 1, there is an overlap radial region which is
determined by the strong inequalities

044036-4



ANALYTIC TREATMENT OF THE SYSTEM OF A KERR- ...
(34)

7 x max(m, w) K x, <m™!,
in which the expressions (21) and (29) for the radial scalar
eigenfunction R(x) are both valid. Note, in particular, that
the two expressions (25) and (32) for the radial eigenfunc-
tion in the overlap region (34) have the same functional
dependence on the dimensionless radial coordinate x. Thus,
one can determine the normalization constants N, and N,
of the radial eigenfunction (29) by matching the expres-
sions (25) and (32) in their overlap region (34). This
matching procedure yields
|

I'(1 4 2id)
I(3+ i +«)
I'(1 4 2i5)

R@amy+hﬂq%y

+ {Nl x (2¢)7%

—1-k ex
- 4+ Ny X (6 > =0
TEtio—x) " 2 X (0= )}e
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N.(8) = (1 - iw)T(2i5)
YT 4 is— ik)T (L + is+ ik — iw)
and NQ((S) :N1<—5)

T%—ié—i% (2 6) —1-is
(35)

We shall now derive the characteristic equation which
determines the complex resonant frequencies of the com-
posed Kerr-Newman black hole charged massive scalar
field system. We first point out that the radial eigenfunction
(29) of the charged massive scalar fields is characterized by
the asymptotic behavior (see Eq. 13.5.1 of [25])

x—1+/<(_1)—%—i5+/< + Nz X (5 N _5):| e—¢x

(36)

at spatial infinity. Taking cognizance of the boundary condition (15), which characterizes the spatial behavior of the bound-
state radial scalar eigenfunctions at asymptotic infinity, one realizes that the coefficient of the exploding exponent e“* in the

asymptotic expression (36) must vanish:

(1 + 2i6)

rl+io—x)"

N, x (2¢)7

“IK 4 Ny x (5 > —=8) = 0.

(37)

Substituting into (37) the normalization constants N; and N, [see Eq. (35)], one finds the resonance equation

[(=2i8)]2T(} +is — ik)L( + is — k)L ( + is + ik — iw)
(3 —i6—ik)[(}—is — )5 —i6 + ik — iw)

I'(2i5)

which determines the complex resonant frequencies of the
charged massive scalar fields in the near-extremal charged
rotating Kerr-Newman black hole spacetime.

We note that the resonance equation (38) can be
simplified in the regime

0]
<« — 39
r< (39)

of near-extremal Kerr-Newman black holes, where [38]

(1 +a*) (0 - o)

ry

@

(40)

is a dimensionless parameter which quantifies the distance
between the proper frequency of the charged massive scalar
field and the critical frequency (1) [19] for superradiant
scattering in the charged rotating Kerr-Newman black hole
spacetime. In particular, in the near-extremal regime (39),
one can use the approximated relation [25,38]

(3 +i6+ ik — iw)
['(3—i6+ ik — iw)

= (-im)**[1 + O(m/w)]  (41)

(2er)%0 =1, (38)

|
for the gamma functions that appear in the resonance
equation (38). Substituting (41) into (38), one finds the
resonance condition

T(-2i8)|?T(¢+is — ik)DE +is6—x)
{ I'(2i5) } r(—is— ik —is—x) (~4ie@)™ = 1.
(42)

It is worth emphasizing again that the resonance
equation (42) is valid in the regime [see Egs. (16), (34),
(39), and (40)]
mr<o<ml. (43)
In the next section, we shall show that, for § € R [39],
the (rather cumbersome) resonance equation (42) yields a
remarkably simple expression for the dimensionless ratio
wp/(wg — w.), where {wg,w;} are, respectively, the real
and imaginary parts of the complex resonant frequencies
which characterize the dynamics of the charged massive
scalar fields in the near-extremal charged spinning Kerr-
Newman black hole spacetime.
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IV. THE SUPERRADIANT INSTABILITY
SPECTRUM OF THE COMPOSED
KERR-NEWMAN BLACK HOLE CHARGED
MASSIVE SCALAR FIELD SYSTEM

Taking cognizance of the derived resonance
equation (42), one finds that the resonant frequencies of
the composed Kerr-Newman black hole charged massive
scalar field system in the regime (43) can be expressed in
the compact form

d=RxJ, (44)

where [40,41]

R e~™/? { [ '(2i6) ]2 r(—is— K)}l/zi«s cR(45)

4e ['(=2i8)| T3+ i5—«)
and
1 oie s ;
J= z{%} M ec (46)
Equations (44), (45), and (46) imply the relations
op=RxJ; and &g =R X Jg, (47)

which, in turn, yield the remarkably simple dimensionless
ratio

o _ 1

op —w,  Jr

(48)

for the resonant frequencies of the charged massive scalar
fields in the near-extremal Kerr-Newman black hole
spacetime.

In the next section, we shall study the eikonal large-
mass Mpu > 1 regime [42] of the composed Kerr-
Newman-black-hole charged massive scalar field system.
In particular, below we shall show that the characteristic
dimensionless ratio w;/(wg — @) [see Eq. (48)] can be
expressed in a remarkably compact form in this large-
mass regime.

V. THE EIKONAL LARGE-MASS Mu > 1 REGIME
In the present section, we shall analyze the asymptotic
large-mass regime,

My > 1, (49)

of the composed Kerr-Newman black hole charged massive
scalar field system. In the asymptotic regime (49), one can
use the approximated relation [25,42]

PHYSICAL REVIEW D 94, 044036 (2016)
l _ _
F(f 1.5 ’.k) = Qi (k4 §)=ilk+) (k — g)ilk=)
F(E + i6— lk)

x [l 4+ e[ L o(m)]  (50)

for the gamma functions that appear in the expression (46)
for J. Substituting (50) into (46), one finds

T = —e(k + 8)~k+9)/28(f — §)(k=0)/26]] 4 g=2n(k=6)]1/2i6
(51)

which yields the remarkably simple dimensionless relation

[see Eq. (48)] [43]

o—27(k=5)

= (52)

W, — WR 26

wp

for the characteristic resonant frequencies of the composed
Kerr-Newman black hole charged massive scalar field
system in the eikonal large-mass regime (49).

As a consistency check, we shall now compare our large-
mass result (52) for the resonant frequencies of the
composed black-hole-field system with the corresponding
large-mass result of Zouros and Eardley [44]. In their
highly important work, Zouros and Eardley [44] have
performed a WKB analysis for the specific case of neutral
scalar fields linearly coupled to a neutral spinning Kerr
black hole in the large-mass My > 1 regime. In particular,
for the case of near-extremal Kerr black holes in the
regime [45]
a=M,

l=m>1, u=w=mQy=m/2M > 1,

(53)

Zouros and Eardley [44] have derived the well-known
WKB result [46]

Moy « =27 C=-V2)Mp, (54)

Note that, for near-extremal Kerr black holes, the specific
case (53) corresponds to [see Egs. (11), (16), and (22)]

k=m and 5:%+0(1). (55)

Substituting (55) into our analytically derived expression
(52), one finds the dimensionless ratio

e=27(2=V2)Mp
= , (56)
we—wr  2v2My

Wy

a result which is consistent with the important result (54) of
Zouros and Eardley [44] for the specific case of neutral
scalar fields linearly coupled to a neutral near-extremal
spinning Kerr black hole.
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VI. THE OPTIMAL CHARGE-TO-MASS RATIO
OF THE EXPLOSIVE SCALAR FIELDS

In the present section we shall analyze the functional
dependence of the superradiant instability growth rate (52)
on the dimensionless ratio g/u which characterizes the
explosive charged massive scalar fields. Taking cognizance
of Egs. (1), (11) [47], (16), and (22), one finds the expression

5—k =/ Qocry — q0)? - (aw, —m)? - 2rt
- (zwc ry—4q Q)

for the exponent of (52) near the superradiant instability

threshold (1) [19,48] of the near-extremal Kerr-Newman

black holes. From Eq. (57) one immediately learns that the
exponent 6 — k is a monotonically decreasing function of the

PHYSICAL REVIEW D 94, 044036 (2016)

mass parameter y. Thus, one can maximize the value of the

exponent (57) by minimizing (for a given value of the critical

field frequency w,) the proper mass of the explosive scalar

field. In particular, taking cognizance of Eq. (3) one realizes

that, for a given value of the critical field frequency w, [48],

the exponent (57) can be maximized by taking
o

— >
a)C

(58)

Substituting Eqgs. (1), (2), and (58) into (57), and defining the

o—k

(57) dimensionless quantities
y = @; s=2, (59)
m ry
one finds
|
- V=523 =s2)y> +4s(1 —s2)y + 32— 1= 25 + (1 = s?)y] (60)

for the maximally allowed value of the exponent (57) near
the superradiant instability threshold (1) of the near-
extremal Kerr-Newman black holes.

For a given value of the dimensionless black hole
rotation parameter s, the superradiant instability growth
rate of the charged massive scalar fields [that is, the value of
wy; see Eq. (52)] can be maximized by maximizing with
respect to y the expression (60) for the exponent 6 — k [49].
In particular, a simple differentiation of (60) with respect to
the dimensionless variable y yields [50]

max, {6 — k} = S —

s2+V1+s7)

where this maximally allowed value of the exponent 6 — k
is obtained for

(61)

1 —s2

r=7r"(s) :5(2“‘— Tsz)

It is worth noting that the expression (61) for max{5 — k} is
a monotonically increasing function of the dimensionless
black hole rotation parameter s. In particular, one finds
from (61) max{6 — k} = m(1/y/2 = 1) in the s — 1 limit,
in agreement with the highly important result (54) of
Zouros and Eardley [44] for the specific case of neutral
scalar fields linearly coupled to a neutral near-extremal
spinning Kerr black hole.

(62)

VII. SUMMARY

The superradiant instability properties of the composed
Kerr-Newman black hole charged massive scalar field

1+ s?

|
system were studied analytically. In particular, we have
analyzed the near-critical [19,48] complex resonance spec-
trum which characterizes the dynamics of linearized
charged massive scalar fields in a near-extremal charged
spinning Kerr-Newman black hole spacetime.
Interestingly, it was shown that in the eikonal large-
mass regime the superradiant instability growth rates of
the explosive charged massive scalar fields are charac-
terized by a nontrivial (nonmonotonic) dependence on
the dimensionless black hole field charge-coupling
parameter gQ [51]. In particular, for given parameters
{M,Q,a} of the central near-extremal Kerr-Newman
black hole, the superradiant instability growth rate is
maximized for [see Egs. (1), (2), (58), (59), and (62)]

1 —s?
Q) ontimal = M- ————————= and
(q )optlmal S(Z +vV1+ S2)
(Mp) s+ V1457 (63)
. = m - .
Hloptimal s+ V1I+ )V +s?
These relations yield the dimensionless compact
expression
(") _ Vi-s (64)
M/ optimal 5? +V1+ s?

for the optimal charge-to-mass ratio of the explosive
scalar field which maximizes the growth rate of the
superradiant instabilities. Finally, taking cognizance
of Egs. (52), (60), and (62), one finds the large-mass
expression
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2 (65)

for the maximum growth rate of the superradiant instabilities in the composed Kerr-Newman black hole charged

massive scalar field bomb.
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