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We discuss the near-singularity region of the linear mass Vaidya metric. In particular, we investigate the
structure in the numerical solutions for the scattering of scalar and electromagnetic metric perturbations
from the singularity. We observe that, around the total evaporation point, quasinormal-like oscillations
appear, indicating that this may be an interesting model for the description of the end point of black hole
evaporation.
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I. INTRODUCTION

The Vaidya metric is a useful solution to Einstein’s
equations with a stress-energy tensor that corresponds to an
outgoing, spherically symmetric flux of radiation [1]. It has
been used as a model for the metric outside stars that
includes the backreaction of the space-time to the star’s
radiation, and also as a model for various studies of both
black hole formation and evaporation [2–14]. The linear
mass Vaidya metric is a special class of Vaidya metrics over
which one has a certain degree of analytic control, in
particular as a consequence of the additional homothety
symmetry that these metrics possess. For a restricted range
of parameters in the outgoing Vaidya metric with linear
mass the metrics contain a null singularity that vanishes at a
point internal to the space-time, and thus it is an ideal exact
candidate for a model of a decaying black hole.
In a previous paper [15] a particular scenario was

introduced and an initial study of the behavior of metric
perturbations was presented in support of this model. The
outgoing Vaidya metric with a monotonically decreasing
linear mass function can resemble a realistic situation for
the end state of a black hole. In this paper we study in more
detail the electromagnetic and scalar perturbations of the
outgoing linear mass Vaidya metric in this context; in
particular, we study the perturbation equations of this
dynamical space-time and look for a quasinormal (QN)-
like ringing. Such results would give support to the claim
that this metric is black hole-like around the vanishing point
of the singularity and thus is suitable to be considered as the
transitional state between an adiabatically evaporating
Schwarzschild black hole at the end stage of its life and
Minkowski space-time.
Quasinormal modes (QNMs) [16,17] for time-dependent

backgrounds have been investigated in Refs. [18–20] and in
particular for the ingoing Vaidya metric in Refs. [7,11]. The
general shape of the oscillations for dynamical back-
grounds like the Vaidya metric is different from that of
the stationary ones like the Schwarzschild metric. In the

stationary adiabatic regime the real part of QNMs inversely
changes with the mass function. Contrary to dynamical
backgrounds when the mass changes with time, the period
of the oscillation will also change, and thus the shape of the
waveform data includes oscillations with varying periods.
The power-law falloff of the tail of QNMs originally
calculated by Price [21] for stationary space-time is also
different for dynamical backgrounds [18,22]. Numerical
errors in the investigation of tail phenomena in a dynamical
background are unavoidable, so to have a better picture
of this phenomena one should also use an analytical
method.
In this paper we use both numerical and analytical

methods to study the response of the outgoing Vaidya
background to the electromagnetic and scalar perturbations.
We first write the perturbation equations in double null
coordinates [23] and then we solve the partial differential
equations (PDEs) numerically. To provide an alternative,
more analytic approach we then use the homothety sym-
metry of the linear mass Vaidya metric to reduce the
problem to that of an ordinary differential equation and
comment on the results.

II. OUTGOING VAIDYA SPACE-TIME

The Vaidya metrics [1] are exact solutions of Einstein’s
equations. In radiation coordinates ðw; r; θ;ϕÞ this metric
has the form

ds2 ¼ −
�
1 −

2mðwÞ
r

�
dw2 þ 2cdwdrþ r2dΩ2; ð1Þ

where c ¼ 1;−1, respectively, corresponds to ingoing and
outgoing radial flow, w ¼ tþ cr, and mðwÞ is a monotonic
mass function. In the presence of spherical symmetry this
mass function can be the measure of the amount of energy
within a sphere with radius r at a time t [24,25].
The causal and singularity structure of this space-time can

change significantly with the choice for the mass function.
For constant mass this solution reduces to the Schwarzschild
solution in ingoing or outgoing Eddington-Finkelstein*saeede.nafooshe@ung.si

PHYSICAL REVIEW D 94, 044035 (2016)

2470-0010=2016=94(4)=044035(8) 044035-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.044035
http://dx.doi.org/10.1103/PhysRevD.94.044035
http://dx.doi.org/10.1103/PhysRevD.94.044035
http://dx.doi.org/10.1103/PhysRevD.94.044035


coordinates. The ingoing Vaidya metric describes collapsing
null dust [26]. The outgoing Vaidya space-time

ds2 ¼ −fðu; rÞdu2 − 2dudrþ r2dΩ2;

fðu; rÞ ¼
�
1 −

2mðuÞ
r

�
ð2Þ

describes the evolutionof a radiating star or blackhole,where
mðuÞ is the mass function of retarded time u that labels the
outgoing radial null geodesics. In the following we will
restrict our analysis to the outgoing case as we are interested
in the final stages of black hole evaporation.
The only nonvanishing component of the Einstein

tensor is

Guu ¼ −
�
2

r2

�
dmðuÞ
du

; ð3Þ

and the stress-energy tensor that leads to this solution is

Tαβ ¼ −
1

4πr2
dmðuÞ
du

kαkβ; ð4Þ

where kα is tangent to the radial outgoing null geodesic,
kαkα ¼ 0. This stress-energy tensor describes a pressureless

fluid with energy density ρ ¼ − dmðuÞ
du 4πr2 moving with

four-velocity kα ¼ δuα (such a fluid is called “null dust”).
To satisfy the null energy condition for which ρ ≥ 0, the
mass function mðuÞ must be a decreasing function of

increasing retarded time, namely, dmðuÞ
du < 0, which means

that the mass function decreases in response to the outflow
of radiation as one would expect for the evolution of a
radiating star or an evaporating black hole. For our analysis
we will choose the linear mass function mðuÞ ¼ −μu.
This choice of mass function will enable us to study the
possible evolution of the space-time around the end point of
black hole evaporation.
In addition to being spherically symmetric, the space-

time (2) is also homothetic in the case that the mass
function is linear. The space-time possesses a conformal
Killing vector K [4],

Kμ;ν þ Kν;μ ¼ 2ρgνμ; ð5Þ

where ρ is a constant, indicating that this is actually a
homothety symmetry. Homothety means that the metric
with a linear mass function scales upon a scaling of the
coordinates by an overall factor,

ðu; rÞ → ðζu; ζrÞ ⇒ ds2 → ζ2ds2; ð6Þ

for any real ζ. One consequence of this symmetry is that if
ðuðτÞ; rðτÞÞ is a solution to the geodesic equations, then
ðζuðτÞ; ζrðτÞÞ is also a solution.

A. The conformal structure of linear mass
Vaidya space-times

In general the choice of mass function in Vaidya space-
time determines its global and local structures and singu-
larities. Here we will consider only the case of a linear mass
function mðuÞ ¼ −μu and the conformal structure of the
space-time varies with μ [23] in the following way. For
μ > 1=16 the conformal diagram is displayed in Fig. 1. The
dot-dashed line shows the singularity at r ¼ 0 for u < 0.
The next case is μ ¼ 1=16, which is represented in Fig. 2.
In the last case, in Fig. 3 the conformal diagram for μ <
1=16 is shown. In this case the u ¼ 0 boundary to the future
of the end point of the r ¼ u ¼ 0 singularity is special in
that the space-time there approaches that of Minkowski
space. Indeed, it has been shown in Ref. [27] that one can
continuously attach the metric along this part of the u ¼ 0
hypersurface to Minkowski space without introducing
curvature singularities.
Considering the outgoing Vaidya metric with a linear

mass function and with μ < 1=16, a new model for the final
fate of a black hole at the end of its evaporation has been
proposed in Ref. [15]. This space-time can be divided into
three different regions characterized by a transition time ut
and illustrated in Fig. 4: an adiabatic Schwarzschild region
for all v with u < ut with mðuÞ ∼ ju − u0j1=3 and also most
of the region v < 0; a Vaidya region with a linear mass
function for ut < u < 0, v ≥ 0; and a Minkowski space-
time region for u > 0, v > 0. In this model the linear mass
function is used when the mass of the black hole becomes
Planckian.

FIG. 1. Conformal diagram for the outgoing Vaidya metric with
a linear mass function for μ > 1=16. The dot-dashed line
represents the r ¼ 0 singularity.

FIG. 2. Conformal diagram for the outgoing Vaidya metric with
a linear mass function for μ ¼ 1=16. The dot-dashed lines
represent r ¼ 0 singularities.
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B. Vaidya in double null coordinates

As our purpose is to study wave equations on the
outgoing Vaidya space-time, it is very useful to introduce
the double null coordinates [23], for which both semi-
analytical and numerical calculations can be performed.
In these coordinates ðu; θ;ϕ; vÞ the general form of the
metric is

ds2 ¼ −2fðu; vÞdudvþ r2ðu; vÞdΩ2: ð7Þ

For the outgoing metric, the energy-momentum tensor has
the form

Tμν ¼
μ

4πrðu; vÞ2 ðδ
u
μÞðδuνÞ: ð8Þ

Considering the linear mass function with μ < 1=16 and
introducing Δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 16μ
p

, fðu; vÞ is

fðu; vÞ ¼ 1þ Δ
2Δrðu; vÞ ðrðu; vÞ þ uð1 − ΔÞ=4Þ2=ð1þΔÞ; ð9Þ

where rðu; vÞ can be derived by solving the equation

�
v

juj2Δ=ð1þΔÞ

�
1þΔ

�
rðu; vÞ
juj −

1 − Δ
4

�
1−Δ

¼
�
rðu; vÞ
juj −

1þ Δ
4

�
1þΔ

: ð10Þ

The function rðu; vÞ can be found exactly for Δ ¼
3=5; 1=2; 1=3; 1=5; 1=7 and the explicit solutions have
been given in Ref. [15].

III. VAIDYA POTENTIAL

In general, QNMs are found as decaying oscillations in
the metric perturbation close to the horizon of a black hole.
The frequencies of these modes generally have a complex
form of which the real part represents the oscillation
frequency and the imaginary part represents the damping
of the oscillation. QNMs can be calculated for both sta-
tionary and time-dependent backgrounds and they are black
holes fingerprints. The evolution of the response of the black
hole to perturbations can be divided into three stages: first,
an initial wave burst in a relatively short time by the source
of the perturbation; then, the “ringing radiation” which is
caused by the damped oscillations of QNMs that are excited
by the source of perturbation; and finally, a power-law tail
suppression of QNMs at very late time due to the scattering
of the wave by the effective potential.
In order to study possible QN-like modes of Vaidya

space-time, we need to study the wave equations for
perturbations of the space-time metric [28] which are
naturally divided into scalar, electromagnetic, and tensorial
modes,

∂2ψ

∂u∂vþWðu; vÞfðu; vÞψ ¼ 0; ð11Þ

where Wðu; vÞ is given by

Wðu; vÞ ¼ lðlþ 1Þ
2r2ðu; vÞ þ σ

mðuÞ
r3ðu; vÞ ; ð12Þ

and where σ ¼ 1 and σ ¼ 0 correspond, respectively, to
the scalar and electromagnetic perturbations, which will be
our focus in the current study. From here on, for calculational
convenience, we extend the linear mass function mðuÞ ¼
−μu to all values of u < 0 and not just for ut < u < 0, as
was shown in Fig. 4. Equation (11) describes wave propa-
gation in the Vaidya background, and fðu; vÞWðu; vÞ is the
effective potential which describes how fields are scattered
by the geometry. It is clear that this potential depends on the
black hole geometry and also on the spin of the perturbation
under consideration.

FIG. 3. Conformal diagram for the outgoing Vaidya metric with
a linear mass function for μ < 1=16. The dot-dashed lines
represent r ¼ 0 singularities.

FIG. 4. Conformal diagram for the evaporation of a Schwarzs-
child black hole with the linear Vaidya metric at the final stage of
evaporation and a future Minkowski region.
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A. Integrating the PDE

We proceed by using the numerical integration technique
for the calculation of QNMs originally proposed and
developed in Ref. [29]. In the present context this equation
was already studied for the special case of electromagnetic
perturbations with l ¼ 1 in Ref. [15], where it was
observed that an initially ingoing Gaussian wave packet
coming in from I− with its center at small negative v
appears to develop a QN-like ringing as it evolves towards
u → 0. The numerical integration was carried out by
sending a Gaussian wave localized around vc < 0 in the
direction of increasing u.
In this paper, in addition to the calculation for the

electromagnetic field σ ¼ 0, we also present the numerical
integration to obtain the time profile of the perturbed
outgoing Vaidya metric for the scalar perturbation σ ¼ 1
and for different angular momentum values. Some selected
results for the evolution of the ingoing wave are presented
in Fig. 5. In these figures the results of the integration with
Δ ¼ 1=2 are displayed. Similar results can also be obtained
for other values of Δ. The initial conditions were a
Gaussian waveform in v with its center at v ¼ vc at u ¼
u0 ¼ −40 and with varying widths. One can see that in
particular there is a ringing of varying period for v ≲ 0.
The ringing dies out rapidly and is not present for v > 0, in
line with the fact that the “Planckian” black hole has
vanished. The general form of these oscillations does not
change for different values of the initial Gaussian, though
their detailed structure does. This indicates that there are
not true QNMs at particular discrete frequencies, in contrast
to what one finds for the Schwarzschild black hole.
To check the convergence of our numerical solution we

performed this integration for two different numbers of grid
points: 1600 and 2500 points. The results in Fig. 5 represent
the solution for 1600 grid points. We found that increasing
the number of grid points does not change our results.
These results are in line with earlier studies of QNMs

for dynamical backgrounds [19] where it has been pointed
out that when the black hole mass decreases with time
the oscillation period becomes shorter, in contrast to the
constant-frequency QNMs of the Schwarzschild black
hole. These solutions show a constant tail after a few
oscillations for large values of v > 0; however, we will see
in the next section that as a consequence of the homothety
of the metric and the initial conditions that the jψ j → const
behavior at large positive v is most likely a consequence of
numerical errors. In Refs. [18,22] has been shown that there
is a time window between the dominant period of QN
ringing and the tail of these modes. In fact, the tail behavior
with a pure power-law decay is only expected at infinitely
late times. In practice the numerical integration is for a
finite time interval and this causes an inherent error in the
behavior of the tail.
In the next subsection we will show that, as a conse-

quence of the scaling symmetry, the wave equation can be

separated, thus reducing the problem to that of an ordinary
differential equation. We will also see from the separation
ansatz that evolution is essentially a frequency-dependent
rescaling of the modes that are used to construct the initial
Gaussian profile.

B. Reduction to an ODE

The main purpose of this paper is to present the wave
profiles that one can obtain from the numerical mesh
integration method for different initial conditions and fields
(as carried out in the previous section), and then to compare

(a)

(b)

(c)

FIG. 5. Time profile of the outgoing Vaidya space-time to the
electromagnetic and scalar perturbations for Δ ¼ 1=2 and l ¼ 0,
l ¼ 1 for three different sets of the initial data at (a, b, and c). The
solid curve indicates the Gaussian function that has been used as
initial data, where w is the width and vc marks the center of the
Gaussian.
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them with the individual mode solutions that we will obtain
below via a semianalytic method that takes advantage of the
scaling symmetry of the space-time and equations. We will
now look at individual modes of the wave function that we
obtain by using the homothety symmetry of the equations
to carry out a separation of variables in the differential
equation (11).
The homothety symmetry of this space-time suggests

that we change the variable as follows:

u ¼ −u ¼ juj; v ¼ vð−uÞ−2Δ=ð1þΔÞ; ð13Þ

giving [from Eq. (10)]

r ¼ rðu; vÞ ¼ jujgðv=juj2Δ=ð1þΔÞÞ: ð14Þ

Applying these changes to Eq. (11) together with the ansatz

ψλðu; vÞ ¼ uλVλðvÞ; ð15Þ

we obtain the following differential equation:

v
∂2VðvÞ
∂v2 þ ð1 − κÞ ∂VðvÞ∂v þ FðvÞVðvÞ ¼ 0; ð16Þ

where κ ¼ λ=α with α ¼ 2Δ
ð1þΔÞ and

FðvÞ ¼ 1

2α2gðvÞ4
�
gðvÞ − ð1 − ΔÞ

4

�
2=ð1þΔÞ

ðlðlþ 1ÞgðvÞ þ 2σμÞ: ð17Þ

In Fig. 6 we show the function FðvÞ for Δ ¼ 1=2.
The WKB approximation was the first method that we

considered to solve our eigenvalue problem. But we found
that the WKB approximation is not a valid approximation
for our case [30].
To obtain some more information about the eigenvalue λ

we will first consider the behavior of the solutions to
Eq. (16) around v ¼ 0. Expanding VðvÞ around v → 0,

VðvÞ ¼ vs
X∞
n¼0

anvn; FðvÞ ¼
X∞
n¼0

bnvn; ð18Þ

with b0 ≠ 0, we obtain from Eq. (16) the indicial equation

sðs − κÞ ¼ 0; ð19Þ

which to leading order gives

VðvÞ ¼ αþ βvκ; ð20Þ

and thus

ψλ ¼ αu2κ=3 þ βvκ: ð21Þ

Decomposing κ ¼ −iωþ ϵ into real and imaginary parts,
we see that well-behaved solutions around v ¼ 0 require
that ϵ ≥ 0. Note that this also means that around v ¼ 0
the u-dependent term is finite as u → 0, in agreement with
the results of the numerical integration presented in the
previous section. Obviously this implies a divergence for
large u, but our physical setup does not include this region.
To obtain further information about the global structure

of the solutions to the wave equation we can expand around
large positive v. For large v approaching Iþ we make the
substitution v ¼ ex and to leading order we also have
FðvÞ ∼ clðlþ 1Þ=v5=2, for some constant c. Together with
the above substitution we obtain the equation

V̈ − κ _V þ clðlþ 1Þe−5x=2 ¼ 0: ð22Þ

The leading large-x solution is

VðxÞ ¼ γ þ δeκx; ð23Þ

leading to (with v ¼ ex)

ψλ ¼ γu2κ=3 þ δeκx; ð24Þ

and thus one has an outgoing wave of frequency ω for
κ ¼ −iω, requiring again that ϵ ¼ 0. Note that the expan-
sion around infinity has the same leading behavior as that
around v ¼ 0 due to the fact that the nonderivative term in
the differential equation is subleading in both cases.
As in scattering problems for static space-times, here

there will also be a nontrivial linear relation between the
coefficients α, β of the expansion around v ¼ 0 and the
coefficients γ, δ of the expansion around v → ∞. For
square integrability of the outgoing waves at ∞ we require
that γ ¼ 0, and thus the coefficients α and β will be fixed
uniquely by this transformation. Note that γ ¼ 0 also
guarantees that one has purely outgoing perturbations on
Iþ. The derivation of this transformation is beyond the
scope of the current article as the numerical errors do not

FIG. 6. Fðv̄Þ for Δ ¼ 1=2 and σ ¼ 0, 1, for three different
values of angular momentum.
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allow a complete and accurate integration from v ¼ 0 all
the way to v → ∞.
As a consequence of the decomposition of the wave

function we can conclude that none of the exact solutions
ψλðu; vÞ with Gaussian initial conditions can contain
constant large-v components even though we found such
behavior in the numerical integration. Writing the complete
solution as

Ψðu; vÞ ¼
Z

∞

−∞
dωaωu−iωψωðvÞ; ð25Þ

we can see that for large v ¼ ex the wave function is
independent of u and has the free waveform

Ψðu; vÞ ∼
Z

∞

−∞
dωaωe−iωx: ð26Þ

A Gaussian profile in v at some u ¼ u0 will continue to
have an exponential falloff for large v for all u and thus
there is no possibility for a constant mode to develop during
the evolution in u.
To verify the deductions that follow from the above

expansions we also carried out the numerical integration of
the differential equation for Δ ¼ 1=2. To do this we took
the explicit expression for gðvÞ when Δ ¼ 1=2 from
Ref. [15],

gðvÞ1=2 ¼
1

8

�
3þ 4

32=3
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9v3 −

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v6ð27 − 64v3Þ

q
3

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9v3 þ

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v6ð27 − 64v3Þ

q
3

r
Þ
�
: ð27Þ

We then used the NDSolve package in MATHEMATICA to
solve Eq. (16).
We carried out the integration in the following manner.

Due to the possible presence of singularities in the
numerical integration through v ¼ 0 we imposed initial
conditions at two different points, v ¼ −0.000001 and
v ¼ 0.000001, and integrated forwards and backwards in
v, and to check the numerical stability we also carried out
this calculation for smaller values of jvj with similar
results. The numerical solutions to these equations are
presented in Fig. 7. We show the solutions for ϵ ¼ 0.
Note in particular that the ϵ ¼ 0 solutions show a ringing
with variable frequency for v < 0 together with no
oscillations for v > 0. This provides a confirmation of
the ringing that was found in the previous section from the
integration of the full wave equation for Gaussian initial
conditions.
The solutions with ϵ > 0 do not play a role in the

evolution of initially analytic ingoing perturbations, but
they may play a role in a more complete analysis of
QN-like modes, as such modes arise when one imposes

boundary conditions such that there are no ingoing
modes at I−.

IV. SUMMARY AND COMMENTS

We have provided further evidence for the presence of
properties of scalar and electromagnetic fields/perturba-
tions in the outgoing Vaidya space-time that support the
hypothesis that this metric may provide a realistic semi-
classical model for the end point of black hole evaporation.
In particular, by the use of a decomposition of the wave
function suggested by the presence of a homothety sym-
metry in the linear mass Vaidya metric, we have reduced the

(a)

(b)

(c)

FIG. 7. Profile of (a and b) electromagnetic (σ ¼ 0; 1 for l ¼ 1)
and (c) scalar perturbations (for l ¼ 0 and 1) for Δ ¼ 1=2
and ε ¼ 0.
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spherically symmetric wave equation to an ODE. Using a
mixture of analytic and numerical methods we have
provided strong evidence to support the hypothesis of
the presence of QN-like oscillations around the end point of
evaporation.
We have also shown that the normalizable modes exhibit

oscillations as they approach u ¼ 0 in both the solutions to
the full PDE as well as in the individual modes obtained
after separation.
Although our analysis has a different focus to that of

Refs. [31,32] our results for the stability of the wave
equations on the outgoing Vaidya space-time are in

agreement with their results for the wave equations on
the ingoing linear mass Vaidya space-time.
The biggest obstacle to further progress is the difficulty

in the numerical calculation of the Bogoliubov transfor-
mations required to obtain complete information about the
modes Vλ. One possible approach to this question is the
large-D limit. As there exists a Vaidya metric in any
dimension [33], one can take the large-D limit [34,35]
and thus obtain a simplification of the potential FðvÞ. One
may then use this to obtain a WKBmatching of Vλ between
the v ¼ 0 expansion and that at v → ∞; preliminary work
is presented in Ref. [36].
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