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This paper presents the first calculation of the gravitational self-force on a small compact object on an
eccentric equatorial orbit around a Kerr black hole to first order in the mass ratio. That is the pointwise
correction to the object’s equations of motion (both conservative and dissipative) due to its own
gravitational field, which is treated as a linear perturbation to the background Kerr spacetime generated
by the much larger spinning black hole. The calculation builds on recent advances on constructing the local
metric and self-force from solutions of the Teukolsky equation, which led to the calculation of the
Detweiler-Barack-Sago redshift invariant on eccentric equatorial orbits around a Kerr black hole in a
previous paper. After deriving the necessary expression to obtain the self-force from the Weyl scalar ψ4, we
perform several consistency checks of the method and numerical implementation, including a check of the
balance law relating the orbital average of the self-force to the average flux of energy and angular
momentum out of the system. Particular attention is paid to the pointwise convergence properties of the
sum over frequency modes in our method, identifying a systematic inherent loss of precision that any
frequency domain calculation of the self-force on eccentric orbits must overcome.
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I. INTRODUCTION

With LIGO’s detection of the first gravitational wave
event GW150914 [1] the era of gravitational wave
astronomy has begun in earnest. This enterprise crucially
depends on the availability of accurate gravitational wave
templates to extract physical information from the gravi-
tational wave signal. In the case of GW150914, these
templates were provided by a combination of numerical
relativity (NR), post-Newtonian (PN), and effective one-
body (EOB) methods.
These methods work well for binaries consisting of

two compact objects with masses m and M, whose ratio
η ¼ m=M is comparable to 1 (as was the case for the source
of GW150914). However, these methods struggle as the
mass ratio η becomes small. The large disparity in length
scales set by the gravitational radii of the objects in this
situation makes full NR simulations unfeasible. Moreover,
systems with a small mass ratio spend a large number
(∼η−1) of orbits in the strong field regime where PN
approximations become inaccurate. In principle, EOB
methods should be able to cover this regime; however,
current implementations calibrated using NR and PN data
are not guaranteed to be accurate.
Nonetheless, the small mass-ratio regime is of great

physical interest. Historically, this interest has been much
motivated by the prospect of observing extreme mass-ratio
inspirals or EMRIs—compact binaries consisting of a
stellar mass compact object orbiting a supermassive black
hole—with a space-based gravitational wave observatory,

like ESA’s planned eLISA mission (currently scheduled for
launch in the mid 2030s). EMRIs are thought to occur
regularly in most galactic nuclei and can be observed with
eLISA up to cosmological distances. Observations would
allow accurate (∼10−5) measurement of the system’s
properties including orbital parameters, mass, spin, and
(luminosity) distance [2]. Alternatively, the observations
can be used to test the hypothesis that the geometry of the
host black hole is described by the Kerr geometry to high
accuracy [3].
The surprisingly large black hole masses in the LIGO

observations (GW150914 hadm ¼ 29M⊙ andM¼36M⊙)
further raise the possibility of the occurrence of intermedi-
ate mass-ratio inspirals (IMRIs) consisting of a stellar mass
object orbiting a ∼100M⊙ object. Even a 1.4M⊙ neutron
star orbiting a 36M⊙ black hole would be challenging for
current NR methods.
Study of the small-ratio regime is of further interest for

the synergy with other methods for modeling black hole
binaries that can be obtained by comparing results in
overlapping regimes of validity [4,5]. In particular, the
last couple of years have seen some much useful synergy in
using small mass-ratio data to refine EOB models [6–14],
and self-force calculations have been essential in fixing
ambiguities in the recent derivation of the 4PN equations of
motion for nonspinning black hole binaries [15–17].
Small mass-ratio binaries can be modeled by treating the

small mass-ratio η as a perturbative parameter. At zeroth
order in η, the smaller mass m becomes a test particle and
will follow a geodesic of the Kerr spacetime generated
by the larger mass M, which can be solved analytically*M.vandeMeent@soton.ac.uk
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[18–21]. At the next order in perturbation theory, the
corrections to the motion of the smaller object can be
summarized by an effective force term in the geodesic
equation, the gravitational self-force (GSF).
The first formal expressions for the GSF were introduced

by Mino, Sasaki, and Tanaka [22] and Quinn andWald [23]
two decades ago. In the years since, their formalism has
been further refined (see [24,25] for reviews and refer-
ences) increasing both mathematical rigor and conceptual
clarity. According to this formalism, the (first-order) GSF
can be calculated by finding the linear metric perturbation
sourced by a point particle following a background
geodesic and isolating a particular finite contribution at
the particle’s location. A practical procedure (known as
mode sum regularization) for determining this finite piece
was introduced by Barack and Ori [26–28] around the turn
of the millennium.
This method has been implemented numerically for

particles on increasingly complicated orbits. The first
calculations were done in 2002 for a particle falling radially
into a Schwarzschild black hole [29]. Circular orbits
followed in 2007 [30] and the GSF on eccentric orbits
was first calculated in 2009 [31]. These calculations relied
on the fact that the linearized Einstein equation on a
Schwarzschild background can be decoupled into separate
1þ 1-dimensional partial differential equations for each
spherical harmonic mode, which can be solved 1-by-1 in
the time domain. Further computational efficiency can be
gained by Fourier transforming to the frequency domain,
leading to a system of decoupled linear ordinary differential
equations [32–36].
Extending these calculations to the scenario where the

larger black hole has spin and produces a Kerr spacetime
has proven much more difficult. One of the main issues
is that in Kerr spacetime the linearized Einstein equation
cannot be solved by separation of variables. Several
approaches to circumvent this problem have been explored.
Dolan and Barack [37–39] have used the axisymmetry of

the background to separate out the angular ϕ dependence
from the Lorenz gauge field equations and then numerically
solved the remaining 2þ 1-dimensional time domain
equations. Besides the obvious numerical costs, this
method is troubled by some numerical instabilities.
Nonetheless, these problems have been overcome to
calculate the self-force on circular equatorial orbits [40].
Another approach builds on the fact that the Weyl scalars

ψ0 and ψ4 in Kerr spacetime satisfy the Teukolsky equation
[41,42], which is separable in the frequency domain.
Moreover, a key result of Wald [43] shows that these
Weyl scalars contain almost all gauge invariant information
about the metric perturbation up to a global perturbation of
the mass and angular momentum of the Kerr background.
Chrzanowski, Cohen, and Kegeles [44–46] have provided
an explicit method for reconstructing the metric perturba-
tion in radiation gauge from either ψ0 or ψ4.

The group of Friedman in Milwaukee has pioneered the
use of this construction to calculate the gravitational self-
force [47–50]. There have been two longstanding issues
with this approach. The first is that metric in the radiation
gauge is known to be highly irregular in the presence of
matter sources [51]. Not only does a point particle create a
divergence at its location, it is also invariably accompanied
by a string-like singularity extending from the particle to
infinity and/or the black hole horizon. This posed a
problem since the derivations of the self-force assume
the metric perturbation to have a singularity structure
similar to the Lorenz gauge. A detailed analysis of this
problem by Pound et al. [52] has shown, however, that the
self-force can indeed be calculated in particular choices of
the radiation gauge.
A second problem is the missing mass and angular

momentum perturbations. On Schwarzschild backgrounds,
Birkhof’s theorem implies a particularly simple solution:
Outside of the particle’s orbit the mass and angular
momentum perturbations are given by the energy and
angular momentum of the particle and vanish inside the
orbit. However, no such straightforward argument appears
to be available on Kerr backgrounds. Nonetheless, Merlin
et al. proved [53,54] that imposing analyticity of certain
gauge invariant fields constructed from the metric away
from the particle implies the same simple result remains
true in Kerr spacetimes for all bound equatorial orbits.
Assuming the above two results (without proof)

Friedman’s group successfully implemented above method
to calculate the Detweiler redshift invariant [32] for circular
equatorial orbits first in Schwarzschild spacetime [49] and
later in Kerr [50]. More recently, the author together with
Shah used the newly available missing pieces to implement
a numerical calculation of the (generalized) redshift invari-
ant [55] for eccentric equatorial orbits. The main goal of
this paper is to provide the first calculation of the full self-
force on eccentric equatorial orbits in Kerr spacetime.
The plan for this paper is as follows. Section II reviews

the preliminaries of the self-force formalism needed for our
calculations. We then continue to discuss the details of our
method in Sec. III. In particular, we derive the explicit
expressions needed to calculate the gravitational self-force
from a given frequency domain solution of the Teukolsky
equation for ψ4. In Sec. IV, we provide some details of the
numerical implementation of our method. Section V
presents a number of consistency checks of our method
and numerical implementation. Finally, we conclude with a
discussion of our results and conclusions in Sec. VI.

A. Conventions

This paper uses an overall metric signature of ð−þþþÞ;
for further sign conventions regarding the definitions of
other quantities such as the Weyl curvature scalars we refer
to Appendix A. We further work in geometrized units such
that ðc ¼ G ¼ M ¼ 1Þ.
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II. PREMLIMINARIES

A. Gravitational self-force

Suppose we have a binary system consisting of two
objects with masses m and M, which are both compact in
the sense that their size is of the order of their respective
gravitational length scales set by their masses. The goal of
the self-force programme is to describe the dynamics of
such a binary using perturbation theory with the mass-ratio
η ¼ m=M as a small parameter. At zeroth order in η, the
smaller object acts as a test mass in the geometry generated
by the larger mass M, with its trajectory xμ0ðτÞ obeying the
geodesic equation,

d2xμ0
dτ2

þ Γμ
αβ

dxα0
dτ

dxβ0
dτ

¼ 0; ð1Þ

where τ is proper time and Γμ
αβ the usual Christoffel

symbols. At first order in η, the metric generated by the
binary can be split as

gμν þ ηhμν; ð2Þ

where gμν is the background Kerr geometry generated by
M, and hμν is some linear perturbation generated by m.
Clearly, hμν should satisfy the linearized Einstein equation;
however, it is not immediately clear what should be used as
a source term. Moreover, we would like to describe the
motion of m by some effective force correction to the
geodesic equation,

η2Fμ½h�≡m

�
d2xμ0
dτ2

þ Γμ
αβ

dxα0
dτ

dxβ0
dτ

�
; ð3Þ

the gravitational self-force or GSF. However, it is far from
obvious how to obtain Fμ. For starters, given that m has
some physical extent it is not even obvious how to define
m’s position xμðτÞ. These questions are most rigorously
addressed using a multiscale expansion as described in the
reviews [24,25]. Wewill not describe the details here, but the
general gist is to describe general solutions to the Einstein
equation in a small region near m where the background
metric g is approximately flat, and in a far region where h is
properly small, andmatching the solutions in an intermediate
region where both approximations hold simultaneously.
The upshot is that at linear order in η, the appropriate source
for hμν is a point particle of mass m following a trajectory
xμðτÞ defined by m’s center-of-mass.
Furthermore, xμðτÞ satisfies the geodesic equation in the

spacetime gμν þ ηhRμν, where hRμν is a certain smooth part of
hμν first identified in [56]. The GSF Fμ is then given by the
MiSaTaQuWa [22,23] equation,

FμðτÞ ¼ Pμαβγ∇αhRβγðx0ðτÞÞ; ð4Þ

with

Pμαβγ ≡ 1

2
ðgμαuβuγ − 2gμβuαuγ − uμuαuβuγÞ; ð5Þ

where uμ is the four-velocity
dxμ

0

dτ (in the background
spacetime). If m has nonzero intrinsic angular momentum,
this is supplemented by a term depending on the object’s
spin dipole moment as found by Papapetrou [57]. This term
depends only on the background metric and will not be
considered further in this paper.
Although in this paper we will only be considering the

order η corrections to the dynamics of the binary, it is worth
mentioning that the same picture extends to general orders
in perturbation theory [25]. In general, at any order in
perturbation theory m will follow the trajectory of a point
particle in some effective metric, supplemented by correc-
tions due to a finite number of multipole moments.
The perturbative procedure above intimately depends

on the chosen split in (2) between a background g and
perturbation h, which is not unique. One could chose a
different gauge by considering coordinates ~xμ that differ
from xμ by a small amount ηξμ, and ascribing the resulting
shift in the components of g to the perturbation h.
Performing the perturbative procedure above in this new
gauge leads to a self-force ~Fμ that is changed by

~Fμ − Fμ ¼ −ðgμα þ uμuαÞ∇2
uξα − Rμ

αβγuαξβuγ: ð6Þ

In practical calculations, this gauge freedom is fixed by
imposing a gauge condition on h. Traditionally most self-
force calculations have been done in the Lorenz gauge
defined by

∇α

�
hαμ −

1

2
gαμgβγhβγ

�
¼ 0: ð7Þ

The method described in this paper produces the self-force
in the outgoing radiation gauge, which in vacuum regions is
defined through the conditions,

h2a ¼ eμ2e
ν
ahμν ¼ 0; ð8Þ

h34 ¼ eμ3e
ν
4hμν ¼ 0; ð9Þ

where the eμa form are null tetrad (see Appendix A for
details).

B. Mode sum regularization

One of the main challenges in any practical calculation
of the GSF is determining the regular part of the metric
perturbation, hRμν. Over the last two decades various
schemes have been introduced (see [58] and [59] for
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reviews). We here adopt the so-called mode sum regulari-
zation scheme [26–28], which we will review presently.
This method starts from the observation that the regular

field hRμν can be expressed as the difference

hRμν ¼ hRetμν − hSμν ð10Þ

between the retarded field hRetμν (i.e. the solution of the
linearized Einstein equation with a point particle source and
retarded boundary conditions), and the Detweiler-Whiting
singular field hSμν, which solves the same linearized Einstein
equation but is constructed such that it does not contribute
to the self-force.
Unfortunately, both terms on the right-hand side of

Eq. (10) diverge at the location of the particle.
Consequently, this subtraction makes sense everywhere
except at the location where we need hRμν to calculate the
GSF through (4). We thus need a regularization mecha-
nism. The chosen mechanism is to decompose all fields in
spherical harmonic “l modes.” For any field fðxÞ, its l
modes are defined by

flðxÞ≡
Xl

m¼−l

�Z
S2
dΩfȲlm

�
Ylmðz;ϕÞ; ð11Þ

where the integral is performed over a sphere of constant t
and r. The key observation is that these l modes have a
finite (although possibly directionally dependent) limit at
the particle location x0.
In principle, the decomposition into l modes could be

done at the level of the metric perturbation and its
derivatives. However, following [26–28], we promote the
self-force to a field F , and decompose this extended field
into l modes. Promotion of the self-force to a field requires
extending (4), which was defined only at the particle
worldline, to a field equation. At the very minimum this
requires extending the four-velocity u to a field, but more
generally any field equation that reduces to (4) on the
worldline can be used. We will follow [58] and choose to
extend (4) to a field by promoting the four-velocity uμ to a
field ûμ defined to be constant on each constant t-slice and
take its natural value at the worldline x0.
With this choice of extension it is possible to obtain a

Laurent expansion of F μ
S in the Lorenz gauge [28,58,60],

and in turn the large l behavior of its l modes,

Fμ;�
l;S ≡ lim

x→x�
0

F μ
S;l ¼ �LAμ

Lor þ Bμ
Lor þ

Cμ
Lor

L
þOðL−2Þ;

ð12Þ

with L ¼ lþ 1=2, and where the � sign depends on from
which radial direction x0 was approached. It is further
possible to show that in this extension,

Dμ
Lor ≡

X
l

Fμ;�
l;S ∓ LAμ

Lor − Bμ
Lor −

Cμ
Lor

L
¼ 0: ð13Þ

The quantities Aμ
Lor, B

μ
Lor, C

μ
Lor, and Dμ

Lor are collectively
known as regularization parameters. If one can calculate the
self-force l modes of the Lorenz gauge retard field in the
same extension, then one can calculate the actual self-force
from the difference of the retarded and singular field l
modes using the mode-sum formula,

Fμ ¼
�X

l

Fμ;�
l;Lor ∓ LAμ

Lor − Bμ
Lor −

Cμ
Lor

L

�
−Dμ

Lor: ð14Þ

However, in this paper, we obtain the self-force not in the
Lorenz gauge, but in the outgoing radiation gauge (ORG).
This introduces complications because in the presence of
matter the metric perturbation in this gauge cannot be made
regular everywhere in the vacuum part of the spacetime
[51]. With a point particle source there will be a stringlike
singularity in h extending from the particle towards infinity
and/or the black hole horizon.
In [52], the effect of these string singularities on the

calculation of the self-force was studied in detail. Several
approaches to calculating the self-force from radiation gauge
data are offered. We here follow their “no-string” approach.
If regularity of h at infinity is imposed, the metric is obtained
in a variant of the ORG that has a half-string singularity
extending from the particle to the black hole horizon.
Conversely, imposing regularity on the horizon produces
a half-string singularity extending from the particle to
infinity. A metric perturbation with no string singularities
can be constructed by taking the regular halves of two half-
string solutions and glueing them together along a timelike
hypersurface containing the particle trajectory. This comes
at the price of introducing a discontinuity in the metric
perturbation along this hypersurface.
It was further shown in [52] that the self-force formalism

can be extended to apply to irregular metric perturbations
with half-string singularities. In fact, the regularization
parameters Aμ, Bμ, and Cμ appearing in the mode-sum
formula take the same values in the "half-string" radiation
gauge as they do in the Lorenz gauge if the extension of
the self-force is kept the same. Unfortunately, the regu-
larization parameter Dμ does receive a finite correction in
these gauges. However, it is observed that this correction
differs between the two half-string gauges only in sign.
Consequently, if one calculates the GSF in the discontinu-
ous no-string gauge where it is simply given by the average
of the two half-string solutions, the Lorenz gauge values
can be used for all regularization parameters. Accordingly,
[52] obtain a modified mode-sum formula taking radiation
gauge data as its input and using the Lorenz gauge
regularization parameters,
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Fμ ¼
�X

l

Fμ;þ
l;Rad þ Fμ;−

l;Rad

2
− Bμ

Lor −
Cμ
Lor

L

�
−Dμ

Lor: ð15Þ

C. Eccentric geodesics

As noted above, at order zero in the mass ratio the
motion of the smaller body is described by a geodesic in the
Kerr spacetime generated by the larger body. As shown by
Carter [61], the geodesic equation can be reduced to a set of
first-order equations,�

dr
dτ

�
2

¼ RðrÞ
Σðr; zÞ2 ; ð16Þ

�
dz
dτ

�
2

¼ ZðzÞ
Σðr; zÞ2 ; ð17Þ

dϕ
dτ

¼ ΦrðrÞ þ ΦzðzÞ
Σðr; zÞ ; ð18Þ

dt
dτ

¼ TrðrÞ þTzðzÞ
Σðr; zÞ ; ð19Þ

where R, Z, Φr, Φz, Tr, and Tz are known functions of the
Boyer-Lindquist coordinates r and z ¼ cos θ (see e.g. [62]),
and Σ is defined below. This set of equations can easily be
separated by changing to a convenient time variable λ to
parametrize the orbit,

dτ
dλ

¼ Σðr; zÞ ¼ r2 þ a2z2: ð20Þ

This time variable λ is commonly referred to as “Mino
time.”With this choice of time parameter, the radial (r) and
polar (z) motion satisfy separate differential equations. For
bound geodesics, each motion has its own frequency ϒr
and ϒz. The position along a bound geodesic is therefore
uniquely determined by two phases qr ¼ ϒrλ and
qz ¼ ϒzλ. Complete analytic solutions of the geodesic
equations as functions of qr and qz were given by [62].
In this paper, we restrict ourselves to equatorial orbits with

z ¼ 0 (we can thus ignore the polar phase qz). Up to shifts in
t, ϕ, and radial phase qr, bound equatorial geodesics are
uniquely determined by two parameters. One could for
example use the (specific) energy E and angular momentum
L of the orbit. However, it is convenient for us to use the
semilatus rectum p and eccentricity e, defined by

rmin ¼
p

1þ e
; ð21Þ

rmax ¼
p

1 − e
; ð22Þ

where rmin and rmax are the periapsis and apapsis distance.
This geometric choice is convenient since explicit analytic

expressions for the orbit and other parameters such as E and
L are known in terms of p and e [62,63]. We further adopt
the convention that at qr ¼ 0 the body is at the apapsis rmax
and t ¼ ϕ ¼ 0.
We will further regularly refer to the orbital frequencies

of the orbit as viewed by a distant inertial observer,

Ωr ¼
ϒr

hdtdλi
; ð23Þ

Ωϕ ¼ ϒϕ

hdtdλi
: ð24Þ

Their main relevance for our present purpose is that the
spectrum of gravitational perturbations produced by a
particle in an eccentric equatorial orbit is given by all
possible integer combinations of Ωr and Ωϕ.

III. METHOD

To calculate the self-force on eccentric equatorial orbits
in Kerr spacetime, roughly the same methodology will be
used as in [55] to calculate the regular metric perturbation
and redshift invariant. This built on the pioneering work
of Keidl, Shah, Friedman et al. [47–50] culminating in
calculations of the red-shift on circular equatorial orbits
in Kerr.
The key idea is to avoid the nonseparability of the

linearized Einstein equation, by solving the separable
Teukolsky equation [41,42] for the Weyl scalar ψ4 instead.
In vacuum regions away from the particle orbit, the
formalism of Chrzanowski, Cohen, and Kegeles (CCK)
[44–46] allows given ψ4 the construction of a metric
perturbation in the ORG which produces the same ψ4.
A key result of Wald [43] shows that any two metric
perturbations producing the same ψ4 differ by at most a
gauge transformation and a perturbation within the four-
dimensional Plebanski-Demianski family [64] of vacuum
type D metrics. The gauge independent part of this missing
piece of the metric may be recovered analytically by
imposing continuity of gauge invariant fields across the
particle’s orbit [53,54] (more details follow in Sec. III E).
In this construction, we make sure to only work in the

vacuum regions away from the particle source. Since the
source term in the Teukolksy equation for individual modes
is smeared out over the region between periapsis rmin and
apapsis rmax, this requires us to do the mode-by-mode
calculations either in the vacuum region outside rmax or
inside rmin. Only at the last stage before summing the
modes to obtain the self-force are these results analytically
extended to the particle location. There are a number of
reasons for applying this method of “extended homo-
geneous solutions.”

(i) The CCK procedure is only well defined for vacuum
perturbations of the background. Hence it cannot be
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applied mode-by-mode on full solutions of the
Teukolsky equation in the libration region where
it does not have a vacuum source.

(ii) By doing the reconstruction in the inside and outside
vacuum regions separately, we automatically en-
force regularity at the horizon and infinity respec-
tively. Consequently, analytic extension will
automatically produce the right one-sided limits
towards the particle to be used in the averaged
mode-sum formula (15).

(iii) Finally, using the extended homogeneous modes
avoids the Gibbs phenomenon that prevents uniform
convergence of the sum over Fourier modes of the
metric field in a neighborhood of the particle [65].

In the remainder of this paper, solutions in the outside
vacuum region (or analytic extensions thereof) are labeled
withþ. Similarly, solutions in the vacuum region inside the
particle (or analytic extensions thereof) are labeled with −.
In the following subsections, we will review each of the key
steps in this procedure, with particular focus on the aspects
of the method that differ from [55].

A. Weyl scalar ψ4

The first step in our calculation is to determine the linear
perturbation to the Weyl scalar,

ψ4 ¼ Cαβγδeα2e
β
4e

γ
2e

δ
4 ¼ C2424; ð25Þ

¼ ψ ð0Þ
4 þ ηψ ð1Þ

4 þOðη2Þ: ð26Þ

In Kerr spacetime ψ ð0Þ
4 ¼ 0, and with some abuse of

notation we will drop the superscript and refer to the

(normalized) linear perturbation ψ ð1Þ
4 as simply ψ4.

Teukolsky’s classical result [41,42] is that the equations
of motion for ψ4 in algebraicly special spacetimes (such as
Kerr) decouple from the other components of the curvature.
Moreover, the resulting equation can be solved by sepa-
ration of variables. In the inside and outside vacuum
regions, the solution to the Teukolsky equation can be
written,

ψ�
4 ¼ ρ4ffiffiffiffiffiffi

2π
p

X
lmω

Z�
lmω−2R�

lmωðrÞ−2SlmωðzÞeimϕ−iωt; ð27Þ

where ρ is one of the Newman-Penrose spin coefficients
(see Appendix A), and the sum over ω is over all possible
integer combinations mΩϕ þ nΩr of the azimuthal (Ωϕ)
and radial (Ωr) orbital frequencies (with respect to Boyer-
Lindquist coordinate time). Furthermore, in the above
expansion the sSlmωðzÞ are spin-weighted spheroidal har-
monics of spin-weight s satisfying the angular equation,

�
d
dz

�
ð1 − z2Þ d

dz

�
− UslmωðzÞ

�
sSlmωðzÞ ¼ 0; ð28Þ

with the potential

Uslmω ¼ ðmþ szÞ2
1 − z2

− ðaωz − sÞ2 þ sðs − 1Þ − sAlmω;

ð29Þ
where sAlmω is the angular separation constant; the

sR
�
lmωðrÞ are solutions of the homogeneous radial

Teukolsky equation,�
Δ−s d

dr

�
Δsþ1

d
dr

�
− VslmωðrÞ

�
sRlmωðrÞ ¼ 0; ð30Þ

with potential

Vslmω ¼ sƛlmω − 4isωr −
K2

mω − 2isðr − 1ÞKmω

Δ
; ð31Þ

where

Kmω ≡ ðr2 þ a2Þω − am; ð32Þ
sƛlmω ≡ sAlmω þ a2ω2 − 2maω; ð33Þ

which satisfy physical retarded boundary conditions at
infinity (þ) or at the horizon (−). Finally, the coefficients
Z�
lmω can be determined using variation of parameters,

Z�
lmω ¼

Z
rmax

rmin

−2R
∓
lmωðrÞ−2TlmωðrÞ

W½−2Rþ
lmω; −2R−

lmω�ðrÞ
dr; ð34Þ

where W½R1; R2� is the Wronskian of two homogeneous
solutions and −2TlmωðrÞ is the source for the radial
Teukolsky equation for a point particle of a geodesic,
for which explicit expressions confirming to our sign
conventions can be found in the forthcoming [66].

B. Hertz potential

To reconstruct the metric perturbation, we first need
to construct an intermediate quantity known as the Hertz
potential. In the outgoing radiation gauge, the Hertz
potential satisfies a fourth-order differential equation with
ψ4 appearing as a source term,

ρ−4ψ4 ¼
1

32
Δ2ðD†Þ4Δ2Ψ̄ORG; ð35Þ

where

D† ¼ ∂r −
ðr2 þ a2Þ∂t þ a∂ϕ

Δ
: ð36Þ

A key feature of Eq. (35) is that it features no z derivatives,
leading to it being called the radial equation for ΨORG.
There also exists an angular equation ΨORG linking it to ψ0
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[67]. That equation was used in [50] to calculate self-force
corrections to circular orbits in Kerr.
In vacuum regions, the ORG Hertz potential must also

satisfy the homogeneous Teukolsky equation for s ¼ þ2
fields. Consequently, in the interior and exterior vacuum
regions ΨORG can be decomposed in spin-weighted sphe-
roidal harmonic frequency modes,

Ψ�
ORG ¼ 1ffiffiffiffiffiffi

2π
p

X
lmω

Ψ�
lmω2R

�
lmωðrÞ2SlmωðzÞeimϕ−iωt: ð37Þ

Consequently, both sides of Eq. (35) can be expanded in
modes. As observed by Ori [51] for the radial equation
linking ψ0 and ΨIRG, this equation decouples into individ-
ual equations for all the modes, which can easily be
inverted by looking at the asymptotic limit towards infinity
and the horizon. The inversion was solved explicitly in [55]
for the case at hand, yielding an algebraic relation between
the coefficients Ψ�

lmω and Z�
lmω,

ð−1ÞlþmΨþ
lmω

Zþ
lmω

¼

8>>>>><
>>>>>:

2

ω4
for ω ≠ 0;

32

ðma
κ − 2iÞðma

κ − iÞðma
κ Þðma

κ þ iÞ for ω ¼ 0 but ma ≠ 0;

−32 for ω ¼ ma ¼ 0;

ð38Þ

ð−1Þlþm Ψ−
lmω

Z−
lmω

¼

8>>>>>>>><
>>>>>>>>:

512κ4
ðma
κ − 2ω − 2iÞðma

κ − 2ω − iÞðma
κ − 2ωÞðma

κ − 2ωþ iÞ
plmω

for ω ≠ 0;

32
ðma
κ − 2iÞðma

κ − iÞðma
κ Þðma

κ þ iÞ
κ4ððl − 1Þlðlþ 1Þðlþ 2ÞÞ2 for ω ¼ 0 but ma ≠ 0;

32

ððl − 1Þlðlþ 1Þðlþ 2ÞÞ2 for ω ¼ ma ¼ 0;

ð39Þ

where

plmω ¼ ðð−2ƛlmω þ 2Þ2 þ 4maω − 4a2ω2Þ
× ð−2ƛlmω

2 þ 36maω − 36a2ω2Þ
þ ð2−2ƛlmω þ 3Þð96a2ω2 − 48maωÞ
þ 144ω2ð1 − a2Þ ð40Þ

is the Teukolsky-Starobinsky constant, and κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
.

The expansion (37) is somewhat impractical to work
with because there are no analytically known spin raising
and lowering operators for spheroidal harmonics, making
analytical manipulation of its derivatives (as will be
required shortly) impossible. It is therefore useful to expand
the spin-weighted spheroidal harmonics in spin-weighted
spherical harmonics using

sSlmωðzÞ ¼
X
l

ðsbmωÞll sYlmðzÞ; ð41Þ

where the mixing coefficients ðsbmωÞll can be calculated
numerically [68], and are known to decay exponentially
with jl − lj.
The resulting expansion in spin-weighted spherical

harmonics,

Ψ�
ORG ¼ 1ffiffiffiffiffiffi

2π
p

X
llmω

Ψ�
lmω2R

�
lmωðrÞð2bmωÞll

× 2YlmðzÞeimϕ−iωt; ð42Þ
will be the starting point of the following subsections.

C. Reconstructed metric

We now turn to reconstructing the metric perturbation.
The nonvanishing tetrad components of the metric pertur-
bation are given by

h11 ≡ eμ1e
ν
1hμν ¼ ĤORG

11 ΨORG þ c:c:; ð43Þ

h13 ≡ eμ1e
ν
3hμν ¼ ĤORG

13 ΨORG; ð44Þ

h33 ≡ eμ3e
ν
3hμν ¼ ĤORG

33 ΨORG; ð45Þ
h14 ≡ eμ1e

ν
4hμν ¼ h̄13; and ð46Þ

h44 ≡ eμ4e
ν
4hμν ¼ h̄33; ð47Þ

with1

1The astute reader will notice that the expressions below differ
from Eqs. (103)–(105) in [55] by an overall minus sign. This
change is due to a different sign convention for ψ4 used there.
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ĤORG
11 ¼ −ρ−4ðδ̄ − 3α − β̄ þ 5ϖÞðδ̄ − 4αþϖÞ; ð48Þ

ĤORG
13 ¼ −

ρ−4

2
fðδ̄ − 3αþ β̄ þ 5ϖ þ τ̄ÞðΔ̂þ μ − 4γÞ

þ ðΔ̂þ 5μ − μ̄ − 3γ − γ̄Þðδ̄ − 4αþϖÞg; and

ð49Þ

ĤORG
33 ¼ −ρ−4ðΔ̂þ 5μ − 3γ þ γ̄ÞðΔ̂þ μ − 4γÞ; ð50Þ

where “þc:c:” represents the complex conjugate of the
preceding terms, and δ̄ ¼ eμ4∂μ, Δ̂ ¼ eμ2∂μ, and the remain-
ing Greek symbols represent the Newman-Penrose spin-
coefficients. Their values are given explicitly in Appendix A.
The coordinate components of h are reconstructed as

hμν ¼ eaμebνhab: ð51Þ
Applying the above formula mode by mode to the
expansion (37), substituting all z derivatives by spin-low-
ering operators,

ð̄s ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p �
∂z þ

i
1 − z2

∂ϕ −
sz

1 − z2

�
; ð52Þ

and using

ð̄s2YlmðzÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl − sþ 1Þ

p
ðs−1ÞYlmðzÞ; ð53Þ

we obtain a mode expansion for the metric perturbation in
the interior and exterior vacuum regions,

h�μν ¼
X
mωsi
ll

Ψ�
lmω2R

�;ðiÞ
lmω ðrÞð2bmωÞllClmωsi

μν ðr; zÞ

× sYlmðzÞeimϕ−iωt þ c:c:; ð54Þ

where the Clmωsi
μν ðr; zÞ are coefficients that still depend on r

and z, and whose explicit analytic form is known, but not
very illustrative and will not be given here.

D. Gravitational Self-force

The expansion for the metric perturbation (54) can be
inserted into (4) to obtain the (extended) self-force in
the interior and exterior vacuum regions. By analytically
extending the homogeneous solutions of the radial

Teukolsky equation 2R
�;ðiÞ
lmω these expressions can be

extended towards the particle worldline. Formally, we write

F μ;�
Rad ¼ Pμαβγ∇αh�βγ ð55Þ

¼
X
mωsi
ll

Ψ�
lmω2R

�;ðiÞ
lmω ðrÞð2bmωÞllCμlmωsiðr; zÞ

× sYlmðzÞeimϕ−iωt þ c:c:; ð56Þ

where again we have replaced any z derivatives with spin-
lowering operators and the Cμlmωsiðr; zÞ are a (new)2 set of
analytically known coefficients.
Our next task is to decompose (56) into l modes, so that

we can use it as input for the averaged mode-sum
formula (15). Equation (56) already hints at a mode
decomposition, but at this stage we have three problems:
it is decomposed in the wrong harmonics for use in
Eq. (15), it has not yet incorporated the complex conjugate
(þc:c:) terms, and the coefficients C are still functions of z.
We will start by remedying the first issue.
Factoring out appropriate factors of

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
from the C’s

and recognizing that sYsjsj0ðzÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p jsj, we can use the
integral product of spin-weighted spherical harmonics
(using Wigner 3j-symbols),

Z
1

−1
s1
Yl1m1

ðzÞs2Yl2m2
ðzÞs3Yl3m3

ðzÞdz

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

p
×

�
l1 l2 l3
m1 m2 m3

��
l1 l2 l3
s1 s2 s3

�
; ð57Þ

to write

2
Yl1mðzÞ ¼

X
l2

m
2 A

l1
l2
Yl2mðzÞ

1 − z2
; ð58Þ

1
Yl1mðzÞ ¼

X
l2

m
1 A

l1
l2
Yl2mðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl1 − 1Þðl1 þ 2Þp ffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2
p ; ð59Þ

0
Yl1mðzÞ ¼

X
l2

m
0 A

l1
l2
Yl2mðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl1 − 1Þl1ðl1 þ 1Þðl1 þ 2Þp ; ð60Þ

−1Yl1mðzÞ ¼
X
l2

m−1A
l1
l2
Yl2mðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl1 − 2Þ!p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl1 þ 2Þ!l1ðl1 þ 1Þp ffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2
p ; ð61Þ

with

m
2 A

l1
l2
¼ ð−1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

3
ð2l1 þ 1Þð2l2 þ 1Þ

r

×

�
2 l1 l2
0 m −m

��
2 l1 l2
−2 2 0

�
; ð62Þ

2Throughout this discussion we will use the symbol C for the
coefficients in the various mode expansion, despite its value
changing at each step.
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m
1 A

l1
l2
¼ ð−1Þmþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl1 − 1Þðl1 þ 2Þð2l1 þ 1Þ

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2 þ 1

p �
1 l1 l2
0 m −m

��
1 l1 l2
−1 1 0

�
;

ð63Þ

m
0 A

l1
l2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl1 þ 2Þ!
ðl1 − 2Þ!

s
δl1l2 ; ð64Þ

and

m−1A
l1
l2
¼ð−1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l1ðl1 þ 1Þð2l1 þ 1Þ ðl1 þ 2Þ!

ðl1 − 2Þ!

s

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2 þ 1

p �
1 l1 l2
0 m −m

��
1 l1 l2
1 −1 0

�
;

ð65Þ

where the l1 dependent factors in Eqs. (58)–(61) have been
introduced to absorb the l dependence of the C’s [which
originated completely from repeated application of (53)] in
the m

s A
l1
l2
. The result is an expansion featuring only ordinary

spherical harmonics,

F μ;�
Rad ¼

X
mωsi
l1l2l

Ψ�
lmω2R

�;ðiÞ
lmω ðrÞð2bmωÞll1ms A

l1
l2

×Cμmωsiðr; zÞYl2mðzÞeimϕ−iωt þ c:c:; ð66Þ

where the definition of the C’s has again been changed.
To resolve the complex conjugate terms we observe that

the individual factors in (66) have the following symmetry
properties under simultaneous complex conjugation and
relabeling ðm;ωÞ → ð−m;−ωÞ,

C̄μð−mÞð−ωÞsiðr; zÞ ¼ ð−1ÞsþδzμCmωsiðr;−zÞ; ð67Þ

Ψ̄�
lð−mÞð−ωÞ ¼ ð−1ÞlΨ�

lmω; ð68Þ

2R̄
�;ðiÞ
l1ð−mÞð−ωÞðrÞ ¼ 2R

�;ðiÞ
lmω ðrÞ; ð69Þ

ð2bð−mÞð−ωÞÞll ¼ ð−1Þlþlð2bmωÞll ; ð70Þ

−m
s

Al1
l2
¼ ð−1Þsþl1þl2m

s
Al1

l2
; ð71Þ

Yl2ð−mÞðzÞ ¼ ð−1ÞmYl2mðzÞ: ð72Þ

Applying these identities to the complex conjugate terms
in (66), we obtain

F μ;�
Rad ¼

X
mωsi
l1l2l

Ψ�
lmω2R

�;ðiÞ
lmω ðrÞð2bmωÞll1

m
s
Al1

l2
eimϕ−iωt

× ðCμmωsiðr; zÞ þ ð−1Þl2þmþδzμCμmωsiðr;−zÞÞYl2mðzÞ:
ð73Þ

From the functional dependence of (73) on z we immedi-
ately observe some important symmetry properties of F μ;�

Rad
under reflection in the equatorial plane z0 ¼ 0. First we
observe that F z;�

Rad is an odd function of z and thus vanishes
identically on the equator z0 ¼ 0 as expected. The remain-
ing three components of F μ;�

Rad are all even.
We now turn our attention to the remaining z dependence

of the coefficient functions C for the μ ≠ z components.
We start by taking the limit towards t ¼ t0 and r ¼ r0, and
taking the average of the inside − and outside þ values,
where it is understood that the − limit is taken from the
inside and vice versa for the þ limit. We obtain

F μ;Avg
Rad ¼

X
ωsi
lþm
even

χAvglmωsiC
μ
mωsiðz2ÞYlmðz;ϕÞ

þ z
X
ωsi
lþm
odd

χAvglmωsi
~Cμmωsiðz2ÞYlmðz;ϕÞ; ð74Þ

where the even/odd structure has been made explicit,

χAvglmωsi ¼
X
l1l

Ψþ
lmω2R

þ;ðiÞ
lmω ðr0Þ þΨ−

lmω2R
−;ðiÞ
lmω ðr0Þ

2

× ð2bmωÞll1
m
s A

l1
l e

−iωt0 ; ð75Þ

and C and ~C are smooth functions of z2. Note that due to the
singular nature of F μ;Avg

Rad near the particle, we do not
necessarily expect the series in (74) to converge pointwise.
Nonetheless, they are still expected to converge in a
generalized (distributional) sense to a unique function that
is smooth everywhere in a neighborhood of (z0, ϕ0) except
at (z0, ϕ0) itself.
Since C and ~C are smooth functions we can expand them

in a Taylor series in z2,

Cμmωsiðz2Þ ¼
X∞
k¼0

Cμ;kmωsiz
2k; ð76Þ

~Cμmωsiðz2Þ ¼
X∞
k¼0

~Cμ;kmωsiz
2k; ð77Þ

yielding
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F μ;Avg
Rad ¼

X∞
k¼0

�
z2k

X
ωsi
lþm
even

χAvglmωsiC
μ;k
mωsiYlmðz;ϕÞ

þ z2kþ1
X
ωsi
lþm
odd

χAvglmωsi
~Cμ;kmωsiYlmðz;ϕÞ

�
: ð78Þ

A key observation at this point is that the coefficients Cμ;kmωsi

and ~Cμ;kmωsi are independent of l. Consequently, the singular
behavior near (z0, ϕ0) of the sums over l and m in (78) is
limited by the large l behavior of χAvglmωsiYlmðz;ϕÞ. The
analysis of [52] implies that this combination has to decay
by at least l−1 as l → ∞. Consequently, the singular
structures of the sums in (78) are at worst,

X
ωsi
lþm
even

χAvglmωsiC
μ;k
mωsiYlmðz;ϕ0Þ ∝ δðzÞ þOðlog jzjÞ; ð79Þ

and

X
ωsi
lþm
odd

χAvglmωsi
~Cμ;kmωsiYlmðz;ϕ0Þ ∝ Oðz−1Þ: ð80Þ

This implies that the k ≥ 1 terms in (78) are OðzÞ.
However, the mode-sum formula is insensitive to contri-
butions to F μ of orderOðzÞ. Consequently, we can drop the
k ≥ 1 terms to obtain,

F μ;Avg
Rad ¼

X
ωsi
lþm
even

χAvglmωsiC
μ;0
mωsiYlmðz;ϕÞ

þ
X
ωsi
lþm
odd

χAvglmωsi
~Cμ;0mωsizYlmðz;ϕÞ þOðzÞ: ð81Þ

Dropping the k ≥ 1 terms amounts to choosing an alter-
native extension for F μ;Avg

Rad that is compatible with the
extension used for calculating the Lorenz gauge regulari-
zation parameters. The definition of this extension, how-
ever, is deeply entwined with the specifics of the metric
reconstruction procedure. Hence it does not have a straight-
forward characterization at the level of the singular field.
This provides a further3 roadblock to analytically calculat-
ing “higher-order regularization parameters” compatible
with this method as was done for Lorenz gauge methods in
[69] and [70].
In practice, we actually observe that the sum over lþm

odd modes is less singular than the worst case scenario
indicated in (80), and the k ¼ 0 term only produces a OðzÞ

contribution to the (extended) self-force. If we were to drop
that term from (81), the remaining term has the form of an
explicit expansion in Ylm modes, and we would be able to
read-off the lmodes directly. However, we have thus far not
been able to prove this empirical observation analytically.
We therefore proceed by observing that z ∝ Y10ðz;ϕÞ to
expand the product zYlmðz;ϕÞ using

zYl1mðz;ϕÞ ¼
X
l2

mBl1
l2
Yl2mðz;ϕÞ; ð82Þ

with

mBl1
l2
¼ ð−1Þmþl1þ1ðl1 − l2Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1 þ l2 þ 1

2

r �
1 l1 l2
0 m −m

�
: ð83Þ

The result is an expansion of F μ;Avg
Rad in spherical harmonics

with coefficients that do not depend on z,

F μ;Avg
Rad ¼

X
ωsi
lm

�
χAvglmωsiC

μ;0
mωsiþ

X
l2

χAvgl2mωsi
mBl2

l
~Cμ;0mωsi

�
Ylmðz;ϕÞ:

ð84Þ

Consequently, the lmodes needed as input for the averaged
mode-sum formula (15) can be directly read-off,

Fμ;Avg
Rad;l ¼

X
mωsi

�
χAvglmωsiC

μ;0
mωsi

þ
X
l2

χAvgl2mωsi
mBl2

l
~Cμ;0mωsi

�
Ylmð0;ϕ0Þ: ð85Þ

The coefficients Cμ;0mωsi and ~Cμ;0mωsi are analytic functions of
the orbital parameters a, E and L and the position along the
orbit qr. It is straightforward to obtain their analytical form
by explicitly keeping track of the coefficients in the above
procedure. Their explicit form is not particularly elucidat-
ing and would take a good number of pages to print. We
therefore do not give them here, but provide them as a
digital supplement to this paper [71]. We will suffice with
noting that it can be explicitly checked that the expression
in the supplement satisfy

uμC
μ;0
mωsi ¼ uμ ~C

μ;0
mωsi ¼ 0 ð86Þ

for all m, ω, s, and i. Consequently, it is automatically
ensured that uμFμ ¼ 0, i.e. the gravitational self-force
conserves the rest mass of the particle.

3Lack of knowledge of the gauge transformation linking
radiation gauge and Lorenz gauge solutions beyond leading
order already provides a significant obstacle for such an under-
taking.
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E. Completion

The final step in our calculation is to determine the
contribution to the self-force from the piece of the metric
perturbation h that cannot be recovered by the CCK
procedure because it is in the kernel of the differential
operator that produces ψ4. Wald has shown [43] that the
gauge invariant content of this kernel is exactly given
by perturbations of the Kerr background in the four-
dimensional family of Plebanski-Demianski type-D vac-
uum metrics [64]. Requiring regularity at either infinity or
the black hole horizon further reduces this to perturbations
within the Kerr family of metrics [48].
For the purpose of calculating gauge invariant quantities,

we can thus suffice by completing our metric perturbation
reconstructed from ψ4 with a contribution

hcomp;�
μν ¼ c�Mh

M
μν þ c�J h

J
μν; ð87Þ

where if gμνðM; J; xÞ represents the Kerr family of metrics
as a function of mass M and angular momentum J,

hMμνðxÞ≡ ∂gμνðM; J; xÞ
∂M

����
M¼1
J¼a

; ð88Þ

hJμνðxÞ≡ ∂gμνðM; J; xÞ
∂J

����
M¼1
J¼a

; ð89Þ

and c�M and c�J are real numbers.
Determining the completion thus reduces to determining

the four numbers, c�M and c�J . In the outside vacuum region,
cþM and cþJ can be determined by fixing the total ADMmass
and angular momentum of the system to their physical
value giving cþM ¼ E and cþJ ¼ L. The values of c−M and c−J
can then be determined by constructing some gauge
invariant fields from the total completed metric perturbation
that (unlike ψ0 and ψ4) are sensitive to the values of c�M and
c�J , and demanding that they are smooth functions of
spacetime as one passes from the inside to the outside
vacuum regions while avoiding the orbital plane [53,54].
For equatorial orbits the result of this rigorous calculation
coincides with the naive expectation that c−M ¼ c−J ¼ 0.
Note that the completion metrics hMμν and hJμν are perfectly

regular at the particle position. Consequently, the self-force
contribution from the completion can be calculated inde-
pendently from any evaluation of the mode sum. Applying
formula (4) directly to Eqs. (88) and (89) yields

Fμ;Avg
comp ¼ E

2
Fμ;M
comp þ L

2
Fμ;J
comp: ð90Þ

The specific form of the functions Fμ;M
comp and Fμ;J

comp is given
in Appendix B.
The above construction reproduces enough of the metric

perturbation to calculate any gauge invariant quantities. It

should, however, be noted that most of the “invariant”
quantities studied in the literature on small mass-ratio
binaries involve shifts of the orbital frequencies in some-
way or other. These are actually pseudo-invariants in the
sense that they are invariant only under a restricted class of
gauge transformations. Unfortunately, the gauge in which
we calculate the self-force does not belong to the class of
“suitably smooth and asymptotically flat” gauges usually
considered. More specifically, the “no-string” radiation
gauge used is discontinuous on a hypersurface separating
the black hole horizon from infinity and containing the
particle worldline.
In principle, we can find our results in a suitable gauge

with a method much similar to the method used for fixing
the gauge invariant part of the completion. In this case, we
need to find some pseudo-invariant fields that are sensitive
to the gauge transformations that can change orbital
frequencies. We can then find the corrections to the desired
gauge by requiring these pseudo-invariant fields to be
sufficiently smooth across the particle orbit. This procedure
is fairly straightforward on a Schwarzschild background
and was discussed in [72]. The situation on a Kerr back-
ground is slightly more involved, mostly due to the fact that
completion on Kerr background does not consist purely of
l ¼ 0 and l ¼ 1 modes. A detailed treatment of the Kerr
case will be given in [73].

IV. NUMERICAL IMPLEMENTATION

The numerical implementation of our calculations is
practically identical to the implementation used in [55] to
calculate the redshift invariant. Following [18,74,75], we
solve the homogeneous Teukolsky equation for ψ4 using the
semi-analytical series solutions of Mano, Suzuki, and
Takasugi (MST)[76,77]. The full details of our arbitrary
precision implementationwill appear in a separate paper [66].
The integrals (34) for the coefficients Z�

lmω of the
inhomogeneous solutions are replaced by suitable integrals
over the orbital torus described by qr and qz as per [78,79]
(In the specific case of equatorial orbits considered here, the
integrals over qz are trivial). The integrands for these
integrals are smooth functions on this torus. This means
that simple trapezoidal numerical integration has spectral
convergence, which we exploit following [18]. An in depth
analysis of the spectral convergence of trapezoidal methods
for these integrals has recently appeared in [80].
From the (extended) inhomogeneous solution for ψ4,

we obtain the spin-weighted spheroidal modes of the Hertz
potential and their radial derivatives evaluated at the
particle orbit as a function of qr. Equations (85) and
(75) described (spherical harmonic) l modes as a linear
combination of these Hertz potential modes using the
(infinite-dimensional) matrices ð2bmωÞll1 ,

m
s
Al1

l2
and mBl1

l2
.

The matrices m
s
Al1

l2
and mBl1

l2
are evaluated using the explicit

expressions in Sec. III D, whereas ð2bmωÞll1 is evaluated
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using the method appearing in the appendix of [68]. The
transformations m

s
Al1

l2
and mBl1

l2
have a finite bandwith and

ð2bmωÞll1 decays exponentially with jl − l1j off the diagonal.
Consequently, limiting the input to modes of the Hertz
potential with an l of maximally lmax introduces an
estimable error in GSF l modes that grows exponentially
as l approaches lmax. We keep track of this error and discard
the Fμ

l above a maximal value lmax once the error exceeds a
chosen threshold value.
The next numerical task is to evaluate the sum over ω

andm in Eq. (85). For this purpose we write (85) as a nested
sum

Fμ;Avg
l ¼

X
m

Fμ;Avg
lm ; ð91Þ

Fμ;Avg
lm ¼

X
ω

Fμ;Avg
lmω ; and ð92Þ

Fμ;Avg
lmω ¼

X
si

�
χAvglmωsiC

μ;0
mωsi

þ
X
l2

χAvgl2mωsi
mBl2

l
~Cμ;0mωsi

�
Ylmð0;ϕ0Þ: ð93Þ

The conceptually logical thing to do would be to fix l and
then calculate all Fμ;Avg

lmω contributing to Fμ;Avg
l (until some

target threshold is met), and repeat this for the different l’s.
However, the matrix nature of ð2bmωÞll1 , m

s A
l1
l2
, and mBl1

l2
,

means that numerically it is much more efficient to fix m
and ω and then obtain all Fμ;Avg

lmω with that m and ω.
Therefore in practice we loop over m and ω building up all
Fμ;Avg
l simultaneously.
We start our loop by picking a value for lmax and a target

precision ϵ. Consequently, m can only take values between
−lmax and lmax, while for fixed m the frequency ω takes
values in fnΩr þmΩjn ∈ Zg. Since the Fμ;Avg

l are real
functions it follows that

F̄μ;Avg
lmω ¼ Fμ;Avg

lð−mÞð−ωÞ: ð94Þ

Hence we can restrict our attention to modes with n ≥ 0.
For fixed m we start by calculating all l modes with n ¼ 0
and continue by incrementally increasing n until

max
l;μ

‖Fμ;Avg
lmω ‖∞
‖Bμ‖2

< ϵ; ð95Þ

where the sup-norm ‖ · ‖∞ and the L2 norm ‖ · ‖2 of the
regularization parameter B are taken with respect to the
dependence on the orbital phase qr.
After obtaining the Fμ;Avg

l mode, the final step is to
subtract the regularization parameters and add the modes

together. We use the regularization parameters as given in
[58], which uses an extension of the full self-force that is
compatible with the one used here.4 The “regularized” l
modes

Fμ;Avg
l;R ¼ Fμ;Avg

l − Bμ −
Cμ

lþ 1=2
; ð96Þ

should decay with ðlþ 1=2Þ−2. Consequently, the sum of
the l modes converges but rather slowly. Convergence
can be accelerated by fitting for the large-l behavior of the
series using the known terms. We here use the same
procedure as described in [55], where a polynomial in
l−1 is fit to the partial sums of the series to obtain an
estimate for the sum.

V. TESTS AND RESULTS

With all the components for calculating the self-force on
eccentric equatorial orbits around a Kerr black hole in
place, we can start to do numerical calculations. In this
section, we present the results of various numerical
computations that test the consistency of our methods.
We first consider the reconstruction of the time domain lm
modes Fμ;Avg

lmω from the extended homogeneous frequency
domain modes, checking the convergence rates. We further
analyse the loss of precision that occurs in this
reconstruction due to large pointwise cancellations. We
then move on to checking the convergence rates of the l
modes of the self-force after subtraction of the regulariza-
tion parameters. This provides a key check both of our
numerical implementation and of the analytical calculation
of the regularization parameters for the self-force on
eccentric orbits in Kerr spacetime.
Since this is the first calculation of the gravitational self-

force on eccentric orbits in Kerr spacetime, there is little
possibility of checking our results against the literature.
Moreover, since the gravitational self-force is not gauge
invariant, we also cannot compare our results—which
are obtained in a certain (completed) radiation gauge—to
results in the circular and/or Schwarzschild limits, where
the self-force has only been calculated in the Lorenz and
Regge-Wheeler gauges. One thing we can compare with is
the average energy and angular momentum fluxes to
infinity and down the horizon, which according to the
so-called “balance law” should be equal to certain orbital
averages of the self-force. In Sec. V C, we will compare
these orbit averages to fluxes both from the existing
literature and calculated using our own code.
We finally give some sample results from our code.

These will be represented as so-called “self-force loops”
first introduced in [82].

4Note that there is a typo in the expresion for Aμ in [58]. A
correct expression for Aμ appears in [81], which uses a different
extension that does not affect the value of Aμ.
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A. Time domain reconstruction

As a first test of our implementation we consider the
reconstruction of the “time-domain” spherical harmonic
modes Fμ;Avg

lm for the frequency domain modes Fμ;Avg
lmω ,

Fμ;Avg
lm ¼

X∞
n¼−∞

Fμ;Avg
lmωmn

; ð97Þ

with ωmn ¼ mΩϕ þ nΩr.

In our method, we construct Fμ;Avg
lmω from the vacuum

solutions of hμν outside of the libration region rmin < r <
rmax analytically extended to the particle location, rather
than the nonvacuum inhomogeneous solutions that would
be obtained through variation of parameters. The “method
of extended homogeneous solutions” was originally intro-
duced in [65] to avoid poor convergence of the sum over
frequency modes due to Gibbs waves caused by the
nondifferentiability of the retarded field at the particle
location. In our method, it is doubly necessary because the
CCK metric reconstruction procedure is only well defined
for vacuum perturbations.
The expectation of [65] is that for radial harmonic

number jnj large enough, summand of Eq. (97) decays
exponentially with jnj. To test this expectation, Fig. 1
plots the sup-norm of the frequency modes of Ft;�

normalized by ‖Fμ;�
lm ‖∞ for a variety of values for l and

m obtained for an eccentric equatorial orbit with parameters
ða; p; eÞ ¼ ð0.9; 5.5; 0.3Þ. (Results for different orbits,
values of l and m, and components of the self-force are
qualitatively similar.) We see that the large-jnj behavior of
the frequency domain modes is consistent with a decay
faster than ejnj (shown for reference as the diagonal grid
lines), as expected.
Figure 1, however, also highlights a somewhat distress-

ing feature of the time domain reconstruction. We see that a
significant fraction of the frequency modes have normal-
ized values which are orders of magnitude larger than 1.
This means that there must be significant cancellation
between the different frequency modes as they are summed
to recover the time domain modes. Consequently, we
expect a significant loss of precision as a result.
Moreover, as illustrated in Fig. 2 this loss of precision
appears to increase exponentially with l.
This behavior is inherent to the method of extended

homogeneous solutions. To understand its origin we must
take a closer look at the behavior of the homogeneous
solutions of the Teukolsky equation. Figure 3 shows the
anatomy of a set of typical homogeneous solutions to the
(spin-2) Teukolsky equation. For values of r large com-
pared to ω−1, the asymptotic wave behavior dominates and

FIG. 2. Illustration of the loss of precession in construction the l
modes from the frequency domain modes as a function of l for an
orbit with parameters ða; p; eÞ ¼ ð0.9; 5.5; 0.3Þ. The loss of
precision is measured by taking the maximal value of the sup-
norms of all the frequency domain modes Ft

lmω contributing to a
certain l mode Ft

l normalized by the sup-norm of the complete l
mode. The diagonal gridlines show a reference growth propor-
tional to ðxmax

xmin
Þl with x ¼ ðr − rþÞ.

FIG. 1. Illustration of the convergence of the frequency modes
for large radial mode number jnj. The plotted lines correspond to
the sup-norms of Ft

lmω obtained for an orbit with ða; p; eÞ ¼
ð0.9; 5.5; 0.3Þ and normalized by the sup-norm of the complete
time domain mode Ft

lm. Solid lines represent values obtained
from the outside field, whereas dashed lines represent inside
values. The different colors indicate various combinations of l
and m. The diagonal gridlines indicate a reference decay of ejnj.
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jsRþ
lmωj ∝ r−2s−1 þOðr−2sÞ; ð98Þ

jsR−
lmωj ∝ r−1 þOðr0Þ: ð99Þ

However, when r≲ ω−1 the solution becomes approxi-
mately stationary and is well approximated by the analyti-
cally known stationary solutions sR

�
lm0 (see e.g. [55]). Near

the horizon, for ζ ¼ ωðr − rþÞ ≪ 1 these solutions are
proportional to ζ−2, whereas for larger values of ζ they
behave as,

jsRþ
lmωj ∝ ζ−l−s−1 þOðz−l−sÞ; ð100Þ

jsR−
lmωj ∝ ζl−s þOðζl−sþ1Þ: ð101Þ

Consequently, for strong field eccentric orbits the extended
homogeneous frequency modes of the self-force with
relatively small frequencies will vary significantly in
magnitude along the orbit. The magnitude of this variation
increases exponentially with l, approximately as

�
rmax − rþ
rmin − rþ

�
l
: ð102Þ

On the other hand, for large frequencies ω the orbit is
completely in the “wave-zone,” and the homogeneous
modes will exhibit a variation whose magnitude is inde-
pendent of l.
Meanwhile the variation of the time-domain modes Fμ

lm
along the orbit is controlled by the source, with the
magnitude of the variation proportional to ðrmax=rminÞ3,
and certainly not growing faster than linearly in l.
Consequently, it is expected that the magnitude of the
low frequency modes is much larger than of the sum over
all frequency modes, i.e. the time domain mode Fμ

lm.
We finally observe that the loss of precision in

reconstruction of the time domain modes is not constant
along the orbit. Figure 4 combines plots of the maximal
value of jFt;�

lmωj obtained for any m and ω at fixed l as a
function of the orbital phase qr with plots of the total lmode,
both the one-sided values and the average. The difference
in magnitude gives an indication of the accuracy lost in
summing over all frequency modes. We see that when
summing the outside “þ” modes, we lose most accuracy at
qr ¼ π (periapsis) while losing no accuracy at qr ¼ 0
(apapsis). Conversely, the inside “−” modes lose most
accuracy at apapsis, while losing little precision at periapsis.
This behavior is again easily understood from the nature

of the method of extended homogeneous solutions. Near

FIG. 3. The anatomy of a typical homogeneous solution to the
s ¼ þ2 Teukolsky equation. The particular solutions plotted are
for a ¼ 0.9, l ¼ 20, m ¼ 1, and ω ¼ 0.5 (as solid lines) and
ω ¼ 0 (as dashed lines). Qualitatively, other solutions look the
same. At large radii, the ω ≠ 0 modes scale as z−5 for the outside
modes and ζ−1 for the inside mode. In contrast, the static modes
scale as ζ−l−3 and ζl−2 respectively. Below a radius ζ ∼ 12 the
oscillating modes become similar to the static modes initially
showing the same ζ−l−3 and ζl−2 behavior. Near to the horizon, all
modes scale as ζ−2. (For the sake of this figure all modes have
been normalized to numerically agree in this limit.)

FIG. 4. An illustration of the precision loss that occurs
when summing over all frequency modes as a function of the
orbital phase qr. Shown are both the maximal contributions
from the frequency modes Fr;�

20mω to the l mode Fr;�
20 , and the

final l mode (both the one side values and the two-sided
average). The “þ” modes lose most precision at periastron
and the “−” modes lose most precision at apastron. The
values are obtained for our standard reference orbit with
parameters ða; p; eÞ ¼ ð0.9; 5.5; 0.3Þ.
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apapsis the extended homogeneous modes of the field are
close to the “actual” field that would be obtained through
variation of parameters, hence we expect the magnitude of
the frequency modes to be similar to the time domain
modes without large cancellations. As the modes are
analytically extended further into the libration region, the
low frequency modes exhibit their anomalous ∼rl growth
leading to very large cancellations at periapsis. The reverse
happens with the extended inside modes, they are close to
their actual values at periapsis, and grow towards apapsis.
In methods that can obtain the self-force from either the

inside or outside field values such as frequency domain
Lorenz gauge calculations in Schwarzschild [35,36] or
scalar field calculations in Kerr [83], this orbital phase
dependence of the accuracy loss offers an easy way to
mitigate its impact. One simply uses the field on the side of
the particle that exhibits the least precision loss.
Unfortunately, the “no-string” radiation gauge procedure
used in this paper needs the average of the field on both
sides of the orbit. Hence we have no other option than to
knuckle up and bear the loss of accuracy. Luckily, since our
code is implemented using arbitrary precision arithmetic it
is straightforward to simply ask for more precision (at the
cost of computation time).
Currently, this precision loss in the summation of the

frequency modes, appears to be the main limiting factor in
pushing our calculation to higher eccentricities and accu-
racies. For this reason, we have dwelled on this phenome-
non to some length above. Our main conclusions are as
follows, the impact of this effect is greatest for:

(i) Orbits with high eccentricities
(ii) Orbits in the strong field domain (which have more

modes for which the stationary “near-zone” domain
envelops the orbit)

(iii) High l modes
(iv) Low frequency modes.

The third point is exacerbated in Kerr spacetime by the fact
that the spherical l modes needed to calculate the self-force
in our mode-sum scheme are combinations of spheroidal l
modes, including modes with l > l. However, this is at
least mitigated by the last conclusion, since low ω modes
exhibit only a small spread in l modes contributing to a
given l mode.
A solid understanding of this phenomenon and its causes

will also allow us to better control its impact in future
evolutions of our code. For example, the fact that only low-
frequency modes are affected is good news. The nature of
the MST methods being used means that is much easier to
generate more precision for low-frequency modes than it is
for high-frequency modes. The same is true for other
numerical steps such as the integrals needed to calculate
the mode amplitudes Z�

lmω. Consequently, by fine tuning
the precision requested for each mode we can minimize the
impact of this phenomenon on computation time at fixed
requested overall precision as we increase eccentricity.

Currently, we have taken the somewhat ham-handed
approach of simply increasing the overall requested pre-
cision to mitigate the precision loss, leading to a lot of
wasted resources on obtaining precision for modes that will
not add to the precision of the overall result.

B. Regularization parameters

For our next test we will compare the l modes Fμ
l

obtained numerical through our procedure to the regulari-
zation parameters Aμ, Bμ, and Cμ first derived in [81] from
the singular field in Lorenz gauge. According to the
analysis of [52], the l modes obtained through the radiation
gauge procedure utilized here should satisfy

Fμ;�
l ¼ �ðlþ 1=2ÞAμ þ Bμ þ Cμ

lþ 1=2
þOðl−2Þ; ð103Þ

for the one-sided values, and

Fμ;Avg
l ¼ Bμ þ Cμ

lþ 1=2
þOðl−2Þ; ð104Þ

for the two-sided average with the regularization param-
eters taking their Lorenz gauge values.
Comparing our numerical results to the analytic expect-

ations provides a crucial check of our numerical procedure
for calucalting the self-force in Kerr spacetime. Almost
any implementation error (crucially including overall sign
errors) would cause our calculated field to fail to match
the predicted large l behavior. Additionally, this test will
provide a first numerical validation of the highly nontrivial
analytical calculation of [81] and analysis of [52] for
eccentric equatorial orbits in Kerr spacetime.
In Fig. 5, we plot the bare values of the lmodes evaluated

at a generic point (say qr ¼ π=2) along the orbit obtained
numerically for a reference orbit with parameters
ða; p; eÞ ¼ ð0.9; 5.5; 0.3Þ. As expected, the one-sided val-
ues of the individual components of the self-force show a
OðlÞ divergence at large-l, while the two-sided averages
asymptote to a constant value. Note how the one-sided
values of the ϕ component have not yet reached their
asymptotic behavior at the largest l included in the plot,
whereas the two-sided average of the same component is
already much better behaved.
Next we calculate the “regularized” lmodes Fμ

l;R defined
by

Fμ;�
l;R ¼ Fμ;�

l ∓ ðlþ 1=2ÞAμ − Bμ −
Cμ

lþ 1=2
; ð105Þ

for the one-sided values and by Eq. (96) for the two-sided
average.
Figure 6 shows the regularized l modes for the same

orbital parameters ða; p; eÞ ¼ ð0.9; 5.5; 0.3Þ and phase
qr ¼ π=2 as used in Fig. 5. We see that for all three
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nonzero components of the self-force the inside, outside
and average values of the regularized lmodes neatly exhibit
the expected Oðl−2Þ fall-off at large-l. This means that the
Lorenz gauge regularization parameters are spot on for our
calculation, providing a huge boost in confidence in both
the method and numerical implementation.
In Figs. 7 and 8, we finally look at the (regularized) l

modes at two special points along the orbit, the periapsis
and apapsis. At these points the t and ϕ-components of the
self-force are expected to be regular, in particular the
regularization parameters for these components all vanish
at these points. Naively, one would therefore expect the l
modes to fall off exponentially at large l. However, looking
at Figs. 7 and 8, we see that this is not the case. Instead, the
t and ϕ components show the same Oðl−2Þ behavior at
large l as the other regularized modes. This can be under-
stood as a consequence of the extension of the full self-
force F μ constructed in Sec. III D, which is just smooth
enough to keep the regularization parameters unchanged.
This observation underlines the fact that the “higher-order
regularization” parameters of our radiation gauge calcu-
lation should not (and do not) match the ones known from
Lorenz calculations [69,70].

C. Balance law

In this section, we compare two independent ways of
calculating the (long-term) change in the energy and
angular momentum of a particle in orbit around a black

FIG. 6. The same l modes as in Fig. 5 after subtracting the
regularization parameters. All components follow the expected
Oðl−2Þ behavior.

FIG. 7. Convergence of the (regularized) l modes at apapsis
(qr ¼ 0). Despite the t and ϕ components of the self-force being
regular at this point, the l mode decay only as Oðl−2Þ due to the
nonsmoothness of the extension.

FIG. 5. The l modes of the self-force on an orbit with
parameters ða; p; eÞ ¼ ð0.9; 5.5; 0.3Þ (before regularization) at
a generic point qr ¼ π=2 along the orbit. The inside and outside
values follow the expected OðlÞ growth (indicated by the
diagonal gridlines), while the two-sided averages asymptote to
a constant value.
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TABLE I. Numerical test of the balance law for a selection of strong field orbits. In each entry, the first row gives η−1ðhdCþfluxdt iþhdC−fluxdt iÞ
(with C either E or L) calculated from the asymptotic values of ψ4. The second row gives −η−1hdCGSFdt i. These independently calculated
quantities agree upto the estimated error level, providing a strong consistency check of the radiation self-force formalism, our numerical
implementation, and error estimates. The brackets (.) at the end of values indicated the estimated uncertainty on the last digit(s) (e.g.
1.240349ð2Þ × 10−4 indicates 1.240349 × 10−4 � 2 × 10−10).

a p e η−1hdEdti rel. diff. η−1hdLdt i rel. diff.

−0.99 9.5 0.1 1.240352212605ð5Þ × 10−4

1.240349ð2Þ × 10−4
−2.9 × 10−6 3.35399692067ð1Þ × 10−3

3.354001ð7Þ × 10−3
1.3 × 10−6

−0.99 11. 0.1 5.02889013411ð6Þ × 10−5

5.02890ð1Þ × 10−5
2.3 × 10−6 1.73631631341ð2Þ × 10−3

1.736319ð2Þ × 10−3
1.5 × 10−6

−0.99 9.7 0.2 1.426974820ð5Þ × 10−4

1.426985ð7Þ × 10−4
7.1 × 10−6 3.59197541ð1Þ × 10−3

3.59201ð1Þ × 10−3
9.2 × 10−6

−0.99 11. 0.2 5.68947089758ð5Þ × 10−5

5.68947ð3Þ × 10−5
2.7 × 10−7 1.82140420957ð1Þ × 10−3

1.821403ð5Þ × 10−3
−5.0 × 10−7

−0.99 10. 0.3 1.526199ð2Þ × 10−4

1.526216ð9Þ × 10−4
1.1 × 10−5 3.602085ð3Þ × 10−3

3.60213ð1Þ × 10−3
1.2 × 10−5

−0.99 11. 0.3 6.82322768ð4Þ × 10−5

6.82320ð4Þ × 10−5
−4.0 × 10−6 1.962751534ð10Þ × 10−3

1.96274ð1Þ × 10−3
−4.8 × 10−6

−0.99 10.3 0.4 1.60866ð2Þ × 10−4

1.60874ð8Þ × 10−4
4.9 × 10−5 3.54613ð4Þ × 10−3

3.5463ð2Þ × 10−3
5.2 × 10−5

−0.99 11. 0.4 8.479613ð4Þ × 10−5

8.4797ð1Þ × 10−5
8.7 × 10−6 2.1595054ð8Þ × 10−3

2.15951ð3Þ × 10−3
3.8 × 10−6

0.5 5. 0.1 1.8133382543991ð9Þ × 10−3

1.81333ð2Þ × 10−3
−4.8 × 10−6 2.062659697674ð1Þ × 10−2

2.06265ð3Þ × 10−2
−6.7 × 10−6

0.5 6. 0.1 7.093793531283ð8Þ × 10−4

7.09374ð6Þ × 10−4
−6.9 × 10−6 1.053488681053ð1Þ × 10−2

1.05348ð1Þ × 10−2
−5.4 × 10−6

0.5 5. 0.2 2.0871627012ð8Þ × 10−3

2.08713ð10Þ × 10−3
−1.5 × 10−5 2.2076791923ð7Þ × 10−2

2.2076ð1Þ × 10−2
−3.3 × 10−5

0.5 6. 0.2 7.77122991658ð2Þ × 10−4

7.7711ð2Þ × 10−4
−1.8 × 10−5 1.082908213382ð3Þ × 10−2

1.08290ð3Þ × 10−2
−7.8 × 10−6

0.5 5. 0.3 2.6006571ð2Þ × 10−3

2.6005ð2Þ × 10−3
−4.4 × 10−5 2.4798414ð2Þ × 10−2

2.4797ð2Þ × 10−2
−6.0 × 10−5

0.5 6. 0.3 8.86676911ð8Þ × 10−4

8.8666ð5Þ × 10−4
−2.3 × 10−5 1.127740300ð8Þ × 10−2

1.12772ð5Þ × 10−2
−2.1 × 10−5

0.5 5. 0.4 3.53058ð2Þ × 10−3

3.528ð1Þ × 10−3
−7.4 × 10−4 2.97986ð2Þ × 10−2

2.9779ð8Þ × 10−2
−6.7 × 10−4

0.5 6. 0.4 1.0309895ð6Þ × 10−3

1.03097ð7Þ × 10−3
−1.8 × 10−5 1.1805233ð6Þ × 10−2

1.1805ð1Þ × 10−2
−1.9 × 10−5

0.99 2. 0.1 4.4073701ð1Þ × 10−2

4.40ð1Þ × 10−2
−2.5 × 10−3 1.65690967ð5Þ × 10−1

1.653ð6Þ × 10−1
−2.3 × 10−3

0.99 3. 0.1 1.08256949688ð3Þ × 10−2

1.0819ð2Þ × 10−2
−6.0 × 10−4 6.5830999430ð2Þ × 10−2

6.579ð2Þ × 10−2
−6.2 × 10−4

0.99 2. 0.2 4.7242644ð7Þ × 10−2

4.69ð2Þ × 10−2
−7.2 × 10−3 1.7000999ð2Þ × 10−1

1.688ð8Þ × 10−1
−7.0 × 10−3

0.99 3. 0.2 1.1530343191ð3Þ × 10−2

1.1535ð7Þ × 10−2
3.7 × 10−4 6.683744156ð1Þ × 10−2

6.685ð7Þ × 10−2
1.9 × 10−4

0.99 2. 0.3 5.250991ð4Þ × 10−2

5.22ð6Þ × 10−2
−6.6 × 10−3 1.771962ð1Þ × 10−1

1.76ð2Þ × 10−1
−5.8 × 10−3

0.99 3. 0.3 1.26252561ð5Þ × 10−2

1.265ð2Þ × 10−2
1.8 × 10−3 6.8247192ð3Þ × 10−2

6.84ð2Þ × 10−2
1.8 × 10−3

0.99 2. 0.4 5.99553ð2Þ × 10−2

6.10ð9Þ × 10−2
1.7 × 10−2 1.874314ð6Þ × 10−1

1.90ð3Þ × 10−1
1.6 × 10−2

0.99 3. 0.4 1.397344ð1Þ × 10−2

1.397ð6Þ × 10−2
−5.6 × 10−4 6.960990ð5Þ × 10−2

6.96ð4Þ × 10−2
−1.3 × 10−4
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hole through interaction with its own gravitational field.
This change can be obtained either from the force acting on
the particle or by monitoring the total energy and angular
momentum leaving the system through future null infinity
and the future horizon of the black hole.
Starting from the definitions of the specific energy and

angular momentum,

E ¼ −uμ
� ∂
∂t
�

μ

; ð106Þ

L ¼ uμ
� ∂
∂ϕ

�
μ

; ð107Þ

their average rate of change over an orbital period is
obtained by differentiating with respect to τ, substituting
Eq. (3), and integrating over an orbital period T r,�

dEGSF

dt

�
¼ η

Tr

Z
T r

0

−FtðτÞdτ; and ð108Þ

�
dLGSF

dt

�
¼ η

Tr

Z
T r

0

FϕðτÞdτ: ð109Þ

On the other hand, we can also obtain the average flux of
energy and angular momentum to future null-infinity and
down the future black hole horizon directly from the
frequency domain solutions of the Teukolsky equation

for ψ4. The fluxes at infinity can be extracted straightfor-
wardly,

�
dEþ

flux

dt

�
¼ η

4π

X
lmω

jZþ
lmωj2
ω2

; ð110Þ

�
dLþ

flux

dt

�
¼ η

4π

X
lmω

jZþ
lmωj2
ω3

: ð111Þ

With a little more work Teukolsky and Press [84] showed
how to extract the horizon fluxes as well,

�
dE−

flux

dt

�
¼ η

4π

X
lmω

plmω
jZ−

lmωj2
ω2

; ð112Þ

�
dL−

flux

dt

�
¼ η

4π

X
lmω

plmω
jZ−

lmωj2
ω3

; ð113Þ

where plmω is the Teukolsky-Starobinsky constant defined
in Eq. (40).
It was shown byMino [85–87] (reproducing some earlier

(partial) results of Quinn and Wald [88] and Gal’tsov [89])
that these changes in energy and angular momentum satisfy
the so-called balance law,

FIG. 8. Similar, to Fig. 7 but now evaluated at periapsis
(qr ¼ π). Again we see that the t and ϕ components show
convergence no faster than Oðl−2Þ due to the nonsmoothness of
the extension.

FIG. 9. Self-force loops for an orbit with parameters
ða; p; eÞ ¼ ð0; 7; 0.25Þ calculated in two different gauges using
the radiation gauge method of the paper and the Lorenz gauge
code of [35]. We find partial overlap in the loops for Ft as is
necessitated by the balance law. However, the Fr loops for
different gauges are completely disjoint, stressing the gauge
dependence of the self-force.
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�
dEGSF

dt

�
þ
�
dEþ

flux

dt

�
þ
�
dE−

flux

dt

�
¼ 0; ð114Þ

�
dLGSF

dt

�
þ
�
dLþ

flux

dt

�
þ
�
dL−

flux

dt

�
¼ 0: ð115Þ

That is, the average rate of change of (local) orbital energy
and angular momentum is equal to the average rate at which
energy and angular momentum are dissipated from the
system in gravitational waves.
With our code we can calculate both the local change of

energy and angular momentum due to the self-force acting

FIG. 10. “Self-force loops” for a variety of orbits. On each plot the horizontal axis shows the radial position r of the particle, and the
vertical axis shows a component of the self-force, rescaled by an appropriate power of r (r3 for Ft and Fr, and r5 for Fϕ). Each column
shows one component of the self-force (Ft on the left Fr in the middle, and Fϕ on the right), while each row shows orbits with a fixed
spin a and semilatus rectum p. Complete data for these plots is available as supplementary data [101].
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on the particle and the energy and angular momentum
fluxes leaving the system for eccentric equatorial orbits in
Kerr spacetime. Table I compares the results from both
calculations for a selection of strong field eccentric orbits
(with whirl numbers Ωϕ=Ωr ranging between 2 and 5). In
all cases, the observed differences are comparable to the
estimated errors for the result. This not only provides us
with a strong consistency check on our results, it also tells
us that our estimation of the errors in the numerical result is
fairly accurate.
We also see sharp reduction in the obtained precision for

strong field orbits with high eccentricity, completely inline
with the expectations from Sec. VA.

D. Sample results: Self force loops

We conclude this section by presenting some sample
results of the gravitational self-force on a selection of
strong field eccentric equatorial orbits. We present the
result in so-called “self-force loops” introduced by [82]. In
self-force loop plots, the self-force on an eccentric equa-
torial orbit is plotted against the radial position r while
factoring out the dominant radial scaling (i.e. r−3 for Ft and
Fr and r−5 for Fϕ), since the self-force is generally different
on the inward part of the orbit than on the outward leg this
produces a loop shaped graph.
In Fig. 10, we show self-force loops for a variety of

orbital parameters. Each plot shows the self-force loops for
a fixed component of the self-force, spin a, and semilatus
rectum p, while varying the eccentricity e. For the most part
the plots show similar features.
For example, most loops have a clockwise orientation,

meaning that the self-force on the outgoing leg is larger
than on the ingoing leg. In particular, the self-force obtains
its maximal value after passing through periapsis. Notable
exceptions to this behavior are found in the Fϕ loops
around a retrograde spinning (a ¼ −0.99) black hole,
which are all anticlockwise. We further note that the orbit
with ða; p; eÞ ¼ ð−0.99; 11; 0.4Þ forms a figure eight
reversing its orientation near periapsis.
However, we need to remember that there is limited

physics in the specific pointwise features of the self-force,
since the self-force is not gauge invariant. As a reminder
of this fact we have included a plot of the gravitational
self-force on an orbit around a Schwarschild black hole
with ðp; eÞ ¼ ð7; 0.25Þ, calculated both using the radiation
gauge techniques of this paper and using the Lorenz gauge
techniques of [35] in Fig. 9. The Ft components show
overlap (as their average behavior is dictated by the
balance law), but the Fr-loops are completely disjoint.
This does not mean that the gravitational self-force is
devoid of physical meaning, instead it means we should
consider physical (gauge invariant) observables when
comparing results. The orbital averages of Ft and Fϕ

discussed in Sec. V C are examples of gauge invariants
constructed from the self-force. Other examples include

the redshift invariant calculated in our previous paper
[55], the “self-torque” exerted on a test spin [90], and tidal
invariants [91].

VI. CONCLUSIONS AND DISCUSSION

This paper has provided the first calculation of the
gravitational self-force on eccentric equatorial orbits in
Kerr spacetime, extending the previous results for the
redshift invariant obtained in [55]. Our method employs
the Chrzanowski-Cohen-Kegeles formalism to reconstruct
the local radiation gauge metric perturbation from the Weyl
scalar ψ4, and then applys the results of [52] to obtain the
gravitational self-force of the particle. The Weyl scalar ψ4

itself is obtained using an arbitrary precision numerical
implementation of the Mano-Suzuki-Tagasugi formalism
for solving the Teukolsky equation.
The consistency checks examined in Sec. V provide a

great deal of confidence that the numerical implementation
of our method is working as expected and is providing
accurate results. The accuracy of the results for larger
eccentricities currently seems to be limited by the large
cancellations in the sum over frequency modes identified in
section VA. The analysis of that section reveals that these
cancellations are inherent to the employed method of
extended homogeneous solutions. As the cancellations
grow approximately as ð1þ eÞ2l, they seriously hinder
extending the calculation to higher eccentricities and
increased accuracies (requiring more l modes). The
increased understanding of the cause of these cancellations
will, however, assist us in mitigating its consequences in
future calculations.
More physics can be extracted from this method by

calculating physical observables. One such observable that
has previously been calculated for nearly circular orbits in
Schwarzschild spacetime [92] is the periapsis shift. One
current obstruction to calculating this quantity is that
it is only invariant under a restrict class of gauges. As
discussed in [72], the “no-string” radiation gauge used in
this paper is not in the right class of gauges to calculate
such pseudo-invariants. The solution offered in [72] for the
Schwarzschild case can be adapted to Kerr, at least for
circular orbits. That will be enough to allow calculation of
the periapsis shift and the shift of the innermost stable
circular equatorial orbit. These calculations will be pub-
lished in a forthcoming paper [93]. For now we will suffice
with noting that preliminary results for the ISCO shift
appear to be in perfect agreement with [94].
The results of the method presented here can in the future

also be used to model the evolution of an EMRI around a
rotating black hole. This can proceed using osculating
geodesic schemes similar to the ones used for the evolution
of Schwarzschild inspirals [95,96]. Depending on the
details of the evolution scheme this may again require
finding an appropriate gauge part of the completion. To
obtain templates accurate enough to do high precision
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measurements on future EMRI detections with eLISA, the
second order (in η) correction dissipative part of the self-
force will also be needed [97]. Recently some good
progress has been made towards obtaining the second
order field [98].
The most obvious generalization of our results here is

calculation of the GSF for generic inclined orbits around a
Kerr black hole. There appear to be no fundamental
obstructions to extend the methods used in this paper to
such calculation. Doing this will open a new range of
physical phenomena to explore such as the shift of the
innermost stable spherical orbit (ISSO). It will also allow a
direct study of resonances between the radial and polar
motion driven by the gravitational self-force first discussed
in [99]. In particular, it will allow for evaluation of the
conditions leading to locking of the resonance [100].
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APPENDIX A: CONVENTIONS

1. Background metric

Through out this paper, we work in “modified” Boyer-
Lindquist coordinates where the polar coordinate θ has
been replaced by z ¼ cos θ. In these coordinates, the Kerr
metric becomes

ds2 ¼ −
�
1 −

2r
Σ

�
dt2 þ Σ

Δ
dr2 þ Σ

1 − z2
dz2

þ 1 − z2

Σ
ð2a2rð1 − z2Þ þ ða2 þ r2ÞΣÞdϕ2

−
4arð1 − z2Þ

Σ
dtdϕ; ðA1Þ

with

Δ ¼ rðr − 2Þ þ a2; ðA2Þ

Σ ¼ r2 þ a2z2: ðA3Þ

2. Tetrad

Many of the calculations presented in this paper rely on
the Newman-Penrose (NP) formalism. As a null tetrad, we

pick the common Kinnersley tetrad expressed in modified
Boyer-Lindquist coordinates,

eμ1 ¼ lμ ¼ 1

Δ
ðr2 þ a2;Δ; 0; aÞ; ðA4Þ

eμ2 ¼ nμ ¼ 1

2Σ
ðr2 þ a2;−Δ; 0; aÞ; ðA5Þ

eμ3 ¼ mμ ¼ −
ρ̄

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
ffiffiffi
2

p
�
ia; 0;−1;

i
1 − z2

�
; ðA6Þ

eμ4 ¼ m̄μ ¼ ρ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
ffiffiffi
2

p
�
ia; 0; 1;

i
1 − z2

�
; ðA7Þ

with

ρ ¼ −1
r − iaz

:

3. Spin coefficients

The NP formalism expresses the GR equations in terms
of Ricci rotation coefficients

γabc ≡ gμλe
μ
aeνc∇νeλb; ðA8Þ

which are given

κ ≡ −γ311; ϖ ≡ −γ241; ϵ≡ −
γ211 þ γ341

2
;

τ≡ −γ312; ν≡ −γ242; γ ≡ −
γ212 þ γ342

2
;

σ ≡ −γ313; μ≡ −γ243; β≡ −
γ213 þ γ343

2
;

ρ≡ −γ314; λ≡ −γ244; α≡ −
γ214 þ γ344

2
:

ðA9Þ

Please note the overall sign difference with respect to for
example [102]. These signs (and those of other NP
quantities) have been chosen such that their background
values agree with those common in sources using the
NP formalism with a ðþ − −−Þ signature metric (e.g.
[41,42,102]).
For example the Weyl curvature scalars are defined as

ψ0 ≡ C1313 ¼ Cμνρσlμmνlρmσ; ðA10Þ

ψ1 ≡ C1213 ¼ Cμνρσlμnνlρmσ; ðA11Þ

ψ2 ≡ C1342 ¼ Cμνρσlμmνm̄ρnσ; ðA12Þ

ψ3 ≡ C1242 ¼ Cμνρσlμmνm̄ρnσ; ðA13Þ
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ψ4 ≡ C2424 ¼ Cμνρσnμm̄νnρm̄σ; ðA14Þ

where Cμνρσ is the Weyl tensor.
The directional tetrad derivative operators are defined as

D̂ ¼ lμ∂μ; ðA15Þ

Δ̂ ¼ nμ∂μ; ðA16Þ

δ̂ ¼ mμ∂μ; ðA17Þ
ˆ̄δ ¼ m̄μ∂μ: ðA18Þ

4. Background values

With these definitions, the spin coefficients take the
following values on the Kerr background,

κ ¼ λ ¼ ν ¼ σ ¼ ϵ ¼ 0; ðA19Þ

and

ρ ¼ −1
r − iaz

; ðA20Þ

ϖ ¼ iaρ2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
ffiffiffi
2

p ; ðA21Þ

τ ¼ −
ia

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p

Σ
ffiffiffi
2

p ; ðA22Þ

μ ¼ ρΔ
2Σ

; ðA23Þ

γ ¼ ρΔþ r − 1

2Σ
; ðA24Þ

β ¼ −
ρ̄z

2
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ; ðA25Þ

α ¼ ϖ − β̄: ðA26Þ
And the Weyl scalars become

ψ0 ¼ ψ1 ¼ ψ3 ¼ ψ4 ¼ 0; ðA27Þ
and

ψ2 ¼
1

ρ3
: ðA28Þ

APPENDIX B: EXPLICIT EXPRESSIONS
FOR SELF-FORCE CONTRIBUTION

FROM THE COMPLETION

To calculate the self-force contribution from the com-
pletion, we start by evaluating (88) and (89) using (A1),

hMμν ¼
2rð3Σ − 2r2Þ

Σ2
dt2 þ 2rðrðΔ − ΣÞ þ 3ΣÞ

Δ2
dr2 −

2a2z2

1 − z2
dz2 −

8a3rz2ð1 − z2Þ
Σ2

dtdϕ

−
�
2a2rð1 − z2Þ2ð2r2 − ΣÞ

Σ2
þ 2a2ð1 − z2Þ

�
dϕ2; ðB1Þ

and

hJμν ¼ −
4arz2

Σ2
dt2 þ 2aðz2Δ − ΣÞ

Δ2
dr2 þ 2az2

1 − z2
dz2 −

4rð1 − z2Þð2r2 − ΣÞ
Σ2

dtdϕ

þ
�
4ar3ð1 − z2Þ2

Σ2
þ 2a2ð1 − z2Þ

�
dϕ2: ðB2Þ

Evaluating the formula for the self-force (4) on these expressions produces the desired Fμ;M=J
comp . As expected from symmetry,

we find Fz;M=J
comp ¼ 0. The other nonvanishing functions are given by

Ft;M
comp ¼ r00

Δ4
0r

5
0

ðE3ða2r0 þ 2a2 þ r30Þð3a6 þ 2a4r30 þ 8a4r20 − 18a4r0 þ 2a2r50 þ 3a2r40 þ 18a2r30 − 24a2r20 þ 2r60 þ 4r50Þ

− 2aE2Lð4a6r0 þ 11a6 þ 26a4r30 þ 24a4r20 − 66a4r0 þ 22a2r50 − 5a2r40 þ 34a2r30 − 56a2r20 þ 18r60 − 12r50Þ
þ EL2ð5a6r0 þ 26a6 − 8a4r40 þ 23a4r30 þ 118a4r20 − 156a4r0 − 8a2r60 þ 31a2r50 − 26a2r40 þ 76a2r30

− 80a2r20 − 3r70 þ 10r60 − 8r50Þ − 2aL3ð5a4 − 8a2r30 þ 34a2r20 − 30a2r0 − 3r40 þ 10r30 − 8r20Þ
− Δ0Eð2a6r0 þ 4a6 þ 2a4r40 þ 7a4r30 − 6a4r20 − 8a4r0 þ 2a2r60 þ 4a2r50 þ 14a2r40 − 24a2r30 þ 3r70Þ
þ 2aΔ0Lð2a4 þ 6a2r30 − a2r20 − 4a2r0 þ 9r40 − 12r30ÞÞ; ðB3Þ
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Fr;M
comp ¼ 1

Δ3
0r

5
0

ðE4ða2r0 þ 2a2 þ r30Þð3a6 þ 2a4r30 þ 8a4r20 − 18a4r0 þ 2a2r50 þ 3a2r40 þ 18a2r30 − 24a2r20 þ 2r60 þ 4r50Þ

− 4aE3Lð2a6r0 þ 7a6 þ 14a4r30 þ 16a4r20 − 42a4r0 þ 12a2r50 − a2r40 þ 26a2r30 − 40a2r20 þ 10r60 − 4r50Þ
þ E2L2ð2a6r0 þ 48a6 − 10a4r40 þ 19a4r30 þ 232a4r20 − 288a4r0 − 10a2r60 þ 32a2r50 − 38a2r40 þ 200a2r30

− 192a2r20 − 5r70 þ 10r60Þ þ 4aEL3ð2a4r0 − 9a4 þ 18a2r30 − 66a2r20 þ 54a2r0 þ 11r40 − 34r30 þ 24r20Þ
− L4ðr0 − 2Þð5a4 − 8a2r30 þ 34a2r20 − 30a2r0 − 3r40 þ 10r30 − 8r20Þ
− E2Δ0ð2a6r0 þ 4a6 þ 2a4r40 þ 7a4r30 − 6a4r20 − 8a4r0 þ 2a2r60 þ 4a2r50 þ 14a2r40 − 24a2r30 þ 3r70Þ
þ 4aELΔ0ða4r0 þ 2a4 þ 7a2r30 − 6a2r20 − 4a2r0 þ 6r40 − 6r30Þ
− L2Δ0ð2a4r0 þ 4a4 − 6a2r40 þ 25a2r30 − 18a2r20 − 8a2r0 − r50 þ 2r40ÞÞ; ðB4Þ

Fϕ;M
comp ¼ r00

Δ4
0r

5
0

ð2aE3ð3a6 þ 2a4r30 þ 8a4r20 − 18a4r0 þ 2a2r50 þ 3a2r40 þ 18a2r30 − 24a2r20 þ 2r60 þ 4r50Þ

þ E2Lð3a6r0 − 22a6 þ 2a4r40 þ 4a4r30 − 114a4r20 þ 132a4r0 þ 2a2r60 − a2r50 þ 12a2r40 − 124a2r30

þ 112a2r20 þ 2r70 − 8r50Þ − 2aEL2ð4a4r0 − 13a4 þ 28a2r30 − 98a2r20 þ 78a2r0 þ 19r40 − 58r30 þ 40r20Þ
þ L3ðr0 − 2Þð5a4 − 8a2r30 þ 34a2r20 − 30a2r0 − 3r40 þ 10r30 − 8r20Þ
− 2aEΔ0ð2a4r0 þ 2a4 þ 8a2r30 − 11a2r20 − 4a2r0 þ 3r40Þ
þ LΔ0ð2a4r0 þ 4a4 − 6a2r40 þ 25a2r30 − 18a2r20 − 8a2r0 − r50 þ 2r40ÞÞ; ðB5Þ

Ft;J
comp ¼ r00

Δ4
0r

5
0

ð−2aE3ða2r0 þ 2a2 þ r30Þða4 þ a2r30 þ 3a2r20 − 6a2r0 þ r50 þ 8r30 − 8r20Þ

þ 2E2Lð3a6r0 þ 8a6 þ 21a4r30 þ 20a4r20 − 48a4r0 þ 15a2r50 − 14a2r40 þ 28a2r30 − 32a2r20 − 3r70 þ 10r60 − 8r50Þ
− 4aEL2ða4r0 þ 5a4 − 2a2r40 þ 4a2r30 þ 24a2r20 − 30a2r0 − 2r60 þ 7r50 − 9r40 þ 10r30 − 8r20Þ
þ 8a2L3ða2 − 2r30 þ 7r20 − 6r0Þ þ 2aEΔ0ð2a4 þ a2r40 þ a2r30 þ 2a2r20 − 4a2r0 þ r60 − r50 þ 10r40 − 12r30Þ
þ 2LΔ0ða4r0 − 2a4 − 2a2r30 − 4a2r20 þ 4a2r0 þ 3r50 − 12r40 þ 12r30ÞÞ; ðB6Þ

Fr;J
comp ¼ 1

Δ3
0r

5
0

ð−2aE4ða2r0 þ 2a2 þ r30Þða4 þ a2r30 þ 3a2r20 − 6a2r0 þ r50 þ 8r30 − 8r20Þ

þ 2E3Lð3a6r0 þ 10a6 þ 23a4r30 þ 26a4r20 − 60a4r0 þ 17a2r50 − 14a2r40 þ 44a2r30 − 48a2r20 − 3r70 þ 10r60 − 8r50Þ
− 2aE2L2ða4r0 þ 18a4 − 5a2r40 þ 7a2r30 þ 92a2r20 − 108a2r0 − 5r60 þ 16r50 − 32r40 þ 64r30 − 48r20Þ
− 2EL3ð3a4r0 − 14a4 þ 32a2r30 − 106a2r20 þ 84a2r0 − 3r50 þ 16r40 − 28r30 þ 16r20Þ
þ 4aL4ðr0 − 2Þða2 − 2r30 þ 7r20 − 6r0Þ þ 2aE2Δ0ð2a4 þ a2r40 þ a2r30 þ 2a2r20 − 4a2r0 þ r60 − r50 þ 10r40 − 12r30Þ
− 4ELΔ0ð2a4 þ 4a2r30 − a2r20 − 4a2r0 − 2r50 þ 7r40 − 6r30Þ þ 2aL2Δ0ð2a2 − 3r40 þ 9r30 − 4r20 − 4r0ÞÞ; ðB7Þ

and
Fϕ;J
comp ¼ r00

Δ4
0r

5
0

ð−4a2E3ða4 þ a2r30 þ 3a2r20 − 6a2r0 þ r50 þ 8r30 − 8r20Þ

− 2aE2Lða4r0 − 8a4 þ a2r40 þ a2r30 − 44a2r20 þ 48a2r0 þ r60 − 2r50 þ 14r40 − 44r30 þ 32r20Þ
þ 2EL2ð3a4r0 − 10a4 þ 24a2r30 − 78a2r20 þ 60a2r0 − 3r50 þ 16r40 − 28r30 þ 16r20Þ
− 4aL3ðr0 − 2Þða2 − 2r30 þ 7r20 − 6r0Þ þ 2EΔ0ða4r0 þ 2a4 þ 6a2r30 − 6a2r20 − 4a2r0 − r50 þ 2r40Þ
− 2aLΔ0ð2a2 − 3r40 þ 9r30 − 4r20 − 4r0ÞÞ: ðB8Þ
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